Science.gov

Sample records for airborne cirrus properties

  1. Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties

    NASA Astrophysics Data System (ADS)

    Yorks, John E.; Hlavka, Dennis L.; Vaughan, Mark A.; McGill, Matthew J.; Hart, William D.; Rodier, Sharon; Kuehn, Ralph

    2011-10-01

    The Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite was successfully launched in 2006 and has provided an unprecedented opportunity to study cloud and aerosol layers using range-resolved laser remote sensing. Dedicated validation flights were conducted using the airborne Cloud Physics Lidar (CPL) to validate the CALIPSO Level 1 and 2 data products. This paper presents results from coincident CALIPSO and CPL measurements of ice cloud spatial properties. Flight segment case studies are shown as well as statistics for all coincident measurements during the CALIPSO-CloudSat Validation Experiment (CC-VEX). CALIPSO layer detection algorithms for cirrus clouds are reliable in comparison with CPL, with best agreement occurring during nighttime coincident segments when the signal-to-noise ratio (SNR) of both instruments is greatest. However, the two instruments disagree on ice cloud spatial properties in two distinct cases. CALIPSO experiences less sensitivity to optically thin cirrus due to lower SNR when compared to CPL data at identical spatial scales. The incorporation of extended spatial averaging in the CALIPSO layer detection algorithm succeeds in detecting the optically thin cirrus, but the averaging process occasionally results in spatial smearing, both horizontally and vertically, of broken cirrus clouds. The second disparity occurs because, in contrast to CPL, multiple scattering contributes significantly to CALIPSO lidar measurements of cirrus clouds. As a result, the CALIPSO signal penetrates deeper into opaque cirrus clouds, and in these cases CALIPSO will report lower apparent cloud base altitudes than CPL.

  2. Spectral optical layer properties of cirrus from collocated airborne measurements and simulations

    NASA Astrophysics Data System (ADS)

    Finger, Fanny; Werner, Frank; Klingebiel, Marcus; Ehrlich, André; Jäkel, Evelyn; Voigt, Matthias; Borrmann, Stephan; Spichtinger, Peter; Wendisch, Manfred

    2016-06-01

    Spectral upward and downward solar irradiances from vertically collocated measurements above and below a cirrus layer are used to derive cirrus optical layer properties such as spectral transmissivity, absorptivity, reflectivity, and cloud top albedo. The radiation measurements are complemented by in situ cirrus crystal size distribution measurements and radiative transfer simulations based on the microphysical data. The close collocation of the radiative and microphysical measurements, above, beneath, and inside the cirrus, is accomplished by using a research aircraft (Learjet 35A) in tandem with the towed sensor platform AIRTOSS (AIRcraft TOwed Sensor Shuttle). AIRTOSS can be released from and retracted back to the research aircraft by means of a cable up to a distance of 4 km. Data were collected from two field campaigns over the North Sea and the Baltic Sea in spring and late summer 2013. One measurement flight over the North Sea proved to be exemplary, and as such the results are used to illustrate the benefits of collocated sampling. The radiative transfer simulations were applied to quantify the impact of cloud particle properties such as crystal shape, effective radius reff, and optical thickness τ on cirrus spectral optical layer properties. Furthermore, the radiative effects of low-level, liquid water (warm) clouds as frequently observed beneath the cirrus are evaluated. They may cause changes in the radiative forcing of the cirrus by a factor of 2. When low-level clouds below the cirrus are not taken into account, the radiative cooling effect (caused by reflection of solar radiation) due to the cirrus in the solar (shortwave) spectral range is significantly overestimated.

  3. Observations of TTL water vapor and cirrus properties from the NASA Global Hawk during the Airborne Tropical TRopopause EXperiment

    NASA Astrophysics Data System (ADS)

    Thornberry, Troy; Rollins, Andrew; Gao, Ru-Shan; Woods, Sarah; Lawson, Paul; Bui, Thaopaul; Pfister, Leonhard; Fahey, David

    2015-04-01

    Despite its very low mixing ratios relative to the troposphere, water vapor in the lower stratosphere (LS) plays a significant role in Earth's radiative balance and climate system and is an important constituent in stratospheric chemistry. The low H2O content of air entering the LS is established to first order by dehydration processes controlled by the cold temperatures of the tropical tropopause layer (TTL), especially over the western Pacific. Cirrus clouds occur with high frequency and large spatial extent in the TTL, and those occurring near the thermal tropopause facilitate the final dehydration of stratosphere-bound air parcels. Uncertainties in aspects of the nucleation and growth of cirrus cloud particles and the sparseness of in situ water vapor and cirrus cloud observations with sufficient spatial resolution limit our ability to fully describe the final stages of the dehydration process before air enters the LS in the tropics. The NASA Airborne Tropical TRopopause EXperiment (ATTREX) measurement campaign has yielded more than 140 hours of sampling from the Global Hawk UAS in the Pacific TTL during deployments in winter 2013 and 2014, including more than 30 hours sampling TTL cirrus. Cirrus clouds were encountered throughout the TTL, up to the tropopause (17-18 km), with ice water contents (IWC) down to the detection limit of 3 μg m-3 and water vapor mixing ratios as low as 1.5 ppm. Most TTL cirrus sampled had particle number concentrations of less than 100 L-1, but some had concentrations ranging up to more than 1000 L-1. The mean value for relative humidity with respect to ice within cirrus was near 100%, but encompassed a range from < 50% to higher than 150%. The high spatial and temporal resolution in situ measurements of water vapor and cirrus cloud properties made during ATTREX provide an outstanding dataset by which to characterize the Pacific TTL environment and evaluate our current understanding of the dynamical and microphysical processes that

  4. Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties

    NASA Astrophysics Data System (ADS)

    Hlavka, Dennis L.; Yorks, John E.; Young, Stuart A.; Vaughan, Mark A.; Kuehn, Ralph E.; McGill, Matthew J.; Rodier, Sharon D.

    2012-05-01

    The Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite was successfully launched in April 2006 to study cloud and aerosol layers using range-resolved laser remote sensing. Dedicated flights were conducted from July 26 to August 14, 2006 using the airborne Cloud Physics Lidar (CPL) to validate the CALIPSO lidar (CALIOP) data products. This paper presents results from coincident ice cloud measurements of lidar ratio, extinction coefficient, and optical depth. Flight segment case studies are shown as well as statistics for all coincident measurements during this CALIPSO-CloudSat Validation Experiment (CC-VEX). For the penetrated portion of opaque layers, CALIOP estimates of lidar ratio and extinction are substantially lower than the corresponding CPL values. Significant differences were also found for measurements of horizontally aligned ice, where different instrument viewing geometries precluded meaningful comparisons. After filtering the data set to exclude these discrepancies, overall CALIOP lidar ratio and extinction averages compared favorably to within 1% of overall CPL averages. When restricting the data further to exact coincident in-cloud point-pairs, CALIOP lidar ratios remained close to CPL values, averaging 2.1% below CPL, and the retrieved extinction and optical depth averaged 14.7% above CPL values, a result partially of higher average CALIOP attenuated backscatter but still a respectably close match.

  5. Microphysical properties of cirrus clouds between 75°N and 25°S derived from extensive airborne in-situ observations

    NASA Astrophysics Data System (ADS)

    Krämer, Martina

    2016-04-01

    Numerous airborne field campaigns were performed in the last decades to record cirrus clouds microphysical properties. Beside the understanding of the processes of cirrus formation and evolution, an additional motivation for those studies is to provide a database to evaluate the representation of cirrus clouds in global climate models. This is of importance for an improved certainty of climate predictions, which are affected by the poor understanding of the microphysical processes of ice clouds (IPCC, 2013). To this end, the observations should ideally cover the complete respective parameter range and not be influenced by instrumental artifacts. However, due to the difficulties in measuring cirrus properties on fast-flying, high-altitude aircraft, some issues with respect to the measurements %evolved have arisen. In particular, concerns about the relative humidity in and around cirrus clouds and the ice crystal number concentrations were under discussion. Too high ice supersaturations as well as ice number concentrations were often reported. These issues have made more challenging the goal of compiling a large database using data from a suite of different instruments that were used on different campaigns. In this study, we have have addressed these challenges and compiled a large data set of cirrus clouds, sampled during eighteen field campaigns between 75°N and 25°S, representing measurements fulfilling the above mentioned requirements. The most recent campaigns were performed in 2014; namely, the ATTREX campaign with the research aircraft Global Hawk and the ML-CIRRUS and ACRIDICON campaigns with HALO. % The observations include ice water content (IWC: 130 hours of observations), ice crystal numbers (N_ice: 83 hours), ice crystal mean mass size (Rice: 83 hours) and relative humidity (RH_ice) in- and outside of cirrus clouds (78 and 140 hours). % We will present the parameters as PDFs versus temperature and derive medians and core ranges (including the most

  6. Airborne lidar observations of cirrus clouds in the Tropics, Mid-latitudes, and the Arctic

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Browell, E.; Ferrare, R.; Grant, W.; Kooi, S.; Brackett, V.; Mahoney, M.

    2003-04-01

    Airborne lidar systems have demonstrated an unsurpassed capability to detect and profile optically thin cirrus. The airborne Lidar Atmospheric Sensing Experiment (LASE) has demonstrated a capability to detect thin cirrus at aerosol scattering levels of <2.0× 10-9 m-1 sr-1 at 815 nm, and this makes it well suited for deriving many cirrus cloud properties. LASE has been operated from high- and medium-altitude aircraft and has participated in 9 major field experiments over the past 8 years. During these missions, data were collected related to optically thin cirrus and moisture in the upper troposphere in the tropics, mid- and high-latitudes. LASE data from these field experiments have been used to characterize the cirrus as thin laminae, thick cirrus, deep convective cirrus, and cirrus anvils. In addition, characteristics including the cloud top height, optical depth, aerosol scattering ratio, lidar extinction-to-backscatter ratio have been derived for optically thin cirrus. During these field experiments, many data sets were available to interpret the cirrus cloud properties including data from satellites, in situ temperature and moisture instruments on aircraft, radiosondes, and during some field experiments, the Microwave Temperature Profiler (MTP). LASE data from long-range flights have been used to derive a relationship between the latitudinal variation of cloud top heights and tropopause locations. These measurements were also used to examine the relationship between relative humidity and the presence of cirrus. LASE observations of cirrus clouds and water vapor fields have also been used to identify dynamical processes like stratosphere-troposphere exchange and to study their characteristics. Examples of these observations and analyses are presented to demonstrate the advantage of using LASE measurements for conducting atmospheric science investigations.

  7. Anatomy of cirrus clouds: Results from the Emerald airborne campaigns

    NASA Astrophysics Data System (ADS)

    Whiteway, James; Cook, Clive; Gallagher, Martin; Choularton, Tom; Harries, John; Connolly, Paul; Busen, Reinhold; Bower, Keith; Flynn, Michael; May, Peter; Aspey, Robin; Hacker, Jorg

    2004-12-01

    The Emerald airborne measurement campaigns have provided a view of the anatomy of cirrus clouds in both the tropics and mid-latitudes. These experiments have involved two aircraft that combine remote sensing and in-situ measurements. Results are presented here from two separate flights: one in frontal cirrus above Adelaide, Australia, the other in the cirrus outflow from convection above Darwin. Recorded images of ice crystals are shown in relation to the cloud structure measured simultaneously by an airborne lidar. In mid-latitude frontal cirrus, columnar and irregular ice crystals were observed throughout the cloud while rosettes were found only at the top. The cirrus outflow from a tropical thunderstorm extended for hundreds of kilometres between the heights of 12.2 and 15.8 km. This was composed mainly of hexagonal plates, columns, and large crystal aggregates that originated from within the main core region of the convection. A small number of bullet rosettes were found at the top of the outflow cirrus and this is interpreted as an indication of in-situ crystal formation. It was found that the largest aggregates fell to the lower regions of the outflow cirrus cloud while the single crystals and small aggregates remained at the top.

  8. Estimating cirrus cloud properties from MIPAS data

    NASA Astrophysics Data System (ADS)

    Mendrok, J.; Schreier, F.; Höpfner, M.

    2007-04-01

    High resolution mid-infrared limb emission spectra observed by the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) showing evidence of cloud interference are analyzed. Using the new line-by-line multiple scattering [Approximate] Spherical Atmospheric Radiative Transfer code (SARTre), a sensitivity study with respect to cirrus cloud parameters, e.g., optical thickness and particle size distribution, is performed. Cirrus properties are estimated by fitting spectra in three distinct microwindows between 8 and 12 μm. For a cirrus with extremely low ice water path (IWP = 0.1 g/m2) and small effective particle size (D e = 10 μm) simulated spectra are in close agreement with observations in broadband signal and fine structures. We show that a multi-microwindow technique enhances reliability of MIPAS cirrus retrievals compared to single microwindow methods.

  9. The use of an airborne lidar for mapping cirrus clouds in FIRE, phase 2

    NASA Technical Reports Server (NTRS)

    Radke, Lawrence F.; Hobbs, Peter V.

    1990-01-01

    The Univ. of Washington (UW) and Georgia Tech have recently built a dual wavelength airborne lidar for operation on the UW's Convair C-131A research aircraft. This lidar was used in studying aerosols and clouds. These studies demonstrated the utility of airborne lidar in a variety of atmospheric research and prompt the suggestion that this facility be included in the next FIRE cirrus experiment. The vertically pointing airborne lidar would be used as a complement to ground based lidars. The airborne lidar would ensure extended coverage of IFO cases that develop upwind of the surface lidars or which miss the ground based lidars while still being the focus of satellite and aircraft in situ studies. The airborne lidar would help assure that cirrus clouds were simultaneously viewed by satellite, sampled by aircraft, and structurally characterized by lidar. System specifications are listed and a schematic is shown of the lidar system aboard the C-131A.

  10. Airborne Millimeter-Wave Radiometric Observations of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.

    1997-01-01

    This paper reports the first radiometric measurements of cirrus clouds in the frequency range of 89-325 GHz from a high-altitude aircraft flight. The measurements are conducted with a Millimeter-wave Imaging Radiometer (MIR) on board the NASA ER-2 aircraft over a region in northern Oklahoma. Aboard the same aircraft are a cloud lidar system and a multichannel radiometer operating at the visible and infrared wavelengths. The instrument ensemble is well suited for identifying cirrus clouds. It is shown that the depressions in brightness temperatures associated with a few intense cirrus clouds occur at all frequency channels of the MIR. Estimates of total ice water path of the cirrus clouds are derived from comparisons of radiative transfer calculations and observed brightness depressions.

  11. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  12. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    NASA Astrophysics Data System (ADS)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  13. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.; Wiscombe, Warren J.

    1993-01-01

    Using special images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at 20 km altitude, we show that wavelengths close to the center of the strong 1.38 micron water vapor band are useful for detecting thin cirrus clouds. The detection makes use of the fact that cirrus clouds are located above almost all the atmospheric water vapor. Because of the strong water vapor absorption in the lower atmosphere, AVIRIS channels near 1.38 micron receive little scattered solar radiance from the surface of low level clouds. When cirrus clouds are present, however, these channels receive large amounts of scattered solar radiance from the cirrus clouds. Our ability to determine cirrus cloud cover using space-based remote sensing will be improved if channels near the center of the 1.38 micron water vapor band are added to future satellites.

  14. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  15. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  16. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  17. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    the AIRS observations at 1:30 AM and 1:30 PM local time, giving information on the diurnal cycle of clouds. References: Baran, A.J. and Francis, P.N. and Havemann, S. and Yang, P: A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus, J. Quant. Spectrosc. Ra., 70, 505-518, 2001 Baran, A. J. and Francis, P. N.: On the radiative properties of cirrus cloud at solar and thermal wavelengths:A test of model consistency using high-resolution airborne radiance measurements, Q. J. Roy. Meteor. Soc.,130, 763-778, 2004.

  18. Retrieval of Cirrus properties by Sunphotometry: A new perspective on an old issue

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Russell, P. B.; Livingston, J. M.; Ramachandran, S.; Redemann, J.; Baum, B. A.

    2012-12-01

    Cirrus clouds are important modulators of the earth radiation budget and continue to be one of the most uncertain components in weather and climate modeling and in the estimations of cooling and warming effects. This is mainly due to the high uncertainty in the derivation of their optical thicknesses and ice crystal size, shape and amount. While sunphotometers are widely accepted as one of the most accurate platforms for measuring aerosol optical depth (AOD), such measurements under cirrus are still considered unreliable. The ease and the relatively widespread use of sunphotometers globally, both as airborne and ground-based platforms, can potentially contribute to our increased capability in quantifying some of the most important cirrus properties such as cloud optical thickness (COT) and ice crystal effective diameter. However, under cloudy conditions, the signal received at the sunphotometer FOV contains not only the direct attenuated solar irradiation, but also the forward scattered term, which interferes with the proper derivation of AOD via the simple Beer-Lambert relation. Solutions to this problem were previously suggested in the form of correction factors. In the present work we have proposed a new approach that utilizes the additional information content that lies within the total measured irradiance under a cloudy scene. Relatively thin cirrus clouds (i.e. COT<4.0) allow direct sun irradiation to reach the detector, and at the same time strongly scatter some of this radiation into the instrument FOV. This results in increased transmittance values due to both the direct and scattered components. This quantity was modeled for the spectral range of 400-2200 nm, for a range of COT (0-4), and a range of ice particle effective diameters using the explicit Baum and Yang cirrus optical properties data sets. This allowed the derivations of transmittance look-up tables that were used for the retrieval procedure. The new approach was tested on two cases; an

  19. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  20. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  1. Airborne observations of the microphysical structure of two contrasting cirrus clouds

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.

    2016-11-01

    We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (<100 µm) present at all levels However, this small ice mode is not present in observations from a holographic probe. This raises the possibility that the small ice observed by optical array probes may at least be in part an instrument artifact due to the counting of out-of-focus large particles as small ice. The concentrations of ice crystals were a factor 10 higher in the actively growing cloud with the stronger updrafts, with a mean concentration of 261 L-1 compared to 29 L-1 in the decaying case. Particles larger than 700 µm were largely absent from the decaying cirrus case. A comparison with ice-nucleating particle parameterizations suggests that for the developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.

  2. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly

  3. Properties of PSCs and Cirrus Determined from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Pagan, Kathy; Foschi, Patricia G.

    1999-01-01

    Polar stratospheric clouds (PSCS) and cirrus have been investigated using thermal emission measurements at 10.8 and 12 micrometers wavelength (channels 4 and 5) from the Advanced Very High Resolution Radiometer (AVHRR). The AVHRR signal was evaluated from a theoretical basis to understand the emission from clear and cloudy skies, and models were developed to simulate the AVHRR signal. Signal simulations revealed that nitric acid PSCs are invisible to AVHRR, while ice PSCs and cirrus are readily detectable. Methods were developed to retrieve cloud optical depths, average temperatures, average effective radii, and ice water paths, from AVHRR channels 4 and 5. Properties of ice PSCs retrieved from AVHRR were compared to values derived from coincident radiosondes and from the Polar Ozone and Aerosol Measurement II instrument, showing good agreement.

  4. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  5. Cirrus cloud properties derived from coincident GOES and lidar data during the 1986 FIRE Cirrus Intensive Field Observations (IFO)

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Alvarez, Jose M.; Young, David F.; Heck, Patrick W.; Sassen, Kenneth

    1990-01-01

    One of the main difficulties in detecting cirrus clouds and determining their correct altitude using satellite measurements is their nonblackness. In the present algorithm (Rossow et al., 1985) used by the International Satellite Cloud Climatology Project (ISCCP), the cirrus cloud emissivity is estimated from the derived cloud reflectance using a theoretical model relating visible (VIS, 0.65 micron) optical depth to infrared (IR, 10.5 micron) emissivity. At this time, it is unknown how accurate this approach is or how the derived cloud altitude relates to the physical properties of the cloud. The First ISCCP Regional Experiment (FIRE) presents opportunities for determining how the observed radiances depend on the cloud properties. During the FIRE Cirrus Intensive Field Observations (IFO, see Starr, 1987), time series of cloud thickness, height, and relative optical densities were measured from several surface-based lidars. Cloud microphysics and radiances at various wavelengths were also measured simultaneously over these sites from aircraft at specific times during the IFO (October 19 to November 2, 1986). Satellite-observed radiances taken simultaneously can be matched with these data to determine their relationships to the cirrus characteristics. The first step is taken toward relating all of these variables to the satellite observations. Lidar-derived cloud heights are used to determine cloud temperatures which are used to estimate cloud emissivities from the satellite IR radiances. These results are then correlated to the observed VIS reflectances for various solar zenith angles.

  6. Correlation Between Cirrus Particle Optical Properties: Microphysics and Implications for Spaceborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Hess, M.; Reichardt, S.; Behrendt, A.; McGee, T. J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in arctic winter reveal a strong correlation between the particle optical properties, specifically depolarization ratio and extinction-to-backscatter ratio, for ambient cloud temperatures above approximately -45 C, and an anti-correlation for colder temperatures. Similar correlations are evident in a 2-year midlatitude (53.4 deg N) cirrus data set. Scattering calculations show that the observed dependences can be interpreted in terms of the shapes and sizes of the cirrus ice particles. These findings suggest a retrieval method for determining cirrus extinction profiles from spaceborne lidar polarization data.

  7. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    SciTech Connect

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R.

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  8. Reassessing properties and radiative forcing of contrail cirrus using a climate model

    NASA Astrophysics Data System (ADS)

    Bock, Lisa; Burkhardt, Ulrike

    2016-08-01

    Contrail cirrus is the largest known component contributing to the radiative forcing associated with aviation. Despite major advances simulating contrail cirrus, their microphysical and optical properties and the associated radiative forcing remain largely uncertain. We use a contrail cirrus parameterization in a global climate model which was extended to include a microphysical two-moment scheme. This allows a more realistic representation of microphysical processes, such as deposition and sedimentation, and therefore of the microphysical and optical properties of contrail cirrus. The simulated contrail microphysical and optical properties agree well with in situ and satellite observations. As compared to estimates using an older version of the contrail cirrus scheme, the optical depth of contrail cirrus is significantly higher, particularly in regions with high air traffic density, due to high ice crystal number concentrations on the main flight routes. Nevertheless, the estimated radiative forcing for the year 2002 supports our earlier results. The global radiative forcing of contrail cirrus for the year 2006 is estimated to be 56mW/m2. A large uncertainty of the radiative forcing estimate appears to be connected with the, on average, very small ice crystal radii simulated in the main air traffic areas, which make the application of a radiative transfer parameterization based on geometric optics questionable.

  9. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    SciTech Connect

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.; Diskin, G. S.; Evans, Stuart; Lawson, Paul; Marchand, Roger

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGP site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.

  10. Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NSF HIPPO, EU INCA and NASA ATTREX campaigns

    NASA Astrophysics Data System (ADS)

    Diao, M.; Schumann, U.; Jensen, J. B.; Minikin, A.

    2015-12-01

    The radiative forcing of cirrus clouds is influenced by microphysical (e.g., ice crystal number concentration and size distribution) and macroscopic properties. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions. In this work, we use airborne in-situ observations to compare cirrus cloud properties between polluted and pristine regions. Our dataset includes: the NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011), the EU Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign (2000) and the NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (2014). The combined dataset include observations of both extratropical (HIPPO and INCA) and tropical (ATTREX) cirrus, over the Northern and Southern Hemispheres. We use the in-situ measured carbon monoxide (CO) mixing ratio as a pollution indicator, and compare ice microphysical properties (i.e., ice crystal number concentration (Nc) and number-weighted mean diameter (Dc)) between air masses with higher and lower CO. All analyses are restricted to T ≤ -40°C. By analyzing ice crystals (Fast-2DC, 87.5-1600 µm) in HIPPO, we found that Dc decreases with increasing CO concentration at multiple constant pressure levels. In addition, analysis of INCA data shows that Nc and extinction of small ice particles (FSSP 3-20 µm) increases with increasing CO. Particles < 87.5 µm in Fast-2DC data are not considered due to uncertainty in sample volume, and the FSSP measurements are subject to possible shattering. We further analyze the ice crystals (SPEC FCDP, 1-50 µm) in the tropical tropopause layer in ATTREX. At -70°C to -90°C, we found that the average Nc (Dc) increases (decreases) at higher CO. Overall, our results suggest that extratropical and tropical cirrus are likely to have more numerous small ice particles, when sampled in the more polluted background. Back

  11. Evaluation of Tropical Cirrus Cloud Properties Derived from ECMWF Model Output and Ground Based Measurements over Nauru Island

    SciTech Connect

    Comstock, Jennifer M.; Jakob, Christian

    2004-05-26

    Cirrus clouds play an important role both radiatively and dynamically in the tropics. Understanding the mechanisms responsible for the formation and persistence of tropical cirrus is an important step in accurately predicting cirrus in forecast models. In this study, we compare ground-based measurements of cloud properties with those predicted by the ECMWF model at a location in the tropical western Pacific. Our comparisons of cloud height and optical depth over an 8 month time period indicate that the model and measurements agree relatively well. The ECMWF model predicts cirrus anvils associated with deep convection during convectively active periods, and also isolated cirrus events that are influenced by large-scale vertical ascent. We also show through examination of an upper tropospheric cirrus case that the model produces tropospheric waves that appear to influence the morphology and maintenance of the cirrus layer.

  12. Characterizing Cirrus Clouds for Their Impact on Airborne Defensive Laser Systems

    DTIC Science & Technology

    2006-09-29

    analysis — Gary Gustafson, Bob d’Entremont, AER , Inc. FASCODE software adaptation - Jim Chetwynd, AFRL/VSBYH UCLA model code - Steve Ou, UCLA vn 1...radar/lidar cirrus layer measurements. Statistics include bias, mean absolute error (MAE) and standard deviation of the error (St Dv ). Values are shown

  13. Radiative properties of cirrus clouds inferred from broadband measurements during FIRE

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Cox, Stephen K.

    1990-01-01

    It is well known that clouds are significant modulators of weather and climate because of their effects on the radiation field and thus on the energy balance of the earth atmosphere system. As a result, the accurate prediction of weather and climate depends to a significant degree on the accuracy with which cloud radiation interactions can be described. The broadband radiative and microphysical properties of five cirrus cloud systems are reported, as observed from the NCAR Sabreliner during the FIRE first Cirrus IFO, in order to better understand cirrus cloud-radiation interactions. A broadband infrared (BBIR) radiative transfer model is used to deduce BBIR absorption coefficients in order to assess the impact of the cirrus clouds on infrared radiation. The relationships of these absorption coefficients to temperature and microphysical characteristics are explored.

  14. FIRE II Cirrus Info

    Atmospheric Science Data Center

    2014-03-18

    ... Page:  FIRE II Main Grouping:  Cirrus Description:  First ISCCP Regional Experiment (FIRE) ... stratocumulus systems, the radiative properties of these clouds and their interactions. Data Products:  Cirrus ...

  15. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  16. Airborne Differential Absorption and High Spectral Resolution Lidar Measurements for Cirrus Cloud Studies

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Schaefler, Andreas; Wirth, Martin; Fix, Andreas

    2016-06-01

    Aerosol and water vapor measurements were performed with the lidar system WALES of the German Aerospace Center (DLR) onboard the German research aircraft G550-HALO during the HALO Techno-Mission in October and November 2010 and during the ML-Cirrus mission in March and April 2014 over Central Europe and the North Atlantic region. Curtains composed of lidar profiles beneath the aircraft show the water vapor mixing ratio and the backscatter ratio. Temperature data from ECMWF model analysis are used to calculate the relative humidity above ice (RHi) in the 2-D field along the flight track to study the RHi distribution inside and outside of cirrus clouds at different stages of cloud evolution.

  17. Evaluation of the MOZAIC Capacitive Hygrometer during the airborne field study CIRRUS-III

    NASA Astrophysics Data System (ADS)

    Neis, P.; Smit, H. G. J.; Krämer, M.; Spelten, N.; Petzold, A.

    2015-03-01

    The MOZAIC Capacitive Hygrometer (MCH) is usually operated aboard passenger aircraft in the framework of MOZAIC (Measurement of Ozone by Airbus In-Service Aircraft) for measuring atmospheric relative humidity (RH). In order to evaluate the performance of the MCH, the instrument was operated aboard a Learjet 35A research aircraft as part of the CIRRUS-III field study together with a closed-cell Lyman-α fluorescence hygrometer (Fast in situ Stratospheric Hygrometer, or FISH) and an open-path tunable diode laser system (Open-path Jülich Stratospheric TDL ExpeRiment, or OJSTER) for water vapour measurement. After reducing the CIRRUS-III data set to data corresponding to MOZAIC aircraft operation conditions, the 1 Hz RH data cross correlation between the MCH and reference instruments FISH (clear sky) and OJSTER (in-cirrus) yielded a remarkably good agreement of R2 = 0.92 and slope m = 1.02 and provided a MCH uncertainty of 5% RH. Probability distribution functions of RH deduced from the MCH and reference instruments agreed well between 10 and 70% RH with respect to liquid water in the ambient temperature range of ca. -70 to -40 °C. The use of MCH data is limited to sensor temperatures above the calibration limit of Tsensor = -40 °C (corresponds to ambient temperature of Tambient = -70 °C at typical cruising speed of long-haul passenger aircraft). Good performance of the MCH for clear sky as well as for in-cirrus conditions demonstrated the sensor robustness also for operation inside ice clouds.

  18. Evaluation of the MOZAIC Capacitive Hygrometer during the airborne field study CIRRUS-III

    NASA Astrophysics Data System (ADS)

    Neis, P.; Smit, H. G. J.; Krämer, M.; Spelten, N.; Petzold, A.

    2014-09-01

    The MOZAIC Capacitive Hygrometer (MCH) is usually operated onboard of passenger aircraft in the framework of MOZAIC (Measurement of Ozone by AIRBUS In-Service Aircraft). In order to evaluate the performance of the MCH, it was operated aboard a Learjet 35A aircraft as part of the CIRRUS-III field study together with a closed-cell Lyman-α fluorescence hygrometer (FISH) and an open path tunable diode laser system (OJSTER) for water vapour measurement. After reducing the data set to MOZAIC-relevant conditions, the 1Hz relative humidity (RH) cross correlation between MCH and reference instruments FISH (clear sky) and OJSTER (in-cirrus) yielded a remarkably good agreement of R2 = 0.97 and slope m = 0.96 and provided the MCH uncertainty of 5% RH. Probability distribution functions of RH deduced from MCH and reference instruments agreed well over the entire range of observations. The main limitation for the use of MCH data is related to sensor temperatures below the calibration limit of Tsensor = -40 °C (corresponds to ambient temperature of Tambient = -70 °C at typical cruising speed of long-haul passenger aircraft), which causes a delay in the sensor's time response. Good performance of MCH for clear sky as well as for in-cirrus conditions demonstrated the sensor robustness also for operation inside ice clouds.

  19. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  20. Did the Eruption of the Mt. Pinatubo Volcano Affect Cirrus Properties?

    NASA Technical Reports Server (NTRS)

    Luo, Zhengzhao; Rossow, William B.; Inoue, Toshiro; Stubenrauch, Claudia J.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Some observations suggest that the volcanic aerosols produced by the Mt. Pinatubo eruption may have altered cirrus properties. We look for evidence that such modification of cirrus is extensive enough to be climatically significant by comparing three satellite-based cirrus datasets produced by the ISCCP (International Satellite Cloud Climatology Project) analysis, the 'split-window' analysis, and 3I analysis. Since the former two have not been compared in detail before, we conduct such a comparison here. When applied to AVHRR (Advanced Very High Resolution Radiometer) data, both the ISCCP and split-window analyses identify about 0.2 - 0.3 cirrus cloud amount in tropical latitudes; however, there are detailed differences of classification for about half of these clouds. The discrepancies are attributed to the simplified assumptions made by both methods. The latter two datasets are derived from infrared radiances, so they are much less sensitive to volcanic aerosols than the ISCCP analysis. After the Mt. Pinatubo eruption, the ISCCP results indicate a dramatic decrease of thin cirrus (cloud top pressure less than 440 mb and visible optical thickness less than 1.3) over ocean, accompanied by a comparable increase of altocumulus and cumulus clouds; over land, there are no significant changes. In contrast, results from the split-window and 3I analyses show little change in thin cirrus amount over either ocean or land that is associated with the volcanic eruption. The ISCCP results can, therefore, be understood as a misclassification of thin cirrus because the additional reflected sunlight by the volcanic aerosol makes the cirrus clouds appear to be optically thicker. Examination of the split-window signature and the infrared emissivities from 3I show no significant change in infrared emissivity (or optical thickness). These results indicate that the Mt. Pinatubo volcanic aerosol did not have a significant systematic effect on tropical cirrus properties, but rather

  1. Parameterizations of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann

    2005-01-01

    Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).

  2. A Characterization of Cirrus Cloud Properties That Affect Laser Propagation

    DTIC Science & Technology

    2008-05-01

    13. SUPPLEMENTARY NOTES - Reprinted from Journal of Applied Meteorology and Climatology, Vol. 47, pp 1322 -1336 14. ABSTRACT Future high-altitude...UNCL UNL 10 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std Z3918 AFRL-RV-HA-TR-2008-1050 1322 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOIIt...retrieved from actual n bo t and to p atindicers The lasermmotha d topmost cloud c mputational layers. The l s r path cirrus measurements are used to

  3. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    NASA Astrophysics Data System (ADS)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected

  4. The effects of small ice crystals on the infrared radiative properties of cirrus clouds

    NASA Technical Reports Server (NTRS)

    Takano, Y.; Liou, K. N.; Asano, S.; Heymsfield, A.; Minnis, P.

    1990-01-01

    To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, we must have fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds. Recent aircraft observations (Platt et al. 1989) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4.

  5. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties

    SciTech Connect

    Sassen, K.; Comstock, Jennifer M.

    2001-08-01

    In Part III of a series of papers describing the extended time high-cloud observations from the University of Utah Facility for Atmospheric Remote Sensing (FARS) supporting the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, the visible and infrared radiative properties of cirrus clouds over Salt Lake City, Utah, are examined. Using {approx}860 h of combined ruby (0.694 {micro}m) lidar and midinfrared (9.5-11.5 {micro}m) radiometer data collected between 1992 and 1999 from visually identified cirrus clouds, the visible optical depths {tau} and infrared layer emittance epsilon of the varieties of midlatitude cirrus are characterized. The mean and median values for the cirrus sample are 0.75 {+-} 0.91 and 0.61 for {tau}, and 0.30 {+-} 0.22 and 0.25 for epsilon. Other scattering parameters studied are the visible extinction and infrared absorption coefficients, and their ratio, and the lidar backscatter-to-extinction ratio, which has a mean value of 0.041 sr{sup -1}. Differences among cirrus clouds generated by general synoptic (e.g., jet stream), thunderstorm anvil, and orographic mechanisms are found, reflecting basic cloud microphysical effects. The authors draw parameterizations in terms of midcloud temperature T{sub m} and physical cloud thickness {Delta}z for epsilon and {tau}: both macrophysical variables are needed to adequately address the impact of the adiabatic process on ice cloud content, which modulates radiative transfer as a function of temperature. For the total cirrus dataset, the authors find epsilon = 1 -exp [-8.5 x 10{sup -5} (T{sub m} + 80 C) {Delta}z]. These parameterizations, based on a uniquely comprehensive dataset, hold the potential for improving weather and climate model predictions, and satellite cloud property retrieval methods.

  6. Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements

    SciTech Connect

    Comstock, Jennifer M.; Sassen, Kenneth

    2001-10-01

    A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ratio for each lidar profile, which accounts for changes in cloud microphysical properties with time. The technique also utilizes a correlated K distribution radiative transfer model,where absorption coefficients K have been tabulated specifically for the bandwidth and filter function of the infrared radiometer. The radiative transfer model allows for estimation of infrared emission due to atmospheric water vapor,ozone,and carbon dioxide, which is essential for deriving cirrus radiative properties. Also described is an improved technique for estimation of upwelling IR radiation that is emitted by the surface of the earth and reflected by the cloud into the radiometer field-of-view. Derived cirrus cloud properties include base and top height and temperature, visible optical depth, emittance, backscatter-to-extinction ratio, and extinction-to-absorption ratio. The purpose of this algorithm is to facilitate the analysis of the extensive high-cloud dataset obtained at the University of Utah, Facility for Atmospheric Remote Sensing in Salt Lake City, UT. To illustrate the method, a cirrus case study is presented.

  7. Microphysics and Radiative Properties of Cirrus: Instrumentation and Analysis

    NASA Technical Reports Server (NTRS)

    Arnott, W. P.; Hallett, John

    1998-01-01

    This section summarizes the scientific questions which originated with participation in FIRE II in Coffeyville KA, evolved through participation in several field projects related to FIRE and culminated in participation in FIRE III in the Arctic in March / May 1998. It is noted that many of the ideas generated in FIRE II 1992 - 1995 and published under the grant involving the role of CCN in cirrus formation have been followed through in this grant and have also been central in the ideas for work under the SUCCESS project and the laboratory work currently supported by NSF.

  8. Retrieval and Validation of Cirrus Cloud Properties with the Far-Infrared Sensor for Cirrus (FIRSC) During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin

    2004-01-01

    This grant supported the principal investigator's analysis of data obtained during CRYSTAL-FACE by two submillimeter-wave radiometers: the Far-Infrared Sensor for Cirrus (FIRSC) and the Conical Scanning Submillimeter-wave Imaging Radiometer (CoSSIR). The PI led the overall FIRSC investigation, though Co-I Michael Vanek led the instrument component at NASA Langley. The overall CoSSIR investigation was led by James Wang at NASA Goddard, but the cirrus retrieval and validation was performed at the University of Colorado. The goal of this research was to demonstrate the submillimeter-wave cirrus cloud remote sensing technique, provide retrievals of ice water path (IWP) and median mass particle diameter (D(sub me)), and perform validation of the cirrus retrievals using other CRYSTAL-FACE datasets.

  9. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  10. Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and

  11. Cirrus Cloud Radiative and Microphysical Properties from Ground Observations and In Situ Measurements During FIRE 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Akerman, T. P.; Shiobara, M.; Uchiyama, A.; Heymsfield, A. J.; Miloshevich, L.; Wendell, J.; Eloranta, E. W.; Purgold, C.; Bergstrom, R. W.

