Sample records for airborne collision avoidance

  1. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    , sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  2. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  3. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  4. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  5. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 417.231..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that...

  6. Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  7. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65... analysis. (a) For a permitted flight with a planned maximum altitude greater than 150 kilometers, a permittee must obtain a collision avoidance analysis from United States Strategic Command. (b) The collision...

  8. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  9. Ground Collision Avoidance System (Igcas)

    NASA Technical Reports Server (NTRS)

    Prosser, Kevin (Inventor); Hook, Loyd (Inventor); Skoog, Mark A (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  10. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  11. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  12. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  13. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  14. Multi-actuators vehicle collision avoidance system - Experimental validation

    NASA Astrophysics Data System (ADS)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  15. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  16. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  17. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  18. Beacon Collision Avoidance System (BCAS) Airborne Antenna Diversity Study

    DOT National Transportation Integrated Search

    1978-04-01

    The potential need for antenna diversity on the intruding aircraft was examined. The BCAS system was used for determining airborne antenna diversity requirements for general aviation aircraft approaching a BCAS equipped aircraft from various angles. ...

  19. Intersection collision avoidance using ITS countermeasures. Task 9, Intersection collision avoidance system performance guidelines

    DOT National Transportation Integrated Search

    2000-09-01

    Phase III of the Intersection Collision Avoidance Using ITS Countermeasures program developed testbed systems, implemented the systems on a vehicle, and performed testing to determine the potential effectiveness of this system in preventing intersect...

  20. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2015-01-01

    The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.

  1. Design study of general aviation collision avoidance system

    NASA Technical Reports Server (NTRS)

    Bates, M. R.; Moore, L. D.; Scott, W. V.

    1972-01-01

    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.

  2. Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars

    PubMed Central

    Schiffner, Ingo; Srinivasan, Mandyam V.

    2016-01-01

    We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft. PMID:27680488

  3. A neuro-collision avoidance strategy for robot manipulators

    NASA Technical Reports Server (NTRS)

    Onema, Joel P.; Maclaunchlan, Robert A.

    1992-01-01

    The area of collision avoidance and path planning in robotics has received much attention in the research community. Our study centers on a combination of an artificial neural network paradigm with a motion planning strategy that insures safe motion of the Articulated Two-Link Arm with Scissor Hand System relative to an object. Whenever an obstacle is encountered, the arm attempts to slide along the obstacle surface, thereby avoiding collision by means of the local tangent strategy and its artificial neural network implementation. This combination compensates the inverse kinematics of a robot manipulator. Simulation results indicate that a neuro-collision avoidance strategy can be achieved by means of a learning local tangent method.

  4. Radar-based collision avoidance for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  5. Horizontal Collision Avoidance Systems Study

    DOT National Transportation Integrated Search

    1973-12-01

    This report presents the results of an analytical study of the merits and mechanization requirements of horizontal collision avoidance systems (CAS). The horizontal and combined horizontal/vertical maneuvers which provide adequate miss distance with ...

  6. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Advanced Collision Avoidance System for UAS (ACAS Xu) Interoperability White Paper Presentation

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    The Phase 1 DAA Minimum Operational Performance Standards (MOPS) provided requirements for two classes of DAA equipment: equipment Class 1 contains the basic DAA equipment required to assist a pilot in remaining well clear, while equipment Class 2 integrates the Traffic Alert and Collision Avoidance (TCAS) II system. Thus, the Class 1 system provides RWC functionality only, while the Class 2 system is intended to provide both RWC and Collision Avoidance (CA) functionality, in compliance with the Minimum Aviation System Performance (MASPS) for the Interoperability of Airborne Collision Avoidance Systems. The FAAs TCAS Program Office is currently developing Airborne Collision Avoidance System X (ACAS X) to support the objectives of the Federal Aviation Administrations (FAA) Next Generation Air Transportation System Program (NextGen). ACAS X has a suite of variants with a common underlying design that are intended to be optimized for their intended airframes and operations. ACAS Xu being is designed for UAS and allows for new surveillance technologies and tailored logic for platforms with different performance characteristics. In addition to Collision Avoidance (CA) alerting and guidance, ACAS Xu is being tuned to provide RWC alerting and guidance in compliance with the SC 228 DAA MOPS. With a single logic performing both RWC and CA functions, ACAS Xu will provide industry with an integrated DAA solution that addresses many of the interoperability shortcomings of Phase I systems. While the MOPS for ACAS Xu will specify an integrated DAA system, it will need to show compliance with the RWC alerting thresholds and alerting requirements defined in the DAA Phase 2 MOPS. Further, some functional components of the ACAS Xu system such as the remote pilots displayed guidance might be mostly references to the corresponding requirements in the DAA MOPS. To provide a seamless, integrated, RWC-CA system to assist the pilot in remaining well clear and avoiding collisions, several

  7. Defining the Collision Avoidance Region for DAA Systems

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Park, Chunki; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    Unmanned aircraft systems (UAS) will be required to equip with a detect-­-and-­-avoid (DAA) system in order to satisfy the federal aviation regulations to maintain well clear of other aircraft, some of which may be equipped with a Traffic Collision Avoidance System (TCAS) to mitigate the possibility of mid-­-air collisions. As such, the minimum operational performance standards (MOPS) for UAS DAA systems are being designed with TCAS interoperability in mind by a group of industry, government, and academic institutions named RTCA Special Committee-228 (SC-228). This document will discuss the development of the spatial-­-temporal volume known as the collision avoidance region in which the DAA system is not allowed to provide vertical guidance to maintain or regain DAA well clear that could conflict with resolution advisories (RAs) issued by the intruder aircraft's TCAS system. Three collision avoidance region definition candidates were developed based on the existing TCAS RA and DAA alerting definitions. They were evaluated against each other in terms of their interoperability with TCAS RAs and DAA alerts in an unmitigated factorial encounter analysis of 1.3 million simulated pairs.

  8. Radar sensors for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Phoel, Wayne G.

    1997-02-01

    On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.

  9. Modeling and Simulation of an UAS Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Oliveros, Edgardo V.; Murray, A. Jennifer

    2010-01-01

    This paper describes a Modeling and Simulation of an Unmanned Aircraft Systems (UAS) Collision Avoidance System, capable of representing different types of scenarios for UAS collision avoidance. Commercial and military piloted aircraft currently utilize various systems for collision avoidance such as Traffic Alert and Collision A voidance System (TCAS), Automatic Dependent Surveillance-Broadcast (ADS-B), Radar and ElectroOptical and Infrared Sensors (EO-IR). The integration of information from these systems is done by the pilot in the aircraft to determine the best course of action. In order to operate optimally in the National Airspace System (NAS) UAS have to work in a similar or equivalent manner to a piloted aircraft by applying the principle of "detect-see and avoid" (DSA) to other air traffic. Hence, we have taken these existing sensor technologies into consideration in order to meet the challenge of researching the modeling and simulation of an approximated DSA system. A Schematic Model for a UAS Collision Avoidance System (CAS) has been developed ina closed loop block diagram for that purpose. We have found that the most suitable software to carry out this task is the Satellite Tool Kit (STK) from Analytical Graphics Inc. (AGI). We have used the Aircraft Mission Modeler (AMM) for modeling and simulation of a scenario where a UAS is placed on a possible collision path with an initial intruder and then with a second intruder, but is able to avoid them by executing a right tum maneuver and then climbing. Radars have also been modeled with specific characteristics for the UAS and both intruders. The software provides analytical, graphical user interfaces and data controlling tools which allow the operator to simulate different conditions. Extensive simulations have been carried out which returned excellent results.

  10. All weather collision avoidance for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Contarino, Mark

    2010-04-01

    For decades, military and other national security agencies have been denied unfettered access to the National Air Space (NAS) because their unmanned aircraft lack a highly reliable and effective collision avoidance capability. The controlling agency, the Federal Aviation Administration, justifiably demands "no harm" to the safety of the NAS. To overcome the constraints imposed on Unmanned Aircraft Systems (UAS) use of the NAS, a new, complex, conformable collision avoidance system has been developed - one that will be effective in all flyable weather conditions, overcoming the shortfalls of other sensing systems, including radar, lidar, acoustic, EO/IR, etc., while meeting form factor and cost criteria suitable for Tier II UAS operations. The system also targets Tier I as an ultimate goal, understanding the operational limitations of the smallest UASs may require modification of the design that is suitable for Tier II and higher. The All Weather Sense and Avoid System (AWSAS) takes into account the FAA's plan to incorporate ADS-B (out) for all aircraft by 2020, and it is intended to make collision avoidance capability available for UAS entry into the NAS as early as 2013. When approved, UASs can fly mission or training flights in the NAS free of the constraints presently in place. Upon implementation this system will achieve collision avoidance capability for UASs deployed for national security purposes and will allow expansion of UAS usage for commercial or other civil purposes.

  11. Analytical formulation of impulsive collision avoidance dynamics

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio

    2014-02-01

    The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.

  12. Application of Decision Tree on Collision Avoidance System Design and Verification for Quadcopter

    NASA Astrophysics Data System (ADS)

    Chen, C.-W.; Hsieh, P.-H.; Lai, W.-H.

    2017-08-01

    The purpose of the research is to build a collision avoidance system with decision tree algorithm used for quadcopters. While the ultrasonic range finder judges the distance is in collision avoidance interval, the access will be replaced from operator to the system to control the altitude of the UAV. According to the former experiences on operating quadcopters, we can obtain the appropriate pitch angle. The UAS implement the following three motions to avoid collisions. Case1: initial slow avoidance stage, Case2: slow avoidance stage and Case3: Rapid avoidance stage. Then the training data of collision avoidance test will be transmitted to the ground station via wireless transmission module to further analysis. The entire decision tree algorithm of collision avoidance system, transmission data, and ground station have been verified in some flight tests. In the flight test, the quadcopter can implement avoidance motion in real-time and move away from obstacles steadily. In the avoidance area, the authority of the collision avoidance system is higher than the operator and implements the avoidance process. The quadcopter can successfully fly away from the obstacles in 1.92 meter per second and the minimum distance between the quadcopter and the obstacle is 1.05 meters.

  13. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  14. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  15. Safety of high-speed guided ground transportation systems : collision avoidance and accident survivability : volume 2 : collision avoidance

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the second of four volumes concerned with developing safety guidelines and specifications for high-speed guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this study is t...

  16. Collision Avoidance Functional Requirements for Step 1. Revision 6

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  17. Evaluation of an automotive rear-end collision avoidance system

    DOT National Transportation Integrated Search

    2006-04-01

    This report presents the results of an independent evaluation of the Automotive Collision Avoidance System (ACAS). The ACAS integrates forward collision warning (FCW) and adaptive cruise control (ACC) functions for light-vehicle applications. The FCW...

  18. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  19. CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance

    NASA Technical Reports Server (NTRS)

    Targ, Russell

    1991-01-01

    The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.

  20. Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.

    PubMed

    Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare

    2017-12-01

    In this paper, we propose a novel methodology for achieving complex dynamic behaviors in multirobot systems. In particular, we consider a multirobot system partitioned into two subgroups: 1) dependent and 2) independent robots. Independent robots are utilized as a control input, and their motion is controlled in such a way that the dependent robots solve a tracking problem, that is following arbitrarily defined setpoint trajectories, in a coordinated manner. The control strategy proposed in this paper explicitly addresses the collision avoidance problem, utilizing a null space-based behavioral approach: this leads to combining, in a non conflicting manner, the tracking control law with a collision avoidance strategy. The combination of these control actions allows the robots to execute their task in a safe way. Avoidance of collisions is formally proven in this paper, and the proposed methodology is validated by means of simulations and experiments on real robots.

  1. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and

  2. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  3. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli

    PubMed Central

    Chan, R. WM.; Gabbiani, F.

    2013-01-01

    SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572

  4. Automotive collision avoidance system field operational test

    DOT National Transportation Integrated Search

    2005-03-01

    The Automotive Collision Avoidance System field operational test (or ACAS FOT) program was led by General Motors (GM) under a cooperative agreement with the U.S. Department of Transportation. This report summarizes the activities of the entire progra...

  5. Fighting Testing ACAT/FRRP: Automatic Collision Avoidance Technology/Fighter Risk Reduction Project

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A.

    2009-01-01

    This slide presentation reviews the work of the Flight testing Automatic Collision Avoidance Technology/Fighter Risk Reduction Project (ACAT/FRRP). The goal of this project is to develop common modular architecture for all aircraft, and to enable the transition of technology from research to production as soon as possible to begin to reduce the rate of mishaps. The automated Ground Collision Avoidance System (GCAS) system is designed to prevent collision with the ground, by avionics that project the future trajectory over digital terrain, and request an evasion maneuver at the last instance. The flight controls are capable of automatically performing a recovery. The collision avoidance is described in the presentation. Also included in the presentation is a description of the flight test.

  6. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  7. Passive Collision Avoidance System for UAS

    DTIC Science & Technology

    2008-09-01

    feasibility of using SWAP efficient LWIR microbolometers as outlined in the Priest report circa 1998 as a solution to the collision avoidance problems for UASs...81 7.3 LWIR Multispectral Sensor ..........................................................................................84 7.4 LWIR ... LWIR image of the Ultralight. Muffler runs at approximately 1200 F. ......................32 Figure 36: 3D model of LVDS circuit board with L-3

  8. Power mobility with collision avoidance for older adults: user, caregiver, and prescriber perspectives.

    PubMed

    Wang, Rosalie H; Korotchenko, Alexandra; Hurd Clarke, Laura; Mortenson, W Ben; Mihailidis, Alex

    2013-01-01

    Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory, and cognitive impairments, thus enabling independence for more users. Little is known about consumers' perceptions of collision avoidance. This article draws on interviews (29 users, 5 caregivers, and 10 prescribers) to examine views on design and utilization of this technology. Data analysis identified three themes: "useful situations or contexts," "technology design issues and real-life application," and "appropriateness of collision avoidance technology for a variety of users." Findings support ongoing development of collision avoidance for older adult users. The majority of participants supported the technology and felt that it might benefit current users and users with visual impairments, but might be unsuitable for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where collision avoidance might be beneficial (driving backward, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. User desire to maintain driving autonomy supports development of collaboratively controlled systems. This research lays the groundwork for future development by illustrating consumer requirements for this technology.

  9. UAS Collision Avoidance Algorithm that Minimizes the Impact on Route Surveillance

    DTIC Science & Technology

    2009-03-01

    Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface .......................124 Appendix B : Collision Cone Boundary Rates... b ) Split Cone (c) Multiple Intruders, Single and Split Cones [27] ........................................................ 27 3-3: Collision Cone...Approach in the Vertical Plane (a) Single Cone ( b ) Multiple Intruders, Single and Split Cone [27

  10. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  11. Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    NASA Astrophysics Data System (ADS)

    Hieu, Dinh Chi; Masuda, Akeo; Rabarijaona, Verotiana Hanitriniala; Shimamoto, Shigeru

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  12. Cooperative Collision Avoidance Technology Demonstration Data Analysis Report

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report details the National Aeronautics and Space Administration (NASA) Access 5 Project Office Cooperative Collision Avoidance (CCA) Technology Demonstration for unmanned aircraft systems (UAS) conducted from 21 to 28 September 2005. The test platform chosen for the demonstration was the Proteus Optionally Piloted Vehicle operated by Scaled Composites, LLC, flown out of the Mojave Airport, Mojave, CA. A single intruder aircraft, a NASA Gulf stream III, was used during the demonstration to execute a series of near-collision encounter scenarios. Both aircraft were equipped with Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B) systems. The objective of this demonstration was to collect flight data to support validation efforts for the Access 5 CCA Work Package Performance Simulation and Systems Integration Laboratory (SIL). Correlation of the flight data with results obtained from the performance simulation serves as the basis for the simulation validation. A similar effort uses the flight data to validate the SIL architecture that contains the same sensor hardware that was used during the flight demonstration.

  13. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.

    PubMed

    Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-11-25

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.

  14. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

    PubMed Central

    Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-01-01

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851

  15. Braking Analysis For Collision Avoidance-- Autonomous Braking System Performance Modeling And Benefits Analysis

    DOT National Transportation Integrated Search

    1996-05-24

    THIS REPORT IS AN ANALYSIS OF THE BENEFITS OF A COLLISION AVOIDANCE SYSTEM IN REDUCING REAR-END CRASHES. THE COLLISION AVOIDANCE SYSTEM CONSIDERED IN THIS STUDY UTILIZES THE SIGNAL FROM A FORWARD LOOKING SENSOR TO ACTIVATE THE TRACTION CONTROL VALVE ...

  16. Power Mobility with Collision Avoidance for Older Adults: User, Caregiver and Prescriber Perspectives

    PubMed Central

    Wang, Rosalie H; Korotchenko, Alexandra; Clarke, Laura Hurd; Ben Mortenson, W; Mihailidis, Alex

    2017-01-01

    Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory and cognitive impairments, thus enabling independence for more potential users. However, little is known about consumers’ perceptions of collision avoidance. This article draws on interviews with 29 users, five caregivers, and 10 prescribers to examine views on the design and utilization of this technology. Data analysis identified three themes: “useful situations or contexts”, “technology design issues and real life application”, and “appropriateness of collision avoidance technology for a variety of users”. Findings support the ongoing development of collision avoidance for older adult users. The majority of participants were supportive of the technology, and felt that it might benefit current power mobility users and users with visual impairments, but might be unsuitable for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where collision avoidance might be beneficial (driving backwards, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. Furthermore, user desire to maintain driving autonomy indicates the need to develop collaboratively-controlled systems. This research lays the groundwork for future development by identifying and illustrating consumer needs for this technology. PMID:24458968

  17. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  18. Investigation Of Alternative Displays For Side Collision Avoidance Systems, Final Report

    DOT National Transportation Integrated Search

    1996-12-01

    DRIVER-VEHICLE INTERFACE OR DVI, HUMAN FACTORS, DRIVER PREFERENCES, INTELLIGENT VEHICLE INITIATIVE OR IVI : SIDE COLLISION AVOIDANCE SYSTEMS (SCAS) ARE DESIGNED TO WARN OF IMPENDING COLLISIONS AND CAN DETECT NOT ONLY ADJACENT VEHICLES BUT VEHICLES...

  19. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  20. Speed Approach for UAV Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Berdonosov, V. D.; Zivotova, A. A.; Htet Naing, Zaw; Zhuravlev, D. O.