    1997-01-01

    Measurements from the FIRE 1991 cirrus cloud field experiment in the central United States are presented and analyzed. The first part focuses on cirrus microphysical properties. Aircraft 2D-probe in situ data at different cloud altitudes were evaluated for cirrus cases on four different days. Also presented are simultaneous data samples from balloonborne videosondes. Only these balloonsondes could detect the smaller crystals. Their data suggest (at least for midlatitude altitudes below 10 km) that ice crystals smaller than 15 microns in size are rare and that small ice crystals not detected by 2D-probe measurements are radiatively of minor importance, as overlooked 2D-probe crystals account for about 10% of the total extinction. The second part focuses on the link between cirrus cloud properties and radiation. With cloud macrophysical properties from surface remote sensing added to the microphysical data and additional radiation measurements at the surface, testbeds for radiative transfer models were created. To focus on scattering processes, model evaluations were limited to the solar radiative transfer by comparing calculated and measured transmissions of sunlight at the surface. Comparisons under cloud-free conditions already reveal a model bias of about +45 W/sq m for the hemispheric solar downward broadband flux. This discrepancy, which is (at least in part) difficult to explain, has to be accounted for in comparisons involving clouds. Comparisons under cirrus cloud conditions identify as the major obstacle in cirrus solar radiative transfer modeling the inability of one-dimensional radiative transfer models to account for horizontal inhomogeneities. The successful incorporation of multidimensional radiative transfer effects will depend not only on better models but critically on the ability to measure and to define characteristic inhomogeneity scales of cloud fields. The relative minor error related to the microphysical treatment is in part a reflection of

  12. Comparisons of cirrus cloud microphysical properties between polluted and pristine air

    NASA Astrophysics Data System (ADS)

    Diao, Minghui; Schumann, Ulrich; Minikin, Andreas; Jensen, Jorgen

    2015-04-01

    Cirrus clouds occur in the upper troposphere at altitudes where atmospheric radiative forcing is most sensitive to perturbations of water vapor concentration and water phase. The formation of cirrus clouds influences the distributions of water in both vapor and ice forms. The radiative properties of cirrus depend strongly on particle sizes. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions (e.g., industrial emission and biomass burning). If anthropogenic emissions influence cirrus formation in a significant manner, then one should expect a systematic difference in cirrus properties between pristine (clean) air and polluted air. Because of the pollution contrasts between the Southern (SH) and Northern Hemispheres (NH), cirrus properties could have hemispheric differences as well. Therefore, we study high-resolution (~200 m), in-situ observations from two global flight campaigns: 1) the HIAPER Pole-to-Pole Observations (HIPPO) global campaign in 2009-2011 funded by the US National Science Foundation (NSF), and 2) the Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign in 2000 funded by the European Union and participating research institutions. To investigate the changes of cirrus clouds by anthropogenic emissions, we compare ice crystal distributions in polluted and pristine air, in terms of their frequency occurrence, number concentration (Nc) and mean diameter (i.e., effective-mean Deff and volume-mean Dc). Total aerosol concentration is used to represent the combined influence of natural and anthropogenic aerosols. In addition, measured carbon monoxide (CO) mixing ratio is used to discriminate between polluted and pristine air masses. All analyses are restricted to temperatures ≤ -40°C to exclude mixed-phased clouds. The HIPPO campaign observations were obtained over the North America continent and the central Pacific Ocean

  13. Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds.

    PubMed

    Järvinen, E; Vochezer, P; Möhler, O; Schnaiter, M

    2014-11-01

    Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32  μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.

  14. FIRE II - Cirrus Data Sets

    Atmospheric Science Data Center

    2013-07-26

    FIRE II - Cirrus Data Sets First ISCCP Regional Experiment (FIRE) II Cirrus was conducted in southeastern Kansas. It was designed to improve the ... stratocumulus systems, the radiative properties of these clouds and their interactions. Relevant Documents:  FIRE ...

  15. Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics

    NASA Astrophysics Data System (ADS)

    Protopapadaki, Sofia E.; Stubenrauch, Claudia J.; Feofilov, Artem G.

    2017-03-01

    Representing about 30 % of the Earth's total cloud cover, upper tropospheric clouds play a crucial role in the climate system by modulating the Earth's energy budget and heat transport. When originating from convection, they often form organized systems. The high spectral resolution of the Atmospheric Infrared Sounder (AIRS) allows reliable cirrus identification, both from day and nighttime observations. Tropical upper tropospheric cloud systems have been analyzed by using a spatial composite technique on the retrieved cloud pressure of AIRS data. Cloud emissivity is used to distinguish convective core, cirrus and thin cirrus anvil within these systems. A comparison with simultaneous precipitation data from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) shows that, for tropical upper tropospheric clouds, a cloud emissivity close to 1 is strongly linked to a high rain rate, leading to a proxy to identify convective cores. Combining AIRS cloud data with this cloud system approach, using physical variables, provides a new opportunity to relate the properties of the anvils, including also the thinner cirrus, to the convective cores. It also distinguishes convective cloud systems from isolated cirrus systems. Deep convective cloud systems, covering 15 % of the tropics, are further distinguished into single-core and multi-core systems. Though AIRS samples the tropics only twice per day, the evolution of longer-living convective systems can be still statistically captured, and we were able to select relatively mature single-core convective systems by using the fraction of convective core area within the cloud systems as a proxy for maturity. For these systems, we have demonstrated that the physical properties of the anvils are related to convective depth, indicated by the minimum retrieved cloud temperature within the convective core. Our analyses show that the size of the systems does in general increase with convective depth, though for

  16. TTL cirrus ice water content--extinction relationships from ATTREX measurements

    NASA Astrophysics Data System (ADS)

    Thornberry, Troy; Rollins, Andrew; Woods, Sarah; Bui, Thaopaul; Gao, Ru-Shan

    2016-04-01

    Cirrus clouds cover a large fraction of the globe and play a significant role in the radiative balance of the Earth system, but remain a source of uncertainty since their net radiative effect varies depending on their microphysical properties. Cirrus are particularly prevalent in the tropical central and western Pacific, where they form at the extremely cold temperatures in the tropical tropopause layer (TTL) and result in dehydration of air as it rises into the stratosphere. TTL cirrus typically exhibit low ice number concentrations and small particles relative to mid-latitude cirrus, resulting in significantly lower ice water contents (IWC). Lidar observations of TTL cirrus produce measurements of volume extinction (σ) and rely on empirically derived relationships to calculate cloud IWC. To date, TTL cirrus σ-IWC relationships have been extrapolated from measurements of mid-latitude, higher temperature clouds, or based on a limited number of observations within TTL cirrus. In this analysis we use measurements of cirrus extinction and IWC acquired during the Airborne Tropical Tropopause Experiment (ATTREX) mission in the TTL over the western Pacific to derive new relationships between these parameters for TTL cirrus that can be used to improve the determination of TTL IWC from satellite, airborne and ground-based lidar. ATTREX yielded more than 24 hours of sampling in TTL cirrus at temperatures below 203 K (-70° C). Cirrus clouds were encountered at altitudes between 14.5 km and 17.5 km with IWC down to the ˜2 μg m-3 detection limit of the NOAA Water instrument and water vapor mixing ratios as low as 1.5 ppm. Most TTL cirrus sampled had ice number concentrations (INC) less than 100 L-1, and very few had INC of more than 1000 L-1. σ values measured by the in situ cloud probes ranged from < 10-6 m-1 to ˜10-3 m-1.

  17. The effects of small ice crystals on the infrared radiative properties of cirrus clouds

    NASA Technical Reports Server (NTRS)

    Takano, Y.; Liou, K. N.; Asano, S.; Heymsfield, A.; Minnis, P.

    1990-01-01

    The effects of nonspherical small ice crystals on the IR radiative properties of cirrus clouds are investigated utilizing light scattering properties of spheroidal particles. Employing the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the absorption and scattering properties for small ice crystals. Parameterization formulas are developed for large ice crystals employing results computed from the geometric ray-tracing method and the Fraunhofer diffraction theory for hexagonal crystals and spheroids.

  18. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  19. Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Stephens, Graeme L.

    1993-01-01

    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.

  20. Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods.

    PubMed

    Cadet, Bertrand; Giraud, Vincent; Haeffelin, Martial; Keckhut, Philippe; Rechou, Anne; Baldy, Serge

    2005-03-20

    We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud's optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI-PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied.

  1. Simulation study of the remote sensing of optical and microphysical properties of cirrus clouds from satellite IR measurements.

    PubMed

    Xu, L; Zhang, J

    1995-05-20

    Improved ray-optics theory and Mie theory for single scattering and an adding-doubling method for multiple scattering have been used to study the interaction of radiation in NASA's Visible and Infrared Spin-Scan Radiometer Atmospheric Sounder Satellite (VAS) IR channels and the microphysics of inhomogeneous cirrus clouds. The simulation study shows that crystal shape has remarkable effects on scattering and on the radiative-transfer properties of cirrus clouds in IR spectra. The sensitivity of the brightness temperature, as observed with VAS-IR channels, to the hexagonal columns and plates in cirrus clouds is noticeable. A method that permits one to infer the optical thickness, crystal shape, ice-water content,and emittance of cirrus clouds by using a multi-IR window channel with a scanning observation technique is developed. Detailed error analyses are carried out, and the characteristics of VAS-IR window channels are investigated through the examination of the effects of sea-surface reflection and variations in the temperature and water-vapor profiles on the VAS measurements. It is shown that these effects are large and need to be considered. Some uncertainties that have risen from the theoretical model are studied; they demonstrate that the Mie-scattering theory should not be used to retrieve the microphysical and optical properties of cirrus clouds. A suitable cloud-microphysics model and a suitable scattering model are needed instead.

  2. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  3. Radiative and microphysical properties of cirrus cloud inferred from the MODIS infrared split-window measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, H.; Yamada, S.; Katagiri, S.; Yang, P.; Okamoto, H.

    2013-12-01

    An optimal estimation-based algorithm is developed for retrieval of radiative and microphysical properties of cirrus cloud from the measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) at three infrared (IR) split-window bands with center wavelengths at 8.5, 11 and 12 μm. Prior information of cloud top and underlying surface temperatures are from the MODIS operational products. A fast forward model is based on semi-analytical equations for the brightness temperature assuming a single-layer homogeneous ice cloud with prescribed particle habit and size distributions. Modeling errors in the brightness temperature from the present approximate treatment of radiative transfer are insignificant, but relatively more substantial errors occur due to the uncertainties in model parameters including surface emissivity, precipitable water, and cloud bottom temperature. The total measurement-model errors are well correlated for the three bands, which is considered properly in the optimal estimation framework. Retrieval errors of cloud optical thickness and effective particle radius are mainly from uncertainties in a priori cloud top and surface temperatures and model parameters. The three-band IR method is suitable for retrieving optical thickness and effective particle radius for opaque and moderately thick cirrus clouds (with cloud optical thicknesses within a range of 0.5-6). The efficient retrieval algorithm enables global-scale remote sensing at a 1-km2 resolution. A tropical region case study demonstrates advantages of the method; particularly, the ability to be applied to more pixels in optically-thin cirrus in comparison with a solar-reflection based method, and the ability of the optimal estimation framework to produce useful diagnostics of retrieval uncertainties and the retrieval cost that denote the quantitative consistency between measurement and model calculation with several assumptions. The IR retrieval shows smaller optical thickness

  4. (abstract) Infrared Cirrus and Future Space Based Astronomy

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1993-01-01

    A review of the known properties of the distribution of infrared cirrus is followed by a discussion of the implications of cirrus on observations from space. Probable limitations on space observations due to IR cirrus.

  5. A Microphysics Guide to Cirrus Clouds - Part I: Cirrus Types

    NASA Astrophysics Data System (ADS)

    Krämer, Martina; Rolf, Christian; Anna, Luebke; Armin, Afchine; Nicole, Spelten; Anja, Costa; Jessica, Meyer; Martin, Zöger; Jessica, Smith; Robert, Herman; Bernhard, Buchholz; Volker, Ebert; Darrel, Baumgardner; Stephan, Borrmann; Marcus, Klingebiel; Linnea, Avallone

    2016-04-01

    The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study provides a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution (Krämer et al., 2015, ACPD). The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets - liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In

  6. [Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models].

    PubMed

    Husltu; Bao, Yu-hai; Xu, Jian; Qing, Song; Bao, Gang

    2015-05-01

    Single scattering properties for spherical and hexagonal ice crystal models with different size parameters and wavelengths were employed to calculate satellite observed radiation and downward flux in ground surface using RSTAR radiative transfer model. Results indicated that simulated satellite observed radiation and ground surface downward radiant flux from different shapes of ice crystal models were different. The difference in the spectral radiation fluxes between 0. 4 and 1. 0 µm was largest, and particle shapes affected the downward radiant flux significantly. It was verified that the proper selection of the effective ice crystal model is not only important for retrieval of the microphysical and optical parameters of the cirrus cloud, but also important for obtaining the radiant flux on the earth's surface correctly. These results are important for retrieving cloud microphysical parameters and simulation of the ground surface downward radiant flux.

  7. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing: Part V. Cloud Structural Properties

    SciTech Connect

    Sassen, Kenneth; Wang, Likun; Starr, David O.; Comstock, Jennifer M.; Quante, Markus

    2007-07-31

    In this fifth of a series of papers describing the extended-time high cloud observation program from the University of Utah Facility for Atmospheric Remote Sensing, the structural properties of cirrus clouds over Salt Lake City, Utah, are examined. Wavelet analysis is applied as a function of cloud height to a 10-y record of ruby (0.694 um) lidar backscattering data collected from visually-identified cirrus clouds to study the presence of periodic cloud structures, such as Kelvin-Helmholtz waves, cirrus mammata, and uncinus cells (all with wavelengths of ~1-10 km), as well as longer mesoscale cloud organizations. Approximately 8.4% (18.8%, 30.8%) of the data display such periodic structures after passing a 95% (75%, 50%) confidence level test. This may signify that most cloud organizations are quasi-periodic in nature. The amount of lidar cloud data showing periodic structures does not change considerably with length scale between 0.2 to 200 km, although a preference for ~20-km mesoscale cloud structures is indicated. Using time series of vertically-integrated lidar backscattering profiles, we find a steady decrease in autocorrelation coefficients starting at a few kilometers as the length (or model grid) scale increases. Examining the variability of cirrus cloud optical depth t from an earlier LIRAD (combined lidar and infrared radiometer) analysis reveals that the standard deviation σ of t is related by σ = 0.36 t.

  8. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size

  9. Radiative properties of visible and subvisible Cirrus: Scattering on hexagonal ice crystals

    NASA Technical Reports Server (NTRS)

    Flatau, Piotr J.; Stephens, Graeme L.; Draine, Bruce T.

    1990-01-01

    One of the main objectives of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) is to provide a better understanding of the physics of upper level clouds. The focus is on just one specific aspect of cirrus physics, namely on characterizing the radiative properties of single, nonspherical ice particles. The basis for further more extensive studies of the radiative transfer through upper level clouds is provided. Radiation provides a potential mechanism for strong feedback between the divergence of in-cloud radiative flux and the cloud microphysics and ultimately on the dynamics of the cloud. Some aspects of ice cloud microphysics that are relevant to the radiation calculations are described. Next, the Discrete Dipole Approximation (DDA) is introduced and some new results of scattering by irregular crystals are presented. The Anomalous Diffraction Theory (ADT) was adopted to investigate the scattering properties of even larger crystals. In this way the scattering properties of nonspherical particles were determined over a range of particle sizes.

  10. “Using Statistical Comparisons between SPartICus Cirrus Microphysical Measurements, Detailed Cloud Models, and GCM Cloud Parameterizations to Understand Physical Processes Controlling Cirrus Properties and to Improve the Cloud Parameterizations”

    SciTech Connect

    Woods, Sarah

    2015-12-01

    The dual objectives of this project were improving our basic understanding of processes that control cirrus microphysical properties and improvement of the representation of these processes in the parameterizations. A major effort in the proposed research was to integrate, calibrate, and better understand the uncertainties in all of these measurements.

  11. Retrieval of Cirrus Radiative and Spatial Properties Using Independent Satellite Data Analysis Techniques

    DTIC Science & Technology

    1992-01-01

    ANALYSIS CO2 Slicing cloud analyses have been compared Nighttime AVHRR Local Area Coverage (LAC) andwith lidar measurements and NWS ground-based...brightness seemingly more extensive detection of cirrus in the Figure la. AVHRR 3.7 Rm Image for the 0930 UTC Figure lb. AVHRR 11.8 gm Image for the 0930...Spinhirne, M. M. Hardesty , and J. average effective altitude values ZCo2 and ZAIRc for the M. Alvarez, 1990: The 27-28 October 1986 FIRE IFO Cirrus

  12. Polar Cirrus Cloud Properties Through Long-Term Lidar and Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Campbell, James; Mahesh, Ashwin; Welton, Judd; Starr, David OC. (Technical Monitor)

    2001-01-01

    In comparison to mid latitude cloud cover, knowledge of polar cirrus and other cloud cover is limited. The interpretations of satellite-based cloud imaging and retrievals in polar regions have major problems due to factors such as darkness and extreme low temperatures. Beginning in 2002 a NASA orbiting lidar instrument, GLAS, (Geoscience Laser Altimeter System) will unambiguously define cloud type and fraction with good coverage of polar regions. Active laser sensing gives the spatial and temporal distribution of clouds and diamond dust. In preparation for, and supplementing the GLAS measurements are ground based MP (micro pulse) lidar experiments providing continuous profiling. MP lidar installations have been operating at the South Pole since December 1999 and at the Atmospheric Radiation Measurement (ARM) program arctic site since 1996. Both at the ARM Barrow, Alaska site and at the South Pole station, Fourier-transform interferometers also observe clouds in the wavelength intervals between approximately 5 and 18 microns. Spectral instruments can yield cloud microphysical properties with additional information from lidar about the vertical extent of clouds being modeled. We examine the simultaneous lidar and spectral data from both Barrow and South Pole, to obtain cloud properties (optical depth, particle size) by the use of both instruments. The results have applications to interpretation of current satellite data, and GLAS measurements when available.

  13. Retrieving microphysical properties and air motion of cirrus clouds based on the doppler moments method using cloud radar

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Liu, Liping; Deng, Min; Zhou, Xiuji

    2012-05-01

    Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.

  14. Cirrus heterogeneity effects on cloud optical properties retrieved with an optimal estimation method from MODIS VIS to TIR channels

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S.; Sourdeval, O.; Meyer, K.; Cornet, C.; Zhang, Z.; Szczap, F.

    2017-02-01

    This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 µm, and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.

  15. Inhomogeneous cirrus clouds during the AIRTOSS campaign

    NASA Astrophysics Data System (ADS)

    Voigt, Matthias; Spichtinger, Peter

    2015-04-01

    . Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340(6138):1320-1324, June 2013. [2] W. Frey, H. Eichler, M. de Reus, R. Maser, M. Wendisch, and S. Borrmann. A new airborne tandem platform for collocated measurements of microphysical cloud and radiation properties. Atmospheric Measurement Techniques, 2(1):147-158, 2009. [3] P. Spichtinger and K. M. Gierens. Modelling of cirrus clouds part 1a: Model description and validation. Atmospheric Chemistry and Physics, 9(2):685-706, 2009. [4] H. Wernli and H. C. Davies. A lagrangian-based analysis of extratropical cyclones .1. the method and some applications. Quarterly Journal of the Royal Meteorological Society, 123(538):467-489, January 1997.

  16. Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.

  17. Does Aerosol Loading in a Convective Environment Influence Cirrus Anvil Properties?

    NASA Astrophysics Data System (ADS)

    Berry, E.; Mace, G. G.

    2011-12-01

    Aerosol indirect effects on convection remain highly uncertain, giving conflicting results that aerosols can either invigorate or weaken convective cloud growth depending on the specifics of the case being simulated. Morrison and Grabowski (2011) performed model simulations investigating the aerosol indirect effects on tropical convection and found that anvils in polluted environments tend to have smaller ice particle sizes and smaller mass-weighted fall velocities compared to simulations in pristine environments. This implies, all else being the same, that anvils would have longer lifetimes in polluted environments. This would modify the radiative heating structure of the troposphere and could have significant feedbacks to the system. Using a multi-platform approach, we investigate whether measurements can provide any information regarding such effects. A-Train, geostationary satellite and reanalysis data are used. We present a case study of anvils produced in similar meteorological conditions but in different aerosol conditions. The anvils are defined as clean or polluted based on the MODIS aerosol retrieval products and the large-scale meteorology is characterized with the ERA-Interim. The microphysical properties are retrieved with the combined CloudSat/CALIPSO 2C-ICE product. Using geostationary satellite data, we track the cirrus anvils in time by following patterns in the water vapor imagery. This allows us to determine the rate at which the anvils are developing/dissipating, providing information on the evolution of the anvils. Such case study approaches will be used to guide further research that will be more statistically based.

  18. Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses.

    PubMed

    Sassen, K

    1991-08-20

    Polarization lidar data are used to demonstrate that clouds composed of hexagonal ice crystals can generate multiple-ringed colored coronas. Although relatively uncommon in our mid-latitude cirrus sample (derived from Project FIRE extended time observations), the coronas are associated with unusual cloud conditions that appear to be effective in generating the displays. Invariably, the cirrus cloud tops are located at or slightly above elevated tropopauses (12.7-km MSL average height) at temperatures between -60 degrees and -70 degrees C. The cloud top region also generates relatively strong laser backscattering and unusually high 0.5-0.7 linear depolarization ratios. Color photograph analysis of corona ring angles indicates crystals with mean diameters of from 12 to 30 microm. The cirrus cloud types were mainly subvisual to thin (i.e., bluish-colored) cirrostratus, but also included fibrous cirrus. Estimated cloud optical thicknesses at the 0.694-microm laser wavelength ranged from 0.001 to 0.2, where the upper limit reflects the effects of multiple scattering and/or unfavorable changes in particle characteristics in deep cirrus clouds.

  19. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  20. Active Imaging through Cirrus Clouds.

    PubMed

    Landesman, B; Kindilien, P; Pierson, R; Matson, C; Mosley, D

    1997-11-24

    The presence of clouds of ice particles in the uplink and downlink path of an illumination beam can severely impede the performance of an active imaging system. Depending on the optical depth of the cloud, i.e., its density and depth, the beam can be completely scattered and extinguished, or the beam can pass through the cloud with some fraction attenuated, scattered, and depolarized. In particular, subvisual cirrus clouds, i.e., high, thin cirrus clouds that cannot be observed from the ground, can affect the properties and alignment of both uplink and downlink beams. This paper discusses the potential for active imaging in the presence of cirrus clouds. We document field data results from an active imaging experiment conducted several years ago, which the authors believe to show the effects of cirrus clouds on an active imaging system. To verify these conclusions, we include the results of a simulation of the interaction of a coherent illumination scheme with a cirrus cloud.

  1. Infrared radiative properties of tropical cirrus clouds inferred with aircraft measurements

    NASA Technical Reports Server (NTRS)

    Griffith, K. T.; Cox, S. K.; Knollenberg, R. G.

    1980-01-01

    Longwave emissivities and the vertical profile of cooling rates of tropical cirrus clouds are determined using broadband hemispheric irradiance data. Additionally, a broadband mass absorption coefficient is defined and used to relate emissivity to water content. The data used were collected by the National Center for Atmospheric Research (NCAR) Sabreliner during the GARP Atlantic Tropical Experiment (GATE) in the summer of 1974. Three case studies are analyzed showing that these tropical cirrus clouds approached an emissivity of 1.0 within a vertical distance of 1.0 km. Broadband mass absorption coefficients ranging from 0.076 to 0.096 sq m per g are derived. A comparison of these results with other work suggests that tropical cirrus cloud emissivities may be significantly larger than heretofore believed. Ice water content of the clouds were deduced from data collected by a one-dimensional particle spectrometer. Analyses of the ice water content and the observed particle size distributions are presented.

  2. Cirrus Cloud Modeling: Overview and Issues

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A review of cirrus cloud modeling will be given with special attention to the role of dynamical processes in regulating cloud microphysical properties and the interactions with radiative process in determining cloud lifecycle. The talk will draw heavily on the papers by Starr and Quante, Quante and Starr and Demoz et al., as well as recent results from the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2) Idealized Cirrus Model Comparison and Cirrus Parcel Model Comparison projects, as described in Starr et al. and Lin et al. Key issues in current cirrus cloud modeling will be described and discussed.

  3. Optical properties of contrail-induced cirrus: discussion of unusual halo phenomena.

    PubMed

    Sussmann, R

    1997-06-20

    Photographs of a 120 degrees parhelion and a 22 degrees parhelion within persistent contrails are presented. These phenomena result from hexagonal plate-shaped ice crystals oriented horizontally with diameters between 300 mum and 2 mm. From our observations and reinvestigation of previous reports, we conclude that a subset of the population in persistent contrails can consist of highly regular, oriented, hexagonal plates or columns comparable to the most regular crystals in natural cirrus clouds. This is explained by measured ambient humidities below the formation conditions of natural cirrus. The resulting strong azimuthal variability of the scattering phase function impacts the radiative transfer through persistent contrails.

  4. Development of a Submillimeter/Far-Infrared Radiometer for Cirrus Measurements

    NASA Technical Reports Server (NTRS)

    Hayton, Darren; Ade, Peter; Evans, Frank; Lee, Clare; Nolt, Ira; Vanek, Mike

    2004-01-01

    We introduce a low-cost, lightweight and compact polarisation-sensitive radiometer for the measurement of Cirrus clouds in the submillimeter and far-infrared region (10 150 cm-1). It is widely recognised that enhanced global measurements of cirrus properties are essential to the development of General Circulation and Climate Prediction Models since cirrus clouds have a strong effect on the Earth's Global Radiation Budget. The purpose of this project is to design and build a novel instrument suitable for aircraft deployment in order to measure Ice Water Path (IWP) along with cirrus particle size and shape. This airborne instrument, which is currently under development in Cardiff, will serve as a prototype for a future satellite-based radiometer. The radiometer will capitalize on the ongoing measurements of the NASA-led, Fourier Transform interferometer-based, FIRSC (Far-Infrared Sensor for Cirrus) instrument for which Cardiff has been closely associated. Data from FIRSC campaigns is being used to select optimum radiometer channels that exhibit good sensitivity to specific cirrus. This new multichannel radiometer will, however, have some key advantages over similar spectroscopic instruments, for example, portability, increased optical efficiency, a multi-angle field of view and a reduced integration period leading to an improved spatial resolution. The radiometer will benefit from the application of state-of-the-art submm/FIR polarizer and solid filter technology currently being developed in Cardiff. The instrument will require a detector array that is robust enough to withstand aircraft/space deployment.

  5. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  6. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  7. Lidar investigations on the structure and microphysical properties of cirrus at a tropical station Gadanki (13.5° N and 79.2° E), India

    NASA Astrophysics Data System (ADS)

    Jayeshlal, Gloryselvan S.; Satyanarayana, Malladi; Motty, Gopinathan Nair S.; Dhaman, Reji K.; Krishnakumar, Vasudevannair; Mahadevan Pillai, Vellara P.

    2016-05-01

    Cirrus clouds are mainly composed of ice crystals and are known to be the major natural contributors to radiative forcing in the Earth's atmosphere system. Describing the formation and microphysical properties of cirrus clouds and their role in climate models remain a challenging study. Lidar is a unique instrument, which provides the information on the optical and microphysical properties of cirrus clouds with good spatial and temporal resolutions. In this study we present the microphysical properties of cirrus clouds and their temporal variability, obtained using the ground based dual polarisation lidar at the tropical station Gadanki (13.5° N and 79.2° E), India, during the period January2009 to March 2011. Using the method developed in house for deriving range dependent lidar ratio (LR), the lidar measurements are used for deriving the extinction coefficient and to obtain the nature of the scatterers present in the cloud. It is noted that lidar ratio plays an important role and its measurements indicate directly the type of the ice nucleating aerosol particles present in the cloud. The long term data obtained on the structure of the cirrus in this regard are useful in the climate modelling studies.

  8. Investigating cirrus cloud behavior using A-Train and geostationary satellite data

    NASA Astrophysics Data System (ADS)

    Berry, Elizabeth

    Knowledge of how the large-scale dynamics are coupled with microphysical properties is necessary for parameterizing cirrus in climate models. In this study, the synergy of the CloudSat and CALIPSO instruments is exploited for identifying cirrus. Mesoscale-size cirrus events are defined using a combined CloudSat-CALIPSO cloud mask and temperature data for one year in the Atlantic basin. In order to characterize the tendencies of cirrus, the instantaneous view of A-Train satellites is augmented with the temporal view from a geostationary satellite. Cirrus events are tracked using an algorithm, which follows patterns of 6.2μm brightness temperature in consecutive water vapor images. NCEP/NCAR reanalysis data is used to determine the environments in which the cirrus events exist. The cirrus events are sorted based on pressure- radar reflectivity patterns using a k-means cluster algorithm. The six clusters that are identified include Single-Layer Cirrus, Thick Cirrus and Low Cloud, High Cirrus, Deep Cirrus, Mixed Cloud and Thin Cirrus, and Low Cloud. A cluster algorithm is also applied to the large-scale dynamics to determine the basic synoptic states for cirrus. This analysis results in six dynamic clusters including Deep Wave Cirrus, Developing Tropical Cirrus, Subtropical Jet Cirrus, Zonal Jet/Stationary Front Cirrus, Dissipating Tropical Cirrus, and Ridge Crest Cirrus. We find that large-scale dynamic types do not necessarily predetermine the cirrus cloud properties.

  9. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7

  10. Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation for polarization lidars with azimuthal scanning

    NASA Astrophysics Data System (ADS)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Nasonov, Sergey V.; Bryukhanov, Ilia D.; Shishko, Viktor A.; Timofeev, Dmitriy N.; Borovoi, Anatoly G.

    2016-10-01

    Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation are required for current numerical models of the Earth's radiation balance. Retrieving the orientation distributions function of the crystals from a vertically pointing polarization lidar measuring the full Mueller matrix is a very complicated problem because of lake of information. Lidars with zenith scanning can be used only to retrieve the properties of horizontally oriented particles. The paper shows that if the particles have preferred azimuthal orientation, the polarization lidars with azimuthal scanning should be used. It is also shown that all the elements of the Mueller matrix give no extra information compare to the depolarization ratio. Optical properties of preferred azimuthal oriented hexagonal ice columns with size from 10 to 1000 μm for wavelengths of 0.355, 0.532 and 1.064 μm were collected as a data bank.

  11. Cirrus Clouds Optical, Microphysical and Radiative Properties Observed During Crystal-Face Experiment: I. A Radar-Lidar Retrieval System

    NASA Technical Reports Server (NTRS)

    Mitrescu, C.; Haynes, J. M.; Stephens, G. L.; Heymsfield, G. M.; McGill, M. J.

    2004-01-01

    A method of retrieving cloud microphysical properties using combined observations from both cloud radar and lidar is introduced. This retrieval makes use of an improvement to the traditional optimal estimation retrieval method, whereby a series of corrections are applied to the state vector during the search for an iterative solution. This allows faster convergence to a solution and is less processor intensive. The method is first applied to a synthetic cloud t o demonstrate its validity, and it is shown that the retrieval reliably reproduces vertical profiles of ice water content. The retrieval method is then applied to radar and lidar observations from the CRYSTAL-FACE experiment, and vertical profiles of ice crystal diameter, number concentration, and ice water content are retrieved for a cirrus cloud layers observed one day of that experiment. The validity of the relationship between visible extinction coefficient and radar reflectivity was examined. While synthetic tests showed such a functional relationship, the measured data only partially supported such a conclusion. This is due to errors in the forward model (as explained above) as well as errors in the data sets, including possible mismatch between lidar and radar profiles or errors in the optical depth. Empirical relationships between number concentrations and mean particle diameter were also examined. The results indicate that a distinct and robust relationship exists between these retrieved quantities and it is argued that such a relationship is more than an artifact of the retrieval process offering insight into the nature of the microphysical processes taking place in cirrus.

  12. The effects of small ice crystals on the infrared radiative properties of cirrus clouds. Semiannual status report, 1 October 1989-31 March 1990

    SciTech Connect

    Takano, Y.; Liou, K.N.; Asano, S.; Heymsfield, A.; Minnis, P.

    1990-04-01

    To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds must be available. Recent aircraft observations (Platt et al.) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4.

  13. Geometric and optical properties of cirrus clouds inferred from three-year ground-based lidar and CALIOP measurements over Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yumi; Kim, Sang-Woo; Kim, Man-Hae; Yoon, Soon-Chang

    2014-03-01

    This study examines cirrus cloud top and bottom heights (CTH and CBH, respectively) and the associated optical properties revealed by ground-based lidar in Seoul (SNU-L), Korea, and space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which were obtained during a three-year measurement period between July 2006 and June 2009. From two selected cases, we determined good agreement in CTH and CBH with cirrus cloud optical depth (COD) between ground-based lidar and space-borne CALIOP. In particular, CODs at a wavelength of 532 nm calculated from the three years of SNU-L and CALIOP measurements were 0.417 ± 0.394 and 0.425 ± 0.479, respectively. The fraction of COD lower than 0.1 was approximately 17% and 25% of the total SNU-L and CALIOP profiles, respectively, and approximately 50% of both lidar profiles were classified as sub-visual or optically thin such that COD was < 0.3. The mean depolarization ratio was estimated to be 0.30 ± 0.06 for SNU-L and 0.34 ± 0.08 for CALIOP. The monthly variation of CODs from SNU-L and CALIOP measurements was not distinct, whereas cirrus altitudes from both SNU-L and CALIOP showed distinct monthly variation. CALIOP observations showed that cirrus clouds reached the tropopause level in all months, whereas the up-looking SNU-L did not detect cirrus clouds near the tropopause in summer due to signal attenuation by underlying optically thick clouds. The cloud layer thickness (CLT) and COD showed a distinct linear relationship up to approximately 2 km of the CLT; however, the COD did not increase, but remained constant when the CLT was greater than 2.0 km. The ice crystal content, lidar signal attenuation, and the presence of multi-layered cirrus clouds may have contributed to this tendency.

  14. Microphysical properties of the November 26 cirrus cloud retrieved by Doppler radar/IR radiometer technique

    NASA Technical Reports Server (NTRS)

    Matrosov, Sergey Y.; Kropfli, Robert A.; Orr, Brad W.; Snider, Jack B.

    1993-01-01

    Gaining information about cirrus cloud microphysics requires development of remote sensing techniques. In an earlier paper. Matrosov et al. (1992) proposed a method to estimate ice water path (IWP) (i.e., vertically integrated ice mass content IMC) and characteristic particle size averaged through the cloud from combined groundbased measurements of radar reflectivities and IR brightness temperatures of the downwelling thermal radiation in the transparency region of 10-12 mu m. For some applications, the vertically averaged characteristic particle sizes and IWP could be the appropriate information to use. However, vertical profiles of cloud microphysical parameters can provide a better understanding of cloud structure and development. Here we describe a further development of the previous method by Matrosov et al. (1992) for retrieving vertical profiles of cirrus particle sizes and IMC rather than their vertically averaged values. In addition to measurements of radar reflectivities, the measurements of Doppler velocities are used in the new method. This provides us with two vertical profiles of measurements to infer two vertical profiles of unknowns, i.e., particle characteristic sizes and IMC. Simultaneous measurements of the IR brightness temperatures are still needed to resolve an ambiguity in particle size-fall velocity relationships.

  15. Infrared transmission through cirrus clouds: a radiative model for target detection.

    PubMed

    Liou, K N; Takano, Y; Ou, S C; Heymsfield, A; Kreiss, W

    1990-05-01

    An IR transmission model for thin and subvisual cirrus clouds composed of hexagonal ice crystals with a specific use for target detection has been developed. The present model includes parameterizations of the ice crystal size distribution and the position of cirrus clouds in terms of ambient temperature. To facilitate the scattering and absorption calculations for hexagonal column and plate crystals in connection with transmission calculations, we have developed parameterized equations for their single scattering properties by using the results computed from a geometric ray-tracing program. The successive order-of-scattering approach has been used to account for multiple scattering of ice crystals associated with a target-detector system. The direct radiance, path radiance, and radiances produced by multiple scattering and background radiation involving cirrus clouds have been computed for 3.7- and 10-,microm wavelengths. We show that the background radiance at the 3.7-,microm wavelength is relatively small so that a high contrast may be obtained using this wavelength for the detection of airborne and ground-based objects in the presence of thin cirrus clouds. Finally, using the present model, including a simple prediction scheme for the ice crystal size distribution and cloud position, the transmission of infrared radiation through cirrus clouds can be efficiently evaluated if the target-detector geometry is defined.

  16. In Situ Observations of Water Vapor and Cirrus IWC in the Pacific TTL During ATTREX

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Fahey, D. W.; Bui, T. V.; Woods, S.

    2014-12-01

    Despite its very low mixing ratios relative to the troposphere, water vapor in the lower stratosphere (LS) plays a significant role in Earth's radiative balance and climate system and is an important constituent in stratospheric chemistry. The low H2O content of air entering the LS is established to first order by dehydration processes controlled by the cold temperatures of the tropical tropopause layer (TTL). Cirrus clouds occur with high frequency and large spatial extent in the TTL, and those occurring near the thermal tropopause facilitate the final dehydration of stratosphere-bound air parcels. Uncertainties in aspects of the nucleation and growth of cirrus cloud particles and the sparseness of in situ water vapor and cirrus cloud observations with sufficient spatial resolution limit our ability to fully describe the final stages of the dehydration process before air enters the LS in the tropics. The NASA Airborne Tropical Tropopause Experiment (ATTREX) measurement campaign has yielded more than 140 hours of sampling from the Global Hawk UAS in the Pacific TTL during deployments in 2013 and 2014, including more than 30 hours sampling TTL cirrus. The high spatial and temporal resolution in situ measurements of water vapor and cirrus cloud properties made during ATTREX provide an outstanding dataset by which to characterize the Pacific TTL environment and evaluate our current understanding of the dynamical and microphysical processes that result in the dehydration of stratosphere-bound air in this region. Here we present a statistical analysis of the ATTREX water vapor, relative humidity and cirrus cloud crystal number and ice water content (IWC) data in order to investigate cirrus cloud formation and resulting potential for dehydration.

  17. Development and Comparison of Ground and Satellite-based Retrievals of Cirrus Cloud Physical Properties

    SciTech Connect

    Mitchell, David L

    2009-10-14

    This report is the final update on ARM research conducted at DRI through May of 2006. A relatively minor amount of work was done after May, and last month (November), two journal papers partially funded by this project were published. The other investigator on this project, Dr. Bob d'Entremont, will be submitting his report in February 2007 when his no-cost extension expires. The main developments for this period, which concludes most of the DRI research on this project, are as follows: (1) Further development of a retrieval method for cirrus cloud ice particle effective diameter (De) and ice water path (IWP) using terrestrial radiances measured from satellites; (2) Revision and publication of the journal article 'Testing and Comparing the Modified Anomalous Diffraction Approximation'; and (3) Revision and publication of our radar retrieval method for IWC and snowfall rate.

  18. The Dependence of Cirrus Gamma Size Distributions Expressed as Volumes in N(sub 0)-Lambda-Mu Phase Space and Bulk Cloud Properties on Environmental Conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS)

    NASA Technical Reports Server (NTRS)

    Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel

    2015-01-01

    The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N(sub 0), lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D greater than15 micrometers collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N(sub 0), mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D(sub mm) as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N(sub 0), mu, and lambda, bulk extinction, IWC, and D(sub mm) with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 micrometers, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N(sub 0), mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

  19. The dependence of cirrus gamma size distributions expressed as volumes in N0-λ-μ phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS)

    NASA Astrophysics Data System (ADS)

    Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel

    2015-10-01

    The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N0, λ, μ) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D > 15 µm collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N0, μ, and λ from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension Dmm as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N0, μ, and λ, bulk extinction, IWC, and Dmm with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 µm, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N0, μ, and λ between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

  20. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  1. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  2. Contrail Cirrus Forecasts for the ML-CIRRUS Experiment and Some Comparison Results

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Graf, Kaspar; Bugliaro, Luca; Dörnbrack, Andreas; Giez, Andreas; Jurkat, Tina; Kaufmann, Stefan; Krämer, Martina; Minikin, Andreas; Schäfler, Andreas; Voigt, Christiane; Wirth, Martin; Zahn, Andreas; Ziereis, Helmut

    2015-04-01

    Model simulations with the contrail cirrus prediction model CoCiP driven by numerical weather prediction (NWP) data provided from the European Centre for Medium Range Forecasts (ECMWF) and global aircraft waypoint data show a mean computed cover (for optical depth larger than 0.1) of 0.23% globally, and 5.4% over mid Europe (Schumann and Graf, JGR, 2013). The computed mean longwave radiative forcing (RF) reaches 3 W m-2 over mid Europe (10°W-20°E and 40°N-55°N), and 0.13 W m-2 globally. The global net RF is about 40-60% smaller because of compensating shortwave cooling induced by contrails during daytime. The results depend on several model details such as the number of ice particles forming from aircraft soot emissions, the contrail plume dispersion, ice particle sedimentation etc., all influencing contrail life time and their optical properties. The quantitative results depend also strongly on ambient relative humidity, vertical motion and on ice water content of other cirrus predicted by the NWP model. In order to test and possibly improve this and other contrail models, high-quality observations are needed to which multi-parameter model output can be compared. The Mid-Latitude Cirrus Experiment ML-CIRRUS was performed (see C. Voigt et al., this conference) with a suite of in-situ and Lidar instruments for airborne measurements on the research aircraft HALO. Before and during the mission, CoCiP was run daily to provide 3-days forecasts of contrail cover using operational ECMWF forecasts and historical traffic data. CoCiP forecast output was made available in an internet tool twice a day for experiment planning. The one-day and two-day contrail forecasts often showed only small differences. Still, most recent forecasts and detailed satellite observations results were transmitted via satellite link to the crew for onboard campaign optimization. After the campaign, a data base of realistic air traffic data has been setup from various sources, and CoCiP was

  3. Infrared properties of molecular cirrus. I - Photometry of extended sources on IRAS image products

    NASA Astrophysics Data System (ADS)

    Verter, Frances; Rickard, Lee J.

    1998-02-01

    We have conducted a survey of IRAS images of the high-latitude molecular cirrus clouds cataloged by Magnani et al. (1985). This paper reports the data reduction methods used in our survey and also studies the photometric accuracy that can be achieved for faint extended sources on IRAS image products. The principal topics covered are the modeling and removal of sky backgrounds at high Galactic latitude, and as a function of ecliptic latitude; the relative accuracy of different background models and methods of background removal; the integration of source flux on background-subtracted images; the proper definition of flux error bars, their calculation, and the minimum uncertainties set by the performance of the IRAS detectors; the creation of multiple-wavelength composite images; and the creation of temperature and opacity maps. We find that most error bars quoted for IRAS fluxes in the literature are incorrect. We conclude that the limiting surface brightness to which Sky Flux Plates may be used to study faint extended sources is approximately 0.05 MJy/sr. The photometric issues discussed herein are relevant to all IRAS image products, including Sky Flux Plates, co-added images, and the IRAS Sky Survey Atlas (ISSA). We compare the accuracy of data reduction on different products and discuss their relative advantages and disadvantages.

  4. Are tropical cirrus brighter than mid-latitude cirrus?

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick; Sassen, Kenneth; Dong, Yayi; Hallett, John

    1993-01-01

    Recent measurements during FIRE II, in the tropics and elsewhere, support an emerging hypothesis about the role of stratospheric mixing in determining the microphysical and radiative properties of cirrus clouds. This is only a working hypothesis, and may change as new measurements become available. This report reviews the conditions under which certain types of ice crystals form.

  5. Polarimetric Retrievals of Surface and Cirrus Clouds Properties in the Region Affected by the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond

    2012-01-01

    In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by

  6. Cirrus cloud formation and the role of heterogeneous ice nuclei

    NASA Astrophysics Data System (ADS)

    Froyd, Karl D.; Cziczo, Daniel J.; Hoose, Corinna; Jensen, Eric J.; Diao, Minghui; Zondlo, Mark A.; Smith, Jessica B.; Twohy, Cynthia H.; Murphy, Daniel M.

    2013-05-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic measurements in the upper troposphere. We have analyzed the size and composition of sublimated cirrus particles sampled from a high altitude research aircraft using both in situ and offline techniques. Mineral dust and metallic particles are the most enhanced residue types relative to background aerosol. Using a combination of cirrus residue composition, relative humidity, and cirrus particle concentration measurements, we infer that heterogeneous nucleation is a dominant cirrus formation mechanism for the mid-latitude, subtropical, and tropical regions under study. Other proposed heterogeneous IN including biomass burning particles, elemental carbon, and biological material were not abundant in cirrus residuals.

  7. Analysis of Cirrus Cloud Microphysical Data

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Grainger, Cedric A.

    1999-01-01

    The First International Satellite Cloud Climatology Regional Experiment (FIRE) program has the goal of improving our capabilities to understand, model and detect the properties of climatically-important clouds. This is being undertaken through a three-pronged effort of modeling, long-term observations and short-term intensive field studies. Through examination of satellite and other data it is apparent that stratus and cirrus cloud types have the greatest impact on climate due to their radiative effects and ubiquitous nature. As a result, the FIRE program has developed two paths of investigation, each having its own subset of research objectives and measurement programs. The work conducted under this grant was directed toward furthering our understanding of cirrus cloud systems. While it is known that cirrus are climatically important, the magnitude and even sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to their physical depth and location in the atmosphere and their microphysical composition. However, significant uncertainties still exist in how cirrus clouds form and how they are maintained, what their physical properties are and how they can be parameterized in numerical models. Better remote sensing techniques for monitoring cirrus cloud systems and improved modeling of radiative transfer through ice particles are also needed. A critical element in resolving these issues is a better understanding of cirrus cloud microphysical properties and how they vary. The focus of the research to be conducted under this grant was th data collected in situ by the University of North Dakota Citation aircraft. The goals of this research were to add to the body of knowledge of cirrus cloud microphysics, particularly at the small end of the size spectrum; and analyze the spatial variation of cirrus clouds.

  8. Optical-Microphysical Cirrus Model

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  9. Remote sensing of cirrus cloud microphysical properties using spectral measurements over the full range of their thermal emission

    NASA Astrophysics Data System (ADS)

    Palchetti, L.; Di Natale, G.; Bianchini, G.

    2016-09-01

    The thermal emission of cirrus clouds, spectrally resolved in the 100-1400 cm-1 range (100-7.1 μm), has been modeled and compared with measurements performed during two field campaigns from the ground-based site of Testa Grigia on the Italian Alps at 3480 m of altitude. The analysis of cirrus microphysics, through spectral fitting, shows the importance of using also the far infrared portion of the emitted spectrum at wave numbers below the 667 cm-1 carbon dioxide absorption band, where only a few measurements exist because of the high opacity of the atmosphere caused by the strong water vapor absorption. The resulted distribution of the fitted cloud parameters is in good agreement with the typical statistical distribution of the midlatitude cirrus cloud parameters.

  10. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1996-01-01

    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension

  11. Mission Investigates Tropical Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Jenson, Eric; Starr, David; Toon, Owen B.

    2004-02-01

    It has been a year since NASA conducted the highly successful Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment Study (CRYSTAL-FACE). The measurement campaign was designed to investigate the physical properties and formation processes of tropical cirrus clouds. CRYSTAL-FACE was sponsored by NASA's Earth Science Enterprise as an integral component of its Earth observation research strategy, and included substantial collaboration with the National Oceanic and Atmospheric Administration, the National Science Foundation, the Department of Energy, and the Naval Research Laboratory. During July 2002, the mission's six aircraft (NASA ER-2, NASA WB-57, Scaled Composites Proteus, University of North Dakota Citation, NSF-supported NRL P-3, and NRL Twin Otter) operated from the Key West Naval Air Facility. In addition, ground sites were located at the Tamiami airport on the east coast of Florida and near Everglades City on the west coast of Florida. Aircraft and ground site measurements are listed in Table 1. Data archiving is complete, and the data are now available to the general scientific community. Detailed instrument descriptions as well as the final data can be found on the CRYSTAL-FACE Web site (http://cloud1.arc.nasa.gov/crystalface/).

  12. Herschel-ATLAS: statistical properties of Galactic cirrus in the GAMA-9 Hour Science Demonstration Phase Field

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Cooray, A.; Veneziani, M.; Amblard, A.; Serra, P.; Wardlow, J.; Thompson, M. A.; White, G.; Auld, R.; Baes, M.; Bertoldi, F.; Buttiglione, S.; Cava, A.; Clements, D. L.; Dariush, A.; de Zotti, G.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Gomez, H.; Hopwood, R.; Ibar, I.; Ivison, R. J.; Jarvis, M.; Lagache, G.; Lee, M. G.; Leeuw, L.; Maddox, S.; Michałowski, M.; Pearson, C.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Smith, D. J. B.; Temi, P.; Vaccari, M.; van der Werf, P.

    2011-04-01

    We study the spectral energy distribution (SED) and the power spectrum of Galactic cirrus emission observed in the 14 deg2 Science Demonstration Phase field of the Herschel-ATLAS using Herschel and IRAS data from 100 to 500 μm. We compare the Spectral and Photometric Imaging Receiver (SPIRE) 250, 350 and 500 μm maps with IRAS 100-μm emission, binned in 6-arcmin pixels. We assume a modified blackbody SED with dust emissivity parameter β (F∝λ-β) and a single dust temperature Td, and find that the dust temperature and emissivity index varies over the science demonstration field as ? and 1 < β < 4. The latter values are somewhat higher than the range of β often quoted in the literature (1 < β < 2). We estimate the mean values of these parameters to be Td= 19.0 ± 2.4 K and β= 1.4 ± 0.4. In regions of bright cirrus emission, we find that the dust has similar temperatures with ?, and similar values of β, ranging from 1.4 ± 0.5 to 1.9 ± 0.5. We show that Td and β associated with diffuse cirrus emission are anti-correlated and can be described by the relationship: β(Td) =NTαd with [N= 116 ± 38, α=-1.4 ± 0.1]. The strong correlation found in this analysis is not just limited to high-density clumps of cirrus emission as seen in previous studies, but is also seen in diffuse cirrus in low-density regions. To provide an independent measure of Td and β, we obtain the angular power spectrum of the cirrus emission in the IRAS and SPIRE maps, which is consistent with a power spectrum of the form P(k) =P0(k/k0)γ, where γ= 2.6 ± 0.2 for scales of 50-200 arcmin in the SPIRE maps. The cirrus rms fluctuation amplitude at angular scales of 100 arcmin is consistent with a modified blackbody SED with ? and β= 1.3 ± 0.2, in agreement with the values obtained above.

  13. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties

    NASA Astrophysics Data System (ADS)

    Luebke, Anna E.; Afchine, Armin; Costa, Anja; Grooß, Jens-Uwe; Meyer, Jessica; Rolf, Christian; Spelten, Nicole; Avallone, Linnea M.; Baumgardner, Darrel; Krämer, Martina

    2016-05-01

    The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. Recently, two types of cirrus clouds differing by formation mechanism and microphysical properties have been classified - in situ and liquid origin cirrus. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are higher frequencies of high IWC ( > 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm-3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 µm for in situ origin cirrus, with some of the largest crystals reaching 550 µm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 µm, and crystals that were up to 750 µm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the

  14. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    NASA Astrophysics Data System (ADS)

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ˜ 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ˜ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  15. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette massesmore » are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by  ∼  0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from  ∼ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  16. The lifecycle and climate-impact of contrail cirrus

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich

    2016-04-01

    The lifecycle of contrail cirrus has to be understood as a prerequisite to compute its weather and climate impact for given airtraffic and meteorology. As a new concept, this study distinguishes between: 1) Externally limited contrail cirrus, where contrails form in moderately ice-supersaturated air, but ice particles stay small and contrails end by sublimation because of drying of the ambient air, e.g., when the ambient air subsides; 2) Internally limited contrail cirrus, where contrails form at high humidity with strong supersaturation or form in rising air masses, so that the ice particles grow until their fall speed gets large, and the ice particles finally fall to lower levels (e.g. in fall streaks). For both kinds of contrail cirrus, scaling laws are set up which show how the "Surface Forcing" (SF), i.e. the time-integral of optical depth times width (integral of ice particle number per flight distance times ice particle cross-section area times extinction efficiency) depends on the lifetime, on the number of ice particles per unit length, ambient humidity, uplift velocity, wind shear, turbulent mixing, and temperature. SF can be converted into an energy forcing (EF), from which the global radiative forcing can be evaluated, for given radiative Earth-atmosphere properties and traffic density. The scaling laws are tested by comparison to global contrail simulations with the most recent version of CoCiP (as in Schumann, 2012; and some changes), using ECMWF data and a global traffic data bases (ACCRI). The model assumes that contrail ice particles form initially mainly on soot, that the ice particles consume the ice supersaturation in the contrail plume, that the ice particle number decreases slightly with lifetime, and that interactions of contrails with ambient cirrus are weak. The scaling laws and the model allow estimating the climate impact of contrails as a function of a given aircraft and weather parameters. The results are compared to available results

  17. Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1.

    PubMed

    Rockwitz, K D

    1989-10-01

    A ray tracing technique is presented based on the fundamental laws of ray and wave optics; it has been used to calculate the scattering properties of hexagonal ice crystals. These crystals were assumed to be oriented preferably horizontal, and, therefore, the resulting phase functions have been plotted vs direction in 3-D space contrary to earlier calculations of other authors. The anisotropy of the scattered radiation is clearly shown; on the average the phase function varies over ~2 orders of magnitude. From these single scattering results the multiple scattering between various ice crystals has also been calculated.

  18. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  19. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative

  20. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  1. Microphysical Interpretation of Cirrus Measurements With Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Lin, Ruei-Fong; Reichardt, Susanne; McGee, Thomas J.; Starr, David OC.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 N in January 1997 reveal a strong correlation between the particle optical properties, specifically depolarization ratio delta and extinct ion-to-backscatter ratio S, for ambient cloud temperatures above approximately -45 C (delta less than approximately 40%), and an anti-correlation for colder temperatures (delta greater than approximately 40%). Over the length of the measurements (4-7.5 hours) the particle properties vary systematically: Initially, delta approximately equal to 60% and S approximately equal to 10sr are observed. Then, with decreasing delta, S first increases to approximately 27 sr(delta approximately equal to 40%) before decreasing to values around 10 sr again (delta approximately equal to 20%). The particle optical properties distinctly depend on the ambient temperature. For the microphysical analysis of the lidar observations. ray-tracing computations of particle scattering properties and a size-distribution resolving cirrus model with explicit microphysics have been used. The theoretical studies show that the optical properties and their temporal evolution can be interpreted in terms of size, shape, and growth of the cirrus particles: Near the cloud top in the early stage of the cirrus development, light scattering by small hexagonal columns with aspect ratios close to one is dominant. Over time the cloud base height extends to lower altitudes with warmer temperatures, the ice particles grow and get morphologically diverse (the scattering contributions of hexagonal columns and plates are roughly the same for large S and depolarization values of approximately 40%). In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like or complex ice particles. Mid-latitude cirrus data measured with the same instrument at 53.4 N between 1994 and 1996 follow closely the correlation between delta and S found in the warmer regions of the Arctic

  2. Determination of cirrus radiative parameters from combination between active and passive remote sensing measurements during FRENCH/DIRAC 2001

    NASA Astrophysics Data System (ADS)

    Brogniez, Gérard; Parol, Frédéric; Bécu, Laurianne; Pelon, Jacques; Jourdan, Olivier; Gayet, Jean-François; Auriol, Frédérique; Verwaerde, Christian; Balois, Jean-Yves; Damiri, Bahaiddin

    2004-11-01

    In the context of the next AQUA Train satellite experiment, airborne measurements were carried out to simulate satellite measurements. They were conducted between September 25 and October 12, 2001, off the coast of southern France over the Atlantic Ocean and over the Mediterranean Sea, respectively. During the intensive Field Radiation Experiment on Natural Cirrus and High-level clouds (FRENCH/DIRAC 2001), natural ice clouds were sampled from in situ and remote sensing measurements. On October 5 and 7, 2001, cirrus cloud decks were described by a complete data set acquired by: (i) in situ microphysical instruments onboard the TBM-700 aircraft: PMS probe, and Polar Nephelometer (ii) and downward-looking radiative instruments onboard the Mystère 20 aircraft: an infrared radiometer, a lidar, a visible imager with polarisation capabilities, and a middle infrared radiometer. Moreover, classical thermodynamical measurements were carried out onboard the Mystère 20. Mean microphysical characteristics of cirrus deck are derived from interpretation of remote sensing measurements. These properties are compared with those derived from in situ microphysical measurements in order to evaluate the radiative impact of natural cirrus clouds.

  3. Airborne LIDAR as a tool for estimating inherent optical properties

    NASA Astrophysics Data System (ADS)

    Trees, Charles; Arnone, Robert

    2012-06-01

    LIght Detection and Ranging (LIDAR) systems have been used most extensively to generate elevation maps of land, ice and coastal bathymetry. There has been space-, airborne- and land-based LIDAR systems. They have also been used in underwater communication. What have not been investigated are the capabilities of LIDARs to measure ocean temperature and optical properties vertically in the water column, individually or simultaneously. The practical use of bathymetric LIDAR as a tool for the estimation of inherent optical properties remains one of the most challenging problems in the field of optical oceanography. LIDARs can retrieve data as deep as 3-4 optical depths (e.g. optical properties can be measured through the thermocline for ~70% of the world's oceans). Similar to AUVs (gliders), UAV-based LIDAR systems will increase temporal and spatial measurements by several orders of magnitude. The LIDAR Observations of Optical and Physical Properties (LOOPP) Conference was held at NURC (2011) to review past, current and future LIDAR research efforts in retrieving water column optical/physical properties. This new observational platform/sensor system is ideally suited for ground truthing hyperspectral/geostationary satellite data in coastal regions and for model data assimilation.

  4. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  5. Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case

    NASA Technical Reports Server (NTRS)

    Starr, David; Lin, Ruci-Fong; Demoz, Belay; Lare, Andrew

    2004-01-01

    A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud-system simulation with MM5 to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin. Meteorological conditions and observations for the 23 July case are described in this volume. The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.

  6. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  7. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  8. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel

    2017-01-01

    Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold (<- 38 °C). Ci clouds observed along the day were assembled in groups based on their predominant CCOD, and classified according to four CCOD-based categories. Ci clouds were found to be vertically-distributed in relation with the temperature, forming subvisual Ci clouds at lower temperatures and higher altitudes than other Ci categories at both latitudes. Discrepancies shown on LR values for the three stations, but mainly remarked between subtropical and polar cases, can be associated to different temperature regimes for Ci formation, influencing the internal ice habits of the Ci clouds, and hence likely affecting the LR derived for the Ci layer. In comparison with literature values, daily mean CCOD/LR for SCO (0.4 ± 0.4/21 ± 10 sr), MSP (0.5 ± 0.5/27 ± 5 sr) and BEL (0.2 ± 0.3/28 ± 9 sr) are in good agreement; however, the variability of the Ci optical features along the day present large discrepancies. In comparison with CALIOP data, Ci clouds are observed at similar altitudes (around 10

  9. Principal component and sensitivity analysis of cirrus clouds using high-resolution IR radiance spectra: simulations and observations

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Braverman, A.; Fetzer, E. J.

    2003-01-01

    A set of simulated and observed nadir-oriented high-resolution infrared emission spectra of synthetic cirrus clouds is analyzed to assess the spectrally dependent variability of radiance from the adjustment of some microphysical and bulk cirrus cloud properties.

  10. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  11. Solar glint from oriented crystals in cirrus clouds.

    PubMed

    Lavigne, Claire; Roblin, Antoine; Chervet, Patrick

    2008-11-20

    Solar scattering on oriented cirrus crystals near the specular reflection direction is modeled using a mix method combining geometric optics and diffraction effects at three wavelengths in the visible and infrared domains. Different potential sources of phase function broadening around the specular direction, such as multiple scattering, solar disk, or tilt effects, are studied by means of a Monte Carlo method. The radiance detected by an airborne sensor located a few kilometers above the cirrus cloud and pointing in the specular scattering direction is calculated at four solar zenith angles showing a dramatic increase of the signal in relation to the usual assumption of random crystal orientation.

  12. Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Gao, Bo-Cai; Platnick, Steven

    2009-01-01

    To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. Thin cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-micron channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as clear sky by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0-20 W/sq m, depending on the optical depths of thin cirrus clouds.

  13. SPARTICUS: Small Particles in Cirrus Science and Operations Plan

    SciTech Connect

    Mace, J.; Jensen, E.; McFarquhar, G.; Comstock, J.; Ackerman, T.; Mitchell, D.; Liu, X.; Garrett, T.

    2009-10-31

    From a mass-weighted perspective, cirrus clouds exert an enormous influence on the radiative energy budget of the earth’s climate system. Owing to their location in the cold upper troposphere, cirrus can significantly reduce the outgoing longwave radiation while, at the same time, remaining relatively transmissive to solar energy. Thus, cirrus clouds are the only cloud genre that can exert a direct radiative warming influence on the climate system (Ackerman et al. 1988). It is not surprising, therefore, that general circulation models (GCMs) are especially sensitive to the presence of cirrus in the model atmosphere. Lohmann and Roeckner (1995), for instance, show that the climate sensitivity can vary by as much as 40% due to the properties of cirrus varying between transparent and opaque limits. Lohmann and Roeckner (1995) also identify a key feedback by cirrus that is often overlooked; on longer time scales cloud heating in the upper troposphere can act to maintain and modulate the general circulation of the atmosphere through accelerating the subtropical and polar jet streams. Understanding these mechanisms and representing them in models is complicated by the fact that cirrus properties vary over an enormous dynamic range compared to most other clouds.

  14. Airborne observations of cloud properties on HALO during NARVAL

    NASA Astrophysics Data System (ADS)

    Konow, Heike; Hansen, Akio; Ament, Felix

    2016-04-01

    The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations offer a more detailed insight due to lower altitude and high sampling rates. The research aircraft HALO (High Altitude Long Range Research Aircraft) is operated by the German Aerospace Center (DLR). With a ceiling of 15 km, and a range of 10,000 km and more than 10 hours it is able to reach remote regions and operate from higher altitudes than most other research aircraft. Thus, it provides the unique opportunity to exploit regions of the atmosphere that cannot be easily accessed otherwise. Measurements conducted on HALO provide more detailed insights than achievable from satellite data. Therefore, this measurement platform bridges the gap between previous airborne measurements and satellites. The payload used for this study consists of, amongst others, a suite of passive microwave radiometers, a cloud radar, and a water vapor DIAL. To investigate cloud and precipitation properties of convective maritime clouds, the NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) campaign was conducted in winter 2013/2014 out of Barbados and Keflavik (Iceland). This campaign was one of the first that took place on the HALO aircraft. During the experiment's two parts 15 research flights were conducted (8 flights during NARVAL-South out of Barbados to investigate trade-wind cumuli and 7 flights out of Keflavik with focus on mid-latitude cyclonic systems). Flight durations were between five and nine hours, amounting to roughly 118 flight hours overall. 121 dropsondes were deployed. In fall 2016 two additional aircraft campaigns with the same payload will take place: The

  15. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-12-01

    range between 10-60 sr, and the estimated mean value is 31 ± 15 sr, similar to LR values of lower latitude cirrus measurements. The obtained results are consistent with previous studies conducted with different systems and confirm that cirrus classification based on a statistical approach seems to be a good tool both to validate the height-resolved cirrus fields calculated by models and to investigate the key processes governing cirrus formation and evolution. However, the lidar ratio and optical depth analyses are affected by some uncertainties (e.g., lidar error noise, multiple scattering effects, supercooled water clouds) that reduce the confidence of the results. Future studies are needed to improve the characterization of the cirrus optical properties and, thus, the determination of their radiative impact.

  16. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  17. Effects of cirrus spatial heterogeneity and ice particle shape on remote sensing of cirrus optical thickness and effective crystal radius - A case study

    NASA Astrophysics Data System (ADS)

    Eichler, Heike; Schmidt, Konrad Sebastian; Buras, Robert; Wendisch, Manfred; Mayer, Bernhard; Emde, Claudia; Pilewskie, Peter; King, Michael; Platnick, Steven

    2010-05-01

    The relative importance of three-dimensional (3D) effects and ice crystal shape of spatially heterogeneous cirrus on the remote-sensing of optical thickness and effective crystal radius is evaluated. In current ice cloud retrievals, the single-scattering properties of ice crystals have to be assumed a-priori. Likewise, the effects of spatial cloud heterogeneity are ignored in current techniques. Both simplifications introduce errors in the retrievals. The study is based on 3D and independent pixel approximation (IPA) radiative transfer calculations. As model input a cloud case that was generated from data collected during the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) experiment is used. First, spectral upwelling radiance fields from the input cloud as they would be sensed by airborne or spaceborne radiometers were determined with 3D radiative transfer simulations. Then the cirrus optical thickness and ice particle effective radius that would be obtained in standard satellite techniques under the IPA assumption were retrieved. The ratios between retrieved and original fields are used as a metric for cloud heterogeneity effects on retrievals. Second, in the retrieval single-scattering properties (crystal shapes) different from those in the radiance calculations were used. In order to isolate ice crystal habit effects, the net horizontal photon transport was disabled here. Thus, the ratios between retrieved and original values of optical thickness and effective radius serve as metric for ice crystal habit effects. When comparing the two metrics, it is found that locally both can be of the same magnitude (up to 50% over- and underestimation), with different dependencies on cirrus optical thickness, effective radius, and optical thickness variability. On domain average, shape effects bias the retrievals more strongly than 3D effects.

  18. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  19. Influence of Nucleation Mechanisms on the Radiative Properties of Deep Convective Clouds and Subvisible Cirrus in CRYSTAL/FACE

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    During the past few years we have conducted work on several different topics, as reflected by our publications. As one of the Co-Project scientists for The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL FACE) we worked to help design the mission and then conduct it in the field. Another major activity during the past two years has been to pull together various groups to formulate plans for follow on missions to CRYSTAL FACE. We organized a workshop at the University of Colorado during the summer of 2003 to assess the best locations for future missions. Working with a group of about 10 scientists from around the country we prepared a science-planning document (Tropical Composition, Cloud and Climate Coupling Experiment (TC(sup 4)) that outlined the rationale, locations, strategy to accomplish the goals, and possible payloads for a set of three tropical missions. We also prepared background materials for various NRAs being prepared at NASA Headquarters for missions in Costa Rica, Darwin and Guam. In conjunction with the group at NASA Ames we have helped build a new numerical model for deep convection and have applied that model to simulate the CRYSTAL data. Our goal in particular has been to better understand how convection distributes water vapor isotopes. CRYSTAL observations of water isotopes are very different from those suggested by previous workers who assumed the isotopes would obey Rayleigh fractionation. The water isotope study has several implications. First it is a check on the realism of the deep convection model. Second, the isotopes are a measure of the precipitation removal in the atmosphere. Hence they provide a constraint on a parameter that is difficult to otherwise measure. Finally it has been suggested that isotopes may be the key to unraveling the water transport into the stratosphere and upper troposphere. Such transport is critical both for the radiation balance and for stratospheric

  20. Dynamical States of Low Temperature Cirrus

    NASA Technical Reports Server (NTRS)

    Barahona, D.; Nenes, A.

    2011-01-01

    Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a dynamical equilibrium between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two preferred microphysical regimes with very different susceptibility to aerosol.

  1. Characterization of mechanical properties of leather with airborne ultrasonics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  2. CRYSTAL-FACE: A Field Experiment and Modeling Program Focused on Tropical Anvils and Cirrus Layers

    NASA Technical Reports Server (NTRS)

    Jenson, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is a measurement campaign designed to investigate tropical Cirrus cloud physical properties and formation processes. Understanding the production of upper tropospheric cirrus clouds is essential for the successful modeling of 'he Earth's climate. The deployment phase will occur in July, 2002 in southern Florida, USA. Several aircraft will be used, including the ER-2 and Proteus for cloud remote sensing, the WB-57 and Citation for in situ cloud measurements, the P-3 with a Doppler radar for characterization of convective systems, and the Twin otter for sampling of inflow airmasses. In addition, numerous ground-based and satellite remote sensing measurements will be contributing. A central focus of the mission is improvement of our ability to model cirrus clouds with numerical models. Several research groups with a variety of model types (cloud-resolving models, mesoscale models, weather-prediction models, and general circulation models) will be participating. Our hope is to fully characterize several mulonimbus/cirrus anvil systems that can be used as case studies for testing and improvement of the models. The models will be used for investigating cirrus generation and dissipation processes and the sensitivity of tropical cirrus to convective intensity and aerosol properties. Ultimately, we expect this effort to improve our ability to represent tropical cirrus in GCMs. A general description of the CRYSTAL-FACE program will be presented, with an emphasis on the cloud modeling approach.

  3. Invisible Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Moderate-resolution Imaging Spectroradiometer's (MODIS') cloud detection capability is so sensitive that it can detect clouds that would be indistinguishable to the human eye. This pair of images highlights MODIS' ability to detect what scientists call 'sub-visible cirrus.' The image on top shows the scene using data collected in the visible part of the electromagnetic spectrum-the part our eyes can see. Clouds are apparent in the center and lower right of the image, while the rest of the image appears to be relatively clear. However, data collected at 1.38um (lower image) show that a thick layer of previously undetected cirrus clouds obscures the entire scene. These kinds of cirrus are called 'sub-visible' because they can't be detected using only visible light. MODIS' 1.38um channel detects electromagnetic radiation in the infrared region of the spectrum. These images were made from data collected on April 4, 2000. Image courtesy Mark Gray, MODIS Atmosphere Team

  4. Ice Nuclei in Mid-Latitude Cirrus: Preliminary Results from a New Counterflow Virtual Impactor (CVI) Aircraft Inlet

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Cziczo, D. J.; Murphy, D. M.; Kulkarni, G.; Lawson, P.

    2011-12-01

    Cirrus cloud properties are strongly governed by the mechanism of ice particle formation and by the number and effectiveness of ambient ice nuclei. Airborne measurements of ice nuclei reveal new nucleation mechanisms, provide constraints on microphysical models, and guide laboratory investigations. For over two decades the Counterflow Virtual Impactor (CVI) inlet has remained the prevailing approach for sampling cloud particles to measure ice nuclei from an aircraft platform. However, traditional CVI inlets have fundamental limitations when operating on high speed aircraft, where only a small fraction of ambient cloud particles are typically sampled. A novel 'folded' CVI was constructed and deployed during the NASA MACPEX 2011 campaign. The flow design of this inlet effectively doubles the CVI length and thereby increases the size range of captured cirrus particles. Additional design elements such as an internal vortex flow, a neon carrier gas, and an infrared laser further improve the capture and evaporation of ice crystals. Preliminary results of ice nuclei composition measured by the PALMS single-particle mass spectrometer are presented from the MACPEX campaign. Examples of ice nuclei from mid-latitude cirrus are shown, including mineral dust, organic-rich aerosol with amine and diacid components, and lead-containing aerosol.

  5. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to

  6. Cirrus Cloud Optical and Morphological Variations within a Mesoscale Volume

    NASA Technical Reports Server (NTRS)

    Wolf, Walter W.

    1996-01-01

    Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.

  7. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  8. Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case

    NASA Technical Reports Server (NTRS)

    Starr, David; Lin, Ruei-Fong; Demoz, Belay; Lare, Andrew

    2004-01-01

    A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud- system simulation with MM5 (Starr et al., companion paper in this volume) to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin (1997). The microphysical components are described in Lin et al. (2004) - see Lin et a1 (this volume). Meteorological conditions and observations for the 23 July case are described in Starr et al. (this volume). The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.

  9. Role of electrical properties in airborne and satellite borne sensing

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Kant, Yash; Sekhar, E. C.

    1992-07-01

    The role of geologic materials in studying the sensitivity behavior of airborne and satellite-based electromagnetic measurements is studied. Frechet derivatives are computed for the sensitivity analysis over homogeneous half space at frequencies of 10 exp 7 to 10 exp 9 Hz. The computed results show a characteristic dependence of sensitivity functions on the stratified models employed. Such studies are useful for investigating areas containing a mixture of dry sand, frozen ground, or rocks with low water content and moist rocks. This computational method is more effective than the usual response evaluation technique.

  10. Characterization of residuals from ice particles and droplets sampled in mid-latitude natural and aviation-influenced cirrus and in tropical deep convective cloud systems during ML-CIRRUS and ACRIDICON

    NASA Astrophysics Data System (ADS)

    Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes

    2015-04-01

    Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an

  11. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  12. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island: Cloud Statistics and Radiative Impacts

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Mace, Gerald G.

    2002-12-12

    Ground based active and passive remote sensing instrumentation are combined to derive radiative and macrophysical properties of tropical cirrus clouds. Eight months of cirrus observations at the Department of Energy Atmospheric Radiation Measurement site located on Nauru Island provide independent retrieval of cloud height and visible optical depth using lidar and radar techniques. Comparisons reveal the millimeter cloud radar does not detect 13% of cirrus clouds with a cloud base higher than 15 km that are detected by the lidar. Lidar and radar cloud heights demonstrate good agreement when the cloud lies below 15 km. Radar and lidar retrievals of visible optical depth also compare well for all but the optically thinnest clouds. Cloud occurrence at Nauru as measured by lidar, reveal clear sky conditions occur on average 40%, low clouds 16%, and high clouds 44% of the time. Analysis of observed cirrus macrophysical and radiative properties suggests that two different types of cirrus exist in the tropical western Pacific: high, thin, laminar cirrus with cloud base higher than 15 km, and lower, physically thicker, more structured cirrus clouds. Differences in cirrus types are likely linked to their formation mechanisms. Radiosonde profiles of temperature and equivalent potential temperature near the tropical tropopause show a clear transition between neutrally stable and stable air at ~15 km, which may also explain the presence of two distinct cirrus types. Radiative heating rate and cloud forcing calculations for specific cirrus cases reveal the impact of tropical cirrus clouds on the earth?s radiation budget.

  13. The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave Spectrometer

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin; Evans, Aaron H.; Nolt, Ira G.; Marshall, B. Thomas

    1999-01-01

    Given the substantial radiative effects of cirrus clouds and the need to validate cirrus cloud mass in climate models, it is important to measure the global distribution of cirrus properties with satellite remote sensing. Existing cirrus remote sensing techniques, such as solar reflectance methods, measure cirrus ice water path (IWP) rather indirectly and with limited accuracy. Submillimeter/wave radiometry is an independent method of cirrus remote sensing based on ice particles scattering the upwelling radiance emitted by the lower atmosphere. A new aircraft instrument, the Far Infrared Sensor for Cirrus (FIRSC), is described. The FIRSC employs a Fourier Transform Spectrometer (FTS). which measures the upwelling radiance across the whole submillimeter region (0.1 1.0-mm wavelength). This wide spectral coverage gives high sensitivity to most cirrus particle sizes and allows accurate determination of the characteristic particle size. Radiative transfer modeling is performed to analyze the capabilities of the submillimeter FTS technique. A linear inversion analysis is done to show that cirrus IWP, particle size, and upper-tropospheric temperature and water vapor may be accurately measured, A nonlinear statistical algorithm is developed using a database of 20000 spectra simulated by randomly varying most relevant cirrus and atmospheric parameters. An empirical orthogonal function analysis reduces the 500-point spectrum (20 - 70/cm) to 15 "pseudo-channels" that are then input to a neural network to retrieve cirrus IWP and median particle diameter. A Monte Carlo accuracy study is performed with simulated spectra having realistic noise. The retrieval errors are low for IWP (rms less than a factor of 1.5) and for particle sizes (rins less than 30%) for IWP greater than 5 g/sq m and a wide range of median particle sizes. This detailed modeling indicates that there is good potential to accurately measure cirrus properties with a submillimeter FTS.

  14. Laser transmission through thin cirrus clouds.

    PubMed

    Liou, K N; Takano, Y; Ou, S C; Johnson, M W

    2000-09-20

    A near-infrared airborne-laser transmission model for thin cirrus clouds has been developed on the basis of the successive-order-of-scattering approach to account for multiple scattering by randomly and horizontally oriented ice crystals associated with an aircraft-target system. Direct transmission and transmission due to multiple scattering are formulated specifically for this geometric system, in which scattering and absorption associated with aerosols, water vapor, and air are accounted for. A number of sensitivity experiments have been performed for investigation of the effect of aircraft-target position, cirrus cloud optical depth, and ice crystal size on laser transmission for tactical applications. We show that transmission contributions produced by orders of scattering higher than 1 are small and can be neglected. The possibility of horizontal orientation of ice crystals can enhance transmission of laser beams in the aircraft-target geometry. Transmitted energy is strongly dependent on the horizontal distance between the aircraft and the target and on the cloud optical depth as well as on whether the cloud is above or below the aircraft.

  15. Cirrus Dopant Nano-Composite Coatings

    DTIC Science & Technology

    2014-11-01

    Nickel Phosphorus versus cirrus Zr nano-composite Nickel Phosphorus on Magnesium cirrus wear resistance 590 1025 1,045 0 200 400 600 800...micron duplex Nickel versus cirrus Ti nano- composite Nickel on Mild Steel cirrus corrosion resistance Duplex Ni Cirrus Ti doped Ni 340 430 503 0...100 200 300 400 500 600 HARDNESS (HV) MICROHARDNESS - ELECTROPLATED NICKEL STANDARD DC PLATED DOPED DC PLATED DOPED PULSE PLATED ↑48% 10

  16. Observations of Cirrus Clouds over the Pacific Region by the NASA Multiwavelength Lidar System

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.; Fenn, Marta A.; Nowicki, Greg D.

    1992-01-01

    As part of the Pacific Exploratory Mission-West Campaign that took place during 16 Sep. - 21 Oct. 1991, lidar measurements were made from the ARC DC-8 aircraft at an altitude of approximately 9 km. This mission provided a unique opportunity to make cirrus cloud observations around the Pacific region covering the latitude range from 5 to 55 deg N and the longitude range from -114 to 120 deg E. Cirrus clouds were observed on most of these flights providing a unique data base. The latitudinal coverage of cirrus observations was further extended to -5 deg S from observations on 30 Jan. 1992 as part of the Airborne Arctic Stratospheric Expedition 2. During this latter mission, aerosol depolarizations at 622 and 1064 nm were also measured. The optical characteristics and statistics related to these cirrus cloud observations are summarized.

  17. Mid-latitude cirrus classification at Rome Tor Vergata through a multi-channel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-04-01

    and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18 , while most retrieved LReff values ranges between 10-60 sr and the estimated mean value is 31 ± 15 sr, similar to LR values of lower latitude cirrus measurements. The obtained results are consistent with previous studies conducted with different systems and confirm that cirrus classification based on a statistical approach seems to be a good tool both to validate the height-resolved cirrus fields, calculated by models, and to investigate the key processes governing cirrus formation and evolution. These are fundamental elements to improve the characterization of the cirrus optical properties and, thus, the determination of their radiative impact.

  18. Formation of low-temperature cirrus from H2SO4/H2O aerosol droplets.

    PubMed

    Bogdan, A; Molina, M J; Sassen, K; Kulmala, M

    2006-11-23

    We present experimental results obtained with a differential scanning calorimeter (DSC) that indicate the small ice particles in low-temperature cirrus clouds are not completely solid but rather coated with an unfrozen H2SO4/H2O overlayer. Our results provide a new look on the formation, development, and microphysical properties of low-temperature cirrus clouds.