    2018-05-01

    The article represents a new approach of defining potential collision of two or more UAVs in a common aviation area. UAVs trajectories are approximated by two or three trajectories’ points obtained from the ADS-B system. In the process of defining meeting points of trajectories, two cutoff values of the critical speed range, at which a UAVs collision is possible, are calculated. As calculation expressions for meeting points and cutoff values of the critical speed are represented in the analytical form, even if an on-board computer system has limited computational capacity, the time for calculation will be far less than the time of receiving data from ADS-B. For this reason, calculations can be updated at each cycle of new data receiving, and the trajectory approximation can be bounded by straight lines. Such approach allows developing the compact algorithm of collision avoidance, even for a significant amount of UAVs (more than several dozens). To proof the research adequacy, modeling was performed using a software system developed specifically for this purpose.

  1. An optimal control strategy for collision avoidance of mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy.

  2. Collision avoidance for aircraft in abort landing

    NASA Astrophysics Data System (ADS)

    Mathwig, Jarret

    We study the collision avoidance between two aircraft flying in the same vertical plane: a host aircraft on a glide path and an intruder aircraft on a horizontal trajectory below that of the host aircraft and heading in the opposite direction. Assuming that the intruder aircraft is uncooperative, the host aircraft executes an optimal abort landing maneuver: it applies maximum thrust setting and maximum angle of attack lifting the flight path over the original path, thereby increasing the timewise minimum distance between the two aircraft and, in this way, avoiding the potential collision. In the presence of weak constraints on the aircraft and/or the environment, the angle of attack must be brought to the maximum value and kept there until the maximin point is reached. On the other hand, in the presence of strong constraints on the aircraft and the environment, desaturation of the angle of attack might have to take place before the maximin point is reached. This thesis includes four parts. In the first part, after an introduction and review of the available literature, we reformulate and solve the one-subarc Chebyshev maximin problem as a two-subarc Bolza-Pontryagin problem in which the avoidance and the recovery maneuvers are treated simultaneously. In the second part, we develop a guidance scheme (gamma guidance) capable of approximating the optimal trajectory in real time. In the third part, we present the algorithms employed to solve the one-subarc and two-subarc problems. In the fourth part, we decompose the two-subarc Bolza-Pontryagin problem into two one-subarc problems: the avoidance problem and the recovery problem, to be solved in sequence; remarkably, for problems where the ratio of total maneuver time to avoidance time is sufficiently large (≥5), this simplified procedure predicts accurately the location of the maximin point as well as the maximin distance.

  3. Optimal motion planning for collision avoidance of mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1992-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the minimum distance between the robot and the object is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. A perturbation control type of approach is used to update the optimal plan. Simulation results verify the value of the proposed strategy.

  4. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  5. Formation flight and collision avoidance for multiple UAVs based on modified tentacle algorithm in unstructured environments

    PubMed Central

    2017-01-01

    This paper presents a method for formation flight and collision avoidance of multiple UAVs. Due to the shortcomings such as collision avoidance caused by UAV’s high-speed and unstructured environments, this paper proposes a modified tentacle algorithm to ensure the high performance of collision avoidance. Different from the conventional tentacle algorithm which uses inverse derivation, the modified tentacle algorithm rapidly matches the radius of each tentacle and the steering command, ensuring that the data calculation problem in the conventional tentacle algorithm is solved. Meanwhile, both the speed sets and tentacles in one speed set are reduced and reconstructed so as to be applied to multiple UAVs. Instead of path iterative optimization, the paper selects the best tentacle to obtain the UAV collision avoidance path quickly. The simulation results show that the method presented in the paper effectively enhances the performance of flight formation and collision avoidance for multiple high-speed UAVs in unstructured environments. PMID:28763498

  6. Collision avoidance behavior as a function of aging and tennis playing.

    PubMed

    Lobjois, Régis; Benguigui, Nicolas; Bertsch, Jean; Broderick, Michael P

    2008-02-01

    Daily living often requires pedestrians and drivers to adapt their behavior to the displacement of other objects in their environment in order to avoid collision. Yet little research has paid attention to the effect of age on the completion of such a challenging task. The purpose of this study was to examine the relationship between age and collision avoidance skill and whether a sporting activity affects this. Three age groups (20-30, 60-70, and 70-80 years) of tennis players and non-players launched a projectile toward a target in order to hit it before it was hit by another "object" (a stimulus represented by apparent motion of lights). If the participant judged that time-to-collision (TTC) of the moving stimulus was not long enough for him/her to launch the projectile in time to arrive before the stimulus, the participant had to inhibit the launching. Results showed that for the non-players the number of errors in the 70-80 year-old group was significantly higher than those of the 20-30 and 60-70 year-old groups, which did not differ from each other. However, this increase was not observed in the 70-80 year-old tennis players, demonstrating a beneficial effect of playing tennis on collision avoidance skill. Results also revealed that the older groups of both tennis players and non-players were subject to the typical age-related increase in response time. Additional analyses indicated that the 70-80 year-old non-players did not adjust their actions to these age-related changes in response time. The older tennis-playing participants, however, were more likely to adjust collision avoidance behavior to their diminished response times.

  7. Experimental Studies Of Pilot Performance At Collision Avoidance During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.

  8. Collision Avoidance Short Course Part I: Theory

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.

    2017-01-01

    Satellite conjunction assessment is perhaps the fastest-growing area in space situational awareness and protection, with military, civil, and commercial satellite owner operators embracing more and more sophisticated processes to avoid the avoidable namely collisions between high-value space assets and orbital debris. NASA and CNES have collaborated to offer an introductory short course on all the major aspects of the conjunction assessment problem. This half-day course will cover satellite conjunction dynamics and theory, JSpOC conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.

  9. Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.

    1990-01-01

    The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.

  10. CAESAR, French Probative Public Service for In-Orbit Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Laporte, Francois; Moury, Monique

    2013-08-01

    This paper starts by describing the conjunction analysis which has to be performed using CSM data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2-step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for Middle Man role. After describing the Middle Man concept, it introduces the French response CAESAR and the need for collaborative work environment which is implied by Middle Man concept. It includes a description of the environment put in place for CAESAR (secure website and dedicated tools), the content of the service, the condition for the distribution of the CNES software JAC and the advantages for subscribers.

  11. The effect of collision avoidance for autonomous robot team formation

    NASA Astrophysics Data System (ADS)

    Seidman, Mark H.; Yang, Shanchieh J.

    2007-04-01

    As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.

  12. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    PubMed

    Riaz, Faisal; Niazi, Muaz A

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  13. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  14. Application of radar for automotive collision avoidance. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.

  15. An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1993-01-01

    A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.

  16. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    PubMed Central

    Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.

    2013-01-01

    Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of

  17. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    NASA Astrophysics Data System (ADS)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  18. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    PubMed

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among

  19. Design and evaluation of steering protection for avoiding collisions during a lane change.

    PubMed

    Itoh, Makoto; Inagaki, Toshiyuki

    2014-01-01

    This paper discusses the design of a driver assistance system for avoiding collisions with vehicles in blind spots. The following three types of support systems are compared: (1) a warning system that provides the driver with an auditory alert, (2) a 'soft' protection system that makes the steering wheel stiffer to tell the driver that a lane-change manoeuvre is not recommended and (3) a 'hard' protection system that cancels the driver's input and controls the tyre angle autonomously to prevent lane departure. The results of an experiment showed that the hard protection system was more effective for collision avoidance than either the warning or the soft protection system. The warning and soft protection systems were almost the same in terms of collision avoidance. The results suggest that the human-centred automation principle, which requires the human to have the final authority over the automation, can be violated depending on the context.

  20. Effectiveness and driver acceptance of a semi-autonomous forward obstacle collision avoidance system.

    PubMed

    Itoh, Makoto; Horikome, Tatsuya; Inagaki, Toshiyuki

    2013-09-01

    This paper proposes a semi-autonomous collision avoidance system for the prevention of collisions between vehicles and pedestrians and objects on a road. The system is designed to be compatible with the human-centered automation principle, i.e., the decision to perform a maneuver to avoid a collision is made by the driver. However, the system is partly autonomous in that it turns the steering wheel independently when the driver only applies the brake, indicating his or her intent to avoid the obstacle. With a medium-fidelity driving simulator, we conducted an experiment to investigate the effectiveness of this system for improving safety in emergency situations, as well as its acceptance by drivers. The results indicate that the system effectively improves safety in emergency situations, and the semi-autonomous characteristic of the system was found to be acceptable to drivers. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.

    PubMed

    Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting

    2016-12-01

    Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in

  2. Comparative Analysis of ACAS-Xu and DAIDALUS Detect-and-Avoid Systems

    NASA Technical Reports Server (NTRS)

    Davies, Jason T.; Wu, Minghong G.

    2018-01-01

    The Detect and Avoid (DAA) capability of a recent version (Run 3) of the Airborne Collision Avoidance System-Xu (ACAS-Xu) is measured against that of the Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS), a reference algorithm for the Phase 1 Minimum Operational Performance Standards (MOPS) for DAA. This comparative analysis of the two systems' alerting and horizontal guidance outcomes is conducted through the lens of the Detect and Avoid mission using flight data of scripted encounters from a recent flight test. Results indicate comparable timelines and outcomes between ACAS-Xu's Remain Well Clear alert and guidance and DAIDALUS's corrective alert and guidance, although ACAS-Xu's guidance appears to be more conservative. ACAS-Xu's Collision Avoidance alert and guidance occurs later than DAIDALUS's warning alert and guidance, and overlaps with DAIDALUS's timeline of maneuver to remain Well Clear. Interesting discrepancies between ACAS-Xu's directive guidance and DAIDALUS's "Regain Well Clear" guidance occur in some scenarios.

  3. Safety of high-speed guided ground transportation : collision avoidance and accident survivability : volume 1 : collision threat

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the first of four volumes concerned with developing safety guidelines and specifications for high-speed guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this study is to...

  4. Collision avoidance system cost-benefit analysis : volume I - technical manual

    DOT National Transportation Integrated Search

    1981-09-01

    Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...

  5. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson’s arms race model

    PubMed Central

    Niazi, Muaz A.

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294

  6. SU-F-T-235: Optical Scan Based Collision Avoidance Using Multiple Stereotactic Cameras During Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R; Dobelbower, M

    Purpose: To demonstrate the ability to quickly generate an accurate collision avoidance map using multiple stereotactic cameras during simulation. Methods: Three Kinect stereotactic cameras were placed in the CT simulation room and optically calibrated to the DICOM isocenter. Immediately before scanning, the patient was optically imaged to generate a 3D polygon mesh, which was used to calculate the collision avoidance area using our previously developed framework. The mesh was visually compared to the CT scan body contour to ensure accurate coordinate alignment. To test the accuracy of the collision calculation, the patient and machine were physically maneuvered in the treatmentmore » room to calculated collision boundaries. Results: The optical scan and collision calculation took 38.0 seconds and 2.5 seconds to complete respectively. The collision prediction accuracy was determined using a receiver operating curve (ROC) analysis, where the true positive, true negative, false positive and false negative values were 837, 821, 43, and 79 points respectively. The ROC accuracy was 93.1% over the sampled collision space. Conclusion: We have demonstrated a framework which is fast and accurate for predicting collision avoidance for treatment which can be determined during the normal simulation process. Because of the speed, the system could be used to add a layer of safety with a negligible impact on the normal patient simulation experience. This information could be used during treatment planning to explore the feasible geometries when optimizing plans. Research supported by Varian Medical Systems.« less

  7. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    DOT National Transportation Integrated Search

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  8. Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Long, Stacia M.; You, Tung-Han; Halsell, C. Allen; Bhat, Ramachand S.; Demcak, Stuart W.; Graat, Eric J.; Higa, Earl S.; Highsmith, Dolan E.; Mottinger, Neil A.; Jah, Moriba K.

    2007-01-01

    The Mars Reconnaissance Orbiter reached Mars on March 10, 2006 and performed a Mars orbit insertion maneuver of 1 km/s to enter into a large elliptical orbit. Three weeks later, aerobraking operations began and lasted about five months. Aerobraking utilized the atmospheric drag to reduce the large elliptical orbit into a smaller, near circular orbit. At the time of MRO aerobraking, there were three other operational spacecraft orbiting Mars and the navigation team had to minimize the possibility of a collision. This paper describes the daily operations of the MRO navigation team during this time as well as the collision avoidance strategy development and implementation.

  9. Numerical approach of collision avoidance and optimal control on robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wang, Jyhshing Jack

    1990-01-01

    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.

  10. Earth Observing System (EOS) Aqua and Aura Space Weather Effects on Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2017-01-01

    This presentation will describe recent EOS Aqua and Aura operational collision avoidance experience during periods of solar and geomagnetic storm activity. It will highlight challenges faced by the operations team during short-notice, high-risk predicted close approaches. The presentation will highlight the evolution of the operational collision avoidance process for the EOS Aqua and Aura missions. The presentation will highlight operational challenges that have occurred, process improvements that have been implemented and identify potential future challenges.

  11. Beacon Collision Avoidance System (BCAS) Alternative Concepts for Determining Target Positions

    DOT National Transportation Integrated Search

    1978-09-01

    The (Litchford) Beacon-based Collision Avoidance System concept requires the computation of target range and bearing relative to the BCAS aircraft. Techniques for determining target range and bearing under four different assumptions about the ground ...

  12. Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    PubMed Central

    Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M.

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance. PMID:22319323

  13. Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications.

    PubMed

    Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.

  14. Advanced Whale Detection Methods to Improve Whale-Ship Collision Avoidance

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Tougher, B.

    2010-12-01

    Collisions between whales and ships are now estimated to account for fully a third of all whale deaths worldwide. Such collisions can incur costly ship repairs, and may damage or disable ship steering requiring costly response efforts from state and federal agencies. While collisions with rare whale species are problematic in further reducing their low population numbers, collisions with some of the more abundant whale species are also becoming more common as their populations increase. The problem is compounded as ship traffic likewise continues to grow, thus posing a growing risk to both whales and ships. Federal agencies are considering policies to alter shipping lanes to minimize whale-ship collisions off California and elsewhere. Similar efforts have already been undertaken for the Boston Harbor ship approach, where a bend in the shipping lane was introduced to reduce ship traffic through a favorite area of the highly endangered North Atlantic Right Whale. The Boston shipping approach lane was also flanked with a system of moorings with whale detection hydrophones which broadcast the presence of calling whales in or near the ship channel to approaching ships in real time. When so notified, ships can post lookouts to avoid whale collisions, and reduce speed to reduce the likelihood of whale death, which is highly speed dependent. To reduce the likelihood and seriousness of whale-ship collisions off California and Alaska in particular, there is a need to better know areas of particularly high use by whales, and consider implementation of reduced ship speeds in these areas. There is also an ongoing discussion of altering shipping lanes in the Santa Barbara Channel to avoid habitual Blue whales aggregation areas in particular. However, unlike the case for Boston Harbor, notification of ships that whales are nearby to reduce or avoid collisions is complicated because many California and Alaska whale species do not call regularly, and would thus be undetected by

  15. Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) : Database Structure

    DOT National Transportation Integrated Search

    2011-07-01

    This report documents the process required for data exchange between a conductor of a field operational test (FOT) and an independent evaluator based on the experience of the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V...

  16. A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks

    DTIC Science & Technology

    2001-01-01

    00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Netowrks 5a. CONTRACT NUMBER...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE

  17. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  18. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  19. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  20. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  1. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Action to avoid collision (Rule 8). 83.08 Section 83.08 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Steering and Sailing Rules Conduct of Vessels in Any Condition of...

  2. Collision avoidance system cost-benefit analysis : volume III - appendices F-M

    DOT National Transportation Integrated Search

    1981-09-01

    Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...

  3. Collision avoidance system cost-benefit analysis : volume II - appendices A-E

    DOT National Transportation Integrated Search

    1981-09-01

    Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...

  4. Automotive collision avoidance field operational test : warning cue implementation summary report

    DOT National Transportation Integrated Search

    2002-05-23

    This report documents the human factors work conducted from January to June 2001 to design and evaluate the driver-vehicle-interface (DVI) for the Automotive Collision Avoidance System Field Operational Test (ACAS FOT) program. The objective was to d...

  5. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  6. Safety of High Speed and Ground Guided Transportation Systems: Collision Avoidance and Accident Survivability: Volume 1: Collision Threat

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the first of four volunes concerned with developing safety guidelines and specifications for high-speed : guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this : study i...

  7. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  8. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  9. A real-time robot arm collision avoidance system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1992-01-01

    A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.

  10. Collision Avoidance for Airport Traffic Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Bailey, Randall E.; Otero, Sharon D.; Barker, Glover D.

    2010-01-01

    A Collision Avoidance for Airport Traffic (CAAT) concept for the airport Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate pilot reaction to conflict events in the TMA near the airport, different alert timings for various scenarios, alerting display concepts, and directive alerting concepts. This paper gives an overview of the conflict detection and resolution (CD&R) concept, simulation study, and test results

  11. Collision Avoidance for Airport Traffic Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  12. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.

    PubMed

    Thompson, James P; Mackenzie, Jamie R R; Dutschke, Jeffrey K; Baldock, Matthew R J; Raftery, Simon J; Wall, John

    2018-06-01

    In-vehicle collision avoidance technology (CAT) has the potential to prevent crash involvement. In 2015, Transport for New South Wales undertook a trial of a Mobileye 560 CAT system that was installed in 34 government fleet vehicles for a period of seven months. The system provided headway monitoring, lane departure, forward collision and pedestrian collision warnings, using audio and visual alerts. The purpose of the trial was to determine whether the technology could change the driving behaviour of fleet vehicle drivers and improve their safety. The evaluation consisted of three components: (1) analysis of objective data to examine effects of the technology on driving behaviour, (2) analysis of video footage taken from a sample of the vehicles to examine driving circumstances that trigger headway monitoring and forward collision warnings, and (3) a survey completed by 122 of the 199 individuals who drove the trial vehicles to examine experiences with, and attitudes to, the technology. Analysis of the objective data found that the system resulted in changes in behaviour with increased headway and improved lane keeping, but that these improvements dissipated once the warning alerts were switched off. Therefore, the system is capable of altering behaviour but only when it is actively providing alerts. In-vehicle video footage revealed that over a quarter of forward collision warnings were false alarms, in which a warning event was triggered despite there being no vehicle travelling ahead. The surveyed drivers recognised that the system could improve safety but most did not wish to use it themselves as they found it to be distracting and felt that it would not prevent them from having a crash. The results demonstrate that collision avoidance technology can improve driving behaviour but drivers may need to be educated about the potential benefits for their driving in order to accept the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Design and hardware-in-loop implementation of collision avoidance algorithms for heavy commercial road vehicles

    NASA Astrophysics Data System (ADS)

    Rajaram, Vignesh; Subramanian, Shankar C.

    2016-07-01

    An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.