  19. Airborne, In Situ and Laboratory Measurements of the Optical and Photochemical Properties of Surface Marine Waters

    DTIC Science & Technology

    2016-06-07

    Airborne, In Situ And Laboratory Measurements Of The Optical And Photochemical Properties Of Surface Marine Waters Neil V. Blough Department of...matter (CDOM) in marine and estuarine waters , 2) to determine the impact of CDOM on the aquatic light field and remotely-sensed optical signals, 3) to...October 1999 was performed to examine the optical and photochemical properties of waters in the Middle Atlantic Bight and in the Delaware and Chesapeake

  20. Evaluation of a GCM cirrus parameterization using satellite observations

    NASA Technical Reports Server (NTRS)

    Soden, B. J.; Donner, L. J.

    1994-01-01

    This study applies a simple yet effective methodology to validate a general circulation model parameterization of cirrus ice water path. The methodology combines large-scale dynamic and thermodynamic fields from operational analyses with prescribed occurrence of cirrus clouds from satellite observations to simulate a global distribution of ice water path. The predicted cloud properties are then compared with the corresponding satellite measurements of visible optical depth and infrared cloud emissivity to evaluate the reliability of the parameterization. This methodology enables the validation to focus strictly on the water loading side of the parameterization by eliminating uncertainties involved in predicting the occurrence of cirrus internally within the parameterization. Overall the parameterization performs remarkably well in capturing the observed spatial patterns of cirrus optical properties. Spatial correlations between the observed and the predicted optical depths are typically greater than 0.7 for the tropics and northern hemisphere midlatitudes. The good spatial agreement largely stems from the strong dependence of the ice water path upon the temperature of the environment in which the clouds form. Poorer correlations (r approximately 0.3) are noted over the southern hemisphere midlatitudes, suggesting that additional processes not accounted for by the parameterization may be important there. Quantitative evaluation of the parameterization is hindered by the present uncertainty in the size distribution of cirrus ice particles. Consequently, it is difficult to determine if discrepancies between the observed and the predicted optical properties are attributable to errors in the parameterized ice water path or to geographic variations in effective radii.

  1. Cirrus clouds in convective outflow during the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Fierli, F.; di Donfrancesco, G.; Cairo, F.; Zampieri, M.; Orlandi, E.

    2007-05-01

    Light-weight microlidar measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (22 S, 49 W). Tropical cirrus observations showed high mesoscale variability in optical and microphysical properties. The cirrus clouds were observed throughout the flight between 12 and 15 km height. It was found that the clouds were composed of different layers, characterized by a marked variability in height, thickness and optical properties. Trajectory analysis and mesoscale transport simulations clearly revealed that the clouds had formed in the outflow of a large and persistent convective region, while the observed optical properties and cloud structure variability could be linked to different residence times of convective-processed air in the upper troposphere. Mesoscale simulations were able to reproduce the supersaturation due to recent outflow, while it was necessary to consider the presence of other formation processes than convective hydration for cirrus forming in aged detrained anvils.

  2. Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds.

    PubMed

    Xie, Yu; Yang, Ping; Kattawar, George W; Baum, Bryan A; Hu, Yongxiang

    2011-03-10

    In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains. To investigate the effect of the representation of aggregates on electromagnetic scattering calculations, we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each consisting of between 4-12 hexagonal plates. The scattering properties of an individual aggregate ice particle are computed using either the discrete dipole approximation or an improved geometric optics method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over all geometries. The scattering properties of the aggregate representation closely agree with those computed from 1000 different aggregate geometries. As a result, the aggregate representation provides an accurate and computationally efficient way to represent all aggregates occurring within ice clouds. Furthermore, the aggregate representation can be used to study the influence of these complex ice particles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates are different from those associated with randomly oriented individual hexagonal plates. When aggregates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses.

  3. Large Eddy Simulation of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wu, Ting; Cotton, William R.

    1999-01-01

    of large ice crystals, and consequently, both radiative and dynamic properties of the cirrus cloud are significantly affected. A complete description of this research has been submitted as a paper to the Journal of Atmospheric Science (Wu et al., 1999), and included as Appendix 3.

  4. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  5. Analysis of Aircraft, Radiosonde and Radar Observations in Cirrus Clouds Observed During FIRE II: The Interactions Between Environmental Structure, Turbulence and Cloud Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1999-01-01

    Ways to determine the turbulence intensity and the horizontal variability in cirrus clouds have been investigated using FIRE-II aircraft, radiosonde and radar data. Higher turbulence intensities were found within some, but not all, of the neutrally stratified layers. It was also demonstrated that the stability of cirrus layers with high extinction values decrease in time, possibly as a result of radiative destabilization. However, these features could not be directly related to each other in any simple manner. A simple linear relationship was observed between the amount of horizontal variability in the ice water content and its average value. This was also true for the extinction and ice crystal number concentrations. A relationship was also suggested between the variability in cloud depth and the environmental stability across the depth of the cloud layer, which requires further investigation.

  6. Ubiquitous influence of waves on tropical high cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Eun; Alexander, M. Joan; Bui, T. Paul; Dean-Day, Jonathan M.; Lawson, R. Paul; Woods, Sarah; Hlavka, Dennis; Pfister, Leonhard; Jensen, Eric J.

    2016-06-01

    Cirrus clouds in the tropical tropopause layer (TTL) and water vapor transported into the stratosphere have significant impacts on the global radiation budget and circulation patterns. Climate models, however, have large uncertainties in representing dehydration and cloud processes in the TTL, and thus their feedback on surface climate, prohibiting an accurate projection of future global and regional climate changes. Here we use unprecedented airborne measurements over the Pacific to reveal atmospheric waves as a strong modulator of ice clouds in the TTL. Wave-induced cold and/or cooling conditions are shown to exert a nearly ubiquitous influence on cirrus cloud occurrence at altitudes of 14-18 km, except when air was very recently influenced by convective hydration. We further observe that various vertical scales of cloud layers are associated with various vertical scales of waves, suggesting the importance of representing TTL waves in models.

  7. The 5-6 December 1991 FIRE IFO 2 jet stream cirrus case study: The influence of volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Mace, Gerald G.; Starr, David; Poellot, Michael R.; Melfi, S. H.; Eberhard, Wynn L.; Spinhirne, James D.; Eloranta, E. W.; Hagen, Donald E.; Hallett, John

    1993-01-01

    In presenting an overview of the cirrus clouds comprehensively studied by ground-based and airborne sensors from Coffeyville, KS, during the 5-6 Dec. 1992 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) IFO II case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur-based particles that became effective cirrus cloud-forming nuclei. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded within the upper level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol-enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600 l(sup -1), small but complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 to -50 C. Implications for volcanic-cirrus cloud climate effects, and usual (non-volcanic aerosol) jet stream cirrus cloud formation are discussed.

  8. The 5-6 December 1991 FIRE IFO 2 Jet Stream Cirrus Case Study: Possible Influences of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Starr, David OC.; Mace, Gerald G.; Poellot, Michael R.; Melfi, S. H.; Eberhard, Wynn L.; Spinhirne, James D.; Eloranta, E. W.; Hagen, Donald E.; Hallett, John

    1996-01-01

    In presenting an overview of the cirrus clouds comprehensively studied by ground based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 First ISCCP Regional Experiment (FIRE) intensive field observation (IFO) case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur based particles that became effective cloud forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded with the upper level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600 L(exp. 1)), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 and -50 degrees C. Implications for volcanic-cirrus cloud climate effects and unusual (nonvolcanic) aerosol jet stream cirrus cloud formation are discussed.

  9. Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: conversion of a ground-based lidar for airborne applications

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Hardesty, R. Michael; Rothermel, Jeffrey; Menzies, Robert T.

    1996-11-01

    The first Multi center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO2 Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure 3D winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, we describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from the September experiments.

  10. Overview of the first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: Conversion of a ground-based lidar for airborne applications

    SciTech Connect

    Howell, J.N.; Hardesty, R.M.; Rothermel, J.; Menzies, R.T.

    1996-12-31

    The first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO{sub 2} Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure three-dimensional winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, the authors describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from September experiments.

  11. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  12. Evaluating The Indirect Effect of Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Dobbie, S.; Jonas, P. R.

    What effect would an increase in nucleating aerosols have on the radiative and cloud properties? What error would be incurred by evaluating the indirect effect by taking an evolved cloud and fixing the integrated water content and vary the number of ice crystals? These questions will be addressed in this work. We will use the UK LES cloud resolving model to perform a sensitivity study for cirrus clouds to the indirect effect, and will evaluate approximate methods in the process. In this work, we will initialize the base (no increase of aerosol) cirrus clouds so that the double moment scheme is constrained to agree with observations through the ef- fective radius. Effective radius is calculated using the local concentration and the ice water content. We then perform a sensitivity experiment to investigate the dependence of the average IWC, effective size, and radiative properties (including heating rates) to variations in the nucleation rate. Conclusions will be draw as to the possible ef- fect of changes in aerosol amounts on cirrus. We will determine how sensitive the cloud and radiative properties are to various aerosol increases. We will also discuss the applicability of the Meyer et al. (1992) nucleation formulae for our simulations. It is important to stress that in this work we only change the nucleation rate for the newly forming cloud. By doing this, we are not fixing the total water content and redistributing the water amongst increased ice crystals. We increase the number of aerosols available to be nucleated and allow the model to evolve the size distributions. In this way, there is competition for the water vapour, the ice particles are evolved dynamically with different fall speeds, the conversion rates to other hydrometers (such as aggregates) are affected, and the heating rates are different due to the different size distributions that evolve. We will look at how the water content, the distribution of water, and the radiative properties are affected

  13. Lidar studies on climate sensitivity characteristics of tropical cirrus clouds

    NASA Astrophysics Data System (ADS)

    Motty, G. S.; Jayeshlal, G. S.; Satyanarayana, Malladi; Mahadevan Pillai, V. P.

    2016-05-01

    The cirrus clouds play an important role in the Earth's radiation budget due to their high frequency of occurrence, non-spherical ice crystal formations, and variability in the scattering/absorption characteristics. Mostly, the tropical cirrus clouds are considered as greenhouse modulators. Thus the parameterization of tropical cirrus clouds in terms of the micro- physical properties and the corresponding radiative effects are highly important for the climate studies. For characterizing the radiative properties of cirrus clouds, which depend on the size, shape and number of the ice crystals, the knowledge of extinction coefficient (σ) and optical depth (τ) are necessary. The σ provides information needed for understanding the influence of the scatterers on the radiative budget whereas the τ gives an indication on the composition and thickness of the cloud. Extensive research on the tropical cirrus clouds has been carried out by using a ground based and satellite based lidar systems. In this work, the characteristics of tropical cirrus cloud derived by using the data from the ground based lidar system over the tropical site Gadanki [13.5°N, 79.2°E], India during 2010 are presented. Some of the results are compared with those obtained by us from satellite based CALIOP lidar observations of the CALIPSO mission. It is observed that there is a strong dependence of the some of the physical properties such as occurrence height, cloud temperature and the geometrical thickness on the microphysical parameters in terms of extinction coefficient and optical depth. The correlation of both the σ and τ with temperature is also observed.

  14. Climate sensitivity characteristics of tropical cirrus clouds using lidar measurements

    NASA Astrophysics Data System (ADS)

    Motty, Gopinathan Nair S.; Satyanarayana, Malladi; Jayeshlal, Glory Selvan; Pillai, Vellara P. Mahadevan

    2016-10-01

    Cirrus clouds play an important role in the Earth's radiation budget due to their high frequency of occurrence, nonspherical ice crystal formations, and variability in scattering/absorption characteristics. Mostly, tropical cirrus clouds are considered greenhouse modulators. Thus, the parameterization of tropical cirrus clouds in terms of their microphysical properties and the corresponding radiative effects are highly important for climate studies. For characterizing the radiative properties of cirrus clouds, which depend on the size, shape, and number of ice crystals, knowledge of the extinction coefficient (σ) and optical depth (τ) is necessary. σ provides information needed for understanding the influence of the scatterers on the radiative budget, whereas τ gives an indication of the composition and thickness of the cloud. Extensive research on tropical cirrus clouds has been carried out by using ground-based lidar (GBL) and satellite-based lidar systems. The characteristics of tropical cirrus clouds derived by using the data from the GBL system over the tropical site Gadanki (13.5° N, 79.2° E), India, during 2010 are presented. Some of the results are compared with those obtained by us from satellite-based cloud-aerosol lidar with orthogonal polarization observations of the cloud-aerosol lidar and infrared pathfinder satellite observation mission. It is observed that there is a strong dependence on some of the physical properties, such as occurrence height, cloud temperature, and geometrical thickness, and on the microphysical parameters in terms of extinction coefficient and optical depth. The correlation of both σ and τ with temperature is also observed.

  15. Cirrus-cloud thermostat for tropical sea surface temperature tested using satellite data

    NASA Technical Reports Server (NTRS)

    Fu, Rong; Del Genio, Anthony D.; Rossow, William B.; Liu, W. T.

    1992-01-01

    Cirrus clouds associated with tropical convection may shield the ocean from sunlight and therefore act as a thermostat to limit tropical SST (sea surface temperature) to less than 305 K. This hypothesis was tested using satellite radiance data. It was found that changes in the properties of cirrus clouds do not seem to be related to changes in SSTs. During the 1987 El Nino event large-scale atmospheric circulation changes rather than the direct effect of SSTs seemed to control large-scale changes in radiative effects of cirrus clouds. If averaged over the entire tropical Pacific, increases in surface evaporative cooling are stronger than decreases in solar heating owing to cirrus cloud variation. This would indicate that there is no cirrus cloud thermostat to tropical SSTs.

  16. Far Infrared Measurements of Cirrus

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Vanek, M. D.; Tappan, N. D.; Minnis, P.; Alltop, J. L.; Ade, A. R.; Lee, C.; Hamilton, P. A.; Evans, K. F.; Evans, A. H.

    1999-01-01

    Improved techniques for remote sensing of cirrus are needed to obtain global data for assessing the effect of cirrus in climate change models. Model calculations show that the far infrared/sub-millimeter spectral region is well suited for retrieving cirrus Ice Water Path and particle size parameters. Especially useful cirrus information is obtained at frequencies below 60 cm-1 where single particle scattering dominates over thermal emission for ice particles larger than about 50 m. Earth radiance spectra have been obtained for a range of cloud conditions using an aircraft-based Fourier transform spectrometer. The Far InfraRed Sensor for Cirrus (FIRSC) is a Martin-Puplett interferometer which incorporates a polarizer for the beamsplitter and can be operated in either intensity or linear polarization measurement mode. Two detector channels span 10 to 140 cm-1 with a spectral resolution of 0.1 cm-1; achieving a Noise Equivalent Temperature of approximately 1K at 30 cm-1 in a 4 sec scan. Examples are shown of measured and modeled Earth radiance for a range of cloud conditions from 1998 and 1999 flights.

  17. Contrail-Cirrus Studies at FARS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1997-01-01

    The three primary goals have been to: (1) increase our contrail remote sensing database collected from the Facility for Atmospheric Remote Sensing (FARS) by expanding our Project FIRE Extended Time Observations (ETO) program to include contrail persistence studies: (2) continue our retrospective analyses of the statistical, physical, and radiative properties of contrails derived from our 10-year ETO cirrus cloud dataset to examine their potential direct impact for regional climate change: and, (3) prepare our mobile remote sensing systems and participate in the SUCCESS field campaign from the DOE Southern Great Plains ARM CART site.

  18. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  19. The 5-6 December 1991 FIRE IFO II jet stream cirrus case study: Possible influences of Volcanic Aerosols

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Starr, David O'C.; Mace, Gerald G.; Poellot, Michael R.; Melfi, S. H.; Eberhard, Wynn L.; Spinhirne, James D.; Eloranta, E. W.; Hagen, Donald E.; Hallett, John

    1995-01-01

    In presenting an overview of the cirus clouds comprehensively studied by ground-based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 Project First ISCCP Region Experiment (FIRE) Intensive Fields Observation (IFO) II case study period, evidence is provided that volcanic aerosols friom the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur-based particles that became effective cloud-forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded within the upper-level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol-enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600/L), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 and -50 C. Implications for volcanic-cirrus cloud climate effects and usual (nonvolcanic aerosol) jet stream cirrus cloud formation are discussed.

  20. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  1. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  2. Impact of geoengineering on cirrus clouds

    NASA Astrophysics Data System (ADS)

    Cirisan, Ana; Spichtinger, Peter; Weisenstein, Debra; Lohmann, Ulrike; Wernli, Heini; Peter, Thomas

    2010-05-01

    background aerosol mass and number concentrations in response to geoengineering measures. In order to obtain qualitative and quantitative estimations of troposphere-stratosphere air mixing (intrusions, tropopause folds etc.) trajectory studies are done using ECMWF data. The results of this conceptual study suggest that an enhancement of sulphuric acid in the tropopause and upper troposphere region may impact the ice crystal number concentrations in cirrus clouds formed via homogeneous nucleation. The global impact can not be estimated, but on the local level, this could lead to change of cloud lifetime and thickness. It would further influence the albedo and radiative properties of cirrus clouds, i.e. modifying the net warming impact of cirrus clouds. Budyko, M.I. (1977), Global Ecology. Mysl, Moscow, 327 pp. (in Russian). Crutzen, P.J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climate Change, 77(3-4), 211-219. Nordhaus, W.D. (2007), A Question of Balance: Economic Modeling of Global Warming, Yale University Press, 2007. Polborn, S. and Tintelnot, F. (2009), How Geoengineering May Encourage Carbon Dioxide Abatement (June 2, 2009). Available at SSRN: http://ssrn.com/abstract=1413106 Spichtinger, P. and Gierens, K. (2009), Modelling of cirrus clouds - Part 1a: Model description and validation, Atmos. Chem. Phys., 9, 685-706. Spichtinger, P. and Cziczo, D. (2009), Impact of heterogeneous ice nuclei on homogeneous freezing events, J. Geophys. Res., in revision. Weisenstein, D.K., Penner, J.E., Herzog, M., and Liu, X., (2007), Global 2-D intercomparison of sectional and modal aerosol modules, Atmos. Chem. Phys., 7(9), 2339-2355.

  3. Characterizing relative humidity with respect to ice in midlatitude cirrus clouds as a function of atmospheric state

    NASA Astrophysics Data System (ADS)

    Dzambo, Andrew M.; Turner, David D.

    2016-10-01

    Midlatitude cirrus cloud macrophysical and microphysical properties have been shown in previous studies to vary seasonally and in various large-scale dynamical regimes, but relative humidity with respect to ice (RHI) within cirrus clouds has not been studied extensively in this context. Using a combination of radiosonde and millimeter-wavelength cloud radar data, we identify 1076 cirrus clouds spanning a 7 year period from 2004 to 2011. These data are separated into five classes using a previously published algorithm that is based largely on synoptic conditions. Using these data and classification scheme, we find that RHI in cirrus clouds varies seasonally. Variations in cirrus cloud RHI exist within the prescribed classifications; however, most of the variations are within the measurement uncertainty. Additionally, with the exception of nonsummer class cirrus, these variations are not statistically significant. We also find that cirrus cloud occurrence is not necessarily correlated with higher observed values of RHI. The structure of RHI in cirrus clouds varies more in thicker clouds, which follows previous studies showing that macrophysical and microphysical variability increases in thicker cirrus clouds.

  4. Preliminary analysis of University of North Dakota aircraft data from the FIRE Cirrus IFO-2

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    1995-01-01

    The stated goals of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) are 'to promote the development of improved cloud and radiation parameterization for use in climate models, and to provide for assessment and improvement of ISCCP projects'. FIRE Phase 2 has focused on the formation, maintenance and dissipation of cirrus and marine stratocumulus cloud systems. These objectives have been approached through a combination of modeling, extended-time observations and intensive field observation (IFO) periods. The work under this grant was associated with the FIRE Cirrus IFO 2. This field measurement program was conducted to obtain observations of cirrus cloud systems on a range of scales from the synoptic to the microscale, utilizing simultaneous measurements from a variety of ground-based, satellite and airborne platforms. By combining these remote and in situ measurements a more complete picture of cirrus systems can be obtained. The role of the University of North Dakota in Phase 2 was three-fold: to collect in situ microphysical data during the Cirrus IFO 2; to process and archive these data; and to collaborate in analyses of IFO data. This report will summarize the activities and findings of the work performed under this grant; detailed description of the data sets available and of the analyses are contained in the Semi-annual Status Reports submitted to NASA.

  5. Cirrus feedback on interannual climate fluctuations

    SciTech Connect

    Zhou, C.; Dessler, A. E.; Zelinka, M. D.; Yang, P.; Wang, T.

    2014-12-28

    Cirrus clouds are not only important in determining the current climate, but also play an important role in climate change and variability. Analysis of satellite observations shows that the amount and altitude of cirrus clouds (optical depth <3.6, cloud top pressure <440 hPa) increase in response to inter-annual surface warming. Thus, cirrus clouds are likely to act as a positive feedback on short-term climate fluctuations, by reducing the planet’s ability to radiate longwave radiation to space in response to planetary surface warming. Using cirrus cloud radiative kernels, the magnitude of cirrus feedback is estimated to be 0.20±0.21W/m2/°C, which is comparable to the surface albedo feedback. Most of the cirrus feedback comes from increasing cloud amount in the tropical tropopause layer (TTL) and subtropical upper troposphere.

  6. CLaMS-Ice: Large-scale cirrus cloud simulations in comparison with observations

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2016-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interactions of different freezing mechanisms, sedimentation rates, updraft velocity fluctuations and other factors that determine the formation and evolution of those clouds is still not fully understood. Thus, a reliable representation of cirrus clouds in models representing real atmospheric conditions is still a challenging task. At last year's EGU, Rolf et al. (2015) introduced the new large-scale microphysical cirrus cloud model CLaMS-Ice: based on trajectories calculated with CLaMS (McKenna et al., 2002 and Konopka et al. 2007), it simulates the development of cirrus clouds relying on the cirrus bulk model by Spichtinger and Gierens (2009). The qualitative agreement between CLaMS-Ice simulations and observations could be demonstrated at that time. Now we present a detailed quantitative comparison between standard ECMWF products, CLaMS-Ice simulations, and in-situ measurements obtained during the ML-Cirrus campaign 2014. We discuss the agreement of the parameters temperature (observational data: BAHAMAS), relative humidity (SHARC), cloud occurrence, cloud particle concentration, ice water content and cloud particle radii (all NIXE-CAPS). Due to the precise trajectories based on ECMWF wind and temperature fields, CLaMS-Ice represents the cirrus cloud vertical and horizontal coverage more accurately than the ECMWF ice water content (IWC) fields. We demonstrate how CLaMS-Ice can be used to evaluate different input settings (e.g. amount of ice nuclei, freezing thresholds, sedimentation settings) that lead to cirrus clouds with the microphysical properties observed during ML-Cirrus (2014).

  7. Influence of cirrus clouds on the VISSR atmospheric sounder-derived sea surface temperature determinations.

    PubMed

    Xu, L; Sun, B

    1991-04-20

    Using a more realistic cirrus cloud model, the characteristics of transmittance, emittance, and optical thickness and their relationships to cirrus in a diverse set of cases are studied by solving the equation of transfer of IR radiation. The doubling method is employed in the multiple scattering calculation. The satellite-observed brightness temperatures for different cases are computed, and stepwise regression analyses are performed to yield retrieval equations for sea surface temperature (SST). It is shown that the radiative properties of cirrus depend strongly on particle concentration, thus on the optical thickness of clouds. For clear atmospheres, channel 8 (11.2 microm) is more transparent than other channels. For cirrus clouds only, when the optical thickness of cirrus tau(c) is <0.10, channel 8 is still more transparent, while, with tau(c) increasing from 0.2 to between 4 and 8, channel 12 (4 microm) becomes the most transparent. When tau(c) >/= 8, the transparency of channel 12 decreases and those of other channels increase. For a very large r, the transparency of VAS channels will become almost equal. In addition, the IR absorption emittance of cirrus and the brightness temperatures also have sensitivities to different cloud optical thicknesses. The general retrieval equation for the determinations of SST, which is suitable for the clear air model as well as for the cirrus cloud atmospheres (with our definition of cirrus), is obtained through a combination of channels 12, 8, 6 (4.5 microm), and 5 (13.3 microm).The retrieval error is <1.0 K. The error analyses indicate that the clear air retrieval equations should not be used for SST determination in cirrus conditions.

  8. Moisture and heat budgets of a cirrus cloud from aircraft measurements during FIRE

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, Andrew

    1990-01-01

    Increasing knowledge of cirrus cloud properties can contribute to general circulation model development and ultimately to a better understanding of climate. The objective was to gain a better understanding of cirrus cloud characteristics. Observations from different sensors during the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) which took place in Wisconsin over Oshkosh together with pertinent calculations are used to understand the dynamical, microphysical, and radiative characteristics of these clouds.

  9. The climate impact from contrails and cirrus clouds - overview from the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign

    NASA Astrophysics Data System (ADS)

    Voigt, Christiane; Schumann, Ulrich; Gayet, Jean Francois; Petzold, Andreas; Krämer, Martina; Schlager, Hans; Borrmann, Stephan; Jurkat, Tina; Jeßberger, Philipp; Schäuble, Dominik

    2010-05-01

    Contrails and cirrus clouds were detected during the CONCERT-2CONTRAILS campaign (CONtrail and Cirrus ExpeRimenT) in November 2008 with the research aircraft Falcon. The Falcon was equipped with instruments to measure particle properties such as particle size distribution, extinction and particle shape as well as trace gas distributions of ozone, reactive nitrogen and halogen species and sulfur dioxide. During 5 mission flights over Western Europe numerous cirrus clouds and contrails were probed at altitudes between 9 and 11.5 km and temperatures between 213 and 237 K. 22 contrails from 11 different aircraft with ages below 10 minutes were detected in the vortex and early dispersion regime near and slightly below ice saturation. The contrail data are compared to nearby cirrus observations in terms of particle size distribution, shape, optical depth and extinction to discuss differences in their climate impact. In particular we present new observations of the contrail from a large aircraft, the A380. The evolution of the A380 contrail within its first 6 minutes of its lifetime has been observed. The A380 contrail observations are compared to contrail measurements from smaller aircraft in order to investigate the influence of the aircraft type on climate active contrail properties under similar meteorological conditions. Further, the specific climate impact from each of the measured contrail cases is assessed with the help of a new contrail cirrus prediction tool (CoCiP). The model computes the integral of the radiative forcing of the contrail over the computed life-time of the contrail and is tested with the detected contrails. It will be shown that the climate impact of contrails depends on both aircraft and meteorological parameters.

  10. Retrieval of Topsoil Properties of Vegetation-Covered Terrain Using Airborne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Liu, Lanfa; Buchroithner, Manfred

    2016-04-01

    Soil spectroscopy is a promising technique for topsoil analysis, and has been successfully utilized in the laboratory. When it is applied from airborne platforms, the presence of vegetation significantly affects imaging spectroscopy or hyperspectral imaging when retrieving topsoil properties. A Forced Invariance Approach has been proved to be able to effectively suppress the vegetation signal in mixed pixels. However, the approach is still mainly limited to lithological mapping. In this paper, we attempted to apply it to the retrieval of topsoil properties (soil moisture and soil salinity at depths 4 cm and 10 cm) using airborne hyperspectral data. The corresponding ground truth data was obtained from an eco-hydrological wireless sensing network in the Zhangye Oasis in the middle stream of the Heihe River Basin, China. The General Linear Model with Logit Link Function was adopted to model the relationships between measured soil properties and the spectra. The vegetation suppression result demonstrates that the spectral response curves of hyperspectral image pixels are flattened and the shapes are rather similar to the soil endmenber spectrum. From the modelling results it can be seen that the Forced Invariance Approach is more effective for soil moisture than for soil salinity at depth 10 cm, as the salt content is comparatively lower than the water content in soil, and the corresponding spectral response is weaker. This approach did not work for soil at a depth of 4 cm. The reason for this is that surface soil is significantly influenced by exterior factors like irrigation and wind, and landscape fragmentation and cultivation activities also contribute to the high spatial heterogeneity of the surface soil properties.

  11. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  12. Cirrus Parcel Model Comparison Project. Phase 1: The Critical Components to Simulate Cirrus Initiation Explicitly.

    NASA Astrophysics Data System (ADS)

    Lin, Ruei-Fong; O'C. Starr, David; Demott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Kärcher, Bernd; Liu, Xiaohong

    2002-08-01

    The Cirrus Parcel Model Comparison Project, a project of the GCSS [Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies] Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties from seven models are compared for `warm' (40°C) and `cold' (60°C) cirrus, each subject to updrafts of 0.04, 0.2, and 1 m s1. The models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or the evolution of each individual particle is traced. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms (all-mode simulations). A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. Heterogeneous nucleation is disabled for a second parallel set of simulations in order to isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process. Analysis of these latter simulations is the primary focus of this paper.Qualitative agreement is found for the homogeneous-nucleation-only simulations; for example, the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in the predicted microphysics.Systematic differences exist between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each method is constrained by critical freezing data from

  13. Saharan Mineral Dust Experiment SAMUM 2006: Airborne observations of dust particle properties and vertical dust profiles

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Weinzierl, B.; Esselborn, M.; Fiebig, M.; Fix, A.; Kiemle, C.; Wirth, M.; Müller, D.; Wendisch, M.; Schuetz, L.; Kandler, K.; Kahn, R.; Wagner, F.; Pereira, S.; Virkkula, A.

    2006-12-01

    The Saharan Mineral Dust Experiment (SAMUM) is an initiative of several German institutes. Its goal is the characterisation of optical, physical, chemical, and radiative properties of Saharan dust at the source region. SAMUM data may serve as ground truth data to validate satellite products and atmospheric transport models, and to support the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) mission. The first SAMUM intensive field phase was carried out in May/June 2006 in Southern Morocco. Ground sites were Ouarzazate (30.93° N, 6.9° W), Zagora (30.15° N, 5.37°), and Evora (38.53°N, 7.90°E) in Portugal for long- range transport studies. Research aircraft were operating from Ouarzazate (Partenavia, local flights) and Casablanca (DLR Falcon) at the Moroccan west coast As part of SAMUM, airborne measurements of dust particle properties were conducted using the German research aircraft Falcon. The DLR Falcon was equipped with an extensive set of aerosol physico-chemical instruments for size, volatility, and absorption measurements, impactor sampling for chemical analyses and with a nadir-looking high spectral resolution lidar (HSRL) for measuring aerosol extinction at 532 nm, and aerosol backscatter and depolarisation at 532 nm and 1064 nm. The field sites were equipped with aerosol sampling devices and instruments for particle size distribution measurements. During the SAMUM core phase, three large-scale dust events were probed which extended from southern Morocco to Portugal. Vertical (0 10 km) and horizontal (Saharan border to southern Portugal) dust plume structures, aerosol optical depth as well as particle microphysical and optical properties were studied for all cases. The upper boundary of the dust layers was found at altitudes between 4 and 6 km above sea level. The internal structure of the dust layers varied from well mixed to stratified. The influence of the Atlas Mountains on the lifting of the dust layers was monitored

  14. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  15. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  16. Decadal cirrus climatology with lidar at midlatitude

    NASA Astrophysics Data System (ADS)

    Hoareau, C.; Keckhut, P.; Baray, J. l.

    2012-04-01

    High-altitude clouds, like cirrus, have been identified as one important regulator of the radiance balance of the earth-atmosphere system (Twomey, 1991), and constitute about 30% of the earth's surface cover (Liou, 1986). Through radiation effects, these clouds are likely to modulate climate system on all scales and are important regulators of the radiative balance of the atmosphere despite their optical depth (Liou et al., 2002). Currently, role of cirrus clouds in the regulation of water vapor as well as the vertical transport of water vapor and ice particles in the vicinity of the tropopause is not perfectly known (Corti et al., 2008). The processes involved are debated (Kiemle et al., 2008) and different formation processes could lead to different cloud characteristics that require to be identified before specific statistical analysis (Keckhut et al., 2006). Lidar measurements provide accurate information on the vertical distribution of cirrus and, therefore, are now used to develop highly resolved cirrus database. A first climatology of cirrus clouds at Midlatitude from lidar measurements has shown cirrus clouds were observed in half of the time (~54%) with subvisible cirrus clouds (SVC) events composing ~23% of the occurrence (Goldfarb et al., 2001). However no distinction according the altitude have been investigated although altitude range and vertical extension of cirrus clouds are critical parameters for the radiative balance of the atmosphere. In a more recent study, a statistical multivariate analysis of one year lidar data acquired in south of France have been realized in order to determine distinct classes of cirrus showing three different classes (Keckhut et al. 2006). Similar results according the classification have been observed in this present study based on a climatology constructed over the period 1996-2007 using a high resolution Rayleigh-Mie-Raman lidar. As the database is long enough, the evolution of cirrus clouds occurrence has also been

  17. Separation of cirrus cloud from clear surface from AVIRIS data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1992-01-01

    Cirrus clouds play an important role in climate systems because of their large area coverage, persistence, and radiative effects. Thin cirrus clouds are difficult to detect in visible images and infrared images in the 10-12 micron atmospheric window region, particularly over land, because these clouds are partially transparent. Ackerman recently developed a method for detecting cirrus clouds using three narrow channels centered near 8, 11, and 12 microns, respectively, based on the analysis of IR emission spectra measured with a high spectral resolution interferometer. Barton also described a method for estimating cirrus cloud height and amount from measurements with two narrow channel radiometers of the Selective Chopper Radiometer on Nimbus 5. Both channels are located within the strong 2.7 micron water vapor band absorption region. One of the channels includes additional carbon dioxide absorption. A differential absorption technique with sets of empirical coefficients was used in the estimation of cirrus cloud heights and amounts. A technique using narrow channels in the strong 1.38 micron water vapor band absorption region for detecting cirrus clouds from spectral imaging data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) on 5 Dec. 1991 during the FIRE (The First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment) Phase 2 Field Experiment is described.

  18. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  19. University of Wisconsin Cirrus Remote Sensing Pilot Experiment

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Eloranta, Ed W.; Grund, Chris J.; Knuteson, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1993-01-01

    During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin-Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.

  20. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2002-01-01

    Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative

  1. The FIRE Cirrus Science Results 1993

    NASA Technical Reports Server (NTRS)

    Mcdougal, David S. (Editor)

    1993-01-01

    FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) is a U.S. cloud-radiation research program that seeks to improve our basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The FIRE Cirrus Science Conference was held in Breckenridge, CO, 14-17 Jun. 1993, to present results of cirrus research for the second phase of FIRE (1989-present) and to refine cirrus research goals and priorities for the next phase of FIRE (1994-future). This Conference Publication contains the text of short papers presented at the conference. The papers describe research analyses of data collected at the Cirrus Intensive Field Observations-2 field experiment conducted in Kansas, 13 Nov. - 7 Dec. 1991.

  2. Impact of nucleation schemes on cirrus cloud formation in a GCM with sectional microphysics

    NASA Astrophysics Data System (ADS)

    Bardeen, C.; Gettelman, A.; Jensen, E. J.; Heymsfield, A.; Delanoe, J.; Deng, M.

    2012-12-01

    We have implemented a sectional microphysics scheme for ice clouds based upon the Community Aerosol and Radiation Model for Atmospheres (CARMA) in the Community Atmosphere Model version 5 (CAM5), which allows for a size resolved treatment of ice particle nucleation, condensational growth, coagulation, sedimentation and detrainment. Detrained and in situ formed ice particles are tracked separately in the model allowing for different microphysical assumptions and separate analysis. Cloud ice from CAM5/CARMA simulations compare better with satellite observations than those with the standard CAM5 two-moment microphysics. CAM5/CARMA has a prognostic treatment for snow, which results in improved ice mass and representation of a melting layer that is absent in CAM5. Here we explore the sensitivity of the simulations to different nucleation schemes including: homogeneous freezing based on Koop et al. (2000), homogeneous freezing based upon Aerosols Interaction and Dynamics in the Atmosphere (AIDA) chamber measurement (Möhler et al., 2010), heterogeneous nucleation with dust aerosols, and heterogeous nucleation with glassy aerosols (Murray et al. 2010). The initial size for detrained ice particles in CAM5/CARMA is temperature dependent based upon a fits to observations from Heymsfield et al. (2010). We explore the sensitivity of the model to different choices for these fits. Results from these simulations are compared to retrievals of water vapor from the Microwave Limb Sounder (MLS) and the Atmospheric Infrared Sounder (AIRS), ice cloud properties from CloudSat-CALIPSO observations (Delanoë and Hogan, 2010; Deng et al. 2010) and to aircraft observations from several field campaigns including: the Costa Rica Aura Validation Experiment (CR-AVE), the Tropical Composition, Cloud and Climate Coupling (TC4), the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) and the Airborne Tropical Tropopause Experiment (ATTREX).

  3. [The estimation of cirrus cloud particulate shape using combined simulation and a three-wavelength lidar measurement].

    PubMed

    Tao, Zong-Ming; Liu, Dong; Wei, He-Li; Ma, Xiao-Min; Shi, Bo; Nie, Miao; Zhou, Jun; Wang, Ying-Jian

    2013-07-01

    The global occurrence of cirrus clouds can reach as high as 30%, whose scattering properties are essential impact on the climatic model, radiative transfer, and remote sensing. Their scattering properties are determined by the ice crystal shape, size distribution, refractive index and so on. Retrieval of the backscattering color ratios of cirrus cloud using a 355, 532 and 1 064 nm three-wavelength lidar, combined with the simulation of the three backscattering color ratios of different ice crystal shape, the shape of the lidar-measured ice crystal can be estimated. The results indicate that the shape of cirrus cloud over Hefei city is mostly composed by aggregates.

  4. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  5. Measurements of the concentration and composition of nuclei for cirrus formation.

    PubMed

    DeMott, P J; Cziczo, D J; Prenni, A J; Murphy, D M; Kreidenweis, S M; Thomson, D S; Borys, R; Rogers, D C

    2003-12-09

    This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm-3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing.

  6. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Smith, David E. (Technical Monitor)

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

  7. Measurements of the concentration and composition of nuclei for cirrus formation

    PubMed Central

    DeMott, P. J.; Cziczo, D. J.; Prenni, A. J.; Murphy, D. M.; Kreidenweis, S. M.; Thomson, D. S.; Borys, R.; Rogers, D. C.

    2003-01-01

    This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm–3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing. PMID:14657330

  8. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  9. Statistics of Cirrus Horizontal Inhomogeneity in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; DelGenio, Anthony D.

    1999-01-01

    Variability of cloud properties on scales smaller than that of a GCM grid is potentially important both for realistic parameterizations of microphysical processes and for the prediction of the large-scale radiative effects of clouds, have suggested that a simple model of marine stratocumulus variability, based on the assumption of Gaussian variation statistics of cloud depth, can explain the liquid water path histogram shapes observed in Landsat data. In advance of ARM SGP MMCR ice water path climatologies, we have examined aircraft ice water content statistics for cirrus clouds observed over Coffeyville, Kansas during FIRE 2. We find similar associations of histogram shape and cloud cover for these clouds, and we show that a simple modification of the model for cirrus combined with observed mean cloud depths, their standard deviations, and ambient thermodynamic conditions predicts both the histogram shape and cirrus cloud cover fairly well. This suggests that subgrid variability of cloud properties may be similar for vastly different cloud types, and that a universal parameterization of the effects of subgrid variability in GCMs as a function of only a few parameters may be a realistic goal.

  10. New Findings on Ice Nucleation in Mid-latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mitchell, D. L.; Lawson, P.; Baker, B. A.

    2011-12-01

    Recent GCM simulations (CESM1) show a global aerosol indirect effect of -1.39 W m-2 with -2.02 W m-2 from shortwave and +0.63 W m-2 from longwave cloud forcing, the longwave being due to homogeneous nucleation of ice crystals. However, the extent of homogeneous nucleation in ice clouds is poorly understood. This study uses results from a recent field campaign, SPARTICUS (Small PARTicles In CirrUS), to evaluate the impact of homogeneous nucleation on the ice particle size distribution (PSD) shape, as well as ice particle concentration, shape, PSD effective size and fall speed. While earlier measurements were difficult to evaluate for ice nucleation effects due to the problem of ice particle shattering, recent in-situ measurements using the 2 dimensional-stereo (2D-S) probe have greatly reduced this problem resulting in provocative findings for both synoptic and anvil cirrus sampled during SPARTICUS. For mid-latitude synoptic and anvil cirrus around -40°C, these new measurements show that clear changes in the ice PSD and its properties occur regarding (1) PSD shape, (2) total number concentration-to-ice water content ratio (N/IWC), (3) PSD mean size, (4) PSD mean area ratio and (5) the mass-weighted fall velocity (Vm). These changes are consistent with a change in ice nucleation mechanism, with heterogeneous nucleation processes active at temperatures warmer than -40°C and homogeneous freezing nucleation at temperatures colder than -40°C. The change in Vm implies that cirrus colder than -40°C will have longer lifetimes and greater cloud coverage than warmer cirrus clouds, all other relevant factors remaining equal. The increase in N/IWC with colder temperatures (T < -40°C) appears consistent with homogeneous nucleation theory. Figure 1 shows normalized frequency distribution of PSD area ratios for temperatures above and below -40°C. Area ratios (ice particle projected area/area of circle defined by particle maximum dimension) are a measure of ice particle shape

  11. Small-Scale Spatial Variability of Ice Supersaturation and Cirrus in the TTL

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; Podolske, J. R.; Rana, M.; Slate, T. A.; Diskin, G. S.

    2014-12-01

    The processes controlling cloud formation and evolution represent a significant uncertainty in models of global climate change. High altitude cirrus clouds contribute a large portion of this uncertainty due to their altitude and abundance. The mechanism behind the formation of cirrus clouds depends on the characteristics and composition of ice supersaturation (ISS) regions, regions where the relative humidity with respect to ice (RHi) is greater than 100%. Small-scale dynamics have recently been shown to have a strong effect on the RHi of the UT/LS, and therefore on cirrus cloud formation. Until now, there has been insufficient data in the Tropical Tropopause Layer (TTL) to investigate these effects. The Airborne Tropical TRopopause EXperiment (ATTREX) was a series of campaigns focused on improving our understanding of humidity in the TTL. During this campaign, the NASA Langley/Ames Diode Laser Hygrometer was part of the payload on the NASA Global Hawk, resulting in measurements of humidity with as low as 1-2 m vertical resolution at altitudes up to 19 km. We will present observations from ATTREX describing the small scale spatial variability of water vapor along transects of ISSRs and cirrus clouds, as well as the dynamics driving the formation of ISS regions. These results will be discussed in context with results from prior UT/LS campaigns, such as DC3 and HIPPO.

  12. A Study of Cirrus Clouds and Aerosols in the Upper Troposphere using Models and Satellite Data

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.

    2004-01-01

    This report is the final report for the Cooperative Agreement NCC2-1213. It is a compilation of publications produced under this Cooperative Agreement and conference presentations. The tasks for the Aerosol Physical Chemistry Model for the Upper Troposphere include: Task 1: To compare APCM predictions against the SUCCESS data and other aircraft campaigns and to investigate the role of aerosol composition on cirrus cloud nucleation; Task 2: To study the seasonal evolution and spatial distribution of upper-tropospheric tropical and polar cirrus; Task 3: To investigate CLAES cirrus data with other complementary (TOGA-COARE and CEPEX) data. Tasks for Upper Tropospheric Cirrus Clouds include: Task 1: Assemble 3-hourly (or more frequent) meteorological satellite data fiom geostationary satellites to obtain a global, or nearly global, dataset of infiared brightness temperatures as a function of time for airborne experimental periods; Task 2: Explore methods to improve the cloud top altitude distributions calculated fiom meteorological satellite data. This will focus on linlung the 6.5 micron channel geostationary brightness temperatures and the 10.5 micron brightness temperatures; Task 3: Explore methods to differentiate convective fiom stratiform cloudiness; Task 4: Perform trajectory analyses using an existing trajectory modeling package that links the cloud data with air mass histories; Task 5: Apply techniques from tasks 1 through 4 to provide meteorological support to the CRYSTAL-FACE mission, both in its preparation and deployment phases. The report include four published articles and two slide presentations.

  13. Wavelet analysis applied to the IRAS cirrus

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Wilson, Robert W.; Anderson, Charles H.

    1994-01-01

    The structure of infrared cirrus clouds is analyzed with Laplacian pyramid transforms, a form of non-orthogonal wavelets. Pyramid and wavelet transforms provide a means to decompose images into their spatial frequency components such that all spatial scales are treated in an equivalent manner. The multiscale transform analysis is applied to IRAS 100 micrometer maps of cirrus emission in the north Galactic pole region to extract features on different scales. In the maps we identify filaments, fragments and clumps by separating all connected regions. These structures are analyzed with respect to their Hausdorff dimension for evidence of the scaling relationships in the cirrus clouds.

  14. Cirrus Parcel Model Comparison Project. Phase 1; The Critical Components to Simulate Cirrus Initiation Explicitly

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC; DeMott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Cirrus Parcel Model Comparison Project, a project of the GCSS (GEWEX Cloud System Studies) Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase I of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (40 C) and "cold" (-60 C) cirrus, both subject to updrafts of 4, 20 and 100 centimeters per second. Five models participated. The various models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or treated separately. Simulations are made including both the homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation- only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory research. Consequently, it is not yet

  15. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud

  16. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  17. Advances in airborne remote sensing of ecosystem processes and properties: toward high-quality measurement on a global scale

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Asner, Gregory P.; Green, Robert O.; Eastwood, Michael; Johnson, Brian R.; Kuester, Michele

    2010-08-01

    Airborne remote sensing provides the opportunity to quantitatively measure biochemical and biophysical properties of vegetation at regional scales, therefore complementing surface and satellite measurements. Next-generation programs are poised to advance ecological research and monitoring in the United States, the tropical regions of the globe, and to support future satellite missions. The Carnegie Institution will integrate a next generation imaging spectrometer with a waveform LiDAR into the Airborne Taxonomic Mapping System (AToMS) to identify the chemical, structural and taxonomic makeup of tropical forests at an unprecedented scale and detail. The NEON Airborne Observation Platform (AOP) is under development with similar technologies with a goal to provide long-term measurements of ecosystems across North America. The NASA Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) is also under development to address the science measurement requirements for both the NASA Earth Science Research and Analysis Program and the spaceborne NASA HyspIRI Mission. Carnegie AToMS, NEON AOP, and AVIRISng are being built by the Jet Propulsion Laboratory as a suite of instruments. We discuss the synergy between these programs and anticipated benefits to ecologists and decision-makers.

  18. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  19. Inversion of Airborne Passive Microwave Data for Snow Properties using the Metropolis Algorithm

    NASA Astrophysics Data System (ADS)

    Vander Jagt, B.; Durand, M. T.; Margulis, S. A.; Molotch, N. P.; Kim, E. J.

    2012-12-01

    Passive microwave (PM) remote sensing of snow is based on the fact that microwave brightness temperatures contain information about different snow properties, some of which include depth, grain size, and density. These different snow properties are highly spatially heterogeneous, and often prove difficult to invert using traditional algorithms. This is mainly due the dynamic, many-to-one nature of the relationship between the PM signal and the different snow properties, the coarse resolution of the observations as compared to the fine spatial scale at which snow properties vary, and the masking of the PM signal by varying amounts and types of vegetation. While multi-frequency PM observations can help reduce the many-to-one nature associated with the snow states by constraining the amount of potential solutions, the vertical heterogeneity and layering of snow properties often leads to errors in the inversion process when little a priori information exists on the vertical structure of the snowpack. Using a new algorithm, specifically a Bayesian Markov Chain Monte Carlo scheme solved using the Metropolis algorithm, we attempt to invert the airborne passive microwave data collected during the Cold Land Processes Experiment (CLPX) to estimate the spatial snow properties within the different study areas, with virtually no a priori information. We allowed the number of snowpack layers itself to be unknown by generating different chains for each possible number of layers (up to a maximum of four), then selecting the optimal chain using a model selection criterion. We then evaluate our accuracy using real datasets, specifically the measured in-situ snow properties that were collected from snow pits during CLPX, and compare our results across a large range of different snow and climactic environments. Synthetic results show that an accurate solution to number of layers, layer thickness, density, grain size, snow temperature and ground temperature from microwave measurements

  20. Physical processes controlling the evolution of ice concentration in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Pfister, L.

    2011-12-01

    Several past studies have compared measured cirrus ice concentrations with calculations based on nucleation theory. However, such calculations only indicate the peak ice concentrations occurring just after nucleation events. Various cloud processes (e.g., differential sedimentation, entrainment, dispersion, and aggregation) conspire to reduce mean ice concentrations as the cloud evolves. Here, we use both a one-dimensional cloud model and a three-dimensional cloud-resolving model to evaluate the impact of these processes on the evolution of ice concentration through the lifecycle of cirrus clouds. Results are compared statistically with recent airborne measurements of ice concentration in the midlatitude and tropical uppermost troposphere. We will show that mean ice concentrations are reduced substantially by processes occurring after nucleation events, and this issue should be taken into consideration when comparing with observations that necessarily represent a range of cloud ages.

  1. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  2. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  3. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2016-02-15

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli

  4. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.

  5. Cirrus clouds and climate feedback: Is the sky falling and should we go tell the king

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    It is widely believed that thin cirrus clouds act to enhance the greenhouse effect owing to a particular combination of their optical properties. It is demonstrated how this effect is perhaps based on inadequate resolution of the physics of cirrus clouds and that the more likely impact of cirrus clouds to climate change remains somewhat elusive. These conclusions are developed within the context of a specific feedback mechanism incorporated into a simple mechanistic climate model. A specific scientific question addressed is whether or not the observed relationship between the ice water content and temperature of cirrus provides any significant feedback to the CO2 greenhouse warming. A related question also examined concerns the specific role of cloud microphysics and radiation in this feedback. This raises several pertinent issues about the understanding of cirrus clouds and their likely role in climate change as there presently exists a considerable uncertainty about the microphysics of these clouds (size and shape of ice crystals) and their radiative influences.

  6. A comparison of cirrus cloud observations from the NASA ATTREX-3 field mission with simulations from the NCAR atmospheric CESM model (CAM5) coupled with an advanced cirrus cloud model (CARMA).

    NASA Astrophysics Data System (ADS)

    Maloney, C.; Toon, O. B.; Bardeen, C.; Diskin, G. S.; McGill, M. J.; Rollins, A. W.; Thornberry, T. D.; Woods, S.

    2014-12-01

    Cirrus clouds play an important role in the vertical transport of water vapor between the upper troposphere and lower stratosphere in the Tropical Tropopause Layer (TTL). Unfortunately, the physical limitations of observing the TTL and the model uncertainty surrounding cirrus clouds prevent a full understanding of the properties of cirrus and their role in water vapor transport. However, recently NASA's ATTREX 3 field mission was undertaken to observe water vapor and cirrus properties in the TTL. The high altitude Global Hawk aircraft gathered a unique in-situ data set from the tropical Western Pacific. This region is known to be crucial for the upward motion of water vapor and chemical transport in the atmosphere, but has been observed infrequently. With the ATTREX data, we investigate the differences between in situ and anvil cirrus, and we assess the relative frequency of heterogeneous and homogenous ice nucleation. Alongside the observational data, we ran NCAR's CESM model and coupled it to an advanced cirrus model (CARMA). The model was run at a 1x1 degree resolution along the aircraft's flight track to simulate the observations. We compare the CAM5/CARMA simulations to the aircraft observations to investigate the effectiveness of the model in reproducing the aircraft data.

  7. Can cirrus clouds produce glories?

    PubMed

    Sassen, K; Arnott, W P; Barnett, J M; Aulenbach, S

    1998-03-20

    A vague glory display was photographed over central Utah from an airplane beginning its descent through a cirrus cloud layer with an estimated cloud top temperature of -45 and -55 degrees C. Photographic analysis reveals a single reddish-brown ring of 2.5-3.0 degrees radius around the antisolar point, although a second ring appeared visually to have been present over the brief observation period. Mie and approximate nonspherical theory scattering simulations predict a population of particles with modal diameters between 9 and 15 mum. Although it is concluded that multiple-ringed glories can be accounted for only through the backscattering of light from particles that are strictly spherical in shape, the poor glory colorization in this case could imply the presence of slightly aspherical ice particles. The location of this display over mountainous terrain suggests that it was generated by an orographic wave cloud, which we speculate produced numerous frozen cloud droplets that only gradually took on crystalline characteristics during growth.

  8. Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

    DTIC Science & Technology

    2009-12-01

    Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds JOONSUK LEE Cooperative Institute for Climate Studies, and Earth System Science... cirrus clouds , the frequency of occurrence and optical depths of these clouds have been derived. ‘‘Thin’’ cirrus clouds are defined here as being those...definition, thin cirrus clouds were present in more than 40% of the pixels flagged as ‘‘clear sky’’ by the operational MODIS cloud mask algorithm. It is

  9. Cirrus cloud iridescence: a rare case study.

    PubMed

    Sassen, Kenneth

    2003-01-20

    On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2-14.4-km) and cold (-69.7 degrees to -75.5 degrees) tropopause-topped cirrus cloud, iridescence was noted from approximately 6.0 degrees to approximately 13.5 degrees from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5-5.5-microm effective diameter. The linear depolarization ratios of delta = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

  10. Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth

    2000-01-01

    The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.

  11. Extinction coefficient measurements on clear atmospheres and thin cirrus clouds.

    PubMed

    Guttman, A

    1968-12-01

    An experimental investigation was carried out to determine possible differences in visible light extinction properties of continental and maritime air. Urban, desert, and oceanic atmospheres were probed by means of a stable photodiode radiometer using direct sunlight as the source. No major differences were found for the three locations. Experimental coefficients generally lie slightly below model data, though significantly higher than would be expected from purely molecular scattering. Day-to-day variations of up to 40% were found to be nearly constant over the entire visible spectrum. Results of similar extinction measurements on thin cirrus clouds show a slight increase in scattering coefficient in going from 4000 A to 7000 A wavelength.

  12. 'Infrared cirrus' - New light on the interstellar medium

    NASA Technical Reports Server (NTRS)

    Hauser, Michael G.

    1988-01-01

    The observational data on 'infared cirrus', considered here to be emission from tenuous dust clouds scattered throughout the ISM, are reviewed. The morphology of individual clouds and of the global distribution of infared cirrus is addressed, as well as the energy distribution. Some of the implications of the results for the ISM are summarized, and prospects for future cirrus measurements are briefly addressed.

  13. 77 FR 3585 - Airworthiness Directives; Cirrus Design Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Cirrus Design Corporation (Cirrus) Model SR22T..., contact Cirrus Design Corporation, 4515 Taylor Circle, Duluth, Minnesota 55811- 1548, phone: (218)...

  14. Aerosol properties derived from airborne sky radiance and direct beam measurements in recent NASA and DoE field campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S. E.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-12-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and airmass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.

  15. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  16. Tropical Convection's Roles in Tropical Tropopause Cirrus

    NASA Technical Reports Server (NTRS)

    Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung

    2002-01-01

    The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.

  17. Impact of Cirrus Crystal Shape on Solar Spectral Irradiance: A Case Study for Subtropical Cirrus

    NASA Technical Reports Server (NTRS)

    Wendisch, Manfred; Pilewskie, Peter; Pommier, John; Howard, Steve; Yang, Ping; Heymsfield, Andrew J.; Schmitt, Carl G.; Baumgardner, Darrel; Mayer, Barnhard

    2005-01-01

    Profiles of in situ measurements of ice crystal size distribution of subtropical cirrus were used to calculate solar spectral irradiances above and below the clouds. Spheres and nonspherical ice crystal habits (columns, hollows, plates, bullets, and aggregates) were assumed in the calculations. The simulation results were compared to irradiance measurements from the NASA Solar Spectral Flux Radiometer. The microphysical and radiation data were collected by three aircraft during CRYSTAL-FACE. Two cirrus cases (optical thickness of about 1 and 7) from two mission dates (26 and 23 July 2002) were investigated in detail. The measured downwelling and upwelling irradiance spectra above the cirrus could mostly be reproduced by the radiation model to within +/- 5-10% for most ice crystal habits. Below the cirrus the simulations disagreed with the measured irradiances due to surface albedo variability along the flight track, and nonoptimal colocation between the microphysical and irradiance measurements. The impact of shape characteristics of the crystals was important for the reflected irradiances above the optically thin cirrus, especially for small solar zenith angles, because in this case single-scattering dominated the solar radiation field. For the cirrus of moderate optical thickness the enhanced multiple scattering tended to diminish particular shape features caused by nonspherical single-scattering. Within the ice absorption bands the shape-related differences in the absorption characteristics of the individual nonspherical ice crystals were amplified if multiple scattering prevailed. Furthermore, it was found that below the cloud the shape sensitivity of the downwelling irradiance spectra is larger compared to the nonsphericity effects on reflected irradiances above the cirrus. Finally, it was shown that the calculated cirrus solar radiative forcing could vary by as much as 26% depending on the ice crystal habit.

  18. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of

  19. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties

    NASA Astrophysics Data System (ADS)

    Luebke, Anna; Rolf, Christian; Costa, Anja; Afchine, Armin; Avallone, Linnea; Borrmann, Stephan; Baumgardner, Darrel; Klingebiel, Marcus; Kraemer, Martina

    2015-04-01

    Ice clouds are known to play an important role in the radiative balance of the atmosphere. The nature of this role is determined by the macrophysical and microphysical properties of a cloud. Thus, it is crucial that we have an accurate understanding of properties such as the ice water content (IWC), ice crystal concentration (Ni), and ice crystal size (Ri). However, these properties are difficult to parameterize due to their large variability and the fact that they are influenced by a number of other factors such as temperature, vertical velocity, relative humidity with respect to ice (RHice), and the available ice nuclei. The combination of those factors ultimately establishes whether heterogeneous or homogeneous nucleation will lead to ice crystal formation. The aforementioned factors are largely determined by the dynamics of the environment in which the ice cloud forms, collectively contained in a meteorological situation. Ice clouds have been observed in a variety of situations such as frontal systems, jet streams, gravity waves, and convective systems. Most recently, the concept of the influence of large-scale dynamics on midlatitude cirrus properties has been demonstrated in the work of Muehlbauer et al. (2014). In the work presented here, we explore this concept further by examining how differences in dynamics are translated into the differences in IWC, Ni, and Ri that are found within and between datasets. Data from two American-based campaigns, the 2004 Midlatitude Cirrus Experiment (MidCiX) and the 2011 Midlatitude Airborne Cirrus Properties Experiment (MACPEX), as well as some European-based campaigns, the 2004 and 2006 CIRRUS campaigns, the 2013 AIRTOSS-ICE campaign, and the 2014 ML-CIRRUS campaign are combined to form a large, and more latitudinally comprehensive database of Northern Hemisphere in-situ, midlatitude ice cloud observations. We have divided the data by meteorological situation and explored the differences and similarities between

  20. Ground- and aircraft-based cirrus cloud measurements using lidar and high-spectral-resolution FTS during the AFWEX 2000 field campaign

    NASA Astrophysics Data System (ADS)

    DeSlover, Daniel H.; Turner, David; Whiteman, David N.; Smith, William L.

    2002-09-01

    The ARM-FIRE Water Vapor Experiment (AFWEX) was conducted during November-December 2000 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART). A cirrus event which occurred on 7-8 December was analyzed using ground- and aircraft-based measurements. The ground-based Atmospheric Emitted Radiance Interferometer (AERI) and NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) are high spectral resolution interferometers which measure downwelling and upwelling infrared radiation, respectively. Analysis between water vapor absorption lines within the 8 to 12 micrometers atmospheric window allow inversion of the radiative transfer equation to derive the cirrus cloud optical depth. These data will be compared to ground-based Raman lidar (GSFC and ARM) measurements of cirrus optical depth. The NAST-I measurements were conducted from the Proteus aircraft.

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Height-resolved Scaling Properties of Water Vapor in the Mesoscale using Airborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Fischer, L.; Craig, G. C.; Kiemle, C.

    2012-12-01

    Free tropospheric water vapor variability, measured by long-range airborne differential-absorption lidar, has been analyzed by using structure functions of different orders at altitudes from 2 to 10 km. It is shown that the water vapor field exhibits scale invariance at spatial scales ranging from 5km to 100km, where scaling behavior is defined as a power law dependence of structure functions on length scale. In contrast to one-dimensional in situ measurements, two-dimensional water vapor lidar observations allow height-resolved analysis of scaling exponents with a vertical resolution of 200m. Using this data a clear distinction was found between scaling properties above and below an air-mass boundary. Data has been analysed from three campaigns, COPS/ETReC (2007) collected during summertime in middle and south Europe, T-PARC (2008) collected during late summer around Japan mostly over sea and T-IPY (2008) collected during winter around Spitsbergen mostly over sea. After discarding flights with low lidar signals or large data gaps, and after horizontal averaging to a resolution of 1-5km to obtain a high signal to noise ratio, structure functions were computed for 20 flights at various heights with a total length of more than 300,000 km. Scaling exponents were obtained for structure functions up to fifth order, and results will be presented for first and second order structure functions and for intermittency (variation of the scaling exponent with increasing order). The scaling exponents show no significant latitudinal, seasonal and land/sea dependence, but show significantly different behavior depending on whether the time series occured in an air mass influenced by cumulus convection or not. A classification of the time series into two groups according to whether the series occurred above or below the level of nearby convective cloud tops was performed by detecting the cloud height from the lidar backscatter signal of the corresponding flight. It was found that

  3. Height-resolved Scaling Properties of Tropospheric Water Vapour based on Airborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Fischer, Lucas; Craig, George C.

    2013-04-01

    Two-dimensional vertical water vapour cross sections of the free troposphere between altitudes of 2 and 10 km, measured by nadir-viewing airborne differential-absorption lidar with high spatial resolution, were analyzed using structure functions up to the fifth order. We found scale invariance, i.e. a power-law dependency of structure function on length scale, for scales between 5 and 100 km, for the horizontal time series of water vapour mixing ratio. In contrast to one-dimensional in situ measurements, the two-dimensional water vapor lidar observations allow height-resolved analyses of power-law scaling exponents at a vertical resolution of 200 m. The data reveal significantly different scaling properties above and below an air-mass boundary. They stem from three very dissimilar aircraft campaigns: COPS/ETReC over middle and southern Europe in summer 2007, T-PARC around Japan mostly over sea in late summer 2008, and T-IPY around Spitsbergen over sea in winter 2008. After discarding flight segments with low lidar signals or large data gaps, and after averaging horizontally to a resolution of between 1 and 5 km to obtain a high signal to noise ratio, structure functions were computed for 20 flights at various heights, adding up to a length of more than 300,000 km. The power-law scaling exponents of the structure functions do not show significant latitudinal, seasonal or land/sea dependency, but they do differ between air masses influenced by moist convection and air masses aloft, not influenced. A classification of the horizontal water vapour time series into two groups according to whether the series occurred above or below the level of nearby convective cloud tops could be performed by detecting the cloud top height from the lidar backscatter signal in the corresponding flight segment. We found that the scaling exponents can be divided into two groups depending on the respective air mass: The smoothness of the time series, expressed by the first-order scaling

  4. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  5. Investigation of coal properties and airborne respirable dust generation. Report of investigations/1998

    SciTech Connect

    Organiscak, J.A.; Page, S.J.

    1998-10-01

    Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated with ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.

  6. Cirrus cloud seeding has potential to cool climate

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.

    2013-01-01

    Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth's climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.

  7. Cirrus Cloud Seeding has Potential to Cool Climate

    NASA Technical Reports Server (NTRS)

    Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.

    2013-01-01

    Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.

  8. Optically-Thin Cirrus Cloud Radiance Bias in Satellite Radiometric Sea Surface Temperature Retrieval

    NASA Astrophysics Data System (ADS)

    Marquis, J. W.; Bogdanoff, A.; Campbell, J. R.; Cummings, J. A.; Westphal, D. L.; Smith, N. J.; Zhang, J.

    2015-12-01

    Satellite-based retrievals of sea surface temperature (SST) are highly sensitive to the optical properties of the atmosphere, including clouds. Cloudy pixels, in particular, are screened in order to avoid potential retrieval contamination in their presence. Due to the lack of continuous in-situ observations across the global oceans, though, SSTs calculated from satellite radiances are often the most practical way to obtain a sufficient global estimate. Cloud clearing techniques struggle to flag cloudy retrievals from passive radiometers with cloud optical depths less than 0.3. These optically-thin clouds are almost exclusively cirrus. Corresponding radiance biases associated with unscreened cirrus can be significant due to their inherently cold cloud top temperatures. To investigate frequency of such cloud contamination, 1-km SST observations over tropical oceans (±30° latitude) from the Moderate Resolution Imaging Spectroradiometer aboard NASA's Aqua satellite (AQUA-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard NASA's CALIPSO satellite. Potential SST biases based on radiance retrievals for MODIS, AVHRR and VIIRS are solved using a radiative transfer model (RTM) with integrated cirrus cloud properties of varying cloud top height and optical depth. Frequencies of occurrence for each cloud top height and optical depth from the collocated CALIOP/AQUA-MODIS data are superimposed upon the conceptual cloud SST radiance bias models to estimate potential net bias. Using the CALIPSO-MODIS collocations, clouds of all types are found to be present in the best quality AQUA-MODIS Level-2 data at a frequency of 25%, with over 90% of those clouds being cirrus. The RTM simulations suggest that when cirrus are present, the mean SST bias due only to cloud is over 0.6°C over the tropical oceans.

  9. Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.; Spangenberg, D.; Sun-Mack, S.; Wind, G.

    2007-01-01

    This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.

  10. The Colorado/Missouri 1989 cirrus mini IFO

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Hagen, Donald

    1990-01-01

    A series of experiments with aircraft were planned for Nov. and Dec. 1989 to study cirrus ice crystal nucleation mechanisms and to test new aircraft instrumentation. The measurements were conducted using the NCAR Sabreliner and King Air. Sampling was conducted near Boulder, Colorado, in lenticular (mountain wave) clouds, and over Missouri in cirrus generating cells. Field samples of aerosol and ice crystal replicas and melt water from these cirrus clouds were collected and studied. Aircraft instrumentation and sampling techniques are discussed.

  11. Seasonal and interannual changes in cirrus

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1990-01-01

    Statistics on cirrus clouds using the multispectral data from the GOES/VAS satellite have been collected since 1985. The method used to diagnose cirrus clouds and a summary of the first two years of data was given in Wylie and Menzel (1989) and at the 1988 FIRE meeting in Vail, CO. This study was expanded to three years of data which allows a more detailed discussion of the geographical and seasonal changes in cloud cover. Interannual changes in cloud cover also were studied. GOES/VAS cloud retrievals also were compared to atmospheric dynamic parameters and to radiative attenuation data taken by a lidar. Some of the highlights of these studies are discussed.

  12. The NOAA Water Instrument: A Two-Channel, Tunable Diode Laser-Based Hygrometer for Measurement of Water Vapor and Cirrus Cloud Ice Water Content

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.

    2014-12-01

    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of water vapor and enhanced total water (vapor + inertially enhanced condensed-phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. Combining the measurements from the two channels allows the determination of cloud ice water content (IWC), an important metric for evaluating the radiative properties of cirrus clouds. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An on-board calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cirrus IWC sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on board the Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1 σ) of better than 0.17 parts per million (ppm, 10-6 mol/mol), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33-48 for ice particles larger than 8 µm in diameter, depending primarily

  13. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  14. Variability of cirrus clouds in a convective outflow during the Hibiscus campaign

    NASA Astrophysics Data System (ADS)

    Fierli, F.; di Donfrancesco, G.; Cairo, F.; Marécal, V.; Zampieri, M.; Orlandi, E.; Durry, G.

    2008-08-01

    Light-weight microlidar and water vapour measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (49° W, 22° S). Cirrus clouds were observed throughout the flight between 12 and 15 km height with a high mesoscale variability in optical and microphysical properties. It was found that the cirrus clouds were composed of different layers characterized by marked differences in height, thickness and optical properties. Simultaneous water vapour observations show that the different layers are characterized by different values of the saturation with respect to ice. A mesoscale simulation and a trajectory analysis clearly revealed that the clouds had formed in the outflow of a large and persistent convective region and that the observed variability of the optical properties and of the cloud structure is likely linked to the different residence times of the convectively-processed air in the upper troposphere.

  15. Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Bui, Thaopaul; Weinheimer, Andrew; Weinstock, Elliot; Smith, Jessica; Pittman, Jasna; Baumgardner, Darrel; Lawson, Paul; McGill, Matthew J.

    2005-01-01

    On July 13, 2002 a widespread, subvisible tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) instrumentation, including in situ measurements with the WB-57 aircraft. In this paper, we use the 13 July cloud as a case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics measurements indicate that ice crystal diameters in the cloud layer ranged from about 7 to 50 microns, and the peak number mode was about 10-25 microns. In situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. Even when the ice surface area density was as high as about 500 sq microns/cu cm, ice supersaturations of 20-30% were observed. Trajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerably during the previous few days. Examination of infrared satellite imagery along air parcel back trajectories from the WB-57 flight track indicates that the tropopause cloud layer formation was, in general, not simply left over ice from recently generated anvil cirrus. Simulations of cloud formation using time-height curtains of temperature along the trajectory paths show that the cloud could have formed in situ near the tropopause as the air was advected into the south Florida region and cooled to unusually low temperatures. If we assume a high threshold for ice nucleation via homogeneous freezing of aqueous sulfate aerosols, the model reproduces the observed cloud structure, ice crystal size distributions, and ice supersaturation statistics. Inclusion of observed gravity wave temperature perturbations in the simulations is essential to reproduce the observed cloud properties. Without waves, crystal

  16. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  17. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  18. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  19. Studying the influence of temperature and pressure on microphysical properties of mixed-phase clouds using airborne measurements

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru

    2015-04-01

    One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this

  20. Airborne hyperspectral sensor radiometric self-calibration using near-infrared properties of deep water and vegetation

    NASA Astrophysics Data System (ADS)

    Barbieux, Kévin; Nouchi, Vincent; Merminod, Bertrand

    2016-10-01

    Retrieving the water-leaving reflectance from airborne hyperspectral data implies to deal with three steps. Firstly, the radiance recorded by an airborne sensor comes from several sources: the real radiance of the object, the atmospheric scattering, sky and sun glint and the dark current of the sensor. Secondly, the dispersive element inside the sensor (usually a diffraction grating or a prism) could move during the flight, thus shifting the observed spectra on the wavelengths axis. Thirdly, to compute the reflectance, it is necessary to estimate, for each band, what value of irradiance corresponds to a 100% reflectance. We present here our calibration method, relying on the absorption features of the atmosphere and the near-infrared properties of common materials. By choosing proper flight height and flight lines angle, we can ignore atmospheric and sun glint contributions. Autocorrelation plots allow to identify and reduce the noise in our signals. Then, we compute a signal that represents the high frequencies of the spectrum, to localize the atmospheric absorption peaks (mainly the dioxygen peak around 760 nm). Matching these peaks removes the shift induced by the moving dispersive element. Finally, we use the signal collected over a Lambertian, unit-reflectance surface to estimate the ratio of the system's transmittances to its near-infrared transmittance. This transmittance is computed assuming an average 50% reflectance of the vegetation and nearly 0% for water in the near-infrared. Results show great correlation between the output spectra and ground measurements from a TriOS Ramses and the water-insight WISP-3.

  1. Concentrations and properties of airborne particles in the Mexico City subway system

    NASA Astrophysics Data System (ADS)

    Mugica-Álvarez, V.; Figueroa-Lara, J.; Romero-Romo, M.; Sepúlveda-Sánchez, J.; López-Moreno, T.

    2012-03-01

    Samples of PM10 and PM2.5 were collected using High Vol and MiniVol devices on the platform of a subway station in Mexico City and in an outdoor location close to it, using such devices. Soluble extractable organic matter (SEOM) and water solubility of metals were determined. Elemental composition and solubility of trace metals were determined and individual aerosol particles were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The concentration levels in both sizes were similar during all days with the exception of weekends, especially on Sunday when activity decreases due to lower trains' frequency. The largest particles concentrations in the subway were found from 06:00 to 14:00 and the lowest concentrations were registered from 22:00 to 06:00. Concentrations of PM2.5 ranging between 60 μg m-3 and 93 μg m-3 (10% and 90% percentile) in the subway were 6% larger than outside, whereas PM10 were 20% larger than outside ranging from 88 μg m-3 to 145 μg m-3. Greater Fe, Cu, Ni, Cr and Mn concentrations were quantified in the subway samples as compared to the airborne particles by up to 2.5, 9, 1.8, 2.0 and 2.6 times, respectively. Even when the solubility percent of these metals in the subway PM was smaller than in the outdoor airborne particles, metals' concentrations were greater. SEM and EDS exhibit the presence of many individual particles with a large metal content in the subway samples. Correlation analysis showed the influence of outdoor PM in the subway aerosols, but characterization revealed also important differences in the presence of metals and SEOM, due to underground sources such as friction, brake system, and metals from sparking. This means that a large number of commuters are exposed during labor days to large toxic metals concentrations as they transit.

  2. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping

    2008-01-01

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.

  3. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  4. 76 FR 67631 - Airworthiness Directives; Cirrus Design Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ] ACTION: Notice of proposed... Corporation (Cirrus) Model SR22T airplanes. This proposed AD was prompted by reports of partial loss of engine... information identified in this proposed AD, contact Cirrus Design Corporation, 4515 Taylor Circle,...

  5. GCSS Idealized Cirrus Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GCSS Working Group on Cirrus Cloud Systems (WG2) is conducting a systematic comparison and evaluation of cirrus cloud models. This fundamental activity seeks to support the improvement of models used for climate simulation and numerical weather prediction through assessment and improvement of the "process" models underlying parametric treatments of cirrus cloud processes in large-scale models. The WG2 Idealized Cirrus Model Comparison Project is an initial comparison of cirrus cloud simulations by a variety of cloud models for a series of idealized situations with relatively simple initial conditions and forcing. The models (16) represent the state-of-the-art and include 3-dimensional large eddy simulation (LES) models, two-dimensional cloud resolving models (CRMs), and single column model (SCM) versions of GCMs. The model microphysical components are similarly varied, ranging from single-moment bulk (relative humidity) schemes to fully size-resolved (bin) treatments where ice crystal growth is explicitly calculated. Radiative processes are included in the physics package of each model. The baseline simulations include "warm" and "cold" cirrus cases where cloud top initially occurs at about -47C and -66C, respectively. All simulations are for nighttime conditions (no solar radiation) where the cloud is generated in an ice supersaturated layer, about 1 km in depth, with an ice pseudoadiabatic thermal stratification (neutral). Continuing cloud formation is forced via an imposed diabatic cooling representing a 3 cm/s uplift over a 4-hour time span followed by a 2-hour dissipation stage with no cooling. Variations of these baseline cases include no-radiation and stable-thermal-stratification cases. Preliminary results indicated the great importance of ice crystal fallout in determining even the gross cloud characteristics, such as average vertically-integrated ice water path (IWP). Significant inter-model differences were found. Ice water fall speed is directly

  6. Measurements of Ice Particles in Tropical Cirrus Anvils: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Foster, Theodore; Arnott, William P.; Hallett, John; Pueschel, Rudi; Strawn, Anthony W. (Technical Monitor)

    1994-01-01

    Cirrus is important in the radiation balance of the global atmosphere, both at solar and thermal infrared (IR) wavelengths. In particular cirrus produced by deep convection over the oceans in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the tropical atmosphere to subsequently influence not only tropical but mid latitude climate. Details of the cloud composition may differentiate between a net cooling or warming at these levels. The cloud composition may change depending on the input of nuclei from volcanic or other sources. Observations of cirrus during the FIRE-2 Project over Coffeyville, Kansas and by satellite demonstrate that cirrus, on occasion, is composed not only of larger particles with significant fall velocity (few hundred micrometers, 0.5 m/s) but much more numerous small particles, size 10-20 micrometers, with small fall velocity (cm/s), which may sometimes dominate the radiation field. This is consistent with emissivity measurements. In the thermal IR, ice absorption is strong, so that ice particles only 10 micrometers thick are opaque, at some wavelengths; on the other hand at other wavelengths and in the visible, ice is only moderately to weakly absorbing. It follows that for strongly absorbing wavelengths the average projected area of the ice particles is the important parameter, in weakly absorbing regions it is the volume (mass) of ice which is important. The shape of particles and also their internal structure may also have significant effect on their radiative properties. In order to access the role of cirrus in the radiation budget it is necessary to measure the distribution of ice particles sizes, shapes and concentrations in the regions of interest. A casual observation of any cirrus cloud shows that there is variability down to a scale of at least a few 100 m; this is confirmed by radar and lidar remote sensing. Thus aircraft measurements designed to give

  7. Directly Measured Heating Rates of a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Bucholtz, Anthongy; Hlavka, Dennis L.; McGill, Matthew J.; Schmidt, K. Sebastian; Pilewskie, Peter; Davis, Sean M.; Reid, Elizabeth A.; Walker, Annette L.

    2010-01-01

    We present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus (SVC) cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). On this day a persistent thin cirrus layer, with mostly clear skies underneath, was detected in real time by the cloud lidar on the ER-2, and the aircraft was directed to profile down through the SVC. Measurements of the net broadband infrared irradiance and spectrally integrated solar irradiance above, below, and through the SVC are used to determine the infrared and solar heating rates of the cloud. The lidar measurements show that the variable SVC layer was located between approximately 13 and 15 km. Its midvisible optical depth varied from 0.01 to 0.10 with a mean of 0.034 +/- 0.033. Its depolarization ratio was approximately 0.4, indicative of ice clouds. From the divergence of the measured net irradiances the infrared heating rate of the SVC was determined to be approximately 2.50 - 3.24 K/d and the solar heating rate was found to be negligible. These values are consistent with previous indirect observations of other SVC and with model-generated heating rates of SVC with similar optical depths. This study illustrates the utility and potential of the profiling sampling strategy employed here. A more fully instrumented high-altitude aircraft that also included in situ cloud and aerosol probes would provide a comprehensive data set for characterizing both the radiative and microphysical properties of these ubiquitous tropical clouds

  8. Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.; Durran, D. R.