  14. Collision avoidance sensor skin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was to totally eliminate the possibility of a robot (or any mechanism for that matter) inducing a collision in space operations. We were particularly concerned that human beings were safe under all circumstances. This was apparently accomplished, and it is shown that GSFC has a system that is ready for space qualification and flight. However, it soon became apparent that much more could be accomplished with this technology. Payloads could be made invulnerable to collision avoidance and the blind spots behind them eliminated. This could be accomplished by a simple, non-imaging set of 'Capaciflector' sensors on each payload. It also is evident that this system could be used to align and dock the system with a wide margin of safety. Throughout, lighting problems could be ignored, and unexpected events and modeling errors taken in stride. At the same time, computational requirements would be reduced. This can be done in a simple, rugged, reliable manner that will not disturb the form factor of space systems. It will be practical for space applications. The lab experiments indicate we are well on the way to accomplishing this. Still, the research trail goes deeper. It now appears that the sensors can be extended to end effectors to provide precontact information and make robot docking (or any docking connection) very smooth, with minimal loads impacted back into the mating structures. This type of ability would be a major step forward in basic control techniques in space. There are, however, baseline and restructuring issues to be tackled. The payloads must get power and signals to them from the robot or from the astronaut servicing tool. This requires a standard electromechanical interface. Any of several could be used. The GSFC prototype shown in this presentation is a good one. Sensors with their attendant electronics must be added to the payloads, end effectors, and robot arms and integrated into the system.

  15. 77 FR 29749 - 74th Meeting: RTCA Special Committee 147, Minimal Operations Performance Standards for Traffic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... 147, Minimal Operations Performance Standards for Traffic Alert and Collision Avoidance Systems... Traffic Alert and Collision Avoidance Systems Airborne Equipment. SUMMARY: The FAA is issuing this notice... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment. DATES: The meeting...

  16. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  17. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  18. 78 FR 61445 - Seventy-Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems... Traffic Alert and Collision Avoidance Systems Airborne Equipment. SUMMARY: The FAA is issuing this notice... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment. DATES: The meeting...

  19. 78 FR 66419 - Seventy Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems... Traffic Alert and Collision Avoidance Systems Airborne Equipment. SUMMARY: The FAA is issuing this notice... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment. DATES: The meeting...

  20. 78 FR 6401 - Seventy Fifth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems... Traffic Alert and Collision Avoidance Systems Airborne Equipment. SUMMARY: The FAA is issuing this notice... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment. DATES: The meeting...

  1. An airborne sensor for the avoidance of clear air turbulence

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1981-01-01

    This paper describes an airborne microwave radiometer that may be able to provide altitude guidance away from layers containing clear air turbulence, CAT. The sensor may also be able to predict upper limits for the severity of upcoming CAT. The 55 GHz radiometer is passive, not radar, and it measures the temperature of oxygen molecules in the viewing direction (averaged along a several-kilometer path). A small computer directs the viewing direction through elevation angle scans, and converts observed quantities to an 'altitude temperature profile'. The principle for CAT avoidance is that CAT is found statistically more often within inversion layers and at the tropopause, both of which are easily located from sensor-generated altitude temperature profiles.

  2. Calibration, Information, and Control Strategies for Braking to Avoid a Collision

    ERIC Educational Resources Information Center

    Fajen, Brett R.

    2005-01-01

    This study explored visual control strategies for braking to avoid collision by manipulating information about speed of self-motion. Participants watched computer-generated displays and used a brake to stop at an object in the path of motion. Global optic flow rate and edge rate were manipulated by adjusting eyeheight and ground-texture size.…

  3. CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds

    NASA Astrophysics Data System (ADS)

    Paris, Sébastien; Gerdelan, Anton; O'Sullivan, Carol

    The new wave of computer-driven entertainment technology throws audiences and game players into massive virtual worlds where entire cities are rendered in real time. Computer animated characters run through inner-city streets teeming with pedestrians, all fully rendered with 3D graphics, animations, particle effects and linked to 3D sound effects to produce more realistic and immersive computer-hosted entertainment experiences than ever before. Computing all of this detail at once is enormously computationally expensive, and game designers as a rule, have sacrificed the behavioural realism in favour of better graphics. In this paper we propose a new Collision Avoidance Level of Detail (CA-LOD) algorithm that allows games to support huge crowds in real time with the appearance of more intelligent behaviour. We propose two collision avoidance models used for two different CA-LODs: a fuzzy steering focusing on the performances, and a geometric steering to obtain the best realism. Mixing these approaches allows to obtain thousands of autonomous characters in real time, resulting in a scalable but still controllable crowd.

  4. How Usability Testing Resulted in Improvements to Ground Collision Software for General Aviation: Improved Ground Collision Avoidance System (IGCAS)

    NASA Technical Reports Server (NTRS)

    Lamarr, Michael; Chinske, Chris; Williams, Ethan; Law, Cameron; Skoog, Mark; Sorokowski, Paul

    2016-01-01

    The NASA improved Ground Collision Avoidance System (iGCAS) team conducted an onsite usability study at Experimental Aircraft Association (EAA) Air Venture in Oshkosh, Wisconsin from July 19 through July 26, 2015. EAA Air Venture had approximately 550,000 attendees from which the sample pool of pilots were selected. The objectives of this study were to assess the overall appropriateness and acceptability of iGCAS as a warning system for General Aviation aircraft, usability of the iGCAS displays and audio cues, test terrain avoidance characteristics, performance, functionality, pilot response time, and correlate terrain avoidance performance and pilot response time data.

  5. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.

    PubMed

    Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-01-01

    The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. System Capability Assessment of Cooperative Intersection Collision Avoidance System for Violations (CICAS-V)

    DOT National Transportation Integrated Search

    2011-07-01

    This report describes the system capability assessment for the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) based on data collected from objective tests and a pilot test. The CICAS-V is a vehicle-to-infrastructure syst...

  7. Development Of Performance Specifications For Collision Avoidance Systems For Lane Change, Merging, And Backing, Task 3 - Interim Report: Test Of Existing Hardware

    DOT National Transportation Integrated Search

    1995-05-01

    KEYWORDS : ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, COLLISION WARNING/AVOIDANCE SYSTEMS, CRASH REDUCTION, INTELLIGENT VEHICLE INITIATIVE OR IVI : RESULTS FROM THE TESTING OF ELEVEN COLLISION AVOIDANCE SYSTEMS (CAS) FOR LANE CHANGE, ...

  8. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures: Task 3, Volume 1

    DOT National Transportation Integrated Search

    1995-08-23

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity oi these crashes. This report describes the findings of the...

  9. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 3 - Volume 2

    DOT National Transportation Integrated Search

    1995-08-23

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report describes the findings of t...

  10. Windshear avoidance - Requirements and proposed system for airborne lidar detection

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1988-01-01

    A generalized windshear hazard index is derived from considerations of wind conditions and an aircraft's present and potential altitude. Based on a systems approach to the windshear threat, lidar appears to be a viable methodology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The airborne CO2 and Ho:YAG lidar windshear detection systems analyzed can each give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 s. The technology necessary to design, build and test such a brassboard 10.6-micron CO2 lidar is at hand.

  11. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  12. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    NASA Astrophysics Data System (ADS)

    Khalifa, N. S.

    2015-06-01

    The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change Δ V ‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser Δ V ‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  13. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    NASA Astrophysics Data System (ADS)

    Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  14. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    PubMed Central

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O’Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2017-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce’s utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  15. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective.

    PubMed

    Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  16. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  17. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  18. Modeling of driver's collision avoidance maneuver based on controller switching model.

    PubMed

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  19. A Collision Avoidance Strategy for a Potential Natural Satellite around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Carpenter, J. Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  20. A Collision Avoidance Strategy for a Potential Natural Satellite Around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Carpenter, Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  1. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  2. Evaluation of the Norridgewock intersection collision avoidance warning system on Route 201A, Norridgewock, Maine.

    DOT National Transportation Integrated Search

    2006-11-01

    Review of the Norridgewock Intersection Collision Avoidance Warning System : demonstrates that the system appears to effectively reduce the number of potential : crashes at the intersection of River Road, Sophie May Lane and Route 201A. : Results sho...

  3. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 3, Volume 2, Final Report

    DOT National Transportation Integrated Search

    1995-08-01

    INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...

  4. SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Cardan, R

    2015-06-15

    Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images.more » The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a

  5. Cooperative intersection collision avoidance system limited to stop sign and traffic signal violations (CICAS-V).

    DOT National Transportation Integrated Search

    2008-09-30

    The objective of the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) Project is to develop and field-test a comprehensive system to reduce the number of crashes at intersections due to violations of traffic control device...

  6. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures - Task 4, Volume 2: RORSIM Manual

    DOT National Transportation Integrated Search

    1995-09-05

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report documents the RORSIM comput...

  7. 35-GHz radar sensor for automotive collision avoidance

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  8. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  9. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  10. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 1 Vol. 1 Technical Findings

    DOT National Transportation Integrated Search

    1994-10-28

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report describes and documents the a...

  11. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.

    NASA Astrophysics Data System (ADS)

    Hawary, A. F.; Razak, N. A.

    2018-05-01

    Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.

  12. Run-Off Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 1 Vol. 2 Support Volume

    DOT National Transportation Integrated Search

    1994-10-28

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report contains a summary of data us...

  13. Safety of High Speed and Guided Ground Transportation Systems: Collision Avoidance and Accident Survivability: Volume 3

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the third of four volumes concerned with developing safety guidelines and specifications for high-speed : guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in : this study i...

  14. Collision Avoidance "Short Course" Part III: CA Role in Changing Space Flight Environment

    NASA Technical Reports Server (NTRS)

    Newman, Lauri

    2017-01-01

    Satellite conjunction assessment is perhaps the fastest-growing area in space situational awareness and protection, with military, civil, and commercial satellite owner operators embracing more and more sophisticated processes to avoid the avoidable namely collisions between high-value space assets and orbital debris. NASA and CNES have collaborated to offer an introductory short course on all the major aspects of the conjunction assessment problem. This half-day course will cover satellite conjunction dynamics and theory, JSpOC conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.

  15. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 1, Volume 2: Support Volume, Final Report

    DOT National Transportation Integrated Search

    1994-10-01

    THE RUN-OFF-ROAD COLLISION AVOIDANCE USING LVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES.

  16. Unifying Time to Contact Estimation and Collision Avoidance across Species

    PubMed Central

    Keil, Matthias S.; López-Moliner, Joan

    2012-01-01

    The -function and the -function are phenomenological models that are widely used in the context of timing interceptive actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: is a decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast, has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a biophysically plausible fashion. Here we propose a new framework – the corrected modified Tau function – capable of predicting both -type (“”) and -type (“”) responses. The outstanding property of our new framework is its resilience to noise. We show that can be derived from a firing rate equation, and, as , serves to describe the response curves of collision sensitive neurons. Furthermore, we show that predicts the psychophysical performance of subjects determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within the framework, links between -type and -type neurons are established. Therefore, it could possibly serve as a model for explaining the co-occurrence of such neurons in the brain. PMID:22915999

  17. Safety of High Speed Guided Ground Transportation Systems: Collision Avoidance and Accident Survivability Volume 4: Proposed Specifications

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the fourth of four volumes concerned with developing safety guidelines and specifications for high-speed : guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this : study ...

  18. Safety of high-speed guided ground transportation systems : collision avoidance and accident survivability : volume 4 : proposed specifications

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the fourth of four volumes concerned with developing safety guidelines and specifications for high-speed guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this study is t...

  19. Safety of high-speed guided ground transportation systems : collision avoidance and accident survivability : volume 3 : accident survivability

    DOT National Transportation Integrated Search

    1993-03-01

    This report is the third of four volumes concerned with developing safety guidelines and specifications for high-speed guided ground transportation (HSGGT) collision avoidance and accident survivability. The overall approach taken in this study is to...

  20. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 1, Volume 1: Technical Findings, Final Report

    DOT National Transportation Integrated Search

    1994-10-01

    THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...

  1. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 2, Volume 1: Technical Findings, Final Report

    DOT National Transportation Integrated Search

    1995-06-01

    THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...

  2. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 4, Volume 2: Rorsim Manual, Final Report

    DOT National Transportation Integrated Search

    1995-09-01

    THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DOCUMENTS THE RORSIM COM...

  3. Operational support to collision avoidance activities by ESA's space debris office

    NASA Astrophysics Data System (ADS)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  4. A Summary of the NASA ISS Space Debris Collision Avoidance Program

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph

    2002-01-01

    Creating and implementing a process for the mitigation of the impact hazards due to cornets and asteroids will prove to be a complex and involved process. The closest similar program is the collision avoidance process currently used for protection of the International Space Station (ISS). This process, in operation for over three years, has many similarities to the NEG risk problem. By reviewing the ISS program, a broader perspective on the complications of and requirements for a NEO risk mitigation program might be obtained. Specifically, any lessons learned and continuing issues of concern might prove useful in the development of a NEO risk assessment and mitigation program.

  5. Collision Avoidance Short Course: Conjunction Assessment Risk Analysis - NASA Robotic CARA. Part I: ; Theory

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Frigm, Ryan C.

    2015-01-01

    Satellite conjunction assessment is perhaps the fastest growing area in space situational awareness and protection with military, civil and commercial satellite owner-operators embracing more and more sophisticated processes to avoid the avoidable - namely collisions between high value space assets and orbital debris. NASA and Centre National d'Etudes Spatiales (CNES) have collaborated to offer an introductory short course on all the major aspects of the conjunctions assessment problem. This half-day course will cover satellite conjunction dynamics and theory. Joint Space Operations Center (JsPOC) conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.

  6. Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1991-01-01

    Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.

  7. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    NASA Technical Reports Server (NTRS)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  8. Conceptual model for collision detection and avoidance for runway incursion prevention

    NASA Astrophysics Data System (ADS)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  9. Independent Evaluation of the Driver Acceptance of the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) Pilot Test

    DOT National Transportation Integrated Search

    2011-07-01

    This report documents the results of the independent evaluations assessment of the driver acceptance of the Cooperative Intersection Collision Avoidance System limited to Stop Sign and Traffic Signal Violations (CICAS-V) system as tested during a ...

  10. The Traffic-Alert and Collision Avoidance System (TCAS) in the glass cockpit

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.

    1988-01-01

    This volume contains the contributions of the participants in the NASA Ames Research Center workshop on the traffic-alert and collision avoidance system (TCAS) implementation for aircraft with cathode ray tube (CRT) or flat panel displays. To take advantage of the display capability of the advanced-technology aircraft, NASA sponsored this workshop with the intent of bringing together industry personnel, pilots, and researchers so that pertinent issues in the area could be identified. During the 2-day workshop participants addressed a number of issues including: What is the optimum format for TCAS advisories. Where and how should maneuver advisories be presented to the crew. Should the maneuver advisories be presented on the primary flight display. Is it appropriate to have the autopilot perform the avoidance maneuver. Where and how should traffic information be presented to the crew. Should traffic information be combined with weather and navigation information. How much traffic should be shown and what ranges should be used. Contained in the document are the concepts and suggestions produced by the workshop participants.

  11. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    PubMed

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  12. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  13. Changes in Drivers’ Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections

    PubMed Central

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824

  14. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  15. An airborne low SWaP-C UAS sense and avoid system

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Lin, Xingping; Xiang, Xingyu; Blasch, Erik; Pham, Khanh; Chen, Genshe; Shen, Dan; Jia, Bin; Wang, Gang

    2016-05-01

    This paper presents a low size, weight and power - cost (SWaP-C) airborne sense and avoid (ABSAA) system, which is based on a linear frequency modulated continuous wave (LFMCW) radar and can be mounted on small unmanned aircraft system (UAS). The system satisfies the constraint of the available sources on group 2/3 UAS. To obtain the desired sense and avoid range, a narrow band frequency (or range) scanning technique is applied for reducing the receiver's noise floor to improve its sensitivity, and a digital signal integration with fast Fourier transform (FFT) is applied to enhance the signal to noise ratio (SNR). The gate length and chirp rate are intelligently adapted to not only accommodate different object distances, speeds and approaching angle conditions, but also optimize the detection speed, resolution and coverage range. To minimize the radar blind zone, a higher chirp rate and a narrowband intermediate frequency (IF) filter are applied at the near region with a single antenna signal for target detection. The offset IF frequency between transmitter (TX) and receiver (RX) is designed to mitigate the TX leakage to the receiver, especially at close distances. Adaptive antenna gain and beam-width are utilized for searching at far distance and fast 360 degree middle range. For speeding up the system update rate, lower chirp rates and wider IF and baseband filters are applied for obtaining larger range scanning step length out of the near region. To make the system working with a low power transmitter (TX), multiple-antenna beamforming, digital signal integration with FFT, and a much narrower receiver (RX) bandwidth are applied at the far region. The ABSAA system working range is 2 miles with a 1W transmitter and single antenna signal detection, and it is 5 miles when a 5W transmitter and 4-antenna beamforming (BF) are applied.

  16. Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1990-01-01

    NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems.

  17. The design of a minimal sensor configuration for a Cooperative Intersection Collision Avoidance System - Stop Sign Assist : (CICAS-SSA report #2).

    DOT National Transportation Integrated Search

    2010-08-01

    The deployment of a Cooperative Intersection Collision Avoidance System Stop Sign Assist (CICAS-SSA) can save lives by addressing the causal factor of crashes at rural thru-Stop intersection: drivers who stop on the minor leg of the intersection,...

  18. Risk management algorithm for rear-side collision avoidance using a combined steering torque overlay and differential braking

    NASA Astrophysics Data System (ADS)

    Lee, Junyung; Yi, Kyongsu; Yoo, Hyunjae; Chong, Hyokjin; Ko, Bongchul

    2015-06-01

    This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.

  19. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  20. Two-Dimensional Distributed Velocity Collision Avoidance

    DTIC Science & Technology

    2014-02-11

    place (i.e., in the global problem space) as much as possible in an effort to simplify the process/description. Additionally, to make some of the...guide agents without collision in the vast majority of cases. NAWCWD TP 8786 31 7.0 REFERENCES 1. P. L. Franchi . “Near Misses Between

  1. Development of performance specifications for collision avoidance systems for lane change crashes. Task 6, interim report : testbed systems design and associated facilities

    DOT National Transportation Integrated Search

    2001-11-01

    This report documents the design of an on-road testbed vehicle. The purposes of this testbed are twofold: (1) Establish a foundation for estimating lane change collision avoidance effectiveness, and (2) provide information pertinent to setting perfor...

  2. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  3. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    NASA Technical Reports Server (NTRS)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  4. Application of radar for automotive collision avoidance. Volume 2: Development plan and progress reports

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Christopher L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. Items within the scope of the one-year effort were to: (1) review previous authors' work in this field; (2) select a suitable radar approach; (3) develop a system design; (4) perform basic analyses and observations pertinent to radar design, performance, and effects; (5) fabricate and collect radar data from a data collection radar; (6) analyze and derive conclusions from the radar data; and (7) make recommendations about the likelihood of success of the investigated radar techniques. The final technical report presenting all conclusions is contained in Volume 1.