    2016-03-01

    Subvisible cirrus clouds in the tropical tropopause layer (TTL) play potentially important roles in Earth's radiation budget and in the transport of water into the stratosphere. Previous work on these clouds with 2-D cloud-resolving models has assumed that all ice crystals were spherical, producing too few crystals greater than 60 μm in length compared with observations. In this study, the System for Atmospheric Modeling cloud-resolving model is modified in order to calculate the fall speeds, growth rates, and radiative absorption of nonspherical ice crystals. This extended model is used in simulations that aim to provide an upper bound on the effects of ice crystal shape on the time evolution of thin cirrus clouds and to identify the physical processes responsible for any such effects. Model runs assuming spheroidal crystals result in a higher center of cloud ice mass than in the control, spherical case, while the total mass of ice is little affected by the shape. Increasing the radiative heating results in less total cloud ice mass relative to the control case, an effect which is robust with more extreme perturbations to the absorption coefficients. This is due to higher temperatures reducing the relative humidity in the cloud and its environment, and greater entrainment of dry air due to dynamical changes. Comparisons of modeled ice crystal size distributions with recent airborne observations of TTL cirrus show that incorporating nonspherical shape has the potential to bring the model closer to observations.

  9. Thin cirrus clouds - Seasonal distribution over oceans deduced from Nimbus-4 IRIS

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Fraser, R. S.; Dalu, G.; Wu, Man-Li C.; Curran, R. J.

    1988-01-01

    Spectral differences in the extinction of the 10.8- and 12.6-micron bands of the IR window region, due to optically thin clouds, were found in the measurements made by both an airborne broadband IR radiometer and the IR interferometer spectrometer (IRIS) aboard the Nimbus-4 satellite; the extinction at 12.6 microns was significantly larger than that at 10.8 microns; both water and ice particles in the clouds can account for such spectral difference in extinction. Multiple scattering radiative transfer calculations of IRIS data revealed this spectral feature about 100 to 20 km away from the high-altitude cold clouds; it is assumed that this feature is related to the spreading of cirrus clouds. Based on this assumption, mean seasonal maps of the distribution of thin cirrus clouds over the oceans were deduced from the IRIS data. The maps show that such clouds are often present over the convectively active areas, such as ITCZ, SPCZ, and the Bay of Bengal during the summer monsoon.

  10. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  11. Cloud clearing with a CO(2) laser in a cirrus cloud simulation facility.

    PubMed

    Waggoner, A P; Radke, L F; Buonadonna, V; Dowling, D R

    1992-09-20

    We report experiments that confirm our prediction that clouds consisting of ice crystals with properties similar to those of cirrus clouds can be cleared with relatively low pulsed CO(2) laser energy density and that the cleared channel is resistant to obscuration by recondensation of the evaporated water. For the experiments reported here, we use a unique cloud-generating apparatus consisting of a low-speed wind tunnel with water spray injectors to generate water droplets or, with ice nucleus seeding at low temperatures, ice crystals. The air temperature can be controlled over the range of ambient to -40 degrees C. A significant clearing of ice crystal clouds was observed with pulsed CO(2) laser fluence in the range 0.2 to 1.5 J/cm(2) and, as expected, recondensation was found to depend on ice particle mass concentration. At ice particle concentrations similar to those found in cirrus clouds, recondensation did not occur.

  12. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  13. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  14. Dust aerosol effects on cirrus and altocumulus clouds in Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Wencai; Sheng, Lifang; Jin, Hongchun; Han, Yongqing

    2015-10-01

    Dust aerosol effects on the properties of cirrus and altocumulus cloud in Northwest China were studied for the period March-May 2007 by using the satellite data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Aqua, and CloudSat. Dusty clouds were defined as those mixed with dust aerosols or existing in dust aerosol conditions, while pure clouds were those in a dust-free environment. For dusty altocumulus clouds, the mean values of cloud optical depth (OPD), cloud liquid water path (LWP), cloud ice water path (IWP), cloud effective particle radius (Re), and cloud effective particle diameter ( D e) were 6.40, 40.23 g m-2, 100.70 g m-2, 8.76 μm, and 40.72 μm, respectively. For pure altocumulus clouds, the corresponding mean values were 9.28, 76.70 g m-2, 128.75 g m-2, 14.03 μm, and 48.92 μm, respectively. These results show a significant decrease of OPD, LWP, IWP, R e, and D e of approximately 31%, 48%, 22%, 38%, and 17% because of the effects of dust aerosols. Moreover, the effects of dust aerosols on liquid-phase altocumulus clouds were greater than on ice-phase altocumulus clouds. Regarding dusty cirrus clouds, the mean values of OPD, IWP, and D e were 5.11, 137.53 g m-2, and 60.44 μm, respectively. In contrast, the mean values were 6.69, 156.17 g m-2, and 66.63 μm, respectively, for pure cirrus clouds, with a 24% decrease in OPD, a 12% decrease in IWP, and a 9% decrease in D e. These results indicate that dust aerosols can significantly change cloud properties, leading to a reduction of OPD, LWP, and effective particle size for both altocumulus and cirrus clouds in Northwest China.

  15. Aviation effects on already-existing cirrus clouds.

    PubMed

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J

    2016-06-21

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

  16. Optically thin cirrus clouds - Radiative impact on the warm pool

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Kratz, D. P.; Yoo, J.-M.; Dalu, G.; Vernekar, A.

    1993-01-01

    The role of the radiative effects of thin cirrus clouds in the energy balance of the 'warm pool' region is examined with reference to data obtained by the Infrared Interferometer Spectrometer (IRIS) flown on the Nimbus 4 satellite in 1970. First, the IRIS observations and a method for deriving the thin cirrus information are briefly discussed. A simple radiative energy balance model is then developed which is applicable to the mesoscale convective systems in the 'warm pool'. The radiative energy balance model, which does not explicitly account for the transports, is used to demonstrate the net radiative heating produced by the thin cirrus clouds.

  17. Aviation effects on already-existing cirrus clouds

    PubMed Central

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J.

    2016-01-01

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks. PMID:27327838

  18. Aviation effects on already-existing cirrus clouds

    NASA Astrophysics Data System (ADS)

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J.

    2016-06-01

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

  19. Satellite detection of a long curving cirrus plume

    NASA Technical Reports Server (NTRS)

    Wexler, R.; Skillman, W. C.

    1979-01-01

    On August 23, 1978, a long cirrus plume, as detected by the GOES E satellite, made a sharp anticyclonic turn and traveled a total distance of 2800 km from the generating thunderstorm, as determined from satellite imagery. During a five-hour period the leading edge moved a distance of 550 km, giving a speed of 30 m/sec. This is in good agreement with the pertinent wind speeds at the presumed height of the cloud, which may indicate that cirrus evaporation may not have been too important. In a relatively dense portion of the cirrus the minimum equivalent blackbody temperature was 226 K.

  20. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  1. Cirrus cloud radiative forcing on surface-level shortwave and longwave irradiances at regional and global scale

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Long, C. N.

    2009-04-01

    . Moreover, the sensitivity of the CRFLW to both cloud emissivity and cloud temperature (noted CRFLW*) is established and the influence of integrated water vapor on CRFLW* quantified: partial infrared opacity for arctic site (dry atmosphere) and quasi-total infrared opacity for tropical site (wet atmosphere), respectively 20% and 97% of opacity. Cirrus cloud radiative forcing parameterizations are hence developed starting from the ground-based collocated measurements. They relate CRFSW or CRFLW to cirrus cloud macrophysical properties, atmospheric humidity, aerosol content and solar zenith angle. Satellite measurements are used next as input parameters to the cirrus cloud radiative forcing parameterizations to calculate CRFSW and CRFLW at global scale. CALIOP provide aerosol and cirrus cloud properties and AIRS the integrated water vapor. Meridian distribution are shown and discussed. They reveal a positive cirrus cloud net radiative effect (CRFSW + CRFLW) from 30°N poleward during boreal winter and from 45°S during austral winter. The cumulative cirrus cloud net radiative effect reaches +1.5 W m-2 for these two winter cases and -8 W m-2 near the equator.

  2. A scheme for parameterizing cirrus cloud ice water content in general circulation models

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Donner, Leo J.

    1990-01-01

    Clouds strongly influence th earth's energy budget. They control th amount of solar radiative energy absorbed by the climate system, partitioning the energy between the atmosphere and the earth's surface. They also control the loss of energy to space by their effect on thermal emission. Cirrus and altostratus are the most frequent cloud types, having an annual average global coverage of 35 and 40 percent, respectively. Cirrus is composed almost entirely of ice crystals and the same is frequently true of the upper portions of altostratus since they are often formed by the thickening of cirrostratus and by the spreading of the middle or upper portions of thunderstorms. Thus, since ice clouds cover such a large portion of the earth's surface, they almost certainly have an important effect on climate. With this recognition, researchers developing climate models are seeking largely unavailable methods for specifying the conditions for ice cloud formation, and quantifying the spatial distribution of ice water content, IWC, a necessary step in deriving their radiative characteristics since radiative properties are apparently related to IWC. A method is developed for specifying IWC in climate models, based on theory and measurements in cirrus during FIRE and other experiments.

  3. Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Haladay, Taryn; Stephens, Graeme

    2009-04-01

    The joint detection characteristics of both the CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar are used to study tropical thin cirrus observed between 20°N and 20°S. The thin ice cloud category (TIC-1) of cirrus consists of those clouds detected by the lidar but not the radar whereas the TIC-2 cirrus category consists of clouds detected by both sensors. Tropical TIC-1 cirrus clouds between 20°N and 20°S are high, are optically thin, and have an approximate cloud cover in the defined region of 30%. Almost a third of this occurrence is in the form of single layers of cloudiness without any clouds below. These TIC-1 clouds also exhibit a marked seasonal variation, especially away from the equator, consistent with the shifts in annual cycle of convection with latitude. Lidar-based estimates of optical depth, uncorrected for multiple scattering, suggest that the TIC-1 optical depths range between 0.02 and 0.3. The ice water path of TIC-1 clouds is also estimated to be between 0.5 and 4 g m-2. The radiative properties of the TIC-1 clouds are also deduced from CloudSat flux data products at the top, at the bottom, and within the atmosphere. The influence of these clouds on the instantaneous reflected solar fluxes is determined to be less than 2 W m-2. The effects of TIC-1 clouds on the instantaneous outgoing longwave fluxes are estimated to be ˜20 W m-2, and the impact of these TIC-1 clouds on the tropics-wide average of the infrared heating is ˜4 W m-2.

  4. LIDAR and Millimeter-Wave Cloud RADAR (MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China

    NASA Astrophysics Data System (ADS)

    Bu, Lingbing; Pan, Honglin; Kumar, K. Raghavendra; Huang, Xingyou; Gao, Haiyang; Qin, Yanqiu; Liu, Xinbo; Kim, Dukhyeon

    2016-10-01

    Cirrus plays an important role in the regulation of the Earth-atmosphere radiation budget. The joint observation using both the LIght Detection And Ranging (LIDAR) and Millimeter-Wave Cloud RADAR (MWCR) was implemented in this study to obtain properties of cirrus at Atmospheric Radiation Measurement (ARM) mobile facility in Shouxian (32.56°N, 116.78°E, 21 m above sea level), China during May-December 2008. We chose the simultaneous measurements of LIDAR and MWCR with effective data days, and the days must with cirrus. Hence, the cirrus properties based on 37 days of data between October 18th and December 13th, 2008 were studied in the present work. By comparing the LIDAR data with the MWCR data, we analyzed the detection capabilities of both instruments quantitatively for measuring the cirrus. The LIDAR cannot penetrate through the thicker cirrus with optical depth (τ) of more than 1.5, while the MWCR cannot sense the clouds with an optical depth of less than 0.3. Statistical analysis showed that the mean cloud base height (CBH) and cloud thickness (CT) of cirrus were 6.5±0.8 km and 2.1±1.1 km, respectively. Furthermore, we investigated three existing inversion methods for deriving the ice water content (IWC) by using the separate LIDAR, MWCR, and the combination of both, respectively. Based on the comparative analysis, a novel joint method was provided to obtain more accurate IWC. In this joint method, cirrus was divided into three different categories according to the optical depth (τ≤0.3, τ≥1.5, and 0.3<τ<1.5). Based on the joint method used in this study, the mean IWC was calculated by means of the statistics, which showed that the mean IWC of cirrus was 0.011±0.008 g m-3.

  5. Effects of stratospheric aerosols and thin cirrus clouds on the atmospheric correction of ocean color imagery: simulations.

    PubMed

    Gordon, H R; Zhang, T; He, F; Ding, K

    1997-01-20

    Using simulations, we determine the influence of stratospheric aerosol and thin cirrus clouds on the performance of the proposed atmospheric correction algorithm for the moderate resolution imaging spectroradiometer (MODIS) data over the oceans. Further, we investigate the possibility of using the radiance exiting the top of the atmosphere in the 1.38-microm water vapor absorption band to remove their effects prior to application of the algorithm. The computations suggest that for moderate optical thicknesses in the stratosphere, i.e., tau(s) < or approximately 0.15, the stratospheric aerosol-cirrus cloud contamination does not seriously degrade the MODIS except for the combination of large (approximately 60 degrees) solar zenith angles and large (approximately 45 degrees) viewing angles, for which multiple-scattering effects can be expected to be particularly severe. The performance of a hierarchy of stratospheric aerosol/cirrus cloud removal procedures for employing the 1.38-microm water vapor absorption band to correct for stratospheric aerosol/cirrus clouds, ranging from simply subtracting the reflectance at 1.38 microm from that in the visible bands, to assuming that their optical properties are known and carrying out multiple-scattering computations of their effect by the use of the 1.38-microm reflectance-derived concentration, are studied for stratospheric aerosol optical thicknesses at 865 nm as large as 0.15 and for cirrus cloud optical thicknesses at 865 nm as large as 1.0. Typically, those procedures requiring the most knowledge concerning the aerosol optical properties (and also the most complex) performed the best; however, for tau(s) < or approximately 0.15, their performance is usually not significantly better than that found by applying the simplest correction procedure. A semiempirical algorithm is presented that permits accurate correction for thin cirrus clouds with tau(s) as large as unity when an accurate estimate of the cirrus cloud

  6. 3D reconstruction of tropospheric cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kouahla, M. N.; Faivre, M.; Moreels, G.; Seridi, H.

    2016-10-01

    In this paper, we present a series of results from stereo-imagery of cirrus clouds in the troposphere. These clouds are either of natural origin or are created by aircraft exhausts. They are presently considered to be a major cause for the climate change. Two observation campaigns were conducted in France in 2013 and 2014. The observing sites were located in Marnay (47°17‧31.5″ N, 5°44‧58.8″ E; altitude 275 m) and in Mont Poupet (46°58‧31.5″ N, 5°52‧22.7″ E; altitude 600 m). The distance between both sites was 36 km. We used numeric CMOS photographic cameras. The image processing sequence included a contrast enhancement and a perspective inversion to obtain a satellite-type view. Finally, the triangulation procedure was used in an area that is a common part of both fields of view.

  7. (abstract) An All Sky Cirrus Confusion Noise Map for WIRE

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1996-01-01

    The Wide Field Infrared Explorer (WIRE) is a Small Explorer (SMEX) satellite scheduled for launch in 1998 which will carry out a sky survey of at least 100 square degrees in the wavelength regions of 9-15(micro)m and 21-27(micro)m with spatial resolution of approximately 20 arcsec and sensitivity exceeding 0.6mJy. At this sensitivity level WIRE observations can be seriously affected by the confusion noise contribution from the infrared cirrus emission, so the WIRE survey must be planned with some knowledge of the expected level of cirrus confusion. Production of a cirrus confusion noise map with 0.5 degree resolution based on the spatial power spectral density of the cirrus emission in the IRAS ISSA data is in progess using the method described by Gauthier, et al. Spectrally resolved power spectra density data is obtained from the ISSA maps with a wavelet transform technique.

  8. Towards Improved Cirrus Cloud Optical Depths from CALIPSO

    NASA Astrophysics Data System (ADS)

    Garnier, Anne; Vaughan, Mark; Pelon, Jacques; Winker, David; Trepte, Chip; Young, Stuart

    2016-06-01

    This paper reviews recent advances regarding the retrieval of optical depths of semi-transparent cirrus clouds using synergetic analyses of perfectly collocated observations from the CALIOP lidar and the IIR infrared radiometer aboard the CALIPSO satellite.

  9. Cirrus parameterization from the FIRE ER-2 observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1990-01-01

    Primary goals for the FIRE field experiments were validation of satellite cloud retrievals and study of cloud radiation parameters. The radiometers and lidar observations which were acquired from the NASA ER-2 high altitude aircraft during the FIRE cirrus field study may be applied to derive quantities which would be applicable for comparison to satellite retrievals and to define the cirrus radiative characteristics. The analysis involves parameterization of the vertical cloud distribution and relative radiance effects. An initial case study from the 28 Oct. 1986 cirrus experiment has been carried out, and results from additional experiment days are to be reported. The observations reported are for 1 day. Analysis of the many other cirrus observation cases from the FIRE study show variability of results.

  10. Cirrus Clouds on Mars: Data Analysis and GCM Modeling

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2005-01-01

    The goal of the investigation was to obtain a better retrieval of cirrus ice concentrations [to] gain a quantitative understanding of the cirrus clouds in the upper atmosphere by analyzing The Thermal Emission Spectrometer (TES) data obtained by the Mars Global Surveyor (MGS). We study the global distribution of dust and ice for a Martian year to address the fundamental question of the importance of ice in the Martian atmosphere.

  11. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  12. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  13. Implications of Enhanced Relative Humidity in Cold Tropical Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard

    2004-01-01

    In situ measurements of water vapor concentration and temperature in tropical cirrus during the CRYSTAL-FACE and Pre-AVE missions indicate that the steady-state relative humidity within cirrus at T less than 200 K is about 20-30% higher than ice saturation. These measurements challenge the conventional belief, that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. Detailed simulations of thin cirrus near the tropopause indicate that this enhanced steady-state relative humidity increases ice number densities, decreases crystal sizes and extends cloud lifetimes. The areal coverage of thin cirrus in the tropics is increased rather than decreased as indicated by simpler conceptual models. Perhaps most significantly, the increased steady-state H2O saturation mixing ratio over ice in thin cirrus near the tropopause results in about a 0.5-1 ppmv increase in the amount of water that can enter the stratosphere across the tropical tropopause cold trap. Hence, the enhanced steady-state relative humidity in cold cirrus implies that lower tropopause temperatures are required to explain the observed stratospheric water vapor mixing ratios than previously assumed.

  14. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.; Finnegan, William

    2009-10-01

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  15. Detection of multilayer cirrus cloud systems using AVHRR Data: Verification based on FIRE II IFO composite measurements

    SciTech Connect

    Ou, S.C.; Liou, K.N.; Baum, B.A.

    1996-02-01

    A numerical scheme has been developed to identify multilayer cirrus cloud systems using Advanced Very High Resolution Radiometer (AVHRR) data. It is based on the physical properties of the AVHRR channels 1-2 reflectance ratios, the brightness temperature differences between channels 4 and 5, and the channel 4 brightness temperatures. In this scheme, clear pixels are first separated from cloudy pixels, which are then classified into three types: cirrus, cirrus/low clouds, and low clouds. The authors have applied this scheme to the satellite data collected over the FIRE II IFO [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II intensive field observation] area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data. The authors have validated the detection results against the cloudy condition inferred from the collocated and coincident ground-based lidar and radar images, balloonborne replicator data, and National Center for Atmospheric Research CLASS (Cross-chain Loran Atmospheric Sounding System) humidity soundings on a case-by-case basis. In every case, the satellite detection results are consistent with the cloudy conditions inferred from these dependent and complementary measurements. The present scheme is well suited for the detection of midlatitude, multilayer cirrus cloud systems and tropical anvils. 25 refs., 8 figs., 4 tabs.

  16. Detection of Multilayer Cirrus Cloud Systems Using AVHRR Data: Verification Based on FIRE II IFO Composite Measurements.

    NASA Astrophysics Data System (ADS)

    Ou, S. C.; Liou, K. N.; Baum, B. A.

    1996-02-01

    A numerical scheme has been developed to identify multilayer cirrus cloud systems using Advanced Very Higher Resolution Radiometer (AVHRR) data. It is based on the physical properties of the AVHRR channels 1 2 reflectance ratios, the brightness temperature differences between channels 4 and 5, and the channel 4 brightness temperatures. In this scheme, clear pixels are first separated from cloudy pixels, which are then classified into three types: cirrus, cirrus/low cloud, and low clouds. The authors have applied this scheme to the satellite data collected over the FIRE II IFO [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II intensive field observations area during nine overseas within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analysts of these satellite data. The authors have validated the detection results against the cloudy conditions inferred from the collocated and coincident ground-based lidar and radar images, balloonborne replicator data, and National Center for Atmospheric Research CLASS (Cross-chain Loran Atmospheric Sounding System) humidity soundings on a case-by-case basis. In every case, the satellite detection results are consistent with the cloudy conditions inferred from these independent and complementary measurement. The present scheme is well suited for the detection of midlatitude, multilayer cirrus cloud systems and tropical anvils.

  17. The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data

    NASA Technical Reports Server (NTRS)

    Nasiri, Shaima L.; Baum, Bryan A.; Heymsfield, Andrew J.; Yang, Ping; Poellot, Michael R.; Kratz, David P.; Hu, Yong-Xiang

    2002-01-01

    Detailed in situ data from cirrus clouds have been collected during dedicated field Campaigns, but the use of the size and habit distribution data has been lagging in the development of more realistic cirrus scattering models. In this study, the authors examine the use of in situ cirrus data collected during three field campaigns to develop more realistic midlatitude cirrus microphysical models. Data are used from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)-I (1986) and FIRE-II (1991) campaigns and from a recent Atmospheric Radiation Measurement (ARM) Program campaign held in March-April of 2000. The microphysical models are based on measured vertical distributions of both particle size and particle habit and are used to develop new scattering models for a suite of moderate-resolution imaging spectroradiometer (MODIS) bands spanning visible. near-infrared, and infrared wavelengths. The sensitivity of the resulting scattering properties to the underlying assumptions of the assumed particle size and habit distributions are examined. It is found that the near-infrared bands are sensitive not only to the discretization of the size distribution but also to the assumed habit distribution. In addition. the results indicate that the effective diameter calculated from a given size distribution tends to be sensitive to the number of size bins that are used to discretize the data and also to the ice-crystal habit distribution.

  18. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  19. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  20. A simplified model for understanding the evolution of cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schmidt, Clinton Todd

    Developing an understanding of cloud evolution is central to understanding the climate system as a whole. Stratiform cirrus layers play a significant role in the radiative interaction with the climate system. Radiational effects are a driving force in the dynamic evolution of these layers, particularly in determining the areal coverage, vertical distribution, and microphysical properties of the stratiform clouds. The deposition of energy by radiative flux divergence in a cloud layer provides potential energy to drive cloud evolution. This work uses a large eddy simulation model (LESM) to investigate a number of parameters that can be used to easily predict how a cirrus cloud will evolve. This work also includes a study of the sensitivity of formation of mammatus-like features in clouds to the below cloud layer relative humidity. Three distinct modes of cloud evolution were found to occur due to the radiative processes simulated in this study. These modes include isentropic adjustment, mixing, and evaporation/condensation. These modes of evolution were found to be independent of each other in the sense that one mode did not always occur with either of the other two modes. Similarly, the modes of evolution did not always occur in isolation and were found to simultaneously occur in many cases. Two dimensionless numbers are derived in this work that provide a basic framework for understanding the modes of evolution that can be expected of an initial cloud. These dimensionless numbers are found to have strong predictive power for cloud evolution. The simulations of several clouds produced mammatus-like structures forming at the base of the simulated clouds at the end of the model runs. These formations prompted further investigation of the processes that influence mammatus formation. The theory proposed by this work is that the mammatus cloud formation is a radiative process, mediated by the below cloud layer relative humidity. Several simulations were performed to test

  1. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  2. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  3. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  4. A comparison of lidar inversion methods for cirrus applications

    NASA Technical Reports Server (NTRS)

    Elouragini, Salem; Flamant, Pierre H.

    1992-01-01

    Several methods for inverting the lidar equation are suggested as means to derive the cirrus optical properties (beta backscatter, alpha extinction coefficients, and delta optical depth) at one wavelength. The lidar equation can be inverted in a linear or logarithmic form; either solution assumes a linear relationship: beta = kappa(alpha), where kappa is the lidar ratio. A number of problems prevent us from calculating alpha (or beta) with a good accuracy. Some of these are as follows: (1) the multiple scattering effect (most authors neglect it); (2) an absolute calibration of the lidar system (difficult and sometimes not possible); (3) lack of accuracy on the lidar ratio k (taken as constant, but in fact it varies with range and cloud species); and (4) the determination of boundary condition for logarithmic solution which depends on signal to noise ration (SNR) at cloud top. An inversion in a linear form needs an absolute calibration of the system. In practice one uses molecular backscattering below the cloud to calibrate the system. This method is not permanent because the lower atmosphere turbidity is variable. For a logarithmic solution, a reference extinction coefficient (alpha(sub f)) at cloud top is required. Several methods to determine alpha(sub f) were suggested. We tested these methods at low SNR. This led us to propose two new methods referenced as S1 and S2.

  5. Cirrus cloud model parameterizations: Incorporating realistic ice particle generation

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, G. C.; Starr, David OC.

    1990-01-01

    Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.

  6. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Baumgardner, D.; Garrett, T. J.; Weinstock, E. M.; Smith, J. B.; Sayres, D. S.; Pittman, J. V.; Dhaniyala, S.; Bui, T. P.; Mahoney, M. J.

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  7. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign

    NASA Astrophysics Data System (ADS)

    Chen, G.; Ziemba, L. D.; Chu, D. A.; Thornhill, K. L.; Schuster, G. L.; Winstead, E. L.; Diskin, G. S.; Ferrare, R. A.; Burton, S. P.; Ismail, S.; Kooi, S. A.; Omar, A. H.; Slusher, D. L.; Kleb, M. M.; Reid, J. S.; Twohy, C. H.; Zhang, H.; Anderson, B. E.

    2011-01-01

    As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5-22° N and 10-35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm-3, but highly elevated volume density with an average at 45 μm3 cm-3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a

  8. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign

    NASA Astrophysics Data System (ADS)

    Chen, G.; Ziemba, L. D.; Chu, D. A.; Thornhill, K. L.; Schuster, G. L.; Winstead, E. L.; Diskin, G. S.; Ferrare, R. A.; Burton, S. P.; Ismail, S.; Kooi, S. A.; Omar, A. H.; Slusher, D. L.; Kleb, M. M.; Reid, J. S.; Twohy, C. H.; Zhang, H.; Anderson, B. E.

    2010-05-01

    As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5-22° N and 10-35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, nephelometer, and Particle Soot Absorption Photometer. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm-3, but highly elevated volume density with an average at 45 μm3 cm-3. NAMMA dust particle size distributions were well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The absorption coefficient measurements exhibited a strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97±0.02. Closure analyses showed that observed scattering and absorption coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0

  9. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  10. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    NASA Astrophysics Data System (ADS)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (D<50 μm) relative to the larger ice particles. Combining this small crystal information with the PSD scheme describing the larger particle concentrations yields the retrieved PSD. Small ice crystals are evaluated using the absorption properties of photon tunneling or wave resonance while the liquid water fraction is evaluated using classical Beer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  11. Comparisons of cirrus cloud formation and evolution lifetime between five field campaigns

    NASA Astrophysics Data System (ADS)

    Diao, M.; Zondlo, M. A.; DiGangi, J. P.; O'Brien, A.; Heymsfield, A.; Rogers, D. C.; Beaton, S. P.

    2013-12-01

    In order to understand the microphysical properties of cirrus clouds, it is important to understand the formation and evolution of the environments where ice crystals form and reside on the microscale (~100 m). Uncertainties remain in simulating/parameterizing the evolution of ice crystals, which require more analyses in the Lagrangian view. However, most in situ observations are in the Eulerian view and are restricted from examining the lifecycle of cirrus clouds. In this work, a new method of Diao et al. GRL (2013)* is used to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). In-situ, aircraft-based observations from five flight campaigns are used to compare the evolution processes of ISSRs and ICRs, which include the National Science Foundation HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011 Arctic to Antarctic over the central Pacific Ocean), the Stratosphere Troposphere Analyses Regional Transport 2008 (START08) campaign (2008 North America), the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) campaign (2010 tropical western Atlantic), the Tropical Ocean Troposphere Exchange of Reactive Halogen Species and Oxygenated VOC (2012 Costa Rica), and the Deep Convection, Clouds, and Chemistry (DC3) campaign (2011 Interior North America). To understand the evolution of ICRs and ISSRs on the microscale, we compare the microphysical evolution processes inside ISSRs and ICRs in terms of relative humidity with respect to ice (RHi), ice crystal mean diameter (Dc) and ice crystal number density (Nc) at different meteorological and dynamical backgrounds during these five campaigns. Different phases of ice nucleation and evolution are contrasted to understand how cirrus clouds evolve from clear-sky ISS into fully developed clouds, and finally into sedimentation/evaporation phase. The results show that the ratios of

  12. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous

  13. Ultrastructure of the cirrus sac of echinophallid tapeworms (Cestoda, Bothriocephalidea) and the terminology of cirrus hard structures.

    PubMed

    Poddubnaya, L; Mackiewicz, J S

    2009-02-01

    Transmission (TEM) and scanning (SEM) electron microscope methods were used to study the fine structure of the cirrus, cirrus sac, internal seminal vesicle, ejaculatory duct, prostate glands and cirrus armature of Echinophallus wageneri (Monticelli, 1890) and Paraechinophallus japonicus (Yamaguti, 1934) (Bothriocephallidea: Echinophallidae). The cirrus sac of these species has two unique ultrastructural features: a thick wall with two bands of muscles and prominent, rooted hard structures. Rare traits echinophallids share with diphyllobothriideans are microtriches on the ejaculatory duct and with spathebothriideans, well-developed unicellular prostate glands outside the cirrus sac. Because there is a similarity of cirrus armature and rostellar hooks in having a tegumental localisation and in having a heterogenous structure of the blade and root, a cortex, a central pulp region and a recurved apex, these structures are named "modified hooks" instead of spines. They also have a spiral arrangement; no base plate was observed. True spines, as found in trematodes, are between the surface and basal plasma membrane of the external syncytial layer of the tegument, rest on the basal plasma membrane of the distal epithelial cytoplasm, show a homogeneous electron-dark crystalline appearance and are covered by the surface plasma membrane. Aside from the characteristic hooks on the scolex of various cestodes, we see no evidence that would preclude the development of still other specialised structures, such as these modified hooks, from microtriches. In spite of the absence of studies on the development of modified hooks from the cirrus of echinophallids and/or its consideration as derived from microtriches, we assume that like microtriches, formation of modified hooks is from tegumental bodies and therefore they are derivative structures of the cestode tegument.

  14. Why cirrus cloud seeding cannot substantially cool the planet

    NASA Astrophysics Data System (ADS)

    Gasparini, Blaž; Lohmann, Ulrike

    2016-05-01

    The net warming effect of cirrus clouds has driven part of the geoengineering research toward the idea of decreasing their occurrence frequency by seeding them with efficient ice nucleating particles. We study responses of cirrus clouds to simplified global seeding strategies in terms of their radiative fluxes with the help of the ECHAM-HAM general circulation model. Our cirrus scheme takes into account the competition between homogeneous and heterogeneous freezing, preexisting ice crystals, and the full spectrum of updraft velocities. While we find that the cirrus cloud radiative effect evaluated from our model is positive and large enough (5.7 W/m2) to confirm their geoengineering potential, none of the seeding strategies achieves a significant cooling due to complex microphysical mechanisms limiting their climatic responses. After globally uniform seeding is applied, we observe an increase in cirrus cloud cover, a decrease in ice crystal number concentration, and a decrease in ice crystal radius. An analysis of their respective radiative contributions points to the ice crystal radius decrease as the main factor limiting seeding effectiveness.

  15. Laser transmission-backscattering through inhomogeneous cirrus clouds.

    PubMed

    Ou, Szu-Cheng; Takano, Yoshihide; Liou, Kuo-Nan; Lefevre, Randy J; Johnson, Michael W

    2002-09-20

    We have developed a two-dimensional (2D) model for inhomogeneous cirrus clouds in plane-parallel and spherical geometries for the analysis of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective ice-crystal size fields for cirrus clouds can be determined from a combination of the remote sensing of cirrus clouds by use of the Advanced Very High Resolution Radiometer on board National Oceanic and Atmospheric Administration satellites and the vertical profiling of ice-crystal size distributions available from limited measurements. We demonstrate that satellite remote sensing of the position and the composition of high cirrus can be incorporated directly in the computer model developed for the transmission and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission, forward scattering, and backscattering are analyzed carefully with respect to aircraft height, cirrus cloud optical depth, and ice-crystal size and orientation. Uncertainty in laser transmission that is due to errors in the retrieved ice-crystal size is negligible. But uncertainty of the order of 2% can be produced if the retrieved optical depth has errors of +/-0.05. With both the aircraft and the target near the cloud top, the direct transmission decreases, owing to the propagation of the laser beam through the curved portion of the cloud top. This effect becomes more pronounced as the horizontal distance between the aircraft and the target increases.

  16. The microphysical properties of small ice particles measured during MACPEX

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; Schnaiter, M.; Heymsfield, A.; Bansemer, A.; Hirst, E.

    2012-12-01

    During the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) field campaign, the Small Ice Detector version 3 (SID-3) and the NCAR Video Ice Particle Sampler (VIPS) probes were operated onboard the NASA WB-57 aircraft to measure the microphysical properties of small ice particles in midlatitude cirrus clouds. The VIPS was optimized to measure the particle size distribution and projected area properties of ice particles between 20 and 200 microns and measurements agreed well with other microphysical probes. SID-3 measures the forward light scattering pattern from ice particles in the 1 to 100 micron size range. Forward scattering patterns can be used to characterize ice particle shape as well as surface roughness. Scattering patterns appear to be 'speckled' when particles have surface roughness and/or are polycrystalline. Scattering patterns can be used to identify quasi-spherical ice particles as well as particles which are sublimating. Sublimating crystals, spherical ice particles, and particles with surface roughness were all observed by SID-3 during MACPEX. Observed particle properties will be correlated to concurrent atmospheric observations. Measurements from the controlled environment of the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber will be related to atmospheric particle measurements.

  17. Cirrus Removal in Multispectral Datawithout 1.38μM Spectral Data

    NASA Astrophysics Data System (ADS)

    Makarau, Aliaksei; Richter, Rudolf; Zekoll, Viktoria; Reinartz, Peter

    2016-06-01

    Cirrus is one of the most common artifacts in the remotely sensed optical data. Contrary to the low altitude (1-3 km) cloud the cirrus cloud (8-20 km) is semitransparent and the extinction (cirrus influence) of the upward reflected solar radiance can be compensated. The widely employed and almost 'de-facto' method for cirrus compensation is based on the 1.38μm spectral channel measuring the upwelling radiance reflected by the cirrus cloud. The knowledge on the cirrus spatial distribution allows to estimate the per spectral channel cirrus attenuation and to compensate the spectral channels. A wide range of existing and expected sensors have no 1.38μm spectral channel. These sensors data can be corrected by the recently developed haze/cirrus removal method. The additive model of the estimated cirrus thickness map (CTM) is applicable for cirrus-conditioned extinction compensation. Numeric and statistic evaluation of the CTM-based cirrus removal on more than 80 Landsat-8 OLI and 30 Sentinel-2 scenes demonstrates a close agreement with the 1.38μm channel based cirrus removal.

  18. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  19. Initialization and Validation of a Simulation of Cirrus Using FIRE-II Data.

    NASA Astrophysics Data System (ADS)

    Westphal, D. L.; Kinne, S.; Pilewskie, P.; Alvarez, J. M.; Minnis, P.; Young, D. F.; Benjamin, S. G.; Eberhard, W. L.; Kropfli, R. A.; Matrosov, S. Y.; Snider, J. B.; Uttal, T. A.; Heymsfield, A. J.; Mace, G. G.; Melfi, S. H.; Starr, D. O'c.; Soden, J. J.

    1996-12-01

    Observations from a wide variety of instruments and platforms are used to validate many different aspects of a three-dimensional mesoscale simulation of the dynamics, cloud microphysics, and radiative transfer of a cirrus cloud system observed on 26 November 1991 during the second cirrus field program of the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE-II) located in southeastern Kansas. The simulation was made with a mesoscale dynamical model utilizing a simplified bulk water cloud scheme and a spectral model of radiative transfer. Expressions for cirrus optical properties for solar and infrared wavelength intervals as functions of ice water content and effective particle radius are modified for the midlatitude cirrus observed during FIRE-II and are shown to compare favorably with explicit size-resolving calculations of the optical properties. Rawinsonde, Raman lidar, and satellite data are evaluated and combined to produce a time-height cross section of humidity at the central FIRE-II site for model verification. Due to the wide spacing of rawinsondes and their infrequent release, important moisture features go undetected and are absent in the conventional analyses. The upper-tropospheric humidities used for the initial conditions were generally less than 50% of those inferred from satellite data, yet over the course of a 24-h simulation the model produced a distribution that closely resembles the large-scale features of the satellite analysis. The simulated distribution and concentration of ice compares favorably with data from radar, lidar, satellite, and aircraft. Direct comparison is made between the radiative transfer simulation and data from broadband and spectral sensors and inferred quantities such as cloud albedo, optical depth, and top-of-the-atmosphere 11-µm brightness temperature, and the 6.7-µm brightness temperature. Comparison is also made with theoretical heating rates calculated using the rawinsonde

  20. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  1. Halos in cirrus clouds: why are classic displays so rare?

    PubMed

    Sassen, Kenneth

    2005-09-20

    Upper tropospheric cirrus clouds consist of hexagonal ice crystals, which geometrical ray-tracing-theory predicts should regularly produce a variety of optical phenomena such as vivid 22 degrees and 46 degrees halos. Yet, cirrus inconsistently generate such optical displays, while a class of more exotic displays are reported, albeit rarely. I review current knowledge of the cirrus cloud microphysical factors that control ice crystal shape, and hence halo/arc formation, but also appeal to halo enthusiasts to help investigate the causes of unusually complex, brilliant, or rare optical displays. Currently, a wealth of meteorological information can be tapped from the Internet to help advance our knowledge of the basic meteorological factors leading to these rare events.

  2. Modification of Cirrus Clouds to Reduce Global Warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Rasch, P. J.

    2008-12-01

    As far as we know, no studies have addressed the possibility of modifying cirrus clouds to reduce global warming. Here we explore this possibility and associated feasibility issues. To introduce this concept, some background information is needed. The effect of cirrus on climate can be quantified through their predicted impact on climate sensitivity, S (i.e. the equilibrium response of global- mean surface temperature to CO2 doubling) in global climate model (GCM) simulations. A recent study using an ensemble of thousands of "perturbed physics" GCM simulations found that S was most strongly influenced by the entrainment coefficient and the ice fall speed, indicating that S depends more on changes in cirrus clouds than on low-level boundary layer clouds. It may be possible to modify the ice fall speed in cirrus clouds which controls ice removal rates and affects the cirrus ice content, life cycle and coverage, as well as the upper troposphere relative humidity. The main impact of reducing the ice fall speed was an increase in longwave cloud forcing. In a different recent GCM study, we have used the mean size of the ice particle size distribution to change the representative ice fall speed, V. By decreasing V, the cirrus coverage was increased 5.5%, strongly affecting annual zonal means of cloud forcing, heating rates and temperatures in the upper troposphere. This led us to speculate that the introduction of aerosol particles into the upper troposphere (T < -40 C) that efficiently form ice crystals through heterogeneous nucleation may result in larger ice particles with higher fall speeds since the heterogeneous nuclei would outcompete the natural homogeneous freezing ice nuclei for water vapor. This would reduce longwave cloud forcing and lower surface temperatures, as described above. A third recent GCM study supports our speculation, showing that heterogeneous ice nucleation for these conditions produces larger ice crystals with higher fall velocities (relative

  3. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  4. Intercomparison between Nimbus-7 cirrus cloud data and ERB measurements

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. M.; Eck, T. F.; Wellemeyer, C. G.; Bhartia, P. K.; Hwang, P. H.