  5. Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)

    NASA Technical Reports Server (NTRS)

    Schmalz, Tyler; Ryan, Jack

    2011-01-01

    Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.

  6. Avoidance maneuevers selected while viewing cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Ellis, S. R.; Lee, E.

    1982-01-01

    Ten airline pilots rates the collision danger of air traffic presented on cockpit displays of traffic information while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threst situations pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's own ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilots' turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.

  7. Performance testing of collision-avoidance system for power wheelchairs.

    PubMed

    Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir

    2011-01-01

    The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.

  8. Collision-free motion of two robot arms in a common workspace

    NASA Technical Reports Server (NTRS)

    Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.

    1987-01-01

    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.

  9. Stereo-based Collision Avoidance System for Urban Traffic

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Ishikawa, Naoto; Sasaki, Kazuyuki; Nakajima, Masato

    2002-11-01

    Numerous car accidents occur on urban road. However, researches done so far on driving assistance are subjecting highways whose environment is relatively simple and easy to handle, and new approach for urban settings is required. Our purpose is to extend its support to the following conditions in city traffic: the presence of obstacles such as pedestrians and telephone poles; the lane mark is not always drawn on a road; drivers may lack the sense of awareness of the lane mark. We propose a collision avoidance system, which can be applied to both highways and urban traffic environment. In our system, stereo cameras are set in front of a vehicle and the captured images are processed through a computer. We create a Projected Disparity Map (PDM) from stereo image pair, which is a disparity histogram taken along ordinate direction of obtained disparity image. When there is an obstacle in front, we can detect it by finding a peak appeared in the PDM. With a speed meter and a steering sensor, the stop distance and the radius of curvature of the self-vehicle are calculated, in order to set the observation-required area, which does not depend on lane marks, within a PDM. A danger level will be computed from the distance and the relative speed to the closest approaching object detected within the observation-required area. The method has been tested in urban traffic scenes and has shown to be effective for judging dangerous situation, and gives proper alarm to a driver.

  10. UAV-borne X-band radar for MAV collision avoidance

    NASA Astrophysics Data System (ADS)

    Moses, Allistair A.; Rutherford, Matthew J.; Kontitsis, Michail; Valavanis, Kimon P.

    2011-05-01

    Increased use of Miniature (Unmanned) Aerial Vehicles (MAVs) is coincidentally accompanied by a notable lack of sensors suitable for enabling further increases in levels of autonomy and consequently, integration into the National Airspace System (NAS). The majority of available sensors suitable for MAV integration are based on infrared detectors, focal plane arrays, optical and ultrasonic rangefinders, etc. These sensors are generally not able to detect or identify other MAV-sized targets and, when detection is possible, considerable computational power is typically required for successful identification. Furthermore, performance of visual-range optical sensor systems can suffer greatly when operating in the conditions that are typically encountered during search and rescue, surveillance, combat, and most common MAV applications. However, the addition of a miniature radar system can, in consort with other sensors, provide comprehensive target detection and identification capabilities for MAVs. This trend is observed in manned aviation where radar systems are the primary detection and identification sensor system. Within this document a miniature, lightweight X-Band radar system for use on a miniature (710mm rotor diameter) rotorcraft is described. We present analyses of the performance of the system in a realistic scenario with two MAVs. Additionally, an analysis of MAV navigation and collision avoidance behaviors is performed to determine the effect of integrating radar systems into MAV-class vehicles.

  11. Development of performance specifications for collision avoidance systems for lane change, merging, and backing. Task 6, Interim report : testbed systems design and associated facilities

    DOT National Transportation Integrated Search

    1997-05-01

    This report represents the documentation of the design of the testbed. The purposes of the testbed are twofold 1) Establish a foundation for estimating collision avoidance effectiveness and 2) Provide information pertinent to setting performance spec...

  12. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B. S.; Mahalingam, S.

    1992-01-01

    A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area.

  13. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  14. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  15. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    PubMed Central

    Zhang, Wei; Wei, Shilin; Teng, Yanbin; Zhang, Jianku; Wang, Xiufang; Yan, Zheping

    2017-01-01

    In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment. PMID:29186878

  16. Using artificial intelligence for automating testing of a resident space object collision avoidance system on an orbital spacecraft

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-06-01

    Resident space objects (RSOs) pose a significant threat to orbital assets. Due to high relative velocities, even a small RSO can cause significant damage to an object that it strikes. Worse, in many cases a collision may create numerous additional RSOs, if the impacted object shatters apart. These new RSOs will have heterogeneous mass, size and orbital characteristics. Collision avoidance systems (CASs) are used to maneuver spacecraft out of the path of RSOs to prevent these impacts. A RSO CAS must be validated to ensure that it is able to perform effectively given a virtually unlimited number of strike scenarios. This paper presents work on the creation of a testing environment and AI testing routine that can be utilized to perform verification and validation activities for cyber-physical systems. It reviews prior work on automated and autonomous testing. Comparative performance (relative to the performance of a human tester) is discussed.

  17. SU-F-T-242: A Method for Collision Avoidance in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Cormack, R

    2016-06-15

    Purpose: We proposed a method for collision avoidance (CA) in external beam radiation therapy (EBRT). The method encompasses the analysis of all positions of the moving components of the beam delivery system such as the treatment table and gantry, including patient specific information obtained from the CT images. This method eliminates the need for time-consuming dry-runs prior to the actual treatments. Methods: The QA procedure for EBRT requires that the collision should be checked prior to treatment. We developed a system capable of a rigorous computer simulation of all moving components including positions of the couch and gantry during themore » delivery, position of the patients, and imaging equipment. By running this treatment simulation it is possible to quantify and graphically represent all positions and corresponding trajectories of all points of the moving parts during the treatment delivery. The development of the workflow for implementation of the CA includes several steps: a) derivation of combined dynamic equation of motion of the EBRT delivery systems, b) developing the simulation model capable of drawing the motion trajectories of the specific points, c) developing the interface between the model and the treatment plan parameters such as couch and gantry parameters for each field. Results: The patient CT images were registered to the treatment couch so the patient dimensions were included into the simulation. The treatment field parameters were structured in the xml-file which was used as the input into the dynamic equations. The trajectories of the moving components were plotted on the same graph using the dynamic equations. If the trajectories intersect that was the signal that collision exists. Conclusion: This CA method was proved to be effective in the simulation of treatment delivery. The proper implementation of this system can potentially improve the QA program and increase the efficacy in the clinical setup.« less

  18. Passivity-based control with collision avoidance for a hub-beam spacecraft

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Chen, Ti; Jin, Dongping; Hu, Haiyan

    2017-01-01

    For the application of robotically assembling large space structures, a feedback control law is synthesized for transitional and rotational maneuvers of a 'tug' spacecraft in order to transport a flexible element to a desired position without colliding with other space bodies. The flexible element is treated as a long beam clamped to the 'tug' spacecraft modelled as a rigid hub. First, the physical property of passivity of Euler-Lagrange system is exploited to design the position and attitude controllers by taking a simpler obstacle-free control problem into account. To reduce sensing and actuating requirements, the vibration modes of the beam appendage are supposed to be not directly measured and actuated on. Besides, the requirements of measuring velocities are removed with the aid of a dynamic extension technique. Second, the bounding boxes in the form of super-quadric surfaces are exploited to enclose the maximal extents of the obstacles and the hub-beam spacecraft. The collision avoidance between bounding boxes is achieved by applying additional repulsive force and torque to the spacecraft based on the method of artificial potential field. Finally, the effectiveness of proposed control scheme is numerically demonstrated via case studies.

  19. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  20. Verbal collision avoidance messages during simulated driving: perceived urgency, alerting effectiveness and annoyance.

    PubMed

    Baldwin, Carryl L

    2011-04-01

    Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Two experiments describe the impact of acoustic and semantic parameters on ratings of perceived urgency, annoyance and alerting effectiveness and on alarm response speed. Within a simulated driving context, participants rated and responded to collision avoidance system (CAS) messages spoken by a female or male voice (experiments 1 and 2, respectively). Results indicated greater perceived urgency and faster alarm response times as intensity increased from -2 dB signal to noise (S/N) ratio to +10 dB S/N, although annoyance ratings increased as well. CAS semantic content interacted with alarm intensity, indicating that at lower intensity levels participants paid more attention to the semantic content. Results indicate that both acoustic and semantic parameters independently and interactively impact CAS alert perceptions in divided attention conditions and this work can inform auditory alarm design for effective hazard matching. Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Here, both acoustic and semantic parameters independently and interactively impacted CAS alert perceptions in divided attention conditions. This work can inform auditory alarm design for effective hazard matching. STATEMENT OF RELEVANCE: Results indicate that both acoustic parameters and semantic content can be used to design collision warnings with a range of urgency levels. Further, these results indicate that verbal warnings tailored to a specific hazard situation may improve hazard-matching capabilities without substantial trade-offs in perceived annoyance.

  1. Step 1:Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Collision Avoidance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).

  2. Perceived threat and avoidance maneuvers in response to cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Ellis, S. R.; Lee, E. C.

    1984-01-01

    Airline pilots rated their perception of the danger of an air-to-air collision based on cockpit displays of traffic information while they monitored simulated departures. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with lowor moderate-collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threat situations, pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilot's turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.

  3. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.

    PubMed

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-06-05

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.

  4. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks

    PubMed Central

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-01-01

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037

  5. Uav Positioning and Collision Avoidance Based on RSS Measurements

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.

    2015-08-01

    In recent years, Unmanned Aerial Vehicles (UAVs) are attracting more and more attention in both the research and industrial communities: indeed, the possibility to use them in a wide range of remote sensing applications makes them a very flexible and attractive solution in both civil and commercial cases (e.g. precision agriculture, security and control, monitoring of sites, exploration of areas difficult to reach). Most of the existing UAV positioning systems rely on the use of the GPS signal. Despite this can be a satisfactory solution in open environments where the GPS signal is available, there are several operating conditions of interest where it is unavailable or unreliable (e.g. close to high buildings, or mountains, in indoor environments). Consequently, a different approach has to be adopted in these cases. This paper considers the use ofWiFi measurements in order to obtain position estimations of the device of interest. More specifically, to limit the costs for the devices involved in the positioning operations, an approach based on radio signal strengths (RSS) measurements is considered. Thanks to the use of a Kalman filter, the proposed approach takes advantage of the temporal dynamic of the device of interest in order to improve the positioning results initially provided by means of maximum likelihood estimations. The considered UAVs are assumed to be provided with communication devices, which can allow them to communicate with each other in order to improve their cooperation abilities. In particular, the collision avoidance problem is examined in this work.

  6. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  7. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  8. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.

  9. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao

    2018-06-01

    This paper presents a distributed control law with disturbance observer for the autonomous assembly of a fleet of flexible spacecraft to construct a large flexible space structure. The fleet of flexible spacecraft is driven to the pre-assembly configuration firstly, and then to the desired assembly configuration. A distributed assembly control law with disturbance observer is proposed by treating the flexible dynamics as disturbances acting on the rigid motion of the flexible spacecraft. Theoretical analysis shows that the control law can actuate the fleet to the desired configuration. Moreover, the collision avoidance between the members is also considered in the process from initial configuration to pre-assembly configuration. Finally, a numerical example is presented to verify the feasibility of proposed mission planning and the effectiveness of control law.

  10. Active Beacon Collision Avoidance System (BCAS) Conference Proceedings, January 27-28, 1981.

    DTIC Science & Technology

    1981-01-01

    WITH THE SINGLE OBJECTIVE OF PREVENTING MIDAIR COLLISIONS WHEN, FOR WHATEVER REASON, THE PRIMARY SYSTEM FAILS TO PROVIDE ADEQUATE SEPARA- TION. THE... PREVENTION OF MIDAIR-- AND NEAR MIDAIR--COLLISIONS. THAT MUCH IS SIMPLE. BUT JUST LIKE A CONTRACT, IT BEGINS TO GET MORE COMPLiCATED WHEN WE START ADDING THE...34WHEREAS" AND THE DETAILS. FIRST, ACTIVE BCAS IS DESIGNED TO PERFORM THE COLLISION- PREVENTION FUNCTION IN AN ENVIRONMENT WHERE OTHER AIRCRAFT FROM

  11. Experimental characterization of collision avoidance in pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Parisi, Daniel R.; Negri, Pablo A.; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

  12. Obstacle avoidance in social groups: new insights from asynchronous models

    PubMed Central

    Croft, Simon; Budgey, Richard; Pitchford, Jonathan W.; Wood, A. Jamie

    2015-01-01

    For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures. PMID:25833245

  13. Effect of perceived threat on avoidance maneuvers selected while viewing cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Ellis, S. R.

    1982-01-01

    Ten airline pilots rated the collision danger of air traffic presented on cockpit displays of traffic information (CDTI) while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate perceived collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threat situations pilots turned toward the intruder only at chance levels. Some of the implications of the pilots' turning-towards tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.

  14. Study of flight data recorder, underwater locator beacon, data logger and flarm collision avoidance system

    NASA Astrophysics Data System (ADS)

    Timi, Purnota Hannan; Shermin, Saima; Rahman, Asifur

    2017-06-01

    Flight data recorder is one of the most important sources of flight data in event of aviation disaster which records a wide range of flight parameters including altitude, airspeed, heading etc. and also helps monitoring and analyzing aircraft performance. Cockpit voice recorder records radio microphone transmissions and sounds in the cockpit. These devices help to find out and understand the root causes of aircraft crashes and help building better aircraft systems and technical solutions to prevent similar type of crashes in future, which lead to improvement in safety of aircrafts and passengers. There are other devices also which enhance the aircraft safety and assists in emergency or catastrophic situations. This paper discusses the concept of Flight Data Recorder (FDR), Cockpit Voice Recorder (CVR), Underwater Locator Beacon (ULB), Data logger and flarm-collision avoidance system for aircraft and their applications in aviation.

  15. Comparing and validating models of driver steering behaviour in collision avoidance and vehicle stabilisation

    NASA Astrophysics Data System (ADS)

    Markkula, G.; Benderius, O.; Wahde, M.

    2014-12-01

    A number of driver models were fitted to a large data set of human truck driving, from a simulated near-crash, low-friction scenario, yielding two main insights: steering to avoid a collision was best described as an open-loop manoeuvre of predetermined duration, but with situation-adapted amplitude, and subsequent vehicle stabilisation could to a large extent be accounted for by a simple yaw rate nulling control law. These two phenomena, which could be hypothesised to generalise to passenger car driving, were found to determine the ability of four driver models adopted from the literature to fit the human data. Based on the obtained results, it is argued that the concept of internal vehicle models may be less valuable when modelling driver behaviour in non-routine situations such as near-crashes, where behaviour may be better described as direct responses to salient perceptual cues. Some methodological issues in comparing and validating driver models are also discussed.

  16. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  17. Theory of Aircraft Collision-Avoidance System Design and Evaluation

    DOT National Transportation Integrated Search

    1971-05-01

    The problem of aircraft anti-collision system design and evaluation is discussed in this work. Two evaluation criteria, conflict ratio and probability of missed critical alarm are formulated and are found to be independent of both traffic density and...

  18. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  19. Magneto-inductive skin sensor for robot collision avoidance: A new development

    NASA Technical Reports Server (NTRS)

    Chauhan, D. S.; Dehoff, Paul H.

    1989-01-01

    Safety is a primary concern for robots operating in space. The tri-mode sensor addresses that concern by employing a collision avoidance/management skin around the robot arms. This rf-based skin sensor is at present a dual mode (proximity and tactile). The third mode, pyroelectric, will complement the other two. The proximity mode permits the robot to sense an intruding object, to range the object, and to detect the edges of the object. The tactile mode permits the robot to sense when it has contacted an object, where on the arm it has made contact, and provides a three-dimensional image of the shape of the contact impression. The pyroelectric mode will be added to permit the robot arm to detect the proximity of a hot object and to add sensing redundancy to the two other modes. The rf-modes of the sensing skin are presented. These modes employ a highly efficient magnetic material (amorphous metal) in a sensing technique. This results in a flexible sensor array which uses a primarily inductive configuration to permit both capacitive and magnetoinductive sensing of object; thus optimizing performance in both proximity and tactile modes with the same sensing skin. The fundamental operating principles, design particulars, and theoretical models are provided to aid in the description and understanding of this sensor. Test results are also given.

  20. Digital-Difference Processing For Collision Avoidance.

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.

    1988-01-01

    Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.

  1. Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.

  2. Longitudinal driver model and collision warning and avoidance algorithms based on human driving databases

    NASA Astrophysics Data System (ADS)

    Lee, Kangwon

    Intelligent vehicle systems, such as Adaptive Cruise Control (ACC) or Collision Warning/Collision Avoidance (CW/CA), are currently under development, and several companies have already offered ACC on selected models. Control or decision-making algorithms of these systems are commonly evaluated under extensive computer simulations and well-defined scenarios on test tracks. However, they have rarely been validated with large quantities of naturalistic human driving data. This dissertation utilized two University of Michigan Transportation Research Institute databases (Intelligent Cruise Control Field Operational Test and System for Assessment of Vehicle Motion Environment) in the development and evaluation of longitudinal driver models and CW/CA algorithms. First, to examine how drivers normally follow other vehicles, the vehicle motion data from the databases were processed using a Kalman smoother. The processed data was then used to fit and evaluate existing longitudinal driver models (e.g., the linear follow-the-leader model, the Newell's special model, the nonlinear follow-the-leader model, the linear optimal control model, the Gipps model and the optimal velocity model). A modified version of the Gipps model was proposed and found to be accurate in both microscopic (vehicle) and macroscopic (traffic) senses. Second, to examine emergency braking behavior and to evaluate CW/CA algorithms, the concepts of signal detection theory and a performance index suitable for unbalanced situations (few threatening data points vs. many safe data points) are introduced. Selected existing CW/CA algorithms were found to have a performance index (geometric mean of true-positive rate and precision) not exceeding 20%. To optimize the parameters of the CW/CA algorithms, a new numerical optimization scheme was developed to replace the original data points with their representative statistics. A new CW/CA algorithm was proposed, which was found to score higher than 55% in the

  3. How do walkers avoid a mobile robot crossing their way?

    PubMed

    Vassallo, Christian; Olivier, Anne-Hélène; Souères, Philippe; Crétual, Armel; Stasse, Olivier; Pettré, Julien

    2017-01-01

    Robots and Humans have to share the same environment more and more often. In the aim of steering robots in a safe and convenient manner among humans it is required to understand how humans interact with them. This work focuses on collision avoidance between a human and a robot during locomotion. Having in mind previous results on human obstacle avoidance, as well as the description of the main principles which guide collision avoidance strategies, we observe how humans adapt a goal-directed locomotion task when they have to interfere with a mobile robot. Our results show differences in the strategy set by humans to avoid a robot in comparison with avoiding another human. Humans prefer to give the way to the robot even when they are likely to pass first at the beginning of the interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems

    PubMed Central

    Meng, Fanxing; Gray, Rob; Ho, Cristy; Ahtamad, Mujthaba

    2015-01-01

    Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of various vibrotactile warning signals was assessed using a simulated car-following task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). Results: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a looming-intensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). Conclusion: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. Application: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system. PMID:25850161

  5. Traffic Alert and Collision Avoidance System (TCAS): Cockpit Display of Traffic Information (CDTI) investigation. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Burgess, Malcolm; Davis, Dean; Hollister, Walter; Sorensen, John A.

    1991-01-01

    The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight.

  6. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    PubMed

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  7. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    PubMed Central

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian. PMID:25097870

  8. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  9. Probability-based hazard avoidance guidance for planetary landing

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie

    2018-03-01

    Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.

  10. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.

  11. Integrated Display and Simulation for Automatic Dependent Surveillance-Broadcast and Traffic Collision Avoidance System Data Fusion.

    PubMed

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-11-13

    Automatic Dependent Surveillance-Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications.

  12. First annual report : automotive collision avoidance system field operational test

    DOT National Transportation Integrated Search

    2002-05-01

    In June of 1999, the National Highway Traffic Safety Administration entered into a cooperative research agreement with General Motors to advance the state-of-the-art of rear-end collision warning technology and conduct a field operational test of a f...

  13. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  14. Collision Avoidance, Driver Support and Safety Intervention Systems

    NASA Astrophysics Data System (ADS)

    Gilling, Simon P.

    Autonomous Intelligent Cruise Control (AICC) will be marketed by a number of vehicle manufacturers before the end of the decade. This paper will describe AICC and the next generation systems currently being developed and validated within the EC Fourth Framework project, Anti-Collision Autonomous Support and Safety Intervention SysTem (AC ASSIST).The currently available cruise control systems which maintain a fixed speed are a well-known form of longitudinal driver support. The fixed speed cruise control becomes less useful with increased traffic volumes, as the driver must disable the system when a slower preceding vehicle is encountered.

  15. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.

  16. Integrated Display and Simulation for Automatic Dependent Surveillance–Broadcast and Traffic Collision Avoidance System Data Fusion

    PubMed Central

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-01-01

    Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications. PMID:29137194

  17. Development of an in-vehicle intersection collision countermeasure

    NASA Astrophysics Data System (ADS)

    Pierowicz, John A.

    1997-02-01

    Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.

  18. Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.

    PubMed

    Leylavi Shoushtari, Ali

    2016-01-01

    Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.

  19. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  20. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  1. Recommendations for Sense and Avoid Policy Compliance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a human on board, they need to have a sense and avoid capability that provides an "equivalent level of safety" (ELOS) to manned aircraft. The question then becomes - is sense and avoid ELOS for unmanned aircraft adequate to satisfy the requirements of 14 CFR 91.113? Access 5 has proposed a definition of sense and avoid, but the question remains as to whether any sense and avoid system can comply with 14 CFR 91.113 as currently written. The Access 5 definition of sense and avoid ELOS allows for the development of a sense and avoid system for unmanned aircraft that would comply with 14 CFR 91.113. Compliance is based on sensing and avoiding other traffic at an equivalent level of safety for collision avoidance, as manned aircraft. No changes to Part 91 are necessary, with the possible exception of changing "see" to "sense," or obtaining an interpretation from the FAA General Counsel that "sense" is equivalent to "see."

  2. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  3. Collision management utilizing CCD and remote sensing technology

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Harvey E., Jr.

    1995-01-01

    With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).

  4. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect.

    PubMed

    Aravind, Gayatri; Darekar, Anuja; Fung, Joyce; Lamontagne, Anouk

    2015-03-01

    Persons with post-stroke visuospatial neglect (VSN) often collide with moving obstacles while walking. It is not well understood whether the collisions occur as a result of attentional-perceptual deficits caused by VSN or due to post-stroke locomotor deficits. We assessed individuals with VSN on a seated, joystick-driven obstacle avoidance task, thus eliminating the influence of locomotion. Twelve participants with VSN were tested on obstacle detection and obstacle avoidance tasks in a virtual environment that included three obstacles approaching head-on or 30 (°) contralesionally/ipsilesionally. Our results indicate that in the detection task, the contralesional and head-on obstacles were detected at closer proximities compared to the ipsilesional obstacle. For the avoidance task collisions were observed only for the contralesional and head-on obstacle approaches. For the contralesional obstacle approach, participants initiated their avoidance strategies at smaller distances from the obstacle and maintained smaller minimum distances from the obstacles. The distance at detection showed a negative association with the distance at the onset of avoidance strategy for all three obstacle approaches. We conclusion the observation of collisions with contralesional and head-on obstacles, in the absence of locomotor burden, provides evidence that attentional-perceptual deficits due to VSN, independent of post-stroke locomotor deficits, alter obstacle avoidance abilities.

  5. Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications

    PubMed Central

    Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154

  6. Phase I interim report : automotive collision avoidance system field operational test

    DOT National Transportation Integrated Search

    2002-05-30

    In June of 1999, the National Highway Traffic Safety Administration entered into a cooperative research agreement with General Motors to advance the state-of-the-art of rear-end collision warning technology and conduct a field operational test of a f...

  7. Exploiting Motion Capture to Enhance Avoidance Behaviour in Games

    NASA Astrophysics Data System (ADS)

    van Basten, Ben J. H.; Jansen, Sander E. M.; Karamouzas, Ioannis

    Realistic simulation of interacting virtual characters is essential in computer games, training and simulation applications. The problem is very challenging since people are accustomed to real-world situations and thus, they can easily detect inconsistencies and artifacts in the simulations. Over the past twenty years several models have been proposed for simulating individuals, groups and crowds of characters. However, little effort has been made to actually understand how humans solve interactions and avoid inter-collisions in real-life. In this paper, we exploit motion capture data to gain more insights into human-human interactions. We propose four measures to describe the collision-avoidance behavior. Based on these measures, we extract simple rules that can be applied on top of existing agent and force based approaches, increasing the realism of the resulting simulations.

  8. Trust-Based Analysis of an Air Force Collision Avoidance System

    DTIC Science & Technology

    2015-12-01

    that test pilots’ trust depended on a number of factors, including the development of a nuisance free algorithm, designing fly-up evasive maneuvers...revealed that test pilots’ trust depended on a number of factors, including the development of a nuisance- free algorithm, designing fly-up evasive ...the terrain collision evasion maneuver. To overcome these limitations, Auto-GCAS was developed with a number of innovative approaches and solutions

  9. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  10. Visual feedback training improves postural adjustments associated with moving obstacle avoidance in elderly women.

    PubMed

    Hatzitaki, V; Voudouris, D; Nikodelis, T; Amiridis, I G

    2009-02-01

    The study examined the impact of visually guided weight shifting (WS) practice on the postural adjustments evoked by elderly women when avoiding collision with a moving obstacle while standing. Fifty-six healthy elderly women (70.9+/-5.7 years, 87.5+/-9.6 kg) were randomly assigned into one of three groups: a group that completed 12 sessions (25 min, 3s/week) of WS practice in the Anterior/Posterior direction (A/P group, n=20), a group that performed the same practice in the medio/lateral direction (M/L group, n=20) and a control group (n=16). Pre- and post-training, participants were tested in a moving obstacle avoidance task. As a result of practice, postural response onset shifted closer to the time of collision with the obstacle. Side-to-side WS resulted in a reduction of the M/L sway amplitude and an increase of the trunk's velocity during avoidance. It is concluded that visually guided WS practice enhances elderly's ability for on-line visuo-motor processing when avoiding collision eliminating reliance on anticipatory scaling. Specifying the direction of WS seems to be critical for optimizing the transfer of training adaptations.

  11. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  12. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  13. Using Collision Cones to Asses Biological Deconiction Methods

    NASA Astrophysics Data System (ADS)

    Brace, Natalie

    For autonomous vehicles to navigate the world as efficiently and effectively as biological species, improvements are needed in terms of control strategies and estimation algorithms. Reactive collision avoidance is one specific area where biological systems outperform engineered algorithms. To better understand the discrepancy between engineered and biological systems, a collision avoidance algorithm was applied to frames of trajectory data from three biological species (Myotis velifer, Hirundo rustica, and Danio aequipinnatus). The algorithm uses information that can be sensed through visual cues (relative position and velocity) to define collision cones which are used to determine if agents are on a collision course and if so, to find a safe velocity that requires minimal deviation from the original velocity for each individual agent. Two- and three-dimensional versions of the algorithm with constant speed and maximum speed velocity requirements were considered. The obstacles provided to the algorithm were determined by the sensing range in terms of either metric or topological distance. The calculated velocities showed good correlation with observed velocities over the range of sensing parameters, indicating that the algorithm is a good basis for comparison and could potentially be improved with further study.

  14. Translational Entanglement and Teleportation of Matter Wavepackets by Collisions and Half-Collisions

    NASA Astrophysics Data System (ADS)

    Fisch, L.; Tal, A.; Kurizki, G.

    To date, the translationally-entangled state originally proposed by Einstein, Podolsky and Rosen (EPR) in 1935 has not been experimentally realized for massive particles. Opatrný and Kurizki [Phys. Rev. Lett. 86, 3180 (2000)] have suggested the creation of a position- and momentum-correlated, i.e., translationally-entangled, pair of particles approximating the EPR state by dissociation of cold diatomic molecules, and further manipulation of the EPR pair effecting matter-wave teleportation. Here we aim at setting the principles of and quantifying translational entanglement by collisions and half-collisions. In collisions, the resonance width s and the initial phase-space distributions are shown to determine the degree of post-collisional momentum entanglement. Half-collisions (dissociation) are shown to yield different types of approximate EPR states. We analyse a feasible realization of translational EPR entanglement and teleportation via cold-molecule Raman dissociation and subsequent collisions, resolving both practical and conceptual difficulties it has faced so far: How to avoid entanglement loss due to the wavepacket spreading of the dissociation fragments? How to measure both position and momentum correlations of the dissociation fragments with sufficient accuracy to verify their EPR correlations? How to reliably perform two-particle (Bell) position and momentum measurements on one of the fragments and the wavepacket to be teleported?

  15. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  16. Opportunities for collision countermeasures using intelligent technologies.

    DOT National Transportation Integrated Search

    1997-01-01

    Since 1991, the National Highway Traffic Safety Administration (NHTSA) has had a concentrated program to facilitate the development and deployment of effective safety-related collision avoidance systems as part of the Intelligent Transportation Syste...

  17. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.

    PubMed

    Shim, Youngbo; Kim, Gon-Woo

    2018-03-29

    In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC) method with selective decision-making. The simulation and experiment results show the validity of the proposed method.

  18. Factors contributing to airborne particle dispersal in the operating room.

    PubMed

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01). The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  19. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  20. A Glossary of Terms, Definitions, Acronyms, and Abbreviations Related to the National Airspace System (NAS)

    DTIC Science & Technology

    1990-06-01

    System ACAS Airborne Collision Avoidance System ACB Adjacent Center Backup ACC ACCumulator ACC Area Control Center ACCAS Alto Cumulus CAtellanuS ACCC...subsystem) FFC For Further Clearance FFF Form, Fit, and Function FFF Form, Fix, and Function FFLT Familiarize FLighT FFM Far Field Monitor (associated with

  1. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2015-05-01

    This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. TU-FG-201-07: Development of SRS Conical Collimator Collision Prediction Software for Radiation Treatment Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutti, V; Morrow, A; Kim, S

    Purpose: Stereotactic radiosurgery (SRS) treatments using conical collimators can potentially result in gantry collision with treatment table due to limited collision-clear spaces. An in-house software was developed to help the SRS treatment planner mitigate potential SRS conical collimator (Varian Medical System, Palo Alto, CA) collisions with the treatment table. This software was designed to remove treatment re-planning secondary to unexpected collisions. Methods: A BrainLAB SRS ICT Frameless Extension used for SRS treatments in our clinic was mathematically modelled using surface points registered to the 3D co-ordinate space of the couch extension. The surface points are transformed based on the treatmentmore » isocenter point and potential collisions are determined in 3D space for couch and gantry angle combinations. The distance between the SRS conical collimators and LINAC isocenter is known. The collision detection model was programmed in MATLAB (Mathwork, Natick, MA) to display graphical plots of the calculations, and the plotted data is used to avoid the gantry and couch angle combinations that would likely result in a collision. We have utilized the cone collision tool for 23 SRS cone treatment plans (8 retrospective and 15 prospective for 10 patients). Results: Twenty one plans strongly agreed with the software tool prediction for collision. However, in two plans, a collision was observed with a 0.5 cm margin when the software predicted no collision. Therefore, additional margins were added to the clearance criteria in the program to achieve a lower risk of actual collisions. Conclusion: Our in-house developed collision check software successfully avoided SRS cone re-planning by 91.3% due to a reduction in cone collisions with the treatment table. Future developments to our software will include a CT image data set based collision prediction model as well as a beam angle optimization tool to avoid normal critical tissues as well as previously treated

  3. DANTi: Detect and Avoid iN The Cockpit

    NASA Technical Reports Server (NTRS)

    Chamberlain, James; Consiglio, Maria; Munoz, Cesar

    2017-01-01

    Mid-air collision risk continues to be a concern for manned aircraft operations, especially near busy non-towered airports. The use of Detect and Avoid (DAA) technologies and draft standards developed for unmanned aircraft systems (UAS), either alone or in combination with other collision avoidance technologies, may be useful in mitigating this collision risk for manned aircraft. This paper describes a NASA research effort known as DANTi (DAA iN The Cockpit), including the initial development of the concept of use, a software prototype, and results from initial flight tests conducted with this prototype. The prototype used a single Automatic Dependent Surveillance - Broadcast (ADS-B) traffic sensor and the own aircraft's position, track, heading and air data information, along with NASA-developed DAA software to display traffic alerts and maneuver guidance to manned aircraft pilots on a portable tablet device. Initial flight tests with the prototype showed a successful DANTi proof-of-concept, but also demonstrated that the traffic separation parameter set specified in the RTCA SC-228 Phase I DAA MOPS may generate excessive false alerts during traffic pattern operations. Several parameter sets with smaller separation values were also tested in flight, one of which yielded more timely alerts for the maneuvers tested. Results from this study may further inform future DANTi efforts as well as Phase II DAA MOPS development.

  4. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  5. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation

    PubMed Central

    Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron

    2015-01-01

    Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381

  6. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.

    PubMed

    Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron

    2015-05-01

    Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.

  7. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  8. Automatic Dependent Surveillance Broadcast: [micro]ADS-B Detect-and-Avoid Flight Tests

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike

    2018-01-01

    The testing and demonstrations are necessary for both parties to further development and certification of the technology in three key areas; flights beyond line of sight, collision avoidance, and autonomous operations.

  9. An investigation of collisions between fiber positioning units in LAMOST

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jie; Wang, Gang

    2016-04-01

    The arrangement of fiber positioning units in the LAMOST focal plane may lead to collisions during the fiber allocation process. To avoid these collisions, a software-based protection system has to abandon some targets located in the overlapping field of adjacent fiber units. In this paper, we first analyze the probability of collisions between fibers and infer their possible reasons. It is useful to solve the problem of collisions among fiber positioning units so as to improve the efficiency of LAMOST. Based on this, a collision handling system is designed by using a master-slave control structure between the micro control unit and microcomputer. Simulated experiments validate that the system can provide real-time inspection and swap information between the fiber unit controllers and the main controller.

  10. Opportunities and limitations for intersection collision intervention-A study of real world 'left turn across path' accidents.

    PubMed

    Sander, Ulrich

    2017-02-01

    Turning across the path of oncoming vehicle accidents are frequent and dangerous. To date not many car manufacturers have introduced Automated Emergency Braking (AEB) systems addressing this type of conflict situation, but it is foreseeable that these scenarios will be part of the Euro NCAP 2020 rating. Nine out of ten collisions are caused by the driver of the turning vehicle. An AEB system evaluating the ego and conflict vehicle driver's possibilities to avoid a pending crash by either braking or steering was specified for application in various constellations of vehicle collisions. In virtual simulation, AEB system parameters were varied, covering parameters that are relevant for driver comfort such as longitudinal and lateral acceleration (to define avoidance possibilities), expected steering maneuvers to avoid conflict, and intervention response characteristics (brake delay and ramp up) to assess the safety benefit. The reference simulation showed a potential of the AEB system in the turning vehicle to avoid approximately half of the collisions. An AEB system of the straight going vehicle was less effective. The effectiveness of the turning vehicle's AEB system increases if spatial limitations for the collision-avoidance steering maneuver are known. Such information could be provided by sensors detecting free space in or around the road environment or geographical information shared via vehicle to cloud communication. AEB interventions rarely result in collision avoidance for turning vehicles with speeds above 40km/h or for straight going vehicles with speeds above 60km/h. State of the art field-of-views of forward looking sensing systems designed for AEB rear-end interventions are capable of addressing turning across path situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. STCA, TCAS, Airproxes and Collision Risk

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-09-01

    The focus here is on the performance of and interaction between the Traffic Alert and Collision Avoidance System (TCAS) and the controller's short-term conflict alert (STCA) system. The data source used is UK Airprox Board Reports of close encounters between aircraft, and the focus is on commercial air transport aircraft using UK controlled airspace with a radar service. Do the systems work well together? Are controllers surprised when they find out that a pilot has received a TCAS resolution advisory? What do TCAS and STCA events say about collision risk? Generally, the systems seem to work together well. On most occasions, controllers are not surprised by TCAS advisories: either they have detected the problem themselves or STCA has alerted them to it. The statistically expected rate of future mid-air collisions is estimated by extrapolation of Airprox closest encounter distances.

  12. Effects of Vehicle Speed on Flight Initiation by Turkey Vultures: Implications for Bird-Vehicle Collisions

    PubMed Central

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2014-01-01

    The avoidance of motorized vehicles is a common challenge for birds in the modern world. Birds appear to rely on antipredator behaviors to avoid vehicles, but modern vehicles (automobiles and aircraft) are faster than natural predators. Thus, birds may be relatively ill-equipped, in terms of sensory capabilities and behaviors, to avoid vehicles. We examined the idea that birds may be unable to accurately assess particularly high speeds of approaching vehicles, which could contribute to miscalculations in avoidance behaviors and ultimately cause collisions. We baited turkey vultures (Cathartes aura) to roads with animal carcasses and measured flight initiation distance and effective time-to-collision in response to a truck driving directly towards vultures from a starting distance of 1.13 km and at one of three speeds: 30, 60, or 90 kph (no vultures were struck). Flight initiation distance of vultures increased by a factor of 1.85 as speed increased from 30 to 90 kph. However, for 90-kph approaches there was no clear trend in flight initiation distance across replicates: birds appeared equally likely to initiate escape behavior at 40 m as at 220 m. Time-to-collision decreased by a factor of 0.62 with approach speeds from 30 to 90 kph. Also, at 90 kph, four vehicle approaches (17%) resulted in near collisions with vultures (time-to-collision ≤1.7 s), compared to none during 60 kph approaches and one during 30 kph approaches (4%). Our findings suggest that antipredator behaviors in turkey vultures, particularly stimulus processing and response, might not be well tuned to vehicles approaching at speeds ≥90 kph. The possible inability of turkey vultures to react appropriately to high-speed vehicles could be common among birds, and might represent an important determinant of bird-vehicle collisions. PMID:24503622

  13. Research on Airborne SAR Imaging Based on Esc Algorithm

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  14. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  15. CAESAR: An Initiative of Public Service for Collision Risks Mitigation

    NASA Astrophysics Data System (ADS)

    Laporte, Francois; Moury, Monique; Beaumet, Gregory

    2013-09-01

    This paper starts by describing the conjunction analysis which has to be performed using CSM data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2-step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for Middle Man role.After describing the Middle Man concept, it introduces the French response CAESAR and the need for collaborative work environment which is implied by Middle Man concept. It includes a description of the environment put in place for CAESAR (secure website and dedicated tools), the content of the service, and the condition for the distribution of the CNES software JAC and the advantages for subscribers.

  16. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  17. NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy

    NASA Technical Reports Server (NTRS)

    Gavin, Richard T.

    2010-01-01

    NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.

  18. Airborne cat allergen reduction in classrooms that use special school clothing or ban pet ownership.

    PubMed

    Karlsson, Anne-Sophie; Andersson, Berith; Renström, Anne; Svedmyr, Jan; Larsson, Kjell; Borres, Magnus P

    2004-06-01

    Allergens from furred animals are brought to school mainly via clothing of pet owners. Asthmatic children allergic to cat have more symptoms when attending a class with many cat owners, and some schools allocate specific resources to allergen avoidance measures. The aim of the current study was to evaluate the effect of school clothing or pet owner-free classes compared with control classes on airborne cat allergen levels and to investigate attitudes and allergic symptoms among the children. Allergen measurements were performed prospectively in 2 classes with school clothing, 1 class of children who were not pet owners, and 3 control classes during a 6-week period in 2 consecutive years. Portable pumps and petri dishes were used for collection of airborne cat allergen, and a roller was used for sampling on children's clothes. Cat allergen (Fel d 1) was analyzed with enzyme-linked immunoassay and immunostaining. Both years, questionnaires were administered to the children. We found 4-fold to 6-fold lower airborne cat allergen levels in intervention classes compared with control classes. Levels of cat allergen were 3-fold higher on clothing of cat owners than of children without cats in control classes. Pet ownership ban seemed less accepted than school clothing as an intervention measure. For the first time, it has been shown that levels of airborne cat allergen can be reduced by allergen avoidance measures at school by using school clothing or pet ownership ban, and that both measures are equally efficient. The clinical effect of these interventions remains to be evaluated.

  19. A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria.

    PubMed

    Parkinson, Rachel H; Little, Jacelyn M; Gray, John R

    2017-04-20

    Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.

  20. Evaluation of a Portable Collision Warning Device for Patients With Peripheral Vision Loss in an Obstacle Course.

    PubMed

    Pundlik, Shrinivas; Tomasi, Matteo; Luo, Gang

    2015-04-01

    A pocket-sized collision warning device equipped with a video camera was developed to predict impending collisions based on time to collision rather than proximity. A study was conducted in a high-density obstacle course to evaluate the effect of the device on collision avoidance in people with peripheral field loss (PFL). The 41-meter-long loop-shaped obstacle course consisted of 46 stationary obstacles from floor to head level and oncoming pedestrians. Twenty-five patients with tunnel vision (n = 13) or hemianopia (n = 12) completed four consecutive loops with and without the device, while not using any other habitual mobility aid. Walking direction and device usage order were counterbalanced. Number of collisions and preferred percentage of walking speed (PPWS) were compared within subjects. Collisions were reduced significantly by approximately 37% (P < 0.001) with the device (floor-level obstacles were excluded because the device was not designed for them). No patient had more collisions when using the device. Although the PPWS were also reduced with the device from 52% to 49% (P = 0.053), this did not account for the lower number of collisions, as the changes in collisions and PPWS were not correlated (P = 0.516). The device may help patients with a wide range of PFL avoid collisions with high-level obstacles while barely affecting their walking speed.

  1. Crash avoidance potential of four passenger vehicle technologies.

    PubMed

    Jermakian, Jessica S

    2011-05-01

    The objective was to update estimates of maximum potential crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and adaptive headlights. Compared with previous estimates (Farmer, 2008), estimates in this study attempted to account for known limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as vehicle damage location, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented or mitigated the crash. Of the four crash avoidance technologies, forward collision warning/mitigation had the greatest potential for preventing crashes of any severity; the technology is potentially applicable to 1.2 million crashes in the United States each year, including 66,000 serious and moderate injury crashes and 879 fatal crashes. Lane departure warning/prevention systems appeared relevant to 179,000 crashes per year. Side view assist and adaptive headlights could prevent 395,000 and 142,000 crashes per year, respectively. Lane departure warning/prevention was relevant to the most fatal crashes, up to 7500 fatal crashes per year. A combination of all four current technologies potentially could prevent or mitigate (without double counting) up to 1,866,000 crashes each year, including 149,000 serious and moderate injury crashes and 10,238 fatal crashes. If forward collision warning were extended to detect objects, pedestrians, and bicyclists, it would be relevant to an additional 3868 unique fatal crashes. There is great potential effectiveness for vehicle-based crash avoidance systems. However, it is yet to be determined how drivers will interact with

  2. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  3. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    PubMed Central

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  4. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-12-26

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  5. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B.

    1991-01-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  6. Anticipatory sensors for collision avoidance and crash protection as applied to vehicle safety research.

    DOT National Transportation Integrated Search

    1973-05-01

    Considerable effort has been expended in recent years to develop anticipatory crash sensors-effective means of detecting motor vehicle collisions immediately prior to occurrence. If the potential crash is sensed early enough, evasive action may be in...

  7. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  8. Assessment of pilot workload with the introduction of an airborne threat-alert system

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Bortolussi, Michael R.

    1989-01-01

    Simulated line operations were used to assess the value of the TCAS on the pilot's ability to avoid a collision and to determine the effects of various display configurations and information contents on the flight-crew performance and workload. The crew flew a Phase II Link/Boeing 727 simulator in a simulated ATC environment. Four levels of collision avoidance information were evaluated using the following TCAS display formats: no TCAS information, TCAS information with no traffic display information, TCAS information with threat-activated traffic display information, and TCAS information with a full-time traffic display of threat information. It was found that the use of a threat-activated TCAS display significantly reduced the first officers' workload was significantly reduced by the threat-activated TCAS display, as were the workloads of the captain and the second officer.

  9. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  10. Use of a Prototype Airborne Separation Assurance System for Resolving Near-Term Conflicts During Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.

    2003-01-01

    NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAGTM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. In order to perform these tasks, pilots use prototype conflict detection, prevention, and resolution tools, collectively known as an Airborne Separation Assurance System (ASAS). While ASAS would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. An experiment was conducted in NASA Langley's Air Traffic Operations Lab to evaluate the prototype ASAS for enabling pilots to resolve near-term conflicts and examine possible operational effects associated with the use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. In an effort to improve compliance rate, ASAS design changes are currently under consideration. Further studies will of evaluate these design changes and consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).

  11. Evaluation of new collision-pair selection models in DSMC

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Hassan; Roohi, Ehsan

    2017-10-01

    The current paper investigates new collision-pair selection procedures in a direct simulation Monte Carlo (DSMC) method. Collision partner selection based on the random procedure from nearest neighbor particles and deterministic selection of nearest neighbor particles have already been introduced as schemes that provide accurate results in a wide range of problems. In the current research, new collision-pair selections based on the time spacing and direction of the relative movement of particles are introduced and evaluated. Comparisons between the new and existing algorithms are made considering appropriate test cases including fluctuations in homogeneous gas, 2D equilibrium flow, and Fourier flow problem. Distribution functions for number of particles and collisions in cell, velocity components, and collisional parameters (collision separation, time spacing, relative velocity, and the angle between relative movements of particles) are investigated and compared with existing analytical relations for each model. The capability of each model in the prediction of the heat flux in the Fourier problem at different cell numbers, numbers of particles, and time steps is examined. For new and existing collision-pair selection schemes, the effect of an alternative formula for the number of collision-pair selections and avoiding repetitive collisions are investigated via the prediction of the Fourier heat flux. The simulation results demonstrate the advantages and weaknesses of each model in different test cases.

  12. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system

    PubMed Central

    Hartbauer, Manfred

    2018-01-01

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the ‘collision-detector neurons’ of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a ‘danger zone’, in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200 × 100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input for

  13. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.

    PubMed

    Hartbauer, Manfred

    2017-02-15

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the 'collision-detector neurons' of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a 'danger zone', in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200  ×  100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input

  14. Conservative bin-to-bin fractional collisions

    NASA Astrophysics Data System (ADS)

    Martin, Robert

    2016-11-01

    Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the

  15. 3D model generation using an airborne swarm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R. A.; Punzo, G.; Macdonald, M.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing throughmore » photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.« less

  16. System engineering analysis of derelict collision prevention options

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.; Di Pentino, Frank; Kaczmarek, Adam; Dingman, Patrick

    2013-08-01

    Sensitivities to the future growth of orbital debris and the resulting hazard to operational satellites due to collisional breakups of large derelict objects are being studied extensively. However, little work has been done to quantify the technical and operational tradeoffs between options for minimizing future derelict fragmentations that act as the primary source for future debris hazard growth. The two general categories of debris mitigation examined for prevention of collisions involving large derelict objects (rocket bodies and payloads) are active debris removal (ADR) and just-in-time collision avoidance (JCA). Timing, cost, and effectiveness are compared for ADR and JCA solutions highlighting the required enhancements in uncooperative element set accuracy, rapid ballistic launch, despin/grappling systems, removal technologies, and remote impulsive devices. The primary metrics are (1) the number of derelict objects moved/removed per the number of catastrophic collisions prevented and (2) cost per collision event prevented. A response strategy that contains five different activities, including selective JCA and ADR, is proposed as the best approach going forward.

  17. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study.

    PubMed

    Yokosawa, Koichi; Watanabe, Tatsuya; Kikuzawa, Daichi; Aoyama, Gakuto; Takahashi, Makoto; Kuriki, Shinya

    2013-01-01

    Detection of a collision risk and avoiding the collision are important for survival. We have been investigating neural responses when humans anticipate a collision or intend to take evasive action by applying collision-simulating images in a predictable manner. Collision-simulating images and control images were presented in random order to 9 healthy male volunteers. A cue signal was also given visually two seconds before each stimulus to enable each participant to anticipate the upcoming stimulus. Magnetoencephalograms (MEG) were recorded with a 76-ch helmet system. The amplitude of alpha band (8-13 Hz) rhythm when anticipating the upcoming collision-simulating image was significantly smaller than that when anticipating control images even just after the cue signal. This result demonstrates that anticipating a negative (dangerous) event induced event-related desynchronization (ERD) of alpha band activity, probably caused by attention. The results suggest the feasibility of detecting endogenous brain activities by monitoring alpha band rhythm and its possible applications to engineering systems, such as an automatic collision evasion system for automobiles.

  18. Collision analysis of one kind of chaos-based hash function

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Peng, Wenbing; Liao, Xiaofeng; Xiang, Tao

    2010-02-01

    In the last decade, various chaos-based hash functions have been proposed. Nevertheless, the corresponding analyses of them lag far behind. In this Letter, we firstly take a chaos-based hash function proposed very recently in Amin, Faragallah and Abd El-Latif (2009) [11] as a sample to analyze its computational collision problem, and then generalize the construction method of one kind of chaos-based hash function and summarize some attentions to avoid the collision problem. It is beneficial to the hash function design based on chaos in the future.

  19. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  20. Evaluation of minimum coverage size and orbital accuracy at different orbital regimes for one order of magnitude reduction of the catastrophic collision risk

    NASA Astrophysics Data System (ADS)

    Sánchez-Ortiz, Noelia; Domínguez-González, Raúl; Krag, Holger

    2015-03-01

    One of the main objectives of Space Surveillance and Tracking (SST) systems is to support space collision avoidance activities. This collision avoidance capability aims to significantly reduce the catastrophic collision risk of space objects. In particular, for the case of the future European SST, the objective is translated into a risk reduction of one order of magnitude whilst keeping a low number of false alarm events. In order to translate this aim into system requirements, an evaluation of the current catastrophic collision risk for different orbital regimes is addressed. The reduction of such risk depends on the amount of catalogued objects (coverage) and the knowledge of the associated orbits in the catalogue (accuracy). This paper presents an analysis of the impact of those two aspects in the capability to reduce the catastrophic collision risk at some orbital regimes. A reliable collision avoidance support depends on the accuracy of the predicted miss-events. The assessment of possible conjunctions is normally done by computing the estimated miss-distances between objects (which is compared with a defined distance threshold) or by computing the associated collision risk (which is compared with the corresponding accepted collision probability level). This second method is normally recommended because it takes into account the reliability of the orbits and allows reducing false alarm events. The collision risk depends on the estimated miss-distance, the object sizes and the accuracy of the two orbits at the time of event. This accuracy depends on the error of the orbits at the orbit determination epoch and the error derived from the propagation from that epoch up to the time of event. The modified DRAMA ARES (Domínguez-González et al., 2012, 2013a,b; Gelhaus et al., 2014) provides information on the expected number of encounters for a given mission and year. It also provides information on the capacity to reduce the risk of collision by means of avoidance

  1. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  2. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  3. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  4. A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish

    PubMed Central

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314

  5. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    PubMed

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  6. ACAS-Xu Initial Self-Separation Flight Tests

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Baca, Gabe

    2015-01-01

    The purpose of this flight test report is to document and report the details of the ACAS Xu (Airborne Collision Avoidance System For Unmanned Aircraft) / Self-Separation flight test series performed at Edwards AFB from November to December of 2014. Included in this document are details about participating aircraft, aircrew, mission crew, system configurations, flight data, flight execution, flight summary, test results, and lessons learned.

  7. Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.

    1995-01-01

    Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.

  8. Avian collision risk at an offshore wind farm

    PubMed Central

    Desholm, Mark; Kahlert, Johnny

    2005-01-01

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision. PMID:17148191

  9. Avian collision risk at an offshore wind farm.

    PubMed

    Desholm, Mark; Kahlert, Johnny

    2005-09-22

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision.

  10. A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    ERIC Educational Resources Information Center

    Elder, David M.; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…

  11. Analysis of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Chamberlain, James P.; Consiglio, Maria C.

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defnes the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. Analytical techniques are used to study the properties and relationships satisfied by the models. Some of these properties are numerically quantifed using statistical methods.

  12. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  13. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  14. Feasibility of collision warning, precision approach and landing using GPS, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.

    1981-01-01

    The use of GPS, with an appropriately configured data link, to enhance general aviation avionic functions encountered in the terminal area and on approach was investigated with emphasis on approach and landing guidance and collision warning. The feasibility of using differential GPS to obtain the precision navigation solutions required for landing was studied. Results show that the concept is sound. An experimental program was developed to demonstrate this concept. The collision avoidance/warning concept was examined through the development of a functional system specification.

  15. Distance estimation and collision prediction for on-line robotic motion planning

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.

  16. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  17. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  18. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  19. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  20. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  1. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Astrophysics Data System (ADS)

    Frigm, R.; Johnson, L.

    The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive

  2. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    PubMed Central

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Óscar

    2012-01-01

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed. PMID:23443391

  3. Autonomous manoeuvring systems for collision avoidance on single carriageway roads.

    PubMed

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar

    2012-11-29

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  4. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  5. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  6. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.

    PubMed

    Eichelberger, Angela H; McCartt, Anne T

    2016-02-01

    Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and

  7. Quantitative determination of airborne respirable non-fibrous alpha-silicon carbide by x-ray powder diffractometry.

    PubMed

    Bye, E; Føreland, S; Lundgren, L; Kruse, K; Rønning, R

    2009-06-01

    The purpose of the present investigation was to establish a method for the determination of airborne respirable non-fibrous silicon carbide (SiC). The main application is within the industrial production of SiC. Due to the complex airborne aerosol mixture of crystalline compounds in the SiC industry, X-ray powder diffractometry was selected as the most appropriate method. Without any international standard material for the respirable fraction of non-fibrous SiC, pure and suitable products from three SiC plants in Norway were selected. These products have a median particle diameter in the range 4.4-5.1 mum. The method is based on thin sample technique, with the dust deposited on a polycarbonate filter. Absorption correction is done by standard procedures with the use of a silver filter, situated below the polycarbonate filter. The diffraction line used for quantitative determination was selected carefully. This was done to avoid interferences from quartz, cristobalite, and graphite, which all are airborne components present in the atmosphere during the industrial process. The instrumental limit of detection for the method is 12 microg. This method has been used to determine airborne non-fibrous SiC in a comprehensive ongoing project in the Norwegian SiC industry for further epidemiological studies. The method is fully applicable for compliance work.

  8. Biologically inspired collision avoidance system for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  9. Volvo and Infiniti drivers' experiences with select crash avoidance technologies.

    PubMed

    Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah

    2010-06-01

    Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be

  10. Distance estimation and collision prediction for on-line robotic motion planning

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1992-01-01

    An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem is incorporated into the framework of an in-line motion-planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning, the deterministic problem where the information about the objects is assumed to be certain is examined. L(1) or L(infinity) norms are used to represent distance and the problem becomes a linear programming problem. The stochastic problem is formulated where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: First, filtering of the distance between the robot and the moving object at the present time. Second, prediction of the minimum distance in the future in order to predict the collision time.

  11. Middle Man Concept for In-Orbit Collision Risks Mitigation, CAESAR and CARA Examples

    NASA Technical Reports Server (NTRS)

    Moury, Monique; Newman, Lauri K.; Laporte, Francois

    2014-01-01

    This paper describes the conjunction analysis which has to be performed using data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2- step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for a Middle Man role. After describing the Middle Man concept, this paper introduces two examples with their similarities and particularities: the American civil space effort delivered by the NASA CARA team (Conjunction Assessment Risk Analysis) and the French response CAESAR (Conjunction Assessment and Evaluation Service: Alerts and Recommendations). For both, statistics are presented and feedbacks discussed. All together, around 80 satellites are served by CARA and/or CAESAR. Both processes regularly evolve in order either to follow JSpOC upgrades or to improve analysis according to experience acquired during the past years.

  12. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    PubMed

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  13. Crash avoidance potential of four large truck technologies.

    PubMed

    Jermakian, Jessica S

    2012-11-01

    The objective of this paper was to estimate the maximum potential large truck crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and vehicle stability control. Estimates accounted for limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as location of damage on the vehicle, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented the crash. Of the four technologies, side view assist had the greatest potential for preventing large truck crashes of any severity; the technology is potentially applicable to 39,000 crashes in the United States each year, including 2000 serious and moderate injury crashes and 79 fatal crashes. Vehicle stability control is another promising technology, with the potential to prevent or mitigate up to 31,000 crashes per year including more serious crashes--up to 7000 moderate-to-serious injury crashes and 439 fatal crashes per year. Vehicle stability control could prevent or mitigate up to 20 and 11 percent of moderate-to-serious injury and fatal large truck crashes, respectively. Forward collision warning has the potential to prevent as many as 31,000 crashes per year, including 3000 serious and moderate injury crashes and 115 fatal crashes. Finally, 10,000 large truck crashes annually were relevant to lane departure warning/prevention systems. Of these, 1000 involved serious and moderate injuries and 247 involved fatal injuries. There is great potential effectiveness for truck-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. Actual

  14. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  15. Airborne electromagnetic data levelling using principal component analysis based on flight line difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang

    2018-04-01

    A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.

  16. RAC-multi: reader anti-collision algorithm for multichannel mobile RFID networks.

    PubMed

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  17. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    PubMed Central

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks. PMID:22315528

  18. Effective dynamical coupling of hydrodynamics and transport for heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliinychenko, Dmytro; Petersen, Hannah

    2017-04-01

    Present hydrodynamics-based simulations of heavy-ion collisions neglect the feedback from the frozen-out particles flying back into the hydrodynamical region. This causes an artefact called “negative Cooper-Frye contributions”, which is negligible for high collision energies, but becomes significant for lower RHIC BES energies and for event-by-event simulations. To avoid negative Cooper-Frye contributions, while still preserving hydrodynamical behavior, we propose a pure hadronic transport approach with forced thermalization in the regions of high energy density. It is demonstrated that this approach exhibits enhancement of strangeness and mean transverse momenta compared to conventional transport - an effect typical for hydrodynamical approaches.

  19. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  20. Neuropsychological performance in solvent-exposed vehicle collision repair workers in New Zealand.

    PubMed

    Keer, Samuel; Glass, Bill; McLean, Dave; Harding, Elizabeth; Babbage, Duncan; Leathem, Janet; Brinkmann, Yanis; Prezant, Bradley; Pearce, Neil; Douwes, Jeroen

    2017-01-01

    To assess whether contemporary solvent exposures in the vehicle collision repair industry are associated with objectively measured neuropsychological performance in collision repair workers. The RBANS battery and additional tests were administered to 47 vehicle collision repair and 51 comparison workers randomly selected from a previous questionnaire study. Collision repair workers performed lower on tests of attention (digit span backwards: -1.5, 95% CI -2.4, -0.5; digit span total: -1.7, CI -3.3, -0.0; coding: -6.1, CI -9.9, -2.8; total attention scale: -9.3, CI -15.9, -2.8) and the RBANS total scale (-5.1, CI -9.1, -1.2). Additional tests also showed deficits in visual attention and reaction time (Trails B: -11.5, CI -22.4, -0.5) and motor speed/dexterity (coin rotation dominant hand & non-dominant: -2.9, CI -5.3, -0.4 and -3.1, CI -5.6, -0.7 respectively). The strongest associations were observed in panel beaters. Applying dichotomised RBANS outcomes based on the lowest percentile scores of a normative comparison group showed strongly increased risks for attention (5th percentile: OR 20.1, 95% CI 1.5, 263.3; 10th percentile: 8.8, CI 1.7, 46.2; and 20th percentile: 5.1, CI 1.5, 17.6, respectively). Those employed in the industry for ≤ 17 years (the median work duration) generally had lower scores in the attention domain scale and RBANS total scale compared to those employed >17 years suggesting a healthy worker survivor bias, but trends were inconsistent for other domains. This study has found significant deficits in cognitive performance in collision repair workers despite low current airborne exposures in New Zealand.

  1. Airborne lidar wind detection at 2 μm

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.

    1995-06-01

    NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.

  2. Development of the KARI Space Debris Collision Risk Management System (KARISMA)

    NASA Astrophysics Data System (ADS)

    Kim, Hae-Dong; Lee, Sang-Cherl; Cho, Dong-Hyun; Seong, Jae-Dong

    2018-05-01

    Korea has been operating multi-purpose low-earth orbit (LEO) satellites such as the Korea multi-purpose satellite (KOMPSAT) since 1999 and the Communication, Ocean, and Meteorological Satellite (COMS), which was launched into geostationary orbit in 2006. The Korea Aerospace Research Institute (KARI) consequently became concerned about the deteriorating space debris environment. This led to the instigation, in 2011, of a project to develop the KARI space debris collision risk management system (KARISMA). In 2014, KARISMA was adopted as an official tool at the KARI ground station and is operated to mitigate collision risks while being continuously upgraded with input from satellite operators. The characteristics and architecture of KARISMA are described with detailed operational views. The user-friendly user interfaces including 2D and 3D displays of the results, conjunction geometries, and so on, are described in detail. The results of our analysis of the space collision risk faced by the KOMPSAT satellites as determined using KARISMA are presented, as well as optimized collision avoidance maneuver planning with maneuvering strategies for several conjunction events. Consequently, the development of KARISMA to provide detailed descriptions is expected to contribute significantly to satellite operators and owners who require tools with many useful functions to mitigate collision risk.

  3. Volvo drivers' experiences with advanced crash avoidance and related technologies.

    PubMed

    Eichelberger, Angela H; McCartt, Anne T

    2014-01-01

    Crash avoidance technologies can potentially prevent or mitigate many crashes, but their success depends in part on driver acceptance. Owners of 2010-2012 model Volvo vehicles with several technologies were interviewed about their experiences. Interviews were conducted in summer 2012 with 155 owners of vehicles with City Safety as a standard feature; 145 owners with an optional technology package that included adaptive cruise control, distance alert, collision warning with full auto brake (and pedestrian detection on certain models), driver alert control, and lane departure warning; and 172 owners with both City Safety and the technology package. The survey response rates were 21 percent for owners with City Safety, 30 percent for owners with the technology package, and 27 percent for owners with both. Ten percent of owners opted out before the telephone survey began, and 18 percent declined to participate when called. Despite some annoyance, most respondents always leave the systems on, although fewer do so for lane departure warning (59%). For each of the systems, at least 80 percent of respondents with the system would want it on their next vehicle. Many respondents reported safer driving habits with the systems (e.g., following less closely with adaptive cruise control, using turn signals more often with lane departure warning). Fewer respondents reported potentially unsafe behavior, such as allowing the vehicle to brake for them at least some of the time. About one third of respondents experienced autonomous braking when they believed they were at risk of crashing, and about one fifth of respondents thought it had prevented a crash. About one fifth of respondents with the technology package reported that they were confused or misunderstood which safety system had activated in their vehicle. Consistent with the results for early adopters in the previous survey of Volvo and Infiniti owners, the present survey found that driver acceptance of the technologies

  4. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  5. Java Architecture for Detect and Avoid Extensibility and Modeling

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor; Mueller, Eric Richard; Johnson, Marcus A.; Abramson, Michael; Snow, James William

    2015-01-01

    Unmanned aircraft will equip with a detect-and-avoid (DAA) system that enables them to comply with the requirement to "see and avoid" other aircraft, an important layer in the overall set of procedural, strategic and tactical separation methods designed to prevent mid-air collisions. This paper describes a capability called Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM), developed to prototype and help evaluate various DAA technological requirements by providing a flexible and extensible software platform that models all major detect-and-avoid functions. Figure 1 illustrates JADEM's architecture. The surveillance module can be actual equipment on the unmanned aircraft or simulators that model the process by which sensors on-board detect other aircraft and provide track data to the traffic display. The track evaluation function evaluates each detected aircraft and decides whether to provide an alert to the pilot and its severity. Guidance is a combination of intruder track information, alerting, and avoidance/advisory algorithms behind the tools shown on the traffic display to aid the pilot in determining a maneuver to avoid a loss of well clear. All these functions are designed with a common interface and configurable implementation, which is critical in exploring DAA requirements. To date, JADEM has been utilized in three computer simulations of the National Airspace System, three pilot-in-the-loop experiments using a total of 37 professional UAS pilots, and two flight tests using NASA's Predator-B unmanned aircraft, named Ikhana. The data collected has directly informed the quantitative separation standard for "well clear", safety case, requirements development, and the operational environment for the DAA minimum operational performance standards. This work was performed by the Separation Assurance/Sense and Avoid Interoperability team under NASA's UAS Integration in the NAS project.

  6. Allergen Avoidance in Allergic Asthma

    PubMed Central

    Cipriani, Francesca; Calamelli, Elisabetta; Ricci, Giampaolo

    2017-01-01

    Allergic asthma is the most frequent disease among the chronic respiratory disorders in pediatric age with an important social impact. In the last years, many efforts have been made to identify effective preventive approaches to get a better control of symptoms and to obtain the best future outcomes for the patients. In patients with allergic asthma triggered by the exposure to indoor allergens, the avoidance is the first intervention to prevent the appearance or the worsening of bronchial symptoms. This review article summarized the most recent evidence from literature about the efficacy of specific control interventions for the most important allergens. Even if a wide spectrum of interventions has been suggested and may help to reduce exposure to trigger allergy for sensitized patients suffering from respiratory allergy, evidence supporting the efficacy of these approaches is still weak and subject of controversy. However, the exposure control to specific airborne allergens is still widely recommended and may be effective as part of a holistic approach to reduce the severity of allergic respiratory symptoms in sensitized individuals. PMID:28540285

  7. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  8. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  9. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  10. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    PubMed

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  11. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  12. Florida manatee avoidance technology: A pilot program by the Florida Fish and Wildlife Conservation Commission

    NASA Astrophysics Data System (ADS)

    Frisch, Katherine; Haubold, Elsa

    2003-10-01

    Since 1976, approximately 25% of the annual Florida manatee (Trichechus manatus latirostris) mortality has been attributed to collisions with watercraft. In 2001, the Florida Legislature appropriated $200,000 in funds for research projects using technological solutions to directly address the problem of collisions between manatees and watercraft. The Florida Fish & Wildlife Conservation Commission initially funded seven projects for the first two fiscal years. The selected proposals were designed to explore technology that had not previously been applied to the manatee/boat collision problem and included many acoustic concepts related to voice recognition, sonar, and an alerting device to be put on boats to warn manatees. The most promising results to date are from projects employing voice-recognition techniques to identify manatee vocalizations and warn boaters of the manatees' presence. Sonar technology, much like that used in fish finders, is promising but has met with regulatory problems regarding permitting and remains to be tested, as has the manatee-alerting device. The state of Florida found results of the initial years of funding compelling and plans to fund further manatee avoidance technology research in a continued effort to mitigate the problem of manatee/boat collisions.

  13. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  14. Surprise braking trials, time-to-collision judgments, and "first look" maneuvers under realistic rear-end crash scenarios

    DOT National Transportation Integrated Search

    2005-08-01

    This project continues to build upon the foundation provided by the human factors experimentation conducted in the previous Crash Avoidance Metrics Partnership (CAMP) Forward Collision Warning (FCW) system efforts. As in the previous CAMP FCW researc...

  15. Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems

    NASA Technical Reports Server (NTRS)

    Mathews, Bruce D.

    1991-01-01

    Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the urban discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.

  16. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  17. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  18. The risk of pedestrian collisions with peripheral visual field loss.

    PubMed

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  19. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  20. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  1. Dual tasking negatively impacts obstacle avoidance abilities in post-stroke individuals with visuospatial neglect: Task complexity matters!

    PubMed

    Aravind, Gayatri; Lamontagne, Anouk

    2017-01-01

    Persons with perceptual-attentional deficits due to visuospatial neglect (VSN) after a stroke are at a risk of collisions while walking in the presence of moving obstacles. The attentional burden of performing a dual-task may further compromise their obstacle avoidance performance, putting them at a greater risk of collisions. The objective of this study was to compare the ability of persons with (VSN+) and without VSN (VSN-) to dual task while negotiating moving obstacles. Twenty-six stroke survivors (13 VSN+, 13 VSN-) were assessed on their ability to (a) negotiate moving obstacles while walking (locomotor single task); (b) perform a pitch-discrimination task (cognitive single task) and (c) simultaneously perform the walking and cognitive tasks (dual task). We compared the groups on locomotor (collision rates, minimum distance from obstacle and onset of strategies) and cognitive (error rates) outcomes. For both single and dual task walking, VSN+ individuals showed higher collision rates compared to VSN- individuals. Dual tasking caused deterioration of locomotor (more collisions, delayed onset and smaller minimum distances) and cognitive performances (higher error rate) in VSN+ individuals. Contrastingly, VSN- individuals maintained collision rates, increased minimum distance, but showed more cognitive errors, prioritizing their locomotor performance. Individuals with VSN demonstrate cognitive-locomotor interference under dual task conditions, which could severely compromise safety when ambulating in community environments and may explain the poor recovery of independent community ambulation in these individuals.

  2. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  3. An update on airborne contact dermatitis.

    PubMed

    Huygens, S; Goossens, A

    2001-01-01

    This review is an update of 2 previously published articles on airborne contact dermatoses. Because reports in the literature often omit the term 'airborne', 18 volumes of Contact Dermatitis (April 1991-June 2000), 8 volumes of the American Journal of Contact Dermatitis (1992 1999) and 4 volumes of La Lettre du Gerda (1996-1999) were screened, and the cases cited were classified as to history, lesion locations, sensitization sources, and other factors. Reports on airborne dermatitis are increasingly being published, sometimes in relation to specific occupational areas.

  4. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  5. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  6. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.

    PubMed

    Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  7. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  8. Ungulate Vehicle Collisions in a Peri-Urban Environment: Consequences of Transportation Infrastructures Planned Assuming the Absence of Ungulates

    PubMed Central

    Zuberogoitia, Iñigo; del Real, Javier; Torres, Juan José; Rodríguez, Luis; Alonso, María; Zabala, Jabi

    2014-01-01

    Ungulate vehicle collisions (UVC) provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC) and 153 Wild Boar vehicle collisions (WBVC) were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls) separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures. PMID:25251376

  9. Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates.

    PubMed

    Zuberogoitia, Iñigo; del Real, Javier; Torres, Juan José; Rodríguez, Luis; Alonso, María; Zabala, Jabi

    2014-01-01

    Ungulate vehicle collisions (UVC) provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC) and 153 Wild Boar vehicle collisions (WBVC) were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls) separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures.

  10. Association between first airborne cedar pollen level peak and pollinosis symptom onset: a web-based survey.

    PubMed

    Bando, Harumi; Sugiura, Hiroaki; Ohkusa, Yasushi; Akahane, Manabu; Sano, Tomomi; Jojima, Noriko; Okabe, Nobuhiko; Imamura, Tomoaki

    2015-01-01

    Cedar pollinosis in Japan affects nearly 25 % of Japanese citizens. To develop a treatment for cedar pollinosis, it is necessary to understand the relationship between the time of its occurrence and the amount of airborne cedar pollen. In the spring of 2009, we conducted daily Internet-based epidemiologic surveys, which included 1453 individuals. We examined the relationship between initial date of onset of pollinosis symptoms and daily amount of airborne cedar pollen to which subjects were exposed. Approximately 35.2 % of the subjects experienced the onset of pollinosis during a one-week interval in which the middle day coincided with the peak pollen count. The odds ratio for this one-week time interval was 4.03 (95 % confidence interval: 3.34-4.86). The predicted date of the cedar pollen peak can be used to determine the appropriate date for initiation of self-medication with anti-allergy drugs and thus avoid development of sustained and severe pollinosis.

  11. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S; Cook, K; Fasenfest, B

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellitemore » collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.« less

  13. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    NASA Astrophysics Data System (ADS)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  14. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  15. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  16. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  17. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  18. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  19. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  20. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  1. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  2. An Algorithm for Autonomous Formation Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Cruz, Yunior I.

    The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.

  3. Collision group and renormalization of the Boltzmann collision integral.

    PubMed

    Saveliev, V L; Nanbu, K

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  4. Collision group and renormalization of the Boltzmann collision integral

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  5. Dynamics of droplet collision and flame-front motion

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Long

    Three physical phenomena were experimentally and computationally investigated in this research, namely the dynamics of head-on droplet-droplet collision, head-on droplet-film collision, and laminar premixed flames, with emphasis on the transition between bouncing and merging of the liquid surfaces for the droplet collision studies, and on the susceptibility to exhibit hydrodynamic instability for the flame dynamics. All three problems share the common feature of having an active deformable interface separating two flow regions of disparate densities, and as such can be computationally described using the adopted immersed boundary technique. Experimentally, the droplets (˜300 mum diameter) were generated using the ink jet printing technique, and imaged using stroboscopy for the droplet-droplet collision events and high-speed cine-photography for the droplet-film collision events. For the study of droplet-droplet collision, the instant of merging was experimentally determined and then used as an input in the computational simulation of the entire collision event. The simulation identified the differences between collision and merging at small and large Weber numbers, and satisfactorily described the dynamics of the inter-droplet gap including the role of the van der Waals force in effecting surface rupture. For the study of droplet-film collision, extensive experimental mapping showed that the collision dynamics is primarily affected by the droplet Weber number (We) and the film thickness scaled by the droplet radius (H), that while droplet absorption by the film is facilitated with increasing droplet Weber number, the boundary of transition is punctuated by an absorption peninsula, in the We-H space, within which absorption is further facilitated for smaller Weber numbers. Results from computation simulation revealed the essential dependence of the collision dynamics on the restraining nature of the solid surface, the energy exchange between the droplet and the

  6. Interface collisions

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Pierre-Louis, O.

    2018-04-01

    We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.

  7. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram

    PubMed Central

    Kim, Hoyeon; Cheang, U. Kei

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016

  9. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  10. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.

  11. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  12. Enhanced Army Airborne Forces: A New Joint Operational Capability

    DTIC Science & Technology

    2014-01-01

    that are trained to carry out airborne operations, including the 75th Ranger Regiment and Army special forces. Today’s airborne forces lack protected...Operation Just Cause Airborne units were used extensively in Panama, and the 82nd Air- borne’s 1st Brigade and the 75th Ranger Regiment were both...carry out airborne operations, including the 75th Ranger Regiment and Army special forces. The changes made to transition the Army into a force

  13. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  14. A visually guided collision warning system with a neuromorphic architecture.

    PubMed

    Okuno, Hirotsugu; Yagi, Tetsuya

    2008-12-01

    We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  17. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  20. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  1. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use.

  2. Nepal and Papua Airborne Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.

    2011-12-01

    Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.

  3. The MIT - Cornell Collision and Why it Happened

    DTIC Science & Technology

    2008-10-01

    George Boulevard Ben and Team UCF’s Knight Rider Section 2.2 2h00m North Nevada and Red Zone CarOLO’s Caroline turns across MIT’s Talos Section 2.3...3h00m White Zone Caroline and Talos collide. Section 2.4 4h00m Carolina Avenue and Texas Avenue Talos swerves to avoid Victor Tango’s Odin Section 2.5...stopped in time to prevent a collision. 2.3 Caroline and Talos at North Nevada and Red Zone N or th N ev ad a Av e C ar ol in a Av e Red Zone

  4. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  7. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  14. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  15. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland.

    PubMed

    Kokurewicz, Tomasz; Ogórek, Rafał; Pusz, Wojciech; Matkowski, Krzysztof

    2016-07-01

    The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. Visual control of navigation in insects and its relevance for robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-08-01

    Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  19. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.

  20. An update on airborne contact dermatitis: 2001-2006.

    PubMed

    Santos, Raquel; Goossens, An

    2007-12-01

    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes.

  1. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, D; Maurer, J; Liu, H

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custommore » Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.« less

  2. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  3. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters inmore » two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.« less

  4. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  5. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  6. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  7. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    PubMed

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  8. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  9. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  10. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  11. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.

    PubMed

    Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus

    2018-02-28

    Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.

  12. A TCAS-II Resolution Advisory Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony; Chamberlain, James

    2013-01-01

    The Traffic Alert and Collision Avoidance System (TCAS) is a family of airborne systems designed to reduce the risk of mid-air collisions between aircraft. TCASII, the current generation of TCAS devices, provides resolution advisories that direct pilots to maintain or increase vertical separation when aircraft distance and time parameters are beyond designed system thresholds. This paper presents a mathematical model of the TCASII Resolution Advisory (RA) logic that assumes accurate aircraft state information. Based on this model, an algorithm for RA detection is also presented. This algorithm is analogous to a conflict detection algorithm, but instead of predicting loss of separation, it predicts resolution advisories. It has been formally verified that for a kinematic model of aircraft trajectories, this algorithm completely and correctly characterizes all encounter geometries between two aircraft that lead to a resolution advisory within a given lookahead time interval. The RA detection algorithm proposed in this paper is a fundamental component of a NASA sense and avoid concept for the integration of Unmanned Aircraft Systems in civil airspace.

  13. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  14. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  15. Teachers Avoiding Learners' Avoidance: Is It Possible?

    ERIC Educational Resources Information Center

    Tadayyon, Maedeh; Zarrinabadi, Nourollah; Ketabi, Saeed

    2016-01-01

    Dealing with learners who prefer to take the back seat and avoid classroom participation can be every teacher's nightmare. This lack of participation may cause teacher frustration, and possibly the only way to reduce this lack of participation is to access the concept of avoidance strategy. Avoidance strategy is the abandonment of a classroom task…

  16. Miniaturized, multibeam, solid state scanning laser radar in automobile collision avoidance sensor systems

    NASA Astrophysics Data System (ADS)

    Sargent, Ronald A.

    1995-06-01

    Recent intelligent transportation systems (ITS) initiatives sponsored by commercial transportation companies and the U.S. Department of Transportation include an area dedicated to Automated Vehicle Control Systems (AVCS). AVCS systems are dedicated to improving passenger automobile safety, efficiency, and impact on the environment. Minimizing the number of automobile collisions through automated obstacle detection and vehicle response is vital to this effort. Simple, reliable, low cost sensors installed in automobiles to provide driver warning and/or input to vehicle systems such as braking or cruise control are the key piece to making this technology as common as air bags and seat belts. EPA emission regulations now require specific areas to periodically report the mix of vehicle types. These reports must include in the mix the 13 possible categories for vehicles. Simple low cost senors installed as part of the traffic management system will facilitate the determination of vehicle category. Laser Atlanta has recently developed two distinct types of sensors that utilize a unique multi- beam approach to detect `targets' that are potential hazards. They also provide range and range rate data to automobile control and traffic management systems.

  17. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...-1279; Notice No. 11-07] Notification for Airborne Wind Energy Systems (AWES) AGENCY: Federal Aviation... CFR) part 77, ``Safe, Efficient Use and Preservation of the Navigable Airspace,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system...

  18. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.

    PubMed

    Zhang, Linshuai; Guo, Shuxiang; Yu, Huadong; Song, Yu; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2018-02-23

    The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.

  19. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    NASA Astrophysics Data System (ADS)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  20. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  1. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  2. Are There Frame-Distortion Contributions to Collision-Induced Absorption and Collision-Induced Light Scattering?

    NASA Astrophysics Data System (ADS)

    Hohm, Uwe

    2007-12-01

    Collision-induced spectroscopy, such as collision-induced absorption (CIA) and collision-induced light scattering (CILS), can give valuable information on permanent electric moments, polarizabilities and intermolecular-interaction potentials. In general the collision-induced spectra of the pure rare-gases and their binary mixtures are understood fairly well. However if at least one of the collision partners is a molecule then in some cases the spectra show features which can hardly be explained by current theories which deal with the case of undistorted molecules. Here we discuss the possibility of collision-induced frame distortion as an additional effect to be considered in collision-induced spectroscopy.

  3. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Underground § 57.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by exhaust...

  4. Appendix : airborne incidents : an econometric analysis of severity

    DOT National Transportation Integrated Search

    2014-12-19

    This is the Appendix for Airborne Incidents: An Econometric Analysis of Severity Report. : Airborne loss of separation incidents occur when an aircraft breaches the defined separation limit (vertical and/or horizontal) with another aircraft or terrai...

  5. Image-based systems for space surveillance: from images to collision avoidance

    NASA Astrophysics Data System (ADS)

    Pyanet, Marine; Martin, Bernard; Fau, Nicolas; Vial, Sophie; Chalte, Chantal; Beraud, Pascal; Fuss, Philippe; Le Goff, Roland

    2011-11-01

    In many spatial systems, image is a core technology to fulfil the mission requirements. Depending on the application, the needs and the constraints are different and imaging systems can offer a large variety of configurations in terms of wavelength, resolution, field-of-view, focal length or sensitivity. Adequate image processing algorithms allow the extraction of the needed information and the interpretation of images. As a prime contractor for many major civil or military projects, Astrium ST is very involved in the proposition, development and realization of new image-based techniques and systems for space-related purposes. Among the different applications, space surveillance is a major stake for the future of space transportation. Indeed, studies show that the number of debris in orbit is exponentially growing and the already existing population of small and medium debris is a concrete threat to operational satellites. This paper presents Astrium ST activities regarding space surveillance for space situational awareness (SSA) and space traffic management (STM). Among other possible SSA architectures, the relevance of a ground-based optical station network is investigated. The objective is to detect and track space debris and maintain an exhaustive and accurate catalogue up-to-date in order to assess collision risk for satellites and space vehicles. The system is composed of different type of optical stations dedicated to specific functions (survey, passive tracking, active tracking), distributed around the globe. To support these investigations, two in-house operational breadboards were implemented and are operated for survey and tracking purposes. This paper focuses on Astrium ST end-to-end optical-based survey concept. For the detection of new debris, a network of wide field of view survey stations is considered: those stations are able to detect small objects and associated image processing (detection and tracking) allow a preliminary restitution of their

  6. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  7. Scratched: World War II Airborne Operations That Never Happened

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited SCRATCHED: WORLD WAR II AIRBORNE OPERATIONS THAT NEVER HAPPENED A Monograph by...2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2013-MAY 2014 4. TITLE AND SUBTITLE Scratched: World War II Airborne...Maastricht gap, to get Allied troops through the West Wall. For numerous reasons, the overall Allied airborne effort of World War II provided mixed

  8. Satellite and airborne IR sensor validation by an airborne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less

  9. Development Of Performance Specifications For Collision Avoidance Systems For Lane Change Merging And Backing, Task 2 - Interim Report: Functional Goals Establishment

    DOT National Transportation Integrated Search

    1995-02-01

    ">IN ADDITION TO THE MOST BASIC GOAL OF ELIMINATING THE "BLIND SPOT", SIGNIFICANT CRASH AVOIDANCEOPPORTUNITIES CAN BE REALIZED BY GUARDING AGAINST "FAST CLOSING" VEHICLES DURING LANE CHANGE AND MERGING. THESE "FAST APPROACH" COLLISIONS, THOUGH INFREQ...

  10. Dash Cam videos on YouTube™ offer insights into factors related to moose-vehicle collisions.

    PubMed

    Rea, Roy V; Johnson, Chris J; Aitken, Daniel A; Child, Kenneth N; Hesse, Gayle

    2018-03-26

    To gain a better understanding of the dynamics of moose-vehicle collisions, we analyzed 96 videos of moose-vehicle interactions recorded by vehicle dash-mounted cameras (Dash Cams) that had been posted to the video-sharing website YouTube™. Our objective was to determine the effects of road conditions, season and weather, moose behavior, and driver response to actual collisions compared to near misses when the collision was avoided. We identified 11 variables that were consistently observable in each video and that we hypothesized would help to explain a collision or near miss. The most parsimonious logistic regression model contained variables for number of moose, sight time, vehicle slows, and vehicle swerves (AIC c w = 0.529). This model had good predictive accuracy (AUC = 0.860, SE = 0.041). The only statistically significant variable from this model that explained the difference between moose-vehicle collisions and near misses was 'Vehicle slows'. Our results provide no evidence that road surface conditions (dry, wet, ice or snow), roadside habitat type (forested or cleared), the extent to which roadside vegetation was cleared, natural light conditions (overcast, clear, twilight, dark), season (winter, spring and summer, fall), the presence of oncoming traffic, or the direction from which the moose entered the roadway had any influence on whether a motorist collided with a moose. Dash Cam videos posted to YouTube™ provide a unique source of data for road safety planners trying to understand what happens in the moments just before a moose-vehicle collision and how those factors may differ from moose-vehicle encounters that do not result in a collision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention...

  12. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...

  13. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  14. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  15. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  16. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  17. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  18. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  19. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  20. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. Active sampling with DNPH-coated solid sorbents has been widely used for sampling airborne carbonyls; ...

  1. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  2. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  3. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.

    PubMed

    Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui

    2017-05-28

    Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  4. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  5. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  6. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  7. SGA-WZ: A New Strapdown Airborne Gravimeter

    PubMed Central

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545

  8. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  9. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  10. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  11. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  12. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  13. Inactivation of an enterovirus by airborne disinfectants

    PubMed Central

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  14. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  15. Geronimo: Planning Considerations for Employing Airborne Forces

    DTIC Science & Technology

    2017-05-25

    Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that... operation , a planner must adhere to joint planning considerations and understand the Air Force and Army requirements. Today the Army maintains only...one brigade and two battalions of deployable conventional airborne combat power. The special operations community also is airborne capable, and the

  16. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  17. [Development of a microenvironment test chamber for airborne microbe research].

    PubMed

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  18. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  19. 47 CFR 22.925 - Prohibition on airborne operation of cellular telephones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Prohibition on airborne operation of cellular... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.925 Prohibition on airborne... any other type of aircraft must not be operated while such aircraft are airborne (not touching the...

  20. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  1. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  2. Forward collision warning requirements project : refining the CAMP crash alert timing approach by examining "last second" braking and lane change maneuvers under various kinematic conditions

    DOT National Transportation Integrated Search

    2003-01-01

    This final report describes a follow-on study to the previous Crash Avoidance Metrics Partnership (CAMP) human factors work addressing Forward Collision Warning (FCW) timing requirements. This research extends this work by gathering not only "last-se...

  3. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  4. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  5. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  6. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  7. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  8. Collision experiments between centimeter-sized protoplanetesimals in microgravity

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar; Colwell, Joshua E.; Dove, Adrienne; Brisset, Julie; Cruz, Roberto; Foster, Zach

    2016-10-01

    In the early stages of planet formation in a protoplanetary disk the first coalescing bodies are weakly bound. Conditions in the disk, such as the presence of gas (drag), make further growth through centimeter and meter sized bodies difficult. For centimeter-sized aggregates self-gravity is almost non-existent and electrostatic surface forces such as van der Waals-type forces play a critical role in holding loosely bound rubble-piles together during their early formation. In order to understand how aggregates of this size grow we study the mechanical strengths, material, and collisional properties of cm-sized aggregates. The collisional outcomes between two aggregates can be determined by a set of definable collision parameters and experimental constraints on these parameters will aid in astrophysical models of planet formation. We have carried out a series of microgravity laboratory experiments in which we collide a pair of weakly bound aggregates together. In our free-fall chamber we collide two 3-cm aggregates together at collision velocities ranging from 50 to 220 cm/s and with pressure ~1 mbar. The aggregates are made of mm-sized silica bead particles and require internal cohesion to avoid fragmentation above modest collision speeds, which is supplied by adding H2O (later dehydrated) and between 0 - 0.1 g of a well-mixed liquid adhesive to simulate surface forces and bonds between particles. We measure the compressive strengths of the aggregates (0.5 - 10 kPa), find their coefficients of restitution (CoR), and determine their bouncing and fragmentation thresholds, over a range of velocities and internal strengths. We observed collisional outcomes such as bouncing, erosion (mass-loss), and fragmentation of the aggregates. We find the CoR of the aggregates to have a mean of 0.11 ± 0.1 with no dependence on velocity or strength. Impact velocities above ~2 m/s resulted in fragmentation of our aggregates, higher than the ~1 m/s threshold for porous dust aggregates

  9. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  11. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  12. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  13. Accurate Determination of Comet and Asteroid Orbits Leading to Collision With Earth

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Kay-Bunnell, Linda; Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Hausman, Matthew A.

    2005-01-01

    Movements of the celestial bodies in our solar system inspired Isaac Newton to work out his profound laws of gravitation and motion; with one or two notable exceptions, all of those objects move as Newton said they would. But normally harmonious orbital motion is accompanied by the risk of collision, which can be cataclysmic. The Earth s moon is thought to have been produced by such an event, and we recently witnessed magnificent bombardments of Jupiter by several pieces of what was once Comet Shoemaker-Levy 9. Other comets or asteroids may have met the Earth with such violence that dinosaurs and other forms of life became extinct; it is this possibility that causes us to ask how the human species might avoid a similar catastrophe, and the answer requires a thorough understanding of orbital motion. The two red square flags with black square centers displayed are internationally recognized as a warning of an impending hurricane. Mariners and coastal residents who know the meaning of this symbol and the signs evident in the sky and ocean can act in advance to try to protect lives and property; someone who is unfamiliar with the warning signs or chooses to ignore them is in much greater jeopardy. Although collisions between Earth and large comets or asteroids occur much less frequently than landfall of a hurricane, it is imperative that we learn to identify the harbingers of such collisions by careful examination of an object s path. An accurate determination of the orbit of a comet or asteroid is necessary in order to know if, when, and where on the Earth s surface a collision will occur. Generally speaking, the longer the warning time, the better the chance of being able to plan and execute action to prevent a collision. The more accurate the determination of an orbit, the less likely such action will be wasted effort or, what is worse, an effort that increases rather than decreases the probability of a collision. Conditions necessary for a collision to occur are

  14. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  15. Characterizing the Effects of a Vertical Time Threshold for a Class of Well-Clear Definitions

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Consiglio, Maria C.; Chamberlain James P.

    2015-01-01

    A fundamental requirement for the integration of unmanned aircraft into civil airspace is the capability of aircraft to remain well clear of each other and avoid collisions. This requirement has led to a broad recognition of the need for an unambiguous, formal definition of well clear. It is further recognized that any such definition must be interoperable with existing airborne collision avoidance systems (ACAS). A particular class of well-clear definitions uses logic checks of independent distance thresholds as well as independent time thresholds in the vertical and horizontal dimensions to determine if a well-clear violation is predicted to occur within a given time interval. Existing ACAS systems also use independent distance thresholds, however a common time threshold is used for the vertical and horizontal logic checks. The main contribution of this paper is the characterization of the effects of the decoupled vertical time threshold on a well-clear definition in terms of (1) time to well-clear violation, and (2) interoperability with existing ACAS. The paper provides governing equations for both metrics and includes simulation results to illustrate the relationships. In this paper, interoperability implies that the time of well-clear violation is strictly less than the time a resolution advisory is issued by ACAS. The encounter geometries under consideration in this paper are initially well clear and consist of constant-velocity trajectories resulting in near-mid-air collisions.

  16. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    PubMed

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    a forgiving infrastructure within a sustainable safety systems, and rethinking in-vehicle collision warning systems. Future research should address the effectiveness of crash avoidance maneuvers and joint modeling of maneuver selection and crash severity.

  17. Airborne sound transmission loss characteristics of woodframe construction

    Treesearch

    Fred F. Rudder

    1985-01-01

    This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the...

  18. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  19. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  20. Novel ID-based anti-collision approach for RFID

    NASA Astrophysics Data System (ADS)

    Zhang, De-Gan; Li, Wen-Bin

    2016-09-01

    Novel correlation ID-based (CID) anti-collision approach for RFID under the banner of the Internet of Things (IOT) has been presented in this paper. The key insights are as follows: according to the deterministic algorithms which are based on the binary search tree, we propose a method to increase the association between tags so that tags can initiatively send their own ID under certain trigger conditions, at the same time, we present a multi-tree search method for querying. When the number of tags is small, by replacing the actual ID with the temporary ID, it can greatly reduce the number of times that the reader reads and writes to tag's ID. Active tags send data to the reader by the way of modulation binary pulses. When applying this method to the uncertain ALOHA algorithms, the reader can determine the locations of the empty slots according to the position of the binary pulse, so it can avoid the decrease in efficiency which is caused by reading empty slots when reading slots. Theory and experiment show that this method can greatly improve the recognition efficiency of the system when applied to either the search tree or the ALOHA anti-collision algorithms.