    1986-01-01

    Nimbus-7 and Earth Radiation Budget (ERB) data were compared with the quantity of high, thin cirrus clouds over a 6 yr period. Three separate data analysis techniques are described which were used to derive cloud cover and total upwelling radiance values from the satellite data. Zonal average cirrus clouds amounts are compared with surface observations and SAGE satellite data, and comparisons are made between the cloud amount estimates made with ERB data and data from other Nimbus-7 instruments. All Nimbus-7 instrumental data indicated cloud amounts and frequency of occurrence patterns which were commensurate with surface observations, except in high latitude zones.

  5. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  6. High Performance Morphological Filtering of Cirrus Emission from Infrared Images

    NASA Technical Reports Server (NTRS)

    Appleton, P. N. (Compiler)

    1997-01-01

    The project was designed to explore new morphological filtering, techniques for the removal of foreground Galactic 'Cirrus' emission from NASA Infrared Astronomical Satellite (IRAS) data, especially at 100 microns, using parallel processors as the main engine for achieving this result. The ultimate aim was to provide NASA with completely filtered data by the end of the grant period for the entire IRAS 100 and possibly 60 micron database. If successful, the filtered data would reveal many new sources of IR emission, especially at low galactic latitudes, which had previously been heavily confused with diffuse Galactic 'cirrus'.

  7. Secondary sulphate aerosols and cirrus clouds detection with SEVIRI during Nabro volcano eruption

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2016-04-01

    Explosive volcanic eruptions can perturb the upper tropospheric and stratospheric aerosols by the injection of volatile sulphur compounds, like sulphur dioxide, and the subsequent conversion to secondary sulphate aerosols (SSA). The volcanically-produced sulphates can act as ice nuclei, at these altitudes, and modify the occurrence and microphysical/optical properties of cirrus clouds in the upper-troposphere. Sulphate aerosols and cirrus clouds have an impact on the Earth's radiation budget from the regional to the global scale, and then on the Earth's climate. The Nabro volcano (Eritrea, 13.37°N, 41.70°E) erupted violently on 12 June 2011. The eruption, which lasted almost 1 month, is responsible for the most important injection of sulfur dioxide in the upper-troposphere and stratosphere since the eruption of Mount Pinatubo (1991), significantly perturbing the aerosol layer at these altitudes. The detailed study of this eruption and its atmospheric impact is of particular interest because this event is spatially and temporally coincident with the Asian summer monsoon dynamics, during 2011. The volcanic effluents were captured in the monsoon anticyclone; the interaction of the eruption with the monsoon dynamics is debated and still not clear. In this contribution, we present new SSA measurements, based on the work of Sellitto and Legras (2015), and cirrus clouds classification (Derrien and LeGléau, 2005), using SEVIRI (Spinning Enhanced Visible and Infrared Imager) observations. We use these observations to characterize the evolution of Nabro eruption at a very high temporal resolution. The role of the volcanic SSA on the occurrence of cirrus clouds at the regional scale is also analysed and discussed for this event. References: (Derrien and LeGléau, 2005) Derrien, M. and LeGléau, H.: MSG/SEVIRI cloud mask and type from SAFNWC, Int. J. Rem. Sens., 26, 4707-4732, doi: 10.1080/01431160500166128, 2005. (Sellitto and Legras, 2015) Sellitto, P. and Legras, B

  8. In-situ Balloon Measurements of Small Ice Particles in High-Latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Kuhn, T.; Heymsfield, A.

    2015-12-01

    Thin cirrus clouds at high latitudes are often composed of small ice particles not larger than 100 μm. Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time these clouds absorb the infrared radiation from Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions (PSD) and particle shapes. Knowledge of these cloud properties is also needed for calibrating/validating passive and active remote sensors. We report on a series of balloon-borne in-situ measurements that is carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The measurements target upper tropospheric, cold cirrus clouds. The measurements are ongoing, and the method and first results are presented here. Ice particles in these clouds are predominantly very small, with a median size of measured particles of around 50 μm. Ice particles at these sizes are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. These probes also suffer from problems with shattering of larger ice particles at the typically high aircraft speeds. The method used here avoids these issues. Furthermore, with a balloon-borne instrument data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always un-used section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 μm together with a pixel resolution of 1.65 μm allows particle detection at sizes of 10 μm and larger. For particles that are 20 μm (12

  9. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  10. Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.; Liu, Zhaoyan; Liu, Gin-Rong; Campbell, James R.; Liew, Soo Chin; Barnes, John E.

    2012-08-01

    Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to screen in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to systematically examine the susceptibility of operational aerosol products to cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) thin cirrus screening parameters for the purpose of evaluating cirrus contamination. Key results of this study include: (1) quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted; although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons; (2) challenges in matching up different data for analysis are highlighted and corresponding solutions proposed; and (3) estimates of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  11. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  12. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    NASA Astrophysics Data System (ADS)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  13. Medium-Range Predictability of Contrail-Cirrus Demonstrated during Experiments Ml-Cirrus and Access-Ii

    NASA Astrophysics Data System (ADS)

    Schumann, U.

    2015-12-01

    The Contrail Cirrus Prediction model CoCiP (doi:10.5194/gmd-5-543-2012) has been applied quasi operationally to predict contrails for flight planning of ML-CIRRUS (C. Voigt, DLR, et al.) in Europe and for ACCESS II in California (B. Anderson, NASA, et al.) in March-May 2014. The model uses NWP data from ECMWF and past airtraffic data (actual traffic data are used for analysis). The forecasts provided a sequence of hourly forecast maps of contrail cirrus optical depth for 3.5 days, every 12 h. CoCiP has been compared to observations before, e.g. within a global climate-aerosol-contrail model (Schumann, Penner et al., ACPD, 2015, doi:10.5194/acpd-15-19553-2015). Good predictions would allow for climate optimal routing (see, e.g., US patent by Mannstein and Schumann, US 2012/0173147 A1). The predictions are tested by: 1) Local eyewitness reports and photos, 2) satellite observed cloudiness, 3) autocorrelation analysis of predictions for various forecast periods, 4) comparisons of computed with observed optical depth from COCS (doi:10.5194/amt-7-3233-2014, 2014) by IR METEOSAT-SEVIRI observations over Europe. The results demonstrate medium-range predictability of contrail cirrus to a useful degree for given traffic, soot emissions, and high-quality NWP data. A growing set of satellite, Lidar, and in-situ data from ML-CIRRUS and ACCENT are becoming available and will be used to further test the forecast quality. The autocorrelation of optical depth predictions is near 70% for 3-d forecasts for Europe (outside times with high Sahara dust loads), and only slightly smaller for continental USA. Contrail cirrus is abundant over Europe and USA. More than 1/3 of all cirrus measured with the research aircraft HALO during ML-CIRRUS was impacted by contrails. The radiative forcing (RF) is strongly daytime and ambience dependent. The net annual mean RF, based on our global studies, may reach up to 0.08 W/m2 globally, and may well exceed 1 W/m2 regionally, with maximum over Europe

  14. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  15. Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics

    NASA Astrophysics Data System (ADS)

    Senf, Fabian; Deneke, Hartwig

    2017-01-01

    Synthetic brightness temperatures of five infrared Meteosat SEVIRI channels are investigated for their sensitivities on cirrus radiative properties. The operational SynSat scheme of the regional German weather prediction model COSMO-DE is contrasted to a revised scheme with a special emphasis on consistency between the model-internal ice-microphysics and infrared radiation in convective situations. In particular, the formulation of generalized effective diameters of ice, snow and graupel as well as subgrid-scale cloud cover has been improved. Based on the applied modifications, we first show that changed assumptions on the cirrus radiative properties can lead to 10 K warmer brightness temperatures. Second, we demonstrate that prescribed relative changes of 20% in cloud cover and particle size induce maximum changes of around 4 to 5 K. The maximum sensitivity appears for semi-transparent cirrus having brightness temperatures around 240 and 260 K and total frozen water path around 30 gm- 2 for viewing geometries over Central Europe. We further consider the known COSMO-DE cold bias to discuss the problem of inconsistencies in model-internal and external formulations of cloud microphysical and radiative properties. We demonstrate that between 35% and 70% of the cold bias can be attributed to the radiative representation of cirrus clouds. We additionally discuss the use of window-channel brightness temperature differences for evaluation of model microphysics and hypothesize that the amount of COSMO-DE ice is overestimated in convective situations.

  16. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  17. Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.; Vaughan, Mark A.; Trepte, Charles R.

    2014-01-01

    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.

  18. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  19. Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds

    SciTech Connect

    Sassen, Kenneth; Wang, Zhien; Platt, C.M.R.; Comstock, Jennifer M.

    2003-01-01

    Employing a new approach based on combined Raman lidar and millimeter-wave radar measurements and a parameterization of the infrared absorption coefficient {sigma}{sub a}(km{sup -1}) in terms of retrieved cloud microphysics, we derive a statistical relation between {sigma}{sub a} and cirrus cloud temperature. The relations {sigma}{sub a} = 0.3949 + 5.3886 x 10{sup -3} T + 1.526 x 10{sup -5} T{sup 2} for ambient temperature (T,{sup o}C), and {sigma}{sub a} = 0.2896 + 3.409 x 10{sup -3} T{sub m} for midcloud temperature (T{sub m}, {sup o}C), are found using a second order polynomial fit. Comparison with two {sigma}{sub a} versus T{sub m} relations obtained primarily from midlatitude cirrus using the combined lidar/infrared radiometer (LIRAD) approach reveals significant differences. However, we show that this reflects both the previous convention used in curve fitting (i. e., {sigma}{sub a} {yields} 0 at {approx} 80 C), and the types of clouds included in the datasets. Without such constraints, convergence is found in the three independent remote sensing datasets within the range of conditions considered valid for cirrus (i.e., cloud optical depth {approx} 3.0 and T{sub m} < {approx}20 C). Hence for completeness we also provide reanalyzed parameterizations for a visible extinction coefficient {sigma}{sub a} versus T{sub m} relation for midlatitude cirrus, and a data sample involving cirrus that evolved into midlevel altostratus clouds with higher optical depths.

  20. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  1. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; ...

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  2. Cloud fields derived from satellite and surface data during FIRE cirrus phase 2

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Young, David F.; Heck, Patrick W.

    1993-01-01

    The interpretation of surface and aircraft measurements of cloud properties taken during field programs must take into account the large-scale cloud and meteorological conditions. Cloud properties are also required at scales beyond the point and line data taken from ground and aircraft platforms. Satellite data can provide a quantitative description of these large-scale cloud properties. When derived from geostationary satellite data, the cloud fields constitute a unique source for evaluating the development and demise of a cloud system. Satellites, however, can only see the tops of clouds, so that cloud layers below the uppermost cloud deck may remain undetected resulting in a incomplete depiction of the cloud system. Some multilayer clouds are amenable to detection from satellites. Many, especially in midlatitude cyclonic systems, can only be observed from the surface. A combination of surface and satellite cloud observations should be the most complete quantification of large-scale cloudiness if there are sufficient surface measurements. During the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment Phase 2 (FIRE-2) Cirrus Intensive Field Observation (IFO) period (November 13 - December 7, 1991) conducted at Coffeyville, Kansas, cirrus observations were taken in a variety of conditions. The IFO area was selected for a variety of reasons including the relatively dense network of surface weather stations and special surface instrumentation sites. Thus, the FIRE-2 IFO presents an excellent opportunity to combine cloud observations from surface and satellite observations. This paper presents an analysis of cloud properties on a mesoscale grid using satellite cloud property retrievals, surface observer data, and rawinsonde temperature and humidity profiles.

  3. Modification of Cirrus Clouds to Reduce Global Warming: New Findings

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Mishra, S.; Lawson, P.; Baker, B. A.

    2011-12-01

    A climate engineering idea for reducing cirrus cloud coverage to release more outgoing longwave radiation (OLR) has recently been proposed (Mitchell & Finnegan 2009; ERL). The air that cirrus form in would be conditioned with efficient ice nuclei that would outcompete the natural homogeneous freezing ice nuclei for water vapor, forming larger ice crystals that fall faster. Increasing the ice fall speed has been shown to significantly decrease cirrus cloud coverage and optical depth in GCM simulations, releasing more OLR to space. GCM simulations comparing homo- and heterogeneous ice nucleation processes indicate this approach has the potential to neutralize the warming due to a doubling of CO2, but it is currently unclear how dominant homogeneous ice nucleation is in the upper troposphere. This may be the greatest known uncertainty associated with this climate engineering idea. Recent research has employed cirrus cloud field measurements to partially test this climate engineering idea by evaluating the role of homogeneous nucleation. While earlier field measurements were extremely difficult to evaluate for ice nucleation effects due to the problem of ice particle shattering, recent in-situ measurements using the 2 dimensional-stereo (2D-S) probe have greatly reduced this problem, resulting in provocative findings. These findings for tropical anvils and mid-latitude synoptic and anvil cirrus clouds all provide strong evidence showing homogeneous nucleation is a dominant process. In addition to abrupt changes in the ice particle size distribution (PSD) shape, ice particle number concentration/ice water content (N/IWC) ratios and mean ice particle sizes near -40°C, the mid-latitude measurements show an abrupt change in ice particle shape and mass-weighted fall velocity near -40°C (i.e. the onset of homogeneous freezing). An example of these findings for synoptic cirrus is shown in the figure. Note that area ratios (ice particle projected area/area of circle defined

  4. Parameterization of cirrus optical depth and cloud fraction

    SciTech Connect

    Soden, B.

    1995-09-01

    This research illustrates the utility of combining satellite observations and operational analysis for the evaluation of parameterizations. A parameterization based on ice water path (IWP) captures the observed spatial patterns of tropical cirrus optical depth. The strong temperature dependence of cirrus ice water path in both the observations and the parameterization is probably responsible for the good correlation where it exists. Poorer agreement is found in Southern Hemisphere mid-latitudes where the temperature dependence breaks down. Uncertainties in effective radius limit quantitative validation of the parameterization (and its inclusion into GCMs). Also, it is found that monthly mean cloud cover can be predicted within an RMS error of 10% using ECMWF relative humidity corrected by TOVS Upper Troposphere Humidity. 1 ref., 2 figs.

  5. Two Years of Global Cirrus Cloud Statistics Using HIRS

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Menzel, W. Paul; Woolf, H. M.

    1991-01-01

    A climatology of upper tropospheric semi-transparent cirrus clouds has been compiled using HIRS multispectral infrared data, sensitive to CO2 absorption, from the NOAA polar orbiting satellites. This is a report on the two years of data analyzed (June 1989 - May 1991). Semi-transparent clouds were found in 36% of the observations. Large seasonal changes were found in these clouds in many geographical areas; large changes occur in areas dominated by the ITCZ, the sub-tropical high pressure systems, and the mid-latitude storm belts. Semi-transparent clouds associated with these features move latitudinally with the seasons. These clouds also are more frequent in the summer hemisphere than the winter hemisphere. They appear to be linked to convective cloud development and the mid-latitudinal frontal weather systems. However, very thin semi-transparent cirrus has less seasonal movement than other cloud forms.

  6. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  7. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  8. Highly supercooled cirrus cloud water: confirmation and climatic implications.

    PubMed

    Sassen, K; Liou, K N; Kinne, S; Griffin, M

    1985-01-25

    Liquid cloud droplets supercooled to temperatures approaching -40 degrees C have been detected at the base of a cirrostratus cloud through a combination of ground-based, polarization laser radar (lidar) and in situ aircraft measurements, Solar and thermal infrared radiative budget calculations based on these observatoins indicate that significant changes in the atmospheric heating distribution and the surface radiative budget may be attributed to liquid layers in cirrus clouds.

  9. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  10. Measurements of Terminal Velocities of Cirrus Clouds in the Upper Trosphere

    NASA Astrophysics Data System (ADS)

    Bai Nee, Jan; Chen, W. N.; Chiang, C. W.; Das, S. K.

    2016-06-01

    Cirrus clouds are composed of ice crystals condensed from humidity due to low temperature condition in the upper atmosphere. The microphysics of cirrus clouds including sizes and shapes of ice particles are not well understood but are important in climate modeling. Ice crystal will fall under gravitational sedimentation to reach terminal velocities which depend on the size, mass, and ice habit. We studied here the terminal velocity of cirrus clouds by using lidar observations at Chungli (25N, 121E). The terminal velocities for a few cases of stable cirrus clouds are measured to determine the ice particle sizes and processes in the upper atmosphere.

  11. IR spectral characteristics of cirrus clouds

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Smith, William L.

    1990-01-01

    The recent focus of parameterization of the radiative properties of clouds has been to include the microphysical properties of the cloud. A variety of parameterization have been developed for both the shortwave and the longwave. In parameterizing the longwave properties of clouds, it is useful to consider the two stream solution of the radiative transfer equation appropriate for a thermal source. These radiative transfer equations are considered.

  12. Effective Ice Particle Densities for Cold Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  13. Zooming in on cirrus with the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Stefanof, C.; Stefanof, A.; Beaulne, A.; Munoz Alpizar, R.; Szyrmer, W.; Blanchet, J.

    2004-05-01

    The Canadian Regional Climate Model plus a microphysical scheme: two-moments microphysics with three hydrometeor categories (cloud liquid water, pristine ice crystals and larger precipitation crystals) is used to test the simulation in forecast mode using ECMWF data at 0.4 X 0.4 degree. We are zooming in on cirrus at higher resolutions (9, 1.8, 0.36 km). We are currently using the data set measured in APEX-E3, measurements of radar, lidar, passive instruments and interpreted microphysics for some flights (G-II, C404, B200). The radar and lidar data are available for high level cirrus. The south west of Japon is the flight region. The dates are March 20, March 27 and April 2, 2003. We first focus on the March 27 frontal system. We did a rigorous synoptical analysis for the cases. The cirrus at 360 m resolution are simulated. The cloud structure and some similarities between model simulation and observations will be presented.

  14. Can cirrus cloud seeding be used for geoengineering?

    NASA Astrophysics Data System (ADS)

    Penner, Joyce E.; Zhou, Cheng; Liu, Xiaohong

    2015-10-01

    Cirrus cloud seeding has been proposed as a possible technique that might thin cirrus clouds leading to reduced heating. The technique was shown to be viable in one model evaluation. Here we use an updated version of the Community Atmosphere Model version 5 (CAM5) and reevaluate whether seeding is a viable mechanism for cooling. We explore different model setups (with and without secondary organic aerosols acting as heterogeneous ice nuclei). None of the updated versions of the CAM5 lead to a significant amount of negative climate forcing and hence do not lead to cooling. We only calculate a net negative cloud forcing (-0.74 ± 0.25 W m-2) if we restrict the modeled subgrid-scale updraft velocity during nucleation to <0.2 m s-1 and if the deposition of water vapor onto preexisting ice crystals during nucleation is not included. Hence, we do not find that cirrus cloud seeding is a viable climate intervention technique.

  15. Why does large ice supersaturation persist in cold cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Molina, M. J.; Loerting, T.

    2009-04-01

    The upper tropospheric cold cirrus clouds (T< 210K) are thought to limit the accumulation of water vapor in the upper troposphere (UT), because the growth and sedimentation of cirrus ice crystals redistribute moisture to lower levels. However, observations often reveal persistent ice supersaturation, Si >100% (corresponding to relative humidity with respect to hexagonal ice RHi > 200%) outside (in clear-sky) and inside cold cirrus clouds1 formed near the tropopause region in-situ i.e., not influenced by a deep convective water vapour source1. Such cirrus can be formed by homogeneous freezing of the pre-existing H2SO4/H2O aerosol droplets2. Below T ? 203 K, the condensation of HNO3 can combine with H2SO4/H2O to form H2SO4/HNO3/H2O droplets. The UT droplets can also contain (NH4)2SO4, (NH4)HSO4, NH4NO3, and (NH4)3H(SO4)2 which are formed by the neutralization of H2SO4 and HNO3 by NH3. The existence of the clear-sky Si >> 0 % is not surprising, considering that cold cirrus clouds are formed by homogeneous freezing aqueous droplets. Laboratory measurements of micrometer-scaled droplets of H2SO4/H2O2, (NH4)HSO4/H2O3, and (NH4)2SO4/H2O4 have predicted that before cirrus clouds start developing the clear-sky Si can reach ~70%. What is really surprising is how Si >> 0 % can persist within cirrus clouds which consist of numerous ice crystals formed by homogeneous freezing of aqueous droplets. According to current knowledge, the ice crystals rapidly consume water vapor and lower in-cloud moisture to Si ? 0 %5. Now there is no physical explanation for the nature of the observed clear-sky and in-cloud Si >> 0 %. Recently using differential scanning calorimeter (DSC), we showed that the cold cirrus formed by homogeneous freezing H2SO4/H2O droplets may consist of mixed-phase particles: an ice core + a H2SO4/H2O coating6. Our new DSC measurements indicate that the cirrus formed by homogeneous freezing of aqueous droplets containing H2SO4, HNO3, and ammonium salts (NH4)HSO4, (NH4

  16. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  17. Lidar observations of cirrus clouds in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Gabriela Lakkis, S.; Lavorato, Mario; Canziani, Pablo; Lacomi, Hector

    2015-08-01

    Characterization of cirrus clouds over Buenos Aires (34.6°S, 58.5°W) using a ground based lidar is presented. The study, carried out for the period 2010-2011, reveals that cirrus are usually found in the altitude region 8-11 km, with mid-cloud temperatures values varying between -75 °C and 55 °C. The clouds, whose bases altitudes display significant variability while their tops remains close to the tropopause, show geometrical thickness ranging from 1.2 to 5 km, with on average value 3.0±0.9 km. Most commonly observed cirri can be characterized as optically thin cirrus rather than dense ones, with a mean optical depth value of 0.26±0.11 and an applied multiple scattering factor η of 0.85±0.07. In this region, the optical depth increases with increasing geometrical thickness with a partially linear correlation. Lidar ratios are also analyzed and on average the value is 32±17 sr.

  18. Examination of the observed synoptic scale cirrus cloud environment: The December 3-6 FIRE cirrus case study

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Ackerman, Thomas P.

    1993-01-01

    Recently, Sassen provided evidence for supercooled water droplets in cirrus uncinus cell heads at temperatures between 40 and -50 C. Chemistry related to volcanic aerosol of stratospheric origin was evoked as an explanation for this phenomenon. Sassen speculated that injections of sulfuric acid droplets into the upper troposphere were accomplished by tropopause folds associated with subtropical jet streams. He also postulated global climatic perturbations due to the effect of these cirrus microphysical perturbations on radiative fluxes. Using data processing and objective analysis techniques described by Mace and Ackerman, the synoptic scale environment was examined for evidence of tropopause folds that may have served as a source mechanism of stratospheric aerosol in the upper troposphere.

  19. The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; Haynes, M. P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; Boquien, M.; Boselli, A.; Casasola, V.; Clark, C. J. R.; De Looze, I.; di Serego Alighieri, S.; Grossi, M.; Jones, A. P.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pappalardo, C.; Ysard, N.; Zibetti, S.

    2017-01-01

    We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850 μm are obtained from observations with the Spectral and Photometric Imaging Receiver (SPIRE) and carried out within the Herschel Virgo Cluster Survey (HeViCS); these are complemented by IRAS and Planck maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components: low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity ɛLVCν = (0.79 ± 0.08) × 10-20 MJy sr-1 cm2 at 250 μm. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross section of τLVCν/NH i = (0.49 ± 0.13) × 10-25 cm2 H-1 at 250 μm (with dust temperature T = 20.4 ± 1.5 K and spectral index β = 1.53 ± 0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky versus 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross section. After subtracting the modeled components, we find regions at scales smaller than 20' in which the residuals deviate significantly from the average scatter, which is dominated by cosmic infrared background. These large residuals are most likely due to local variations in the cirrus dust properties or to high-latitude molecular clouds with average NH2 ≲ 1020 cm-2. We find no conclusive evidence for intracluster dust emission in Virgo. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and

  20. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  1. Cirrus Infrared Parameters and Shortwave Reflectance Relations from Observations.

    NASA Astrophysics Data System (ADS)

    Spinhirne, James D.; Hart, William D.; Hlavka, Dennis L.

    1996-05-01

    A summary of experimental observations and analysis of cirrus from high-altitude aircraft remote sensing is presented. The vertical distribution of cirrus optical and infrared cross-section parameters and the relative effective emittance and visible reflectance are derived from nadir-viewing lidar and multispectral radiometer data for observations during the 1986 and 1991 FIRE cirrus experiments. Statistics on scattering and absorption cross sections in relation to altitude and temperature are given. The emittance and reflectance results are considered as a function of solar zenith angle. Comparative radiative transfer calculations based on the discrete-ordinate method were carried out for three representative cloud phase function models: a spherical water droplet, an ice column crystal cloud, and a Henyey-Greenstein function. The agreements between observations of the effective emittance and shortwave reflectance and the model calculations were a function of the solar zenith angle. At angles between 54° and 60° a Henyey-Greenstein (HG) function with an asymmetry factor of 0.6-0.7 produced the best comparison. At 66°-72° the ice column model was equally comparable to observations. Comparisons to the water cloud model wore poor in all cases. The effects of ice crystal microphysical variations on the observed results were not generally apparent, but one dramatic example of difference was found. In order to explain the variations noted for solar zenith angle, an instrument-the Tilt Scan CCD Camera radiometer-was developed to directly observe the shortwave bidirectional reflectance function for 1991 measurements. The results indicate a characteristic angular function of the visible reflectance of cirrus that is flatter than predicted by the ice column scattering model, but the overall asymmetry factor is comparable. The good agreement with values from an HG function at some angles is not generally applicable. The characteristics of the observed cirrus angular

  2. Support for the Harvard University Water Vapor and Total Water Instruments for the 2004 NASA WB57 Middle Latitude Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2005-01-01

    In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud

  3. Small Particles in Cirrus (SPartICus) and Storm Peak Lab Validation Experiment (StormVEx) Science Final Technical Report

    SciTech Connect

    Mace, Gerald

    2016-10-28

    The Small Particles in Cirrus (SPartICus) campaign took place from January through June, 2011 and the Storm Peak Lab Cloud Property Validation Experiment (StormVEx) took place from November, 2011 through April, 2012. The PI of this project, Dr. Gerald Mace, had the privilege to be the lead on both of these campaigns. The essence of the project that we report on here was to conduct preliminary work that was necessary to bring the field data sets to a point where they could be used for their intended science purposes

  4. Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime

    2012-12-17

    A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed.

  5. Microphysics and Radiative Properties of Cirrus: Instrumentation and Analysis

    NASA Technical Reports Server (NTRS)

    Hallett, John

    2002-01-01

    Work under this grant has involved further development of a new aircraft instrument (the cloudscope) for real time characterization of atmospheric particulates together with field observations of such particulates, both in the form of ice and also as nuclei responsible for nucleation of both ice and water cloud particles. Part of the work involving assessment of the frequency of ice crystal shapes has been carried out in collaboration with the Meteorological Service of Canada; part of the work in a field program with the NCAR C-130. Part of the work has been interpreted in terms of laboratory simulation of ice crystal growth under a wide variety of conditions carried out under a grant from Physical Meteorology Program, National Science Foundation.

  6. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    different spectral information. The number of CAPS units to be used will depend on the size of the final electronic boards which are currently under development. The Sky OPC measures the size distribution theoretically up to 32 μm covering the relevant size information for calculation of aerosol optical properties. Because of the inlet cut off diameter of D50 = 3μm we are using the 16 channel mode in the range of 250 nm - 2.5 μm at 1 Hz resolution. In this presentation the setup of the IAGOS Aerosol package P2E is presented and characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances. In addition first results for airborne measurements are shown from a first airborne field campaign where in situ profiles are compared to LIDAR measurements over Bornholm (Denmark) and Lindenberg (Germany).

  7. Effects of Deep Convection on Upper Tropospheric Outflow Ice Supersaturation and Cirrus Cloud Formation

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; O'Brien, A.; Diao, M.; Beaton, S. P.; Zondlo, M. A.

    2013-12-01

    the outflow regions, suggesting a link between these species and inhibited ice nucleation. Oil particulate and gas phase alkyl nitrates are observed to have strong negative correlations with ISSR intensity, suggesting a link between these species and enhanced ice nucleation. This is in contrast to our current understanding of the nucleation properties of these chemical and aerosol species, and current work is focused on explaining this apparent discrepancy. Furthermore, we discuss the potential impact of these findings on cirrus cloud formation during convective outflow. *Diao et al., Geophys. Res. Lett. (2013)

  8. Airborne In-Situ Measurements of Aerosol and Cloud Microphysical Properties in Mixed-Phase Clouds Under Varying Conditions

    NASA Astrophysics Data System (ADS)

    Comstock, J. M.; Fan, J.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Schmid, B.

    2014-12-01

    Cloud microphysical properties impact the interaction of clouds and radiation in the atmosphere, and can influence atmospheric circulations through changes in cloud phase. Characterizing the conditions that control phase changes and the microphysical properties of mixed-phase clouds is important for improving understanding of physical processes that influence cloud phase. We characterize the aerosol and cloud microphysical properties in relation to the atmospheric dynamic and thermodynamic conditions observed in mixed-phase clouds during several aircraft-based field experiments. The Department of Energy Atmospheric Radiation Measurement program's Gulfstream-1 aircraft was used to sample aerosol and cloud properties in warm and cold clouds during several recent field experiments. We analyze in-situ observations from the CalWater and TCAP field campaigns to examine the variability of cloud properties (phase, hydrometeor size, ice and liquid water content, particle habit) with changes in aerosol, vertical velocity, and temperature. These measurements indicate that in addition to aerosol concentration, vertical velocity strength has important influence on cloud phase in mixed-phase cloud regimes.

  9. GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2)

    NASA Technical Reports Server (NTRS)

    Starr, David

    2002-01-01

    Status, progress and plans will be given for current GCSS (GEWEX Cloud System Study) WG2 (Working Group on Cirrus Cloud Systems) projects, including: (a) the Idealized Cirrus Model Comparison Project, (b) the Cirrus Parcel Model Comparison Project (Phase 2), and (c) the developing Hurricane Nora extended outflow model case study project. Past results will be summarized and plans for the upcoming year described. Issues and strategies will be discussed. Prospects for developing improved cloud parameterizations derived from results of GCSS WG2 projects will be assessed. Plans for NASA's CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Layers - Florida Area Cirrus Experiment) potential opportunities for use of those data for WG2 model simulations (future projects) will be briefly described.

  10. Radiative transfer in cirrus clouds. Part IV: On cloud geometry, inhomogeneity, and absorption

    SciTech Connect

    Liou, K.N.; Rao, N.

    1996-11-01

    The effects of cloud geometry and inhomogeneity on the radiative properties of cirrus clouds are investigated by using the successive orders of scattering (SOS) approach for radiative transfer. This approach is an integral solution method that can be directly applied to specific geometry and inhomogeneous structure of a medium without the requirement of solving the basic differential radiative transfer equation. A specific interpolation scheme is developed for the intensity and source function iterations to reduce the computation effort. The SOS approach is shown to be particularly useful for cirrus clouds with optical depths less than about 5. Some demonstrative results show that the importance of the cloud-side scattering is dependent on the cloud horizontal dimension relative to the vertical thickness and that the cloud inhomogeneity can play a significant role in determining the domain-averaged solar reflection and transmission patterns. For finite clouds, the authors derive a physical equation using the Cartesian coordinates to define cloud absorption in terms of the absorbed solar flux per volume associated with the 3D flux divergence. The cloud absorption so defined in governed by the incident solar fluxes on three sides and reflection and transmission at the cloud top and bottom as well as radiation leakages out of the four sides. Using a solar wavelength of 2.22 {mu}m as an example, it is shown that anomalous cloud absorption can occur if specific cloud geometries are involved, for example, cubic clouds with an oblique solar zenith angle. Compatibilities between radiometric measurements from aircraft and theoretical calculations are further discussed. To resolve the anomalous cloud absorption issue from the physical perspective, it is essential that the cloud geometrical structure and cloud microphysics including aerosols be determined concurrently with radiometric measurements from the air. 38 refs., 11 figs., 3 tabs.

  11. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  12. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  13. Backscattering by hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2013-08-01

    Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed.

  14. Lidar effective multiple-scattering coefficients in cirrus clouds.

    PubMed

    Nicolas, F O; Bissonnette, L R; Flamant, P H

    1997-05-20

    We delimit a regime, valid for most ground-based lidar probings of cirrus clouds, in which the field-of-view dependence of multiple scattering reaches a plateau. In this regime and assuming the phase function to be constant around pi, we formally demonstrate Platt's modification of the single-scattering lidar equation, with a parameter eta(P) accounting for the reduction of the effective scattering coefficient defined so that (1 - eta(P)) is the amount of energy scattered in the forward peak. Then, to cope with nonconstant backscattering functions, we discuss the introduction of an effective backscattering coefficient that is an average of the scattering probabilities around pi.

  15. Cirrus and Polar Stratospheric Cloud Studies using CLAES Data

    NASA Technical Reports Server (NTRS)

    Mergenthaler, John L.; Douglass, A. (Technical Monitor)

    2001-01-01

    We've concluded a 3 year (Period of Performance- January 21, 1998 to February 28, 2001) study of cirrus and polar stratospheric clouds using CLAES (Cryogenic Limb Array Etalon Spectrometer) data. We have described the progress of this study in monthly reports, UARS (Upper Atmosphere Research Satellite) science team meetings, American Geophysical Society Meetings, refereed publications and collaborative publications. Work undertaken includes the establishment of CLAES cloud detection criteria, the refinement of CLAES temperature retrieval techniques, compare the findings of CLAES with those of other instruments, and present findings to the larger community. This report describes the progress made in these areas.

  16. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1990-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice

  17. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1996-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2

  18. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  19. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    SciTech Connect

    Liu, Xiaohong; Shi, Xiangjun; Zhang, Kai; Jensen, Eric; Gettelman, A.; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-12-19

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m-2 (1σ uncertainty) and 2.4 ± 0.1 W m-2, respectively due to the presence of dust IN, with the net cloud forcing change of -0.40 ± 0.20 W m-2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L-1) and underestimate the frequency of low ice crystal number concentration (< 30 L-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  20. The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images

    NASA Astrophysics Data System (ADS)

    Wang, Pao K.; Cheng, Kai-Yuan; Setvak, Martin; Wang, Chen-Kang

    2016-04-01

    Gullwing-shaped cirrus layers are observed on an image above a severe thunderstorm occurred in Argentina taken by the instrument CALIOP on board of the CALIPSO satellite. The cirrus layers extended into a level in the stratosphere even higher than the above-anvil cirrus plumes that had been studied previously. This paper utilized the cloud model simulation results of a similar storm to explain the formation of such gullwing cirrus. It is shown that these cirrus layers can form from the moisture transported upward by successive internal gravity wave breaking at levels higher than the above-anvil plumes. The vertical locus of the wave crests where wave breaking occurs is itself gullwing-shaped which is the main reason why the thin cirrus layers are also gullwing shaped. Model results indicate that wave breaking can transport materials irreversibly into higher stratospheric layers and the gullwing-shaped cirrus is an evidence of this transport process.

  1. Considerations for modeling thin cirrus effects via brightness temperature differences

    NASA Technical Reports Server (NTRS)

    Schmidt, E. O.; Arduini, R. F.; Wielicki, B. A.; Stone, R. S.; Tsay, S.-C.

    1995-01-01

    Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.

  2. Optimization of the mixing ratio of ice crystal shapes in cirrus clouds for atmospheric point spread function modeling

    NASA Astrophysics Data System (ADS)

    Muguet, Isabelle; Chervet, Patrick; Rozé, Claude

    2007-10-01

    A critical issue to calculate the image transmission through cirrus clouds is to obtain a detailed description of the angular distribution of the scattered radiation in the forward direction. Computation of the scattering phase function on the basis of microphysics description of the cloud thanks to ray-tracing codes, seems to be the best way to fulfill this requirement. However, a comprehensive microphysical model can not be found, because of the great variability of the ice crystals composing natural cirrus. An optimization process has been developed to find the best mixing ratio of four pristine ice crystals shapes that minimizes the error on the forward peak of the scattering phase function. To achieve this goal, a comparison with a reference phase function derived from MODIS database has been led. The bulk scattering properties of the seven size distributions defined in this database have been computed at four wavelengths in the spectral domain from visible to medium infrared, applying the mixing ratio obtained after an optimization at 0.55μm. Used as an input to a propagation model based on a Monte Carlo method, PSF have been computed. They show very good agreement with the PSF calculated with the corresponding reference scattering properties.

  3. Sensitivity of Cirrus Simulations in Idealized Situations: The WG2 Test Cases

    NASA Technical Reports Server (NTRS)

    Starr, David OC.

    1998-01-01

    GCSS Cirrus Cloud Systems Working Group (WG2) is presently conducting a comparison of cirrus cloud models for idealized initial conditions. The experiments involve binary (off/on) tests of model sensitivity to infrared radiative processes, and thermal stratification, and vertical wind shear for situations of weakly forced (3 cm/s uplift) cold (-60 to -70 C) and warm (-35 to -50 C) cirrus clouds. A range of model types are involved including parcel, SCM, 2-D CRM, 3-D CRM and LES models. The test cases will be described and results from 2-dimensional cirrus cloud models with bulk microphysics (implicit second moment scheme) and explicit bin microphysics will be compared. Vertical ice mass flux (particle fall speed) is a critical model component leading to significant intermodel differences. Efforts are ongoing to better quantify this aspect. Future plans of WG2 will also be briefly described and include model comparisons for a well-observed case of cold (ARM IOP) cirrus and of warm (EUCREX) cirrus, as well as, a joint activity with WG4 to consider the treatment of anvil cirrus in a variety of models.

  4. The Effect of Cirrus Clouds on 8-13-micro Infrared Sky Radiance.

    PubMed

    Hall, F F

    1968-05-01

    An experimental investigation of ir sky radiance and radiance fluctuations in the 8-13-micro atmospheric window is reported. Measurements were made with ground-based, filtered bolometer detector radiometers under clear sky and cirrus overcast conditions. Sky radiance was measured very close to the limb of the sun to permit detection of the solar aureole caused by forward scattering by cirrus ice crystals. Polarized sky radiance was found at large zenith angles and is attributed to scattering by cirrus of thermal emission from the earth. The radiance due to tropospheric water vapor is predicted by means of a radiation chart. Measurements of clear sky radiance exceeded that predicted by the chart in all but one case. The radiance of visible cirrus greatly exceeds the radiation chart prediction. Diffraction about cirrus cloud particles leads to a prediction of a solar aureole of a size that corresponds to the measured aureole. It is concluded that even a cirrus haze, which is quite difficult for an unaided, observer to detect, can cause an excess zenith radiance of 0.1 mW cm(-2)sr(-1), which increases to twice this value at a zenith angle of 60 degrees . Even thin but visible cirrus clouds can easily produce an excess zenith radiance of 1 mW cm(-2)sr(-1), which increases by a factor 1.4 at a zenith angle of 60 degrees .

  5. Inter-Annual Variability in Tropical Cirrus Extent Simulated with a Global Chemistry Transport Model

    NASA Astrophysics Data System (ADS)

    Köhler, M. O.; MacKenzie, A. R.; Horseman, A. M.

    2014-12-01

    The extent and variability of cirrus coverage can play an important role for the transport of trace constituents through the tropical tropopause layer into the stratosphere. This is due to direct radiative effects from cirrus clouds, their impact on local water vapour abundances in the UTLS region and due to chemical processes on the surface of ice crystals. We investigate the variability of tropical cirrus cloud coverage over a period of 10 years (2004-2014) and its correlation with the Southern Oscillation Index. We use a global 3D offline chemistry transport model (SLIMCAT-Cirrus), with a parameterization of cirrus clouds formed by homogeneous nucleation. We compare the model's ability to reproduce the inter-annual variability in tropical cirrus extent with remote sensing data from satellites as well as with in-situ observations from the NASA Global Hawk in the Pacific region as part of the ATTREX campaign. Impacts from cirrus on the vertical transport from the troposphere to the stratosphere in the tropics and its inter-annual variability can be diagnosed from the model results.

  6. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    the microphysical, macrophysical, and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable need for reducing observational uncertainties and providing better observations especially for relative humidity and for the size distribution and chemical composition of aerosols in the upper troposphere.

  7. The 27-28 October 1986 FIRE IFO cirrus case study - Cirrus parameter relationships derived from satellite and lidar data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Alvarez, Joseph M.; Young, David F.; Sassen, Kenneth; Grund, Christian J.

    1990-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.

  8. The 27-28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1989-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.

  9. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols - Climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  10. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications.

    PubMed

    Sassen, K

    1992-07-24

    Supercooled droplets in cirrus uncinus cell heads between -40 degrees and -50 degrees C are identified from Project FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  11. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.

    PubMed

    Abbatt, J P D; Benz, S; Cziczo, D J; Kanji, Z; Lohmann, U; Möhler, O

    2006-09-22

    Laboratory measurements support a cirrus cloud formation pathway involving heterogeneous ice nucleation by solid ammonium sulfate aerosols. Ice formation occurs at low ice-saturation ratios consistent with the formation of continental cirrus and an interhemispheric asymmetry observed for cloud onset. In a climate model, this mechanism provides a widespread source of ice nuclei and leads to fewer but larger ice crystals as compared with a homogeneous freezing scenario. This reduces both the cloud albedo and the longwave heating by cirrus. With the global ammonia budget dominated by agricultural practices, this pathway might further couple anthropogenic activity to the climate system.

  12. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons

  13. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  14. Comparison of Cirrus Cloud Characteristics as Estimated by A Micropulse Ground-Based Lidar and A Spaceborne Lidar CALIOP Datasets Over Lille, France (50.60 °N, 3.14 ° E)

    NASA Astrophysics Data System (ADS)

    Nohra, Rita; Parol, Frédéric; Dubuisson, Philippe

    2016-06-01

    Our goal is to establish a climatology of cirrus cloud properties over Lille, France (50.60°N, 3.14 °E) using a ground-based lidar. A statistical analysis of mid-latitude cirrus clouds from lidar data in Lille over the period 2008-2013 is presented and discussed. The macrophysical properties (cloud base altitude, cloud top altitude, geometrical thickness, mid-cloud temperature) and optical properties (cloud optical thickness and lidar ratio) are evaluated and compared between the ground-based and the spaceborne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements for the period 2008-2013. We found similar results of macrophysical properties derived from both lidars. In addition a difference in the optical properties results is due to the multiple scattering and the heterogeneity of the observed scenes.

  15. Using laboratory and field measurements to constrain a single habit shortwave optical parameterization for cirrus

    NASA Astrophysics Data System (ADS)

    Smith, Helen R.; Baran, Anthony J.; Hesse, Evelyn; Hill, Peter G.; Connolly, Paul J.; Webb, Ann

    2016-11-01

    A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.

  16. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  17. Molecular Hydrogen Emission from Galaxies: The Cirrus Connection

    NASA Astrophysics Data System (ADS)

    Ingalls, James; Bania, Thomas; Boulanger, Francois; Draine, Bruce; Falgarone, Edith; Hily-Blant, Pierre

    2008-08-01

    Are cirrus clouds a major source of molecular hydrogen emission in normal Galaxies? This question caused a considerable debate during the 2007 Spitzer Conference. After the end of the cryogenic Spitzer mission, no existing or planned observatory will be capable of answering it for the known future. To remedy this, we propose a set of Spitzer IRS (LL) pointings to observe the two lowest-lying S(0) (28.2 micron) and S(1) (17.0 micron) pure-rotational transitions of H2 towards 4 translucent 'cirrus' positions in DCld 300.2-16.9, a known source of excited H2. Two of us unexpectedly discovered H2 S(2) emission at 12.3 microns in this cloud as part of our Spitzer GO program to study the 5-15 micron PAH spectrum. Relative to the integrated PAH flux at 7.9 microns, the S(2) flux in our cloud is higher by a factor of about 6 than the S(2) flux in non-active SINGS galaxies. One hypothesis currently in favor argues that H2 emission from the disks of galaxies results from fluorescent excitation by UV photons in dense photodissociation regions with high radiation fluxes. Clearly this cannot be the case for DCld 300.2-16.9, since the UV flux incident on the cloud cannot be greater than the average interstellar value. Yet this cirrus cloud is more efficient at exciting the S(2) transition into emission than the central disks of entire galaxies! A competing scenario is that the H2 rotational lines are excited by collisions in warm pockets of gas where turbulence dissipates. A full understanding of the excitation mechanism responsible for our H2 lines is impossible without measuring the lowest transitions on the rotational ladder. Such observations would also allow us to tally the total energy expended via the rotational transitions, which we can compare with available CII and FIR measurements, both of which are the result of UV heating; as well as planned CO measurements, which trace the turbulent velocity field. We are requesting 5.3 hours to observe 4 positions using Long Low

  18. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  19. The analysis of lidar signatures of cirrus clouds.

    PubMed

    Davis, P A

    1969-10-01

    The terminology of light scattering pertinent to a simple form of the lidar equation and the approximate analytical solution of the lidar equation are reviewed without specific restriction on the nature of the cloud scatterers. A boundary value of the volume backscattering coefficient and the relationship between extinction and backscattering are required for the solution. Given the boundary value of the backscattering coefficient and the total transmittance through a cloud, it is possible to derive (by successive approximation) an extinction/ backscatter ratio empirically. Application of the method to the ruby lidar return from a cirrus cloud led to a ratio of 28 sr, and to reasonable profiles of the backscatter coefficient and the transmittance through the cloud.

  20. CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.

    1999-01-01

    CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.

  1. Icy wave-cloud lunar corona and cirrus iridescence.

    PubMed

    Shaw, Joseph A; Pust, Nathan J

    2011-10-01

    Dual-polarization lidar data and radiosonde data are used to determine that iridescence in cirrus and a lunar corona in a thin wave cloud were caused by tiny ice crystals, not droplets of liquid water. The size of the corona diffraction rings recorded in photographs is used to estimate the mean diameter of the diffracting particles to be 14.6 μm, much smaller than conventional ice crystals. The iridescent cloud was located at the tropopause [~11-13.6 km above mean sea level (ASL)] with temperature near -70 °C, while the more optically pure corona was located at approximately 9.5 km ASL with temperature nearing -60 °C. Lidar cross-polarization ratios of 0.5 and 0.4 confirm that ice formed both the iridescence and the corona, respectively.

  2. Replicator for characterization of cirrus and polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Purcell, Richard G.

    1995-01-01

    A formvar replicator for installation in an aircraft pod has been designed, built, and flight tested on the NASA DC-8. The system incorporates a deicing capability (which can be pressure activated) to enable climb out through icing situations prior to deployment. The system can be operated at preselected speeds such that data can be recorded over a period of one to ten hours on 200 ft of 16mm film. A x2 speed control can be used during flight. Capability exists for detection of chemical constituents by appropriate doping of the formvar solution. An article entitled 'Measurements of ice particles in tropical cirrus anvils: importance in radiation balance' is attached as appendix A.

  3. Dual Wavelength Lidar Observation of Tropical High-Altitude Cirrus Clouds During the ALBATROSS 1996 Campaign

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Schafer, J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    1998-01-01

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel POLARSTERN on the Atlantic ocean in October-November 1996.

  4. Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar.

    PubMed

    Tao, Zongming; McCormick, M Patrick; Wu, Dong; Liu, Zhaoyan; Vaughan, Mark A

    2008-04-01

    We present observations of cirrus clouds from June 2006 to July 2007 performed by using a two-wavelength lidar located at Hampton University. For this time period, cirrus clouds were observed mostly in 7-13.5 km altitudes. Data analyses have been performed focusing on a color-ratio retrieval. In total, 86,369 samples from 1,689 profiles (1 min average and 15 m range resolution) containing cirrus clouds with attenuated backscatter ratio (ratio of attenuated total backscatter to the molecular backscatter) larger than 10 have been selected. The cirrus color ratio distribution shows a peak value at about 0.88 and a full width at half-maximum of 0.12.

  5. Bi-directional reflectance and other radiation parameters of cirrus from ER-2 observations

    NASA Technical Reports Server (NTRS)

    Spinhime, James

    1993-01-01

    Passive and active remote sensing of cirrus were acquired from the ER-2 high altitude aircraft in the 1991 Cirrus Experiment. The observations include direct measurements of cirrus bi-directional reflectance from a new translinear scanning radiometer and the previously employed measurements by lidar and visible-infrared imaging radiometers. For any cirrus radiative transfer application, it is necessary to know the appropriate model for visible reflectance in relation to angle and also the optical thickness and infrared emissivity of the clouds. At a more complicated level, for remote sensing and overall cloud effects it is ultimately required to understand effects from multiple cloud layers, broken clouds, and variable microphysics. Our overall data set from the scanning radiometers and lidar is intended to provide the necessary observations to investigate these problems.

  6. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  7. Airborne Studies in the Arctic in Support of FIRE-III

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    This grant supported (i) the participation of the University of Washington's (UW) Cloud and Aerosol Research Group (CARG), with its Convair-580 research aircraft, in the FIRE-ACE field study in the Arctic; (ii) analyses of portions of the data collected; (iii) presentation of results at conferences and workshops; (iv) formal publication of results; and, (v) archiving of the data collected by the UW/CARG. The UW/CARG Convair-580 flew twenty-three research flights, totaling over 97 research hours, in the FIRE-ACE field study during the period 19 May through 24 June 1998. Six flights were beneath the NASA ER-2 aircraft, eight flights over the instrumented SHEBA ship, and eleven flights over the DOE ARM site in Barrow, Alaska. Measurements of cloud radiative properties and cloud structures were obtained in stratus, altocumulus and cirrus clouds. Aerosol measurements were obtained in polluted arctic haze, and in very clean conditions. Several new instruments were flown on the UW Convair-580, including the Gerber g-meter, the NASA/Goddard spectral full-scanning radiometer, and the SPEC cloud particle imager (CPI). A complete listing of all of the UW Convair-580 flights in FIRE-ACE is given in the report by Hobbs listed as (ii) in Section 3 below. The UW/CARG focussed its own analyses of these data on the airborne in situ measurements of clouds and aerosols. This resulted in five formal publications, covering topics ranging from the production of aerosols by clouds and aerosol effects on surface heating in the arctic, to the structures of arctic clouds and comparisons of in situ measurements of cloud structures with deductions from remote sensing measurements.

  8. Lidar ratio and depolarization ratio for cirrus clouds.

    PubMed

    Chen, Wei-Nai; Chiang, Chih-Wei; Nee, Jan-Bai

    2002-10-20

    We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals.

  9. The three-dimensional structure of the infrared cirrus

    NASA Technical Reports Server (NTRS)

    Gaustad, John E.

    1994-01-01

    This project was carried out over a period of four years, beginning 6/15/89 and continuing through 9/15/93. Intermediate results have been reported as poster papers at several meetings of the American Astronomical Society. A brief summary was presented in April 1993 at a symposium on the infrared cirrus. The final results were published in late 1993. The measurements have been deposited in NASA's Astronomical Data Center. Briefly, the results are as follows: Using the IRAS data base, we surveyed the 1808 06-B9.5 stars in the Bright Star Catalog for extended excess emission at 60 micrometers, indicating the presence of heated dust (cirrus hotspots) at the location of the star. Measurements of the angular size and infrared flux at 12, 25, 60 and 100 micrometers were obtained for 302 objects. From these basic data we calculated the radius, absorption, optical depth, color temperature, and dust density for each object. Arguing that the stars are randomly distributed point probes of the ISM, we showed that the filling factor of the dust-bearing component of the ISM is 14.6 + 2.4 percent within 400 pc of the sun for clouds with an equivalent hydrogen density greater than 0.5 cm(exp -3). Above a density of 1.0 cm(exp -3) the density distribution function appears to follow a power law of index -1.25. Further, we showed that the dust is distributed more sparsely in a region near the sun about 60 pc wide and extending several hundred parsecs in the direction of longitudes 80-260 deg. The distances to the dust clouds were determined from the spectroscopic parallaxes of the embedded stars; when the HIPPARCOS parallaxes become available, we will be able to produce a more accurate three-dimensional view of the local ISM.

  10. Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays.

    PubMed

    Sassen, Kenneth; Zhu, Jiang; Benson, Sally

    2003-01-20

    In this fourth of a series of papers that describe long-term cloud research at the Facility for Atmospheric Remote Sensing at Salt Lake City, Utah, an approximately 10-year record of polarization lidar and photographic observations is analyzed to characterize the occurrence of optical displays in our local varieties of midlatitude cirrus clouds. The frequencies of occurrence of various types of halo, arc, and corona displays are evaluated according to their appearance and longevity over nominal 1-h observation periods and to the meteorological source of the cirrus. We find that complex halo-arc displays are rare at our locale and that even the so-called common 22 degree halo occurs infrequently as a complete long-lived ring. For example, only approximately 6% of the 1561-h daytime cirrus periods have bright and prolonged 22 degree halos, although a total of 37.3% have some indications of this halo, even if they are brief and fragmentary. Other fairly frequent features are the 22 degree upper tangent arc (8.6%), 22 degree parhelia (8.5%), and solar corona (7.2%). Of the optical displays observed, 83.6% are refraction based, only 1.9% are due to reflection phenomena, and a surprising 15.4% are caused by diffraction. Complex halo-arc displays are disproportionally associated with cirrus formed in tropical or subtropical airflow and also contain more horizontally oriented planar ice crystals. Lidar linear depolarization ratios from a subset of vivid displays show significant differences between halo- and the corona-producing cirrus, reflecting the effects of particle shape. Halos are associated with relatively warm cirrus that contain randomly and horizontally oriented planar ice crystals, whereas the colder corona cirrus produce much stronger depolarization from crystals too small to be uniformly oriented. Comparisons are made with available information from other locales, and we attempt to explain the geographical differences in terms of basic cirrus cloud processes.

  11. From HYSOMA to ENSOMAP - A new open source tool for quantitative soil properties mapping based on hyperspectral imagery from airborne to spaceborne applications

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Guillaso, Stephane; Rabe, Andreas; Foerster, Saskia; Guanter, Luis

    2016-04-01

    Soil spectroscopy from the visible-near infrared to the short wave infrared has been shown to be a proven method for the quantitative prediction of key soil surface properties in the laboratory, field, and up to airborne studies for exposed soils in appropriate surface conditions. With the upcoming launch of the next generation of spaceborne hyperspectral sensors within the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. This potential can be achieved only if adequate software tools are available, as shown by the increasing demand for the availability/accessibility of hyperspectral soil products from the geoscience community that have neither the capacity nor the expertise to deliver these soil products. In this context, recently many international efforts were tuned toward the development of robust and easy-to-access soil algorithms to allow non-remote sensing experts to obtain geoscience information based on non-expensive software packages where repeatability of the results is an important prerequisite. In particular, several algorithms for geological and mineral mapping were recently released such as the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software, or the GFZ EnMAP Geological Mapper. For quantitative soil mapping and monitoring, the HYSOMA (Hyperspectral Soil Mapper) software interface was developed at GFZ under the EUFAR (www.eufar.net) and the EnMAP (www.enmap.org) programs. HYSOMA was specifically oriented toward digital soil mapping applications and has been distributed since 2012 for free as IDL plug-ins under the IDL-virtual machine at www.gfz-potsdam.de/hysoma under a close source license. The HYSOMA interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. With more than 100 users around the world

  12. Cirrus cloud transmittance and backscatter in the infrared measured with a CO(2) lidar.

    PubMed

    Hall, F F; Cupp, R E; Troxel, S W

    1988-06-15

    Two independent methods of measuring the transmittance of cirrus clouds are compared. Both used a CO(2) pulsed Doppler lidar at a wavelength of 10.59 microm. The first method used backscatter from the calibration target El Chichon stratospheric cloud that was present over Boulder in 1982 and 1983. The second method used conical lidar scans at different zenith angles when uniform cirrus decks were present. Extinction coefficients measured from both methods average 0.1 km(-1) for tenuous cirrus 1.0 km thick to 0.78 km(-1) for cirrus several kilometers thick. There is a wide standard deviation in extinction values. Extinction-tobackscatter ratios S vary from <1000 sr for tenuous clouds to 2600 sr for dense clouds. Mie scattering and extinction calculations for spherical ice particles of 10-50 microm in radius lead to ratios S > 2000 sr, so long as the ice absorption is entered into the calculations. The backscattering ratio for ice cylinders is 1 order of magnitude lower than for spheres. Backscatter in the IR may, therefore, be reasonably well modeled by some combination of spheres and cylinders. Cloud thickness statistics from lidar returns show that cirrus decks average ~500 m thick. Clouds thinner than 300 m were often overlooked by the unaided surface-based observer. These preliminary results are in rather close agreement with the LOWTRAN 6 cirrus cloud model predictions.

  13. Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection

    NASA Astrophysics Data System (ADS)

    Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.

    2013-12-01

    Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.

  14. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  15. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  16. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  17. Cirrus cloud development in a mobile upper tropospheric trough: The November 26th FIRE cirrus case study

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Ackerman, Thomas P.

    1993-01-01

    The period from 18 UTC 26 Nov. 1991 to roughly 23 UTC 26 Nov. 1991 is one of the study periods of the FIRE (First International Satellite Cloud Climatology Regional Experiment) 2 field campaign. The middle and upper tropospheric cloud data that was collected during this time allowed FIRE scientists to learn a great deal about the detailed structure, microphysics, and radiative characteristics of the mid latitude cirrus that occurred during that time. Modeling studies that range from the microphysical to the mesoscale are now underway attempting to piece the detailed knowledge of this cloud system into a coherent picture of the atmospheric processes important to cirrus cloud development and maintenance. An important component of the modeling work, either as an input parameter in the case of cloud-scale models, or as output in the case of meso and larger scale models, is the large scale forcing of the cloud system. By forcing we mean the synoptic scale vertical motions and moisture budget that initially send air parcels ascending and supply the water vapor to allow condensation during ascent. Defining this forcing from the synoptic scale to the cloud scale is one of the stated scientific objectives of the FIRE program. From the standpoint of model validation, it is also necessary that the vertical motions and large scale moisture budget of the case studies be derived from observations. It is considered important that the models used to simulate the observed cloud fields begin with the correct dynamics and that the dynamics be in the right place for the right reasons.

  18. Aerosol Impacts on Cirrus Clouds and High-Power Laser Transmission: A Combined Satellite Observation and Modeling Approach

    DTIC Science & Technology

    2010-02-28

    Subject: Final Report for AFOSR Grant FA9550-09-1-0386, “Aerosol Impacts on Cirrus Clouds and High-Power Laser Transmission: A Combined Satellite...of the Weather Research Forecast (WRF) model for cirrus cloud simulation and prediction in conjunction with satellite observations to support the...features, the Fu-Liou-Gu scheme is now an ideal tool for the simulation of radiative transfer associated with cirrus clouds in weather and climate

  19. A comparison of cirrus clouds determined by ISCCP and SAGE-II and their relation to convection in the tropics

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vonder Haar, Thomas H.

    1992-01-01

    Results of tropical thin cirrus cloud retrievals using International Satellite Cloud Climatology Project (ISCCP) and Stratospheric Aerosol and Gaseous Experiment (SAGE-II) data from January 1985 are presented. A preliminary analysis of the results shows that thin cirrus increases with increasing height in both data sets, and SAGE-II exhibits a high frequency of occurrence. The thin cirrus extinction coefficient shows maxima around the convective regions of South America and the western Pacific Ocean.

  20. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  1. Discovery and imaging of a Galactic cirrus cloud with the far ultraviolet space telescope

    NASA Technical Reports Server (NTRS)

    Haikala, Lauri K.; Mattila, Kalevi; Bowyer, Stuart; Sasseen, Timothy P.; Lampton, Michael; Knude, Jens

    1995-01-01

    We present new far-ultraviolet (1400-1800 A) data concerning a Galactic cirrus cloud G251.2+73.3 near the north Galactic pole obtained with the space-borne imaging telescope FAUST (Far Ultraviolet Space Telescope). We obtain a good correlation between the far-ultraviolet (FUV) and IRAS 100 micrometers surface brightnesses, their relation being I(sub FUV) = (128 +/- 3) I(sub 100 micrometers) - (264 +/- 9), where the I(sub FUV) flux is given in units of photon/s/sq cm/A/sr and I(sub 100 micrometers) in MJy/sr. Using uvbyH-beta photometry, we get a distance of 120 pc and a visual extinction in the center of the cloud of 0.39 mag corresponding to an extinction of 1.0 mag at 1565 A. We have performed a multiple scattering calculation for the scattered light using the Monte Carlo method. These calculations provide restrictions on the FUV scattering properties of the interstellar dust.

  2. Coincident Occurrences of Tropical Individual Cirrus Clouds and Deep Convective Systems Derived from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Xu, Kuan-Man; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Chambers, Lin; Fan, Alice; Sun, Wenbo

    2007-01-01

    Measurements of cloud properties and atmospheric radiation taken between January and August 1998 by the Tropical Rainfall Measuring Mission (TRMM) satellite were used to investigate the effect of spatial and temporal scales on the coincident occurrences of tropical individual cirrus clouds (ICCs) and deep convective systems (DCSs). It is found that there is little or even negative correlation between instantaneous occurrences of ICC and DCS in small areas, in which both types of clouds cannot grow and expand simultaneously. When spatial and temporal domains are increased, ICCs become more dependent on DCSs due to the origination of many ICCs from DCSs and moisture supply from the DCS in the upper troposphere for the ICCs to grow, resulting in significant positive correlation between the two types of tropical high clouds in large spatial and long temporal scales. This result may suggest that the decrease of tropical high clouds with SST from model simulations is likely caused by restricted spatial domains and limited temporal periods. Finally, the radiative feedback due to the change in tropical high cloud area coverage with sea surface temperature appears small and about -0.14 W/sq m per degree Kelvin.

  3. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  4. Observed instantaneous cirrus radiative effect on surface-level shortwave and longwave irradiances

    NASA Astrophysics Data System (ADS)

    Dupont, Jean-Charles; Haeffelin, Martial

    2008-11-01

    Data collected at the SIRTA Observatory, 20 km south of Paris, are analyzed to determine the instantaneous surface cloud radiative effect (CRE) induced by cirrus clouds. CRE is here defined as the difference between overcast-sky and clear-sky surface radiative fluxes obtained by ground-based measurement of broadband fluxes and clear-sky parametric models, respectively. Clear-sky periods detected by a double threshold based on lidar and radiative fluxes analysis show a root mean square error for clear-sky models smaller than 6.5 W m-2 for shortwave flux and 4 W m-2 for longwave flux. Over 100 h in 2003-2006 characterized by homogeneous overcast cirrus clouds are analyzed. Fifty percent of this cirrus population is subvisible and semitransparent, that is, with optical thickness less than 0.3. The mean surface shortwave cirrus cloud radiative effect (CRESW) is found near -50 W m-2. We establish the relationship between CRESW and cirrus optical thickness (COT) to be about -90 W m-2 per unit of COT. This SW sensitivity ranges from -80 W m-2 COT-1 to -100 W m-2 COT-1 for turbid to pristine atmospheres, respectively. We also establish the relationship between surface longwave cloud radiative effect (CRELW) and the irradiance emitted by the cirrus cloud derived from cloud infrared emissivity and cloud temperature. The average surface CRELW is about +5 W m-2. CRELW is found to be about 10% of the cloud irradiance. This LW effect ranges from 5 to 15% of the cirrus irradiance depending on atmospheric humidity for the wet and dry atmosphere, respectively.

  5. Lidar data inversion for Cirrus clouds: An approach based on a statistical analysis of in situ microphysical measurements

    SciTech Connect

    Febvre, G.

    1994-10-01

    The problem of the lidar equation inversion lies in the fact that it requires a lidar calibration or else a reference value from the studied medium. This paper presents an approach to calibrate the lidar by calculating the constant Ak (lidar constant A multiplied by the ratio of backscatter coefficient to extinction coefficient k). This approach is based on statistical analysis of in situ measurements. This analysis demonstrates that the extinction coefficient has a typical probablility distribution in cirrus clouds. The property of this distribution, as far as the attenuation of laser beam in the cloud, is used as a constraint to calculate the value of Ak. The validity of this method is discussed and results compared with two other inversion methods.

  6. Tropical tropopause layer cirrus and its relation to tropopause

    NASA Astrophysics Data System (ADS)

    Tseng, H.-H.; Fu, Q.

    2017-02-01

    This study examines the spatial and temporal patterns of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) and their relationship to tropical tropopause including both cold point tropopause (CPT) and lapse rate tropopause (LRT). We use eight years (2006-2014) data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements. In addition to the CALIPSO cloud layer product, the clouds included in the current CALIPSO dataset as stratospheric features have been considered by separating clouds from aerosols, which are important in the TTL cloud analysis. It is also shown that the temporal variation of the stratospheric aerosols matches well with the volcanic eruption events. The TTL cloud fraction and the tropical tropopause temperature both have pronounced annual cycles and are strongly negatively correlated both temporally and spatially. The examination of the TTL cloud height relative to tropopause from collocated CALIPSO and COSMIC observations indicates that the tropopause plays a critical role in constraining the TTL cloud top height. We show that the probability density function of TTL cloud top height peaks just below the CPT while the occurrence of TTL clouds with cloud tops above the CPT could be largely explained by observed tropopause height uncertainty associated with the COSMIC vertical resolution.

  7. Estimation of cirrus and stratus cloud heights using landsat imagery

    SciTech Connect

    Inomata, Yasushi; Feind, R.E.; Welch, R.M.

    1996-03-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and antisunside of the cloud-shadow pair are apparent. The technique requires some interpretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about {plus_minus}250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semiautomated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals. 22 refs., 13 figs., 4 tabs.

  8. Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Inomata, Yasushi; Feind, R. E.; Welch, R. M.

    1996-01-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.

  9. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  10. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  11. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    PubMed Central

    Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang

    2015-01-01

    Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies. PMID:25928059

  12. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds.

    PubMed

    Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang

    2015-04-28

    Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31-34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  13. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, O C.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cadirola, M.; Melfi, S. H.; Schmidlin, F.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20%. The UV/lR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  14. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D. OC; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cardirola, M.; Melfi, S. H.; Schmidlin, F. J.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  15. Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Bui, Thaopaul; Weinheimer, Andrew; Weinstock, Elliot; Smith, Jessica; Pittman, Jasna; Baumgardner, Darrel; McGill, Mathew J.

    2004-01-01

    On July 13, 2002, a widespread, thin tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the CRYSTAL-FACE instrumentation, including in-situ measurements with the WB-57 aircraft. We use this cloud case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics indicate ice crystal diameters in the cloud layer ranged from about 7 to 40 um, and the peak number mode was about 10-25 um. In-situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. TRajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerable during the previous days.Examination of visible satellite imagery indicates that the cloud layer formation was, in general, not simply left over ice from convectively generated anvil cirrus.

  16. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.

    PubMed

    Landesman, Barbara T; Matson, Charles L

    2002-12-20

    A hybrid technique to simulate the imaging of space-based objects through cirrus clouds is presented. The method makes use of standard Huygens-Fresnel propagation beyond the cloud boundary and a novel vector trace approach within the cloud. At the top of the cloud, the wave front is divided into an array of input gradient vectors, which are in turn transmitted through the cloud model by use of the Coherent Illumination Ray Trace and Imaging Software for Cirrus. At the bottom of the cloud, the output vector distribution is used to reconstruct a wave front that continues propagating to the ground receiver. Images of the object as seen through cirrus clouds with different optical depths are compared with a diffraction-limited image. Turbulence effects from the atmospheric propagation are not included.

  17. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  18. Preliminary simulations of the large-scale environment during the FIRE cirrus IFO

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Toon, Owen B.

    1990-01-01

    Large scale forcing (scales greater than 500 km) is the dominant factor in the generation, maintenance, and dissipation of cirrus cloud systems. However, the analyses of data acquired during the first Cirrus IFO have highlighted the importance of mesoscale processes (scales of 20 to 500 km) to the development of cirrus cloud systems. Unfortunately, Starr and Wylie found that the temporal and spatial resolution of the standard and supplemental rawinsonde data were insufficient to allow an explanation of all of the mesoscale cloud features that were present on the 27 to 28 Oct. 1986. It is described how dynamic initialization, or 4-D data assimilation (FDDA) can provide a method to address this problem. The first steps towards application of FDDA to FIRE are also described.

  19. Understanding Seasonal Variability in thin Cirrus Clouds from Continuous MPLNET Observations at GSFC in 2012

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Gu, Y.

    2016-06-01

    Optically thin cirrus cloud (optical depth < 0.3) net radiative forcing represents one of the primary uncertainties in climate feedback, as sub-visible clouds play a fundamental role in atmospheric radiation balance and climate change. A lidar is a very sensitive optical device to detect clouds with an optical depth as low as 10-4. In this paper we assess the daytime net radiative forcing of subvisible cirrus clouds detected at Goddard Space Flight Center, a permanent observational site of the NASA Micro Pulse Lidar Network in 2012. Depending on their height, season and hour of the day, the solar albedo effect can outweigh the infrared greenhouse effect, cooling the earthatmosphere system rather than warming it exclusively. As result, based on latitude, the net forcing of sub-visible cirrus clouds can be more accurately parameterized in climate models.

  20. A case study of formation and maintenance of a lower stratospheric cirrus cloud over the tropics

    NASA Astrophysics Data System (ADS)

    Sandhya, M.; Sridharan, S.; Indira Devi, M.; Niranjan, K.; Jayaraman, A.

    2015-05-01

    A rare occurrence of stratospheric cirrus at 18.6 km height persisting for about 5 days during 3-7 March 2014 is inferred from the ground-based Mie lidar observations over Gadanki (13.5° N, 79.2° E) and spaceborne observations. Due to the vertical transport by large updrafts on 3 March in the troposphere, triggered by a potential vorticity intrusion, the water vapour mixing ratio shows an increase around the height of 18.6 km. Relative humidity with respect to ice is ~ 150%, indicating that the cirrus cloud may be formed though homogeneous nucleation of sulfuric acid. The cirrus cloud persists due to the cold anomaly associated with the presence of a 4-day wave.

  1. Analysis of cirrus cloud spectral signatures in the far infrared

    NASA Astrophysics Data System (ADS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-07-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820-960 cm-1 interval. The retrieved cloud parameters are the input data for simulations covering the 250-1100 cm-1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced.

  2. The Link Between UV Extinction and Infrared Cirrus

    NASA Technical Reports Server (NTRS)

    Hackwell, John A.; Hecht, James; Canterna, Ronald

    1997-01-01

    Low resolution spectra from the International Ultraviolet Explorer satellite were used to derive ultraviolet extinction curves for stars in four clusters away from the galactic plane. The extinction in three of the clusters is very similar to the general interstellar curve defined by Seaton. Stars in the fourth region, near the Rho Ophiuci dark cloud, have extinction curves that are characterized by a small "linear" term component. The star BD +36 deg 781 is unique amongst the 20 stars observed in that it shows evidence for extinction by diamond grains near 1700 angstroms. We used data from the final release of the IRAS Sky Survey Atlas (ISSA) to determine the 60 micron to 100 micron intensity ratio for the infrared cirrus. The ISSA data, which have been corrected for zodiacal light, gave intensity ratios that are more robust and self-consistent than for other data sets that we used. When the infrared and ultraviolet data are combined, we see a general trend for low values of the ultraviolet "linear term" (al) to correlate with high values of 60 micron/100 micron ratio. This implies that, in regions where the average dust temperature is hotter (high 60 micron/100 micron ratio), there is a relative absence of the small silicate grains that are responsible for the ultraviolet linear term. However, the new data do not bear out our earlier contention that the 60 micron and 100 micron emissions are poorly correlated spatially in regions where the 60 micron/100 micron ratio is low. Only NGC 1647 shows this result. It may be that the different dust types are particularly poorly mixed in this area.

  3. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  4. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  5. Application of ERTS data to the detection of thin cirrus and clean air turbulence

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The feasibility of detecting a thin cirrus and clear air turbulence from ERTS-1 MSS data is explored. The result of analyses indicates that a thin cirrus not shown in a conventional meteorological satellite picture can be revealed in ERTS-1 MSS pictures. Is also found that the core of jet stream can be located with high accuracy from ERTS-1 pictures and the possible area of clear air turbulence can be predicted if the data of the quality of ERTS-1 data are available in real time.

  6. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  7. Image transfer through cirrus clouds. I. Ray trace analysis and wave-front reconstruction.

    PubMed

    Landesman, B T; Kindilien, P J; Matson, C L; Caudill, T R

    2000-10-20

    A new technique for modeling image transfer through cirrus clouds is presented. The technique uses a ray trace to model beam propagation through a three-dimensional volume of polydisperse, hexagonal ice crystals. Beyond the cloud, the technique makes use of standard Huygens-Fresnel propagation methods. At the air-cloud interface, each wave front is resolved into a ray distribution for input to the ray trace software. Similarly, a wave front is reconstructed from the output ray distribution at the cloud-air interface. Simulation output from the ray trace program is presented and the modulation transfer function for stars imaged through cirrus clouds of varying depths is discussed.

  8. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  9. Air-sea interactions and cirrus cloud-radiation feedbacks on climate

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1988-01-01

    A single cloud-radiation feedback mechanism, which may play a role in the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases, is described. An improved radiative-convective model was developed and used to study the role of cirrus clouds in the optical thickness feedback mechanism. The model includes prescribed relative humidity and ozone profiles and a surface energy balance. The results suggest that the cloud optical thickness feedback mechanism can cause a substantial reduction in the surface warming due to doubling CO2, even in the presence of cirrus clouds.

  10. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  11. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  12. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  13. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  14. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  15. On the Importance of Small Ice Crystals in Tropical Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.; Heymsfield, G.; Platnick, S.; Arnold, G. T.; Tanelli, S.

    2009-01-01

    In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is

  16. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  17. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  19. 78 FR 36084 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... introductory material also stated the service test requirement was removed for airplanes of 6,000 pounds... Airplane; Function and Reliability Testing; Withdrawal AGENCY: Federal Aviation Administration (FAA), DOT... notice granting special conditions for the Cirrus Design Corporation model SF50 airplane. We...

  20. 75 FR 20518 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Full Authority Digital Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Airplane; Full Authority Digital Engine Control (FADEC) System AGENCY: Federal Aviation Administration (FAA... issued for the Cirrus Design Corporation model SF50 airplane. This airplane will have a novel or unusual... Aviation Administration, Aircraft Certification Service, Small Airplane Directorate, ACE-111, 901...

  1. Simultaneous Observations of Cirrus Clouds with a Millimeter-Wave Radar and the MU Radar.

    NASA Astrophysics Data System (ADS)

    Wada, Eiko; Hashiguchi, Hiroyuki; Yamamoto, Masayuki K.; Teshiba, Michihiro; Fukao, Shoichiro

    2005-03-01

    Observations of frontal cirrus clouds were conducted with the scanning millimeter-wave radar at the Shigaraki Middle and Upper Atmosphere (MU) Radar Observatory in Shiga, Japan, during 30 September-13 October 2000. The three-dimensional background winds were also observed with the very high frequency (VHF) band MU radar. Comparing the observational results of the two radars, it was found that the cirrus clouds appeared coincident with the layers of the strong vertical shear of the horizontal winds, and they developed and became thicker under the condition of the strong vertical shear of the horizontal wind and updraft. The result of the radiosonde observation indicated that Kelvin-Helmholtz instability (KHI) occurred at 8-9-km altitudes because of the strong vertical shear of the horizontal wind. The warm and moist air existed above the 8.5-km altitude, and the cold and dry air existed below the 8.5-km altitude. As a result of the airmass mixing of air above and below the 8.5-km altitudes, the cirrus clouds were formed. The updraft, which existed at 8.5-12-km altitude, caused the development of the cirrus clouds with the thickness of >2 km. By using the scanning millimeter-wave radar, the three-dimensional structure of cell echoes formed by KHI for the first time were successfully observed.

  2. 78 FR 55629 - Special Conditions: Cirrus Design Corporation, Model SF50; Inflatable Three-Point Restraint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... on the comments we receive. Background On September 9, 2008, Cirrus applied for a Type Certificate... attached to the lap belt. The inflatable portion of the restraint system will rely on sensors to activate... special conditions. The inflatable restraint system relies on sensors to activate the...

  3. Final Progress Report [Testing Climate Model Simulations of Tropical Cirrus Lifecycles: A Lagrangian

    SciTech Connect

    Soden, Brian J

    2009-06-30

    This project integrates ARM data sets with satellite observations and model simulations to improve the representation of tropical cloud systems in climate models. We focus on describing and understanding relevant features of the lifecycle of tropical cirrus cloud systems using an innovative method which combines the Eulerian-based ARM measurements with Lagrangian information from geostationary satellites.

  4. Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer.

    PubMed

    Sassen, K; Mace, G G; Hallett, J; Poellot, M R

    1998-03-20

    A high (14.0-km), cold (-71.0 degrees C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1-2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ~22 mum. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud.

  5. 1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Engelmann, Ronny; Ansmann, Albert; Veselovskii, Igor; Whiteman, David N.; Althausen, Dietrich

    2016-09-01

    For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen and oxygen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532, and 1064 nm. The cirrus backscatter coefficients were found to be equal for all three wavelengths keeping the retrieval uncertainties in mind. The multiple-scattering-corrected cirrus extinction coefficients at 355 nm were on average about 20-30 % lower than the ones for 532 and 1064 nm. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 31 ± 5 sr (355 nm), 36 ± 5 sr (532 nm), and 38 ± 5 sr (1064 nm) in this single study. We further discussed the requirements needed to obtain aerosol extinction profiles in the lower troposphere at 1064 nm with good accuracy (20 % relative uncertainty) and appropriate temporal and vertical resolution.

  6. Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana)

    PubMed Central

    Zhao, Hansheng; Sun, Huayu; Li, Lichao; Lou, Yongfeng; Li, Rongsheng; Qi, Lianghua; Gao, Zhimin

    2017-01-01

    Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan. PMID:28383053

  7. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimet