Science.gov

Sample records for airborne collision avoidance

  1. Airborne Collision Avoidance System X

    DTIC Science & Technology

    2015-06-01

    avoidance system on behalf of the Federal Aviation Adminis- tration (FAA). The current Traffic Alert and Collision Avoidance System II (TCAS II...which are used on board an aircraft. The tables provide a cost for each action—no alert , a traffic advisory alerting pilots about nearby aircraft, or a...suitabil- ity than does TCAS II; studies show that ACAS X reduces mid-air collision risk by 59% and unnecessary disruptive alerts by 25% when

  2. Airborne Collision Avoidance Systems and Air Traffic Management Safety

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-01-01

    A new ICAO Policy on Airborne Collision Avoidance Systems is needed, which recognizes it to be an integrated part of the air traffic management system's safety defences; and that should be fully included in hazard analyses for the total system's design safety targets.

  3. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    , sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  4. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  5. Model-Based Optimization of Airborne Collision Avoidance Logic

    DTIC Science & Technology

    2010-01-26

    outcome categories. 42 18 Example SOC curve. 44 19 Simple simulation framework. 45 20 SOC curves for the DP logic. 46 21 Effect of different sampling...avoidance problem. 18 4 Outcome categories. 41 5 Own altitude, sensitivity level, and altitude layer of TCAS operating points. 46 6 Probability of...different problems, including robotic motion planning [ 46 ], agricultural management [47], medical diagnosis [48], and spoken dialog systems [49]. There

  6. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  7. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  8. Collision avoidance sensor skin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was to totally eliminate the possibility of a robot (or any mechanism for that matter) inducing a collision in space operations. We were particularly concerned that human beings were safe under all circumstances. This was apparently accomplished, and it is shown that GSFC has a system that is ready for space qualification and flight. However, it soon became apparent that much more could be accomplished with this technology. Payloads could be made invulnerable to collision avoidance and the blind spots behind them eliminated. This could be accomplished by a simple, non-imaging set of 'Capaciflector' sensors on each payload. It also is evident that this system could be used to align and dock the system with a wide margin of safety. Throughout, lighting problems could be ignored, and unexpected events and modeling errors taken in stride. At the same time, computational requirements would be reduced. This can be done in a simple, rugged, reliable manner that will not disturb the form factor of space systems. It will be practical for space applications. The lab experiments indicate we are well on the way to accomplishing this. Still, the research trail goes deeper. It now appears that the sensors can be extended to end effectors to provide precontact information and make robot docking (or any docking connection) very smooth, with minimal loads impacted back into the mating structures. This type of ability would be a major step forward in basic control techniques in space. There are, however, baseline and restructuring issues to be tackled. The payloads must get power and signals to them from the robot or from the astronaut servicing tool. This requires a standard electromechanical interface. Any of several could be used. The GSFC prototype shown in this presentation is a good one. Sensors with their attendant electronics must be added to the payloads, end effectors, and robot arms and integrated into the system.

  9. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  10. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  11. Strategies of locomotor collision avoidance.

    PubMed

    Basili, Patrizia; Sağlam, Murat; Kruse, Thibault; Huber, Markus; Kirsch, Alexandra; Glasauer, Stefan

    2013-03-01

    Collision avoidance during locomotion can be achieved by a variety of strategies. While in some situations only a single trajectory will successfully avoid impact, in many cases several different strategies are possible. Locomotor experiments in the presence of static boundary conditions have suggested that the choice of an appropriate trajectory is based on a maximum-smoothness strategy. Here we analyzed locomotor trajectories of subjects avoiding collision with another human crossing their path orthogonally. In such a case, changing walking direction while keeping speed or keeping walking direction while changing speed would be two extremes of solving the problem. Our participants clearly favored changing their walking speed while keeping the path on a straight line between start and goal. To interpret this result, we calculated the costs of the chosen trajectories in terms of a smoothness-maximization criterion and simulated the trajectories with a computational model. Data analysis together with model simulation showed that the experimentally chosen trajectory to avoid collision with a moving human is not the optimally smooth solution. However, even though the trajectory is not globally smooth, it was still locally smooth. Modeling further confirmed that, in presence of the moving human, there is always a trajectory that would be smoother but would deviate from the straight line. We therefore conclude that the maximum smoothness strategy previously suggested for static environments no longer holds for locomotor path planning and execution in dynamically changing environments such as the one tested here.

  12. ACAT Ground Collision Avoidance Flight Tests Over

    NASA Video Gallery

    NASA's Dryden Flight Research Center has concluded flight tests of an Automatic Ground Collision Avoidance System (Auto GCAS) under the joint U.S. Air Force/NASA F-16D Automatic Collision Avoidance...

  13. Flight Tests Validate Collision-Avoidance System

    NASA Video Gallery

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  14. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  15. Telerobotics with whole arm collision avoidance

    SciTech Connect

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  16. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  17. AN AIRBORNE COLLISION-WARNING DEVICE,

    DTIC Science & Technology

    A simplified airborne collision- warning device is suggested in which each aircraft transmits its barometric altitude by radio. The likelihood of...signals into ’near’ and ’far’ categories would have to be determined by flight tests, it is felt that the low cost and early availability of the system justifies its consideration. (Author)

  18. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  19. GEO Collision Avoidance using a Service Vehicle

    NASA Astrophysics Data System (ADS)

    Duncan, M.; Concha, M.

    2013-09-01

    Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. The increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. Key areas of SSA include improved tracking of small objects, determining the intent of maneuvering spacecraft, identifying all potential high risk conjunction events, and leveraging non-traditional sensors in support of the SSA mission. As the size of the space object population grows, the number of collision avoidance maneuvers grows. Moreover, as the SSA mission evolves to near real-time assessment and analysis, the need for new, more sophisticated collision avoidance methods are required. This paper demonstrates the utility of using a service vehicle to perform collision avoidance maneuver for GEO satellites. We present the planning and execution details required to successfully execute a maneuver; given the traditional conjunction analysis timelines. Various operational constraints and scenarios are considered as part of the demonstration. Development of the collision avoidance strategy is created using SpaceNav's collision risk management tool suite. This study aims to determine the agility required of any proposed servicing capability to provide collision avoidance within traditional conjunction analysis and collision avoidance operations timelines. Key trades and analysis items are given to be: 1. How do we fuse the spacecraft state data with the tracking data collected from the proximity sensor that resides on the servicing spacecraft? 2. How do we deal with the possibility that the collision threat for the event may change as the time to close approach is reduced? 3. Perform trade space of maneuver/thrust time versus achievable change in the spacecraft's orbit. 4. Perform trade space of proximity of service vehicle to spacecraft versus time

  20. Underactuated spacecraft formation reconfiguration with collision avoidance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2017-02-01

    Underactuated collision-free controllers are proposed in this paper for multiple spacecraft formation reconfiguration in circular orbits with the loss of either the radial or in-track thrust. A nonlinear dynamical model of underactuated formation flying is introduced, which is then linearized about circular orbits for controllability and feasibility analyses on underactuated formation reconfiguration. By using the inherent dynamics coupling of system states, reduced-order sliding mode controllers are then designed for either case to indirectly stabilize the system trajectories to the desired formations. In consideration of the collision-avoidance requirement, the artificial potential function method is then employed to design novel underactuated collision-avoidance maneuvers. Rigorous proof substantiates the capabilities of such maneuvers in preventing collisions even in the absence of radial or in-track thrust. Furthermore, a Lyapunov-based analysis ensures the asymptotic stability of the overall closed-loop system. Numerical simulations are performed in a J2-perturbed environment to verify the validity of the proposed underactuated control schemes for collision-free reconfiguration.

  1. Collision avoidance timing analysis of DSRC-based vehicles.

    PubMed

    Tang, Antony; Yip, Alice

    2010-01-01

    Dedicated short-range communication (DSRC) has been used in prototyped vehicles to test vehicle-to-vehicle communication for collision avoidance. However, there is little study on how collision avoidance software should behave to best mitigate accident collisions. In this paper, we analyse the timing of events and how they influence software-based collision avoidance strategies. We have found that the warning strategies for collision avoidance are constrained by the timing of events such as DSRC communication latency, detection range, road condition, driver reaction and deceleration rate. With these events, we define two collision avoidance timings: critical time to avoid collision and preferred time to avoid collision, and they dictate the design of software-based collision avoidance systems.

  2. Collision avoidance in computer optimized treatment planning.

    PubMed

    Humm, J L

    1994-07-01

    Of major concern in fully automated computerized treatment delivery is the possibility of gantry/couch or gantry/patient collisions. In this work, software has been developed to detect collisions between gantry and couch or patient for both transaxial and noncoplanar treatment fields during the treatment planning process. The code uses the gantry angles, turntable angles, and position of the couch surface relative to the isocenter supplied by the planner for the prescribed radiation fields. In addition, the maximum patient anterior-posterior and lateral separations are entered in order to model the patient outline by a conservative cylindrical ellipse. By accessing a database containing the precise mechanical dimensions of the therapy equipment, 3D analytical geometry is used to test for collisions between gantry/patient and gantry/couch for each treatment field. When collisions are detected, the software inspects the use of an extended distance treatment, by recalculating and testing for collisions, with the couch at a greater distance from the collimator along the direction of the central axis. If a collision is avoided at extended distance, the lateral, longitudinal, and vertical motions of the couch are recorded for entry into the treatment plan, or else a warning message is printed, together with the nearest permissible collision-free gantry angle. Upon inspection, the planner can either elect to use the calculated closest permissible gantry angle or reject the plan. The software verifies that each proposed treatment field is safe, but also that the transition between fields is collision-free. This requires that the sequence of the treatment fields be ordered, preferably into a sequence which minimizes the delivery time compatible with patient safety.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Threat detection system for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Pierowicz, John A.

    1998-01-01

    Calspan SRL Corporation is currently developing an on- vehicle threat detection system for intersection collision avoidance (ICA) as part of its ICA program with the National Highway Transportation Safety Administration. Crash scenarios were previously defined and an on-board radar sensor was designed. This paper describes recent efforts that include the development of a simulation of a multitarget tracker and collision avoidance algorithm used to predict system performance in a variety of target configurations in the various ICA crash scenarios. In addition, a current headway radar was mounted on the Calspan Instrumented Vehicle and in-traffic data were recorded for two limited crash scenarios. Warning functions were developed through the simulation and applied to the recorded data.

  4. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Collision avoidance analysis....

  5. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis....

  6. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Collision avoidance analysis....

  7. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Collision avoidance analysis....

  8. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Collision avoidance analysis....

  9. 14 CFR 129.18 - Collision avoidance system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Collision avoidance system. 129.18 Section... § 129.18 Collision avoidance system. Effective January 1, 2005, any airplane you, as a foreign air...) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable...

  10. 14 CFR 129.18 - Collision avoidance system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Collision avoidance system. 129.18 Section... § 129.18 Collision avoidance system. Effective January 1, 2005, any airplane you, as a foreign air...) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable...

  11. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Collision avoidance system. 121.356 Section... Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: Collision Avoidance Systems If you operate...

  12. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Collision avoidance system. 121.356 Section... Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: Collision Avoidance Systems If you operate...

  13. 14 CFR 129.18 - Collision avoidance system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Collision avoidance system. 129.18 Section... § 129.18 Collision avoidance system. Effective January 1, 2005, any airplane you, as a foreign air...) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable...

  14. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Collision avoidance system. 121.356 Section... Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: Collision Avoidance Systems If you operate...

  15. 14 CFR 129.18 - Collision avoidance system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Collision avoidance system. 129.18 Section... § 129.18 Collision avoidance system. Effective January 1, 2005, any airplane you, as a foreign air...) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable...

  16. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Collision avoidance system. 121.356 Section... Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part must be equipped and operated according to the following table: Collision Avoidance Systems If you operate...

  17. Radar sensors for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Phoel, Wayne G.

    1997-02-01

    On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.

  18. Collision Avoidance for Airport Traffic Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  19. Collision Avoidance for Airport Traffic Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Bailey, Randall E.; Otero, Sharon D.; Barker, Glover D.

    2010-01-01

    A Collision Avoidance for Airport Traffic (CAAT) concept for the airport Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate pilot reaction to conflict events in the TMA near the airport, different alert timings for various scenarios, alerting display concepts, and directive alerting concepts. This paper gives an overview of the conflict detection and resolution (CD&R) concept, simulation study, and test results

  20. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Collision avoidance system. 125.224 Section... Requirements § 125.224 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part 125 must be equipped and operated according to the following table: Collision...

  1. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Collision avoidance system. 125.224 Section... Requirements § 125.224 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part 125 must be equipped and operated according to the following table: Collision...

  2. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Collision avoidance system. 125.224 Section... Requirements § 125.224 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part 125 must be equipped and operated according to the following table: Collision...

  3. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Collision avoidance system. 125.224 Section... Requirements § 125.224 Collision avoidance system. Effective January 1, 2005, any airplane you operate under this part 125 must be equipped and operated according to the following table: Collision...

  4. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  5. Reactive Collision Avoidance of UAVs withStereovision Sensing

    DTIC Science & Technology

    2014-01-17

    Instead, a minimum effort guidance ( MEG ) approach minimizes the control effort for the entire trajectory along with avoiding collisions for multiple...targets [17]. A collision cone approach [41] is used to detect potential collisions by considering a threat boundary around the obstacle in MEG guidance...It has been demonstrated that MEG is more suitable than PN [17]. However, collision avoidance problems do not have minimum effort requirements and

  6. Real-Time Collision Avoidance for Dexterous 7-DOF Arms

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Seraji, Homayoun

    1996-01-01

    A new approach to real-time collison avoidance for dexterous 7-DOF arms and supportive simulation and experimental results are presented. The collision avoidance problem is formulated and solved as a force control problem.

  7. Clear air turbulence avoidance using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1984-01-01

    The avoidance of Clear Air Turbulence (CAT) is theoretically possible by selecting flight levels that are a safe distance from the tropopause and inversion layers. These favored sites for CAT generation can be located by an 'airborne microwave radiometer' (AMR) passive sensor system that measures altitude temperature profiles. A flight evaluation of the AMR sensor shows that most CAT could be avoided by following sensor-based advisories. Some limitations still exist for any hypothetical use of the sensor. The principal need is to augment the sensor's 'where' advisories to include useful 'when' forecasts.

  8. Sensor-Based Collision Avoidance: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Steele, Robert; Ivlev, Robert

    1996-01-01

    A new on-line control strategy for sensor-based collision avoidance of manipulators and supporting experimental results are presented in this article. This control strategy is based on nullification of virtual forces applied to the end-effector by a hypothetical spring-plus-damper attached to the object's surface. In the proposed approach, the real-time arm control software continuously monitors the object distance measured by the arm-mounted proximity sensors. When this distance is less than a preset threshold, the collision avoidance control action is initiated to inhibit motion toward the object and thus prevent collision. This is accomplished by employing an outer feedback loop to perturb the end-effector nominal motion trajectory in real-time based on the sensory data. The perturbation is generated by a proportional-plus-integral (PI) collision avoidance controller acting on the difference between the sensed distance and the preset threshold. This approach is computationally very fast, requires minimal modification to the existing manipulator positioning system, and provides the manipulator with an on-line collision avoidance capability to react autonomously and intelligently. A dexterous RRC robotic arm is instrumented with infrared proximity sensors and is operated under the proposed collision avoidance strategy. Experimental results are presented to demonstrate end-effector collision avoidance both with an approaching object and while reaching inside a constricted opening.

  9. Two-Dimensional Distributed Velocity Collision Avoidance

    DTIC Science & Technology

    2014-02-11

    a mechanism for congestion control. The TCP is useful for applications that need reliability and correctness such as web pages or databases. The...a curved turn, and for the protection of hardware assets via a buffer region. If the bot radius is too low, then the bots will always scrape or...both the KVO and non-KVO scenarios. Figure 12 shows the results in terms of scrapes , collisions, and runs completed with no collisions, and Figure 13

  10. Tracking improves performance of biological collision avoidance models.

    PubMed

    Pant, Vivek; Higgins, Charles M

    2012-07-01

    Collision avoidance models derived from the study of insect brains do not perform universally well in practical collision scenarios, although the insects themselves may perform well in similar situations. In this article, we present a detailed simulation analysis of two well-known collision avoidance models and illustrate their limitations. In doing so, we present a novel continuous-time implementation of a neuronally based collision avoidance model. We then show that visual tracking can improve performance of these models by allowing an relative computation of the distance between the obstacle and the observer. We compare the results of simulations of the two models with and without tracking to show how tracking improves the ability of the model to detect an imminent collision. We present an implementation of one of these models processing imagery from a camera to show how it performs in real-world scenarios. These results suggest that insects may track looming objects with their gaze.

  11. Multiple-spacecraft reconfigurations through collision avoidance, bouncing, and stalemate

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Mesbahi, M.; Hadaegh, F. Y.

    2004-01-01

    We consider constrained multiple-spacecraft reconfigurations outside of a gravity well in deep space. As opposed to the single-spacecraft scenario, such reconfigurations involve collision avoidance constraints that can be formalized and embedded in a nonconvex.

  12. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Collision avoidance analysis. 437.65 Section 437.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision...

  13. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Collision avoidance analysis. 437.65 Section 437.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision...

  14. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Collision avoidance analysis. 437.65 Section 437.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision...

  15. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Collision avoidance analysis. 437.65 Section 437.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision...

  16. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65 Section 437.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.65 Collision...

  17. Collision Avoidance Functional Requirements for Step 1. Revision 6

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  18. Hybrid Long-Range Collision Avoidance for Crowd Simulation.

    PubMed

    Golas, Abhinav; Narain, Rahul; Curtis, Sean; Lin, Ming C

    2014-07-01

    Local collision avoidance algorithms in crowd simulation often ignore agents beyond a neighborhood of a certain size. This cutoff can result in sharp changes in trajectory when large groups of agents enter or exit these neighborhoods. In this work, we exploit the insight that exact collision avoidance is not necessary between agents at such large distances, and propose a novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance. Our formulation performs long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother than those obtained with state-of-the-art techniques and at faster rates. Comparison to real-world data demonstrates that crowds simulated with our algorithm exhibit an improved speed sensitivity to density similar to human crowds. Another issue often sidestepped in existing work is that discrete and continuum collision avoidance algorithms have different regions of applicability. For example, low-density crowds cannot be modeled as a continuum, while high-density crowds can be expensive to model using discrete methods. We formulate a hybrid technique for crowd simulation which can accurately and efficiently simulate crowds at any density with seamless transitions between continuum and discrete representations. Our approach blends results from continuum and discrete algorithms, based on local density and velocity variance. In addition to being robust across a variety of group scenarios, it is also highly efficient, running at interactive rates for thousands of agents on portable systems.

  19. Hybrid Long-Range Collision Avoidance for Crowd Simulation.

    PubMed

    Golas, Abhinav; Narain, Rahul; Curtis, Sean; Lin, Ming C

    2013-09-26

    Local collision avoidance algorithms in crowd simulation often ignore agents beyond a neighborhood of a certain size. This cutoff can result in sharp changes in trajectory when large groups of agents enter or exit these neighborhoods. In this work, we exploit the insight that exact collision avoidance is not necessary between agents at such large distances, and propose a novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance. Our formulation performs long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother than those obtained with state-of-the-art techniques and at faster rates. Another issue often sidestepped in existing work is that discrete and continuum collision avoidance algorithms have different regions of applicability. For example, low-density crowds cannot be modeled as a continuum, while high-density crowds can be expensive to model using discrete methods. We formulate a hybrid technique for crowd simulation which can accurately and efficiently simulate crowds at any density with seamless transitions between continuum and discrete representations. Our approach blends results from continuum and discrete algorithms, based on local density and velocity variance. In addition to being robust across a variety of group scenarios, it is also highly efficient, running at interactive rates for thousands of agents on portable systems.

  20. Cognitive demands of collision avoidance in simulated ship control.

    PubMed

    Hockey, G Robert J; Healey, Alex; Crawshaw, Martin; Wastell, David G; Sauer, Jürgen

    2003-01-01

    The study examines the cognitive demands of collision avoidance under a range of maritime scenarios. Operators used a PC-based radar simulator to navigate set courses over 100 6-min trials varying in collision threat and traffic density. Corrective maneuvers were made through the application of standard navigation rules and by using two decision aids (target acquisition and test maneuver). Results showed widespread effects of collision threat in terms of decision aid use, subjective workload, and secondary task performance. Most notably, demand increased markedly over the course of emergency trials, in which collision threat resulted from rule violation by target vessels. The findings are discussed in terms of the comparison between predictable demands (requiring standard course changes) and those involving uncertainty about the others' intentions (involving more intensive monitoring and forced delays in corrective action). The study has relevance for the design of collision avoidance systems, specifically for the use of ecological displays.

  1. Real-time collision avoidance in space: the GETEX experiment

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Intelligent autonomous robotic systems require efficient safety components to assure system reliability during the entire operation. Especially if commanded over long distances, the robotic system must be able to guarantee the planning of safe and collision free movements independently. Therefore the IRF developed a new collision avoidance methodology satisfying the needs of autonomous safety systems considering the dynamics of the robots to protect. To do this, the collision avoidance system cyclically calculates the actual collision danger of the robots with respect to all static and dynamic obstacles in the environment. If a robot gets in collision danger the methodology immediately starts an evasive action to avoid the collision and guides the robot around the obstacle to its target position. This evasive action is calculated in real-time in a mathematically exact way by solving a quadratic convex optimization problem. The secondary conditions of this optimization problem include the potential collision danger of the robots kinematic chain including all temporarily attached grippers and objects and the dynamic constraints of the robots. The result of the optimization procedure are joint accelerations to apply to prevent the robot from colliding and to guide it to its target position. This methodology has been tested very successfully during the Japanese/German space robot project GETEX in April 1999. During the mission, the collision avoidance system successfully protected the free flying Japanese robot ERA on board the satellite ETS-VII at all times. The experiments showed, that the developed system is fully capable of ensuring the safety of such autonomous robotic systems by actively preventing collisions and generating evasive actions in cases of collision danger.

  2. Collision avoidance between two walkers: role-dependent strategies.

    PubMed

    Olivier, Anne-Hélène; Marin, Antoine; Crétual, Armel; Berthoz, Alain; Pettré, Julien

    2013-09-01

    This paper studies strategies for collision avoidance between two persons walking along crossing trajectories. It has been previously demonstrated that walkers are able to anticipate the risk of future collision and to react accordingly. The avoidance task has been described as a mutual control of the future distance of closest approach, MPD (i.e., Mininum Predicted Distance). In this paper, we studied the role of each walker in the task of controlling MPD. A specific question was: does the walker giving way (2nd at the crossing) and the one passing first set similar and coordinated strategies? To answer this question, we inspected the effect of motion adaptations on the future distance of closest approach. This analysis is relevant in the case of collision avoidance because subtle anticipatory behaviors or large last moment adaptations can finally yield the same result upon the final crossing distance. Results showed that collision avoidance is performed collaboratively and the crossing order impacts both the contribution and the strategies used: the participant giving way contributes more than the one passing first to avoid the collision. Both walkers reorient their path but the participant giving way also adapts his speed. Future work is planned to investigate the influence of crossing angle and TTC on adaptations as well as new types of interactions, such as intercepting or meeting tasks.

  3. Radar-based collision avoidance for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  4. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Action to avoid collision (Rule 8... Visibility § 83.08 Action to avoid collision (Rule 8). (a) General characteristics of action taken to avoid collision. Any action taken to avoid collision shall, if the circumstances of the case admit, be...

  5. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Action to avoid collision (Rule 8... Visibility § 83.08 Action to avoid collision (Rule 8). (a) General characteristics of action taken to avoid collision. Any action taken to avoid collision shall, if the circumstances of the case admit, be...

  6. A neuro-collision avoidance strategy for robot manipulators

    NASA Technical Reports Server (NTRS)

    Onema, Joel P.; Maclaunchlan, Robert A.

    1992-01-01

    The area of collision avoidance and path planning in robotics has received much attention in the research community. Our study centers on a combination of an artificial neural network paradigm with a motion planning strategy that insures safe motion of the Articulated Two-Link Arm with Scissor Hand System relative to an object. Whenever an obstacle is encountered, the arm attempts to slide along the obstacle surface, thereby avoiding collision by means of the local tangent strategy and its artificial neural network implementation. This combination compensates the inverse kinematics of a robot manipulator. Simulation results indicate that a neuro-collision avoidance strategy can be achieved by means of a learning local tangent method.

  7. Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.

    PubMed

    Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare

    2016-08-16

    In this paper, we propose a novel methodology for achieving complex dynamic behaviors in multirobot systems. In particular, we consider a multirobot system partitioned into two subgroups: 1) dependent and 2) independent robots. Independent robots are utilized as a control input, and their motion is controlled in such a way that the dependent robots solve a tracking problem, that is following arbitrarily defined setpoint trajectories, in a coordinated manner. The control strategy proposed in this paper explicitly addresses the collision avoidance problem, utilizing a null space-based behavioral approach: this leads to combining, in a non conflicting manner, the tracking control law with a collision avoidance strategy. The combination of these control actions allows the robots to execute their task in a safe way. Avoidance of collisions is formally proven in this paper, and the proposed methodology is validated by means of simulations and experiments on real robots.

  8. Modeling and Simulation of an UAS Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Oliveros, Edgardo V.; Murray, A. Jennifer

    2010-01-01

    This paper describes a Modeling and Simulation of an Unmanned Aircraft Systems (UAS) Collision Avoidance System, capable of representing different types of scenarios for UAS collision avoidance. Commercial and military piloted aircraft currently utilize various systems for collision avoidance such as Traffic Alert and Collision A voidance System (TCAS), Automatic Dependent Surveillance-Broadcast (ADS-B), Radar and ElectroOptical and Infrared Sensors (EO-IR). The integration of information from these systems is done by the pilot in the aircraft to determine the best course of action. In order to operate optimally in the National Airspace System (NAS) UAS have to work in a similar or equivalent manner to a piloted aircraft by applying the principle of "detect-see and avoid" (DSA) to other air traffic. Hence, we have taken these existing sensor technologies into consideration in order to meet the challenge of researching the modeling and simulation of an approximated DSA system. A Schematic Model for a UAS Collision Avoidance System (CAS) has been developed ina closed loop block diagram for that purpose. We have found that the most suitable software to carry out this task is the Satellite Tool Kit (STK) from Analytical Graphics Inc. (AGI). We have used the Aircraft Mission Modeler (AMM) for modeling and simulation of a scenario where a UAS is placed on a possible collision path with an initial intruder and then with a second intruder, but is able to avoid them by executing a right tum maneuver and then climbing. Radars have also been modeled with specific characteristics for the UAS and both intruders. The software provides analytical, graphical user interfaces and data controlling tools which allow the operator to simulate different conditions. Extensive simulations have been carried out which returned excellent results.

  9. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  10. All weather collision avoidance for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Contarino, Mark

    2010-04-01

    For decades, military and other national security agencies have been denied unfettered access to the National Air Space (NAS) because their unmanned aircraft lack a highly reliable and effective collision avoidance capability. The controlling agency, the Federal Aviation Administration, justifiably demands "no harm" to the safety of the NAS. To overcome the constraints imposed on Unmanned Aircraft Systems (UAS) use of the NAS, a new, complex, conformable collision avoidance system has been developed - one that will be effective in all flyable weather conditions, overcoming the shortfalls of other sensing systems, including radar, lidar, acoustic, EO/IR, etc., while meeting form factor and cost criteria suitable for Tier II UAS operations. The system also targets Tier I as an ultimate goal, understanding the operational limitations of the smallest UASs may require modification of the design that is suitable for Tier II and higher. The All Weather Sense and Avoid System (AWSAS) takes into account the FAA's plan to incorporate ADS-B (out) for all aircraft by 2020, and it is intended to make collision avoidance capability available for UAS entry into the NAS as early as 2013. When approved, UASs can fly mission or training flights in the NAS free of the constraints presently in place. Upon implementation this system will achieve collision avoidance capability for UASs deployed for national security purposes and will allow expansion of UAS usage for commercial or other civil purposes.

  11. Defining the Collision Avoidance Region for DAA Systems

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Park, Chunki; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    Unmanned aircraft systems (UAS) will be required to equip with a detect-­-and-­-avoid (DAA) system in order to satisfy the federal aviation regulations to maintain well clear of other aircraft, some of which may be equipped with a Traffic Collision Avoidance System (TCAS) to mitigate the possibility of mid-­-air collisions. As such, the minimum operational performance standards (MOPS) for UAS DAA systems are being designed with TCAS interoperability in mind by a group of industry, government, and academic institutions named RTCA Special Committee-228 (SC-228). This document will discuss the development of the spatial-­-temporal volume known as the collision avoidance region in which the DAA system is not allowed to provide vertical guidance to maintain or regain DAA well clear that could conflict with resolution advisories (RAs) issued by the intruder aircraft's TCAS system. Three collision avoidance region definition candidates were developed based on the existing TCAS RA and DAA alerting definitions. They were evaluated against each other in terms of their interoperability with TCAS RAs and DAA alerts in an unmitigated factorial encounter analysis of 1.3 million simulated pairs.

  12. 14 CFR 121.356 - Collision avoidance system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maximum certificated takeoff weight (1) An appropriate class of Mode S transponder that meets Technical... meets TSO C-119b (version 7.0), or takeoff weight a later version. (ii) TCAS II that meets TSO C-119a... that meets TSO C-119b (version 7.0), or a later version.(iii) A collision avoidance system...

  13. 14 CFR 129.18 - Collision avoidance system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Turbine-powered airplane of more than 33,000 pounds maximum certificated takeoff weight (1) An appropriate... of the followign approved units;(i) TCAS II that meets TSO C-119b (version 7.0), or takeoff weight a...) A collision avoidance system equivalent to TSO C-119b (version 7.0), or a later version, capable...

  14. Human performance models and rear-end collision avoidance algorithms.

    PubMed

    Brown, T L; Lee, J D; McGehee, D V

    2001-01-01

    Collision warning systems offer a promising approach to mitigate rear-end collisions, but substantial uncertainty exists regarding the joint performance of the driver and the collision warning algorithms. A simple deterministic model of driver performance was used to examine kinematics-based and perceptual-based rear-end collision avoidance algorithms over a range of collision situations, algorithm parameters, and assumptions regarding driver performance. The results show that the assumptions concerning driver reaction times have important consequences for algorithm performance, with underestimates dramatically undermining the safety benefit of the warning. Additionally, under some circumstances, when drivers rely on the warning algorithms, larger headways can result in more severe collisions. This reflects the nonlinear interaction among the collision situation, the algorithm, and driver response that should not be attributed to the complexities of driver behavior but to the kinematics of the situation. Comparisons made with experimental data demonstrate that a simple human performance model can capture important elements of system performance and complement expensive human-in-the-loop experiments. Actual or potential applications of this research include selection of an appropriate algorithm, more accurate specification of algorithm parameters, and guidance for future experiments.

  15. A new collision avoidance model for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Ling; Chen, Yao; Dong, Hai-Rong; Zhou, Min; Ning, Bin

    2015-03-01

    The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian’s vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore, it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61233001 and 61322307) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).

  16. Cooperative Exploration and Networking While Preserving Collision Avoidance.

    PubMed

    Kim, Jonghoek

    2016-08-05

    Monitoring of large complex environments, such as underwater environments, is an important task in surveillance. An information (sensor) network can be built to achieve the task. To build an information network in an unknown workspace, we use multiple robots deploying information nodes. While robots build the network, they localize themselves as well as deployed nodes in the global coordinate system. Our multirobot networking strategy is as follows: each robot iteratively visits a frontier, which borders an unsensed area, until all areas are explored. As multiple robots explore the workspace, a robot must avoid colliding with another robot as well as with an obstacle. Hence, we introduce collision avoidance control laws and integrate the control laws with our cooperative networking strategy. Using MATLAB simulations, we verify the scalability and effectiveness of both our networking strategy and the collision avoidance control laws.

  17. Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Long, Stacia M.; You, Tung-Han; Halsell, C. Allen; Bhat, Ramachand S.; Demcak, Stuart W.; Graat, Eric J.; Higa, Earl S.; Highsmith, Dolan E.; Mottinger, Neil A.; Jah, Moriba K.

    2007-01-01

    The Mars Reconnaissance Orbiter reached Mars on March 10, 2006 and performed a Mars orbit insertion maneuver of 1 km/s to enter into a large elliptical orbit. Three weeks later, aerobraking operations began and lasted about five months. Aerobraking utilized the atmospheric drag to reduce the large elliptical orbit into a smaller, near circular orbit. At the time of MRO aerobraking, there were three other operational spacecraft orbiting Mars and the navigation team had to minimize the possibility of a collision. This paper describes the daily operations of the MRO navigation team during this time as well as the collision avoidance strategy development and implementation.

  18. Low-cost aircraft collision-avoidance system

    NASA Astrophysics Data System (ADS)

    Richard, Herbert L.

    1993-10-01

    There exists a need for a low-cost aircraft collision-avoidance system suitable, and affordable, for general aviation use. The fact that most of all of mid-air collisions occur under high visibility conditions, and many in and near terminal airspace, allows the consideration of optical means such as a LIDAR system for ranging and tracking to other aircraft to determine if a collision threat exists. This paper presents a system parametric analysis and discusses the LIDAR design tradeoffs with consideration of atmospheric attention, false target discrimination, threat scenario, scanning dynamics, wide FOV retroreflector array performance, and sizing for airframe ease of mounting and minimal aerodynamic effects. Further, concepts for the optical design and mechanization of the scanner are presented as well as a pilot warning/display means for evasive maneuver consideration.

  19. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  20. Radar sensors for automotive collision warning and avoidance

    NASA Astrophysics Data System (ADS)

    Grosch, Theodore O.

    1995-06-01

    Many different sensors and systems, from sonar to machine vision, have been installed on ground vehicles and automobiles. This paper describes the use of radar to improve driving safety and convenience. Radars are valuable sensors for all weather operation and experiments with automotive radar sensors have been conducted for over 40 years. This paper shows the advantages and disadvantages of applying microwave and millimeter wave radar to obstacle detection and collision avoidance in a roadway environment. The performance differences between avoidance and warning sensors are discussed and a problem set is devised for a typical forward-looking collision warning application. Various radar systems have been applied to this problem that include pulse and continuous wave transceivers. These system types are evaluated as to their suitability as a collision warning sensor. The various possible solutions are reduced to a small number of candidate radar types, and one such radar was chosen for full scale development. A low cost frequency modulated/continuous wave radar system was developed for automotive collision warning. The radar is attached to the sun visor inside the vehicle, and has been in operation for over four years. The radar monitors the range and range-rate of other vehicles and obstacles, and warns the driver when it perceives that a dangerous situation is developing. A system description and measured data is presented that shows how the 24.075 to 24.175 GHz band can be used for an adequate early warning system.

  1. RADAR Based Collision Avoidance for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Moses, Allistair A.

    Unmanned Aircraft Systems (UAS) have become increasingly prevalent and will represent an increasing percentage of all aviation. These unmanned aircraft are available in a wide range of sizes and capabilities and can be used for a multitude of civilian and military applications. However, as the number of UAS increases so does the risk of mid-air collisions involving unmanned aircraft. This dissertation aims to present one possible solution for addressing the mid-air collision problem in addition to increasing the levels of autonomy of UAS beyond waypoint navigation to include preemptive sensor-based collision avoidance. The presented research goes beyond the current state of the art by demonstrating the feasibility and providing an example of a scalable, self-contained, RADAR-based, collision avoidance system. The technology described herein can be made suitable for use on a miniature (Maximum Takeoff Weight < 10kg) UAS platform. This is of paramount importance as the miniature UAS field has the lowest barriers to entry (acquisition and operating costs) and consequently represents the most rapidly increasing class of UAS.

  2. Collision avoidance by running insects: antennal guidance in cockroaches.

    PubMed

    Baba, Yoshichika; Tsukada, Akira; Comer, Christopher M

    2010-07-01

    Cockroaches were observed with videographic methods as escape running was initiated, but with obstacles in the path of their run. The goal was to determine the repertoire of possible responses to obstacles and the sensory cues used to trigger the responses. Intact cockroaches collided with obstacles on only about 10% of trials. The most common collision avoidance strategy was simply to stop running prior to impact. However, occasionally animals moved vertically and climbed over the barrier, or turned and navigated an edge of the obstacle, or completely reversed run direction. The avoidance strategies chosen depended on the size and configuration of the obstacle. Tests for the use of vision in detecting obstacles showed that its role, if any, is small. However, all manipulations that altered the antennal system changed behavior in a way consistent with the hypothesis that antennal mechanosensation plays a major role in collision avoidance. For example, reducing antennal length, or severing the main antennal nerve without altering the length produced significant increases in the frequency of collisions. Tests with tethered insects showed that (1) the antennae are preferentially directed forward as animals run, and (2) nearly simultaneous contact with both antennae is required to make the cockroach stop. Our data indicate that running cockroaches employ strategies that set their sensorimotor systems in a mode of readiness to deal with obstacles and they suggest that sensory information about the presence and configuration of obstacles is used to make choices, at very short latencies, about how to respond to obstructions.

  3. 14 CFR 135.180 - Traffic Alert and Collision Avoidance System.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Traffic Alert and Collision Avoidance... Aircraft and Equipment § 135.180 Traffic Alert and Collision Avoidance System. (a) Unless otherwise... equipped with an approved traffic alert and collision avoidance system. If a TCAS II system is...

  4. 14 CFR 135.180 - Traffic Alert and Collision Avoidance System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Traffic Alert and Collision Avoidance... Aircraft and Equipment § 135.180 Traffic Alert and Collision Avoidance System. (a) Unless otherwise... equipped with an approved traffic alert and collision avoidance system. If a TCAS II system is...

  5. 14 CFR 135.180 - Traffic Alert and Collision Avoidance System.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Traffic Alert and Collision Avoidance... Aircraft and Equipment § 135.180 Traffic Alert and Collision Avoidance System. (a) Unless otherwise... equipped with an approved traffic alert and collision avoidance system. If a TCAS II system is...

  6. 14 CFR 135.180 - Traffic Alert and Collision Avoidance System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Traffic Alert and Collision Avoidance... Aircraft and Equipment § 135.180 Traffic Alert and Collision Avoidance System. (a) Unless otherwise... equipped with an approved traffic alert and collision avoidance system. If a TCAS II system is...

  7. 14 CFR 91.221 - Traffic alert and collision avoidance system equipment and use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Traffic alert and collision avoidance... RULES Equipment, Instrument, and Certificate Requirements § 91.221 Traffic alert and collision avoidance... collision avoidance system installed in a U.S.-registered civil aircraft must be approved by...

  8. 14 CFR 91.221 - Traffic alert and collision avoidance system equipment and use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Traffic alert and collision avoidance... RULES Equipment, Instrument, and Certificate Requirements § 91.221 Traffic alert and collision avoidance... collision avoidance system installed in a U.S.-registered civil aircraft must be approved by...

  9. 14 CFR 91.221 - Traffic alert and collision avoidance system equipment and use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Traffic alert and collision avoidance... RULES Equipment, Instrument, and Certificate Requirements § 91.221 Traffic alert and collision avoidance... collision avoidance system installed in a U.S.-registered civil aircraft must be approved by...

  10. 14 CFR 135.180 - Traffic Alert and Collision Avoidance System.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Traffic Alert and Collision Avoidance... Aircraft and Equipment § 135.180 Traffic Alert and Collision Avoidance System. (a) Unless otherwise... equipped with an approved traffic alert and collision avoidance system. If a TCAS II system is...

  11. 14 CFR 91.221 - Traffic alert and collision avoidance system equipment and use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Traffic alert and collision avoidance... RULES Equipment, Instrument, and Certificate Requirements § 91.221 Traffic alert and collision avoidance... collision avoidance system installed in a U.S.-registered civil aircraft must be approved by...

  12. 14 CFR 91.221 - Traffic alert and collision avoidance system equipment and use.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Traffic alert and collision avoidance... RULES Equipment, Instrument, and Certificate Requirements § 91.221 Traffic alert and collision avoidance... collision avoidance system installed in a U.S.-registered civil aircraft must be approved by...

  13. Cooperative Collision Avoidance Technology Demonstration Data Analysis Report

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report details the National Aeronautics and Space Administration (NASA) Access 5 Project Office Cooperative Collision Avoidance (CCA) Technology Demonstration for unmanned aircraft systems (UAS) conducted from 21 to 28 September 2005. The test platform chosen for the demonstration was the Proteus Optionally Piloted Vehicle operated by Scaled Composites, LLC, flown out of the Mojave Airport, Mojave, CA. A single intruder aircraft, a NASA Gulf stream III, was used during the demonstration to execute a series of near-collision encounter scenarios. Both aircraft were equipped with Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B) systems. The objective of this demonstration was to collect flight data to support validation efforts for the Access 5 CCA Work Package Performance Simulation and Systems Integration Laboratory (SIL). Correlation of the flight data with results obtained from the performance simulation serves as the basis for the simulation validation. A similar effort uses the flight data to validate the SIL architecture that contains the same sensor hardware that was used during the flight demonstration.

  14. Control of a serpentine manipulator with collision avoidance

    NASA Astrophysics Data System (ADS)

    Byers, Robert M.

    1993-10-01

    The robotics lab at the Kennedy Space Center is investigating the possibility of using a 'serpentine' manipulator for Shuttle inspection and payload processing. Serpentine manipulators are characterized by a large number of degrees of freedom giving them a high degree of redundancy. This redundancy allows them to be used to reach confined areas while avoiding collisions with their environment. In this paper, the author describes a new approach to controlling the joint rates for an n degree of freedom robot such that it moves its end effector to a desired position while simultaneously avoiding collision of any part of the robot arm with obstacles. Joint rates which move the end effector toward the target are found via a Lyapunov stability function. The gradient of an obstacle cost function indicates the direction toward obstacle collision in the joint space. The component of the end effector joint rates orthogonal to the obstacle gradient becomes the commanded joint rates. A notional eleven DOF model is used to numerically demonstrate the efficacy of the control law.

  15. Control of a serpentine manipulator with collision avoidance

    NASA Technical Reports Server (NTRS)

    Byers, Robert M.

    1993-01-01

    The robotics lab at the Kennedy Space Center is investigating the possibility of using a 'serpentine' manipulator for Shuttle inspection and payload processing. Serpentine manipulators are characterized by a large number of degrees of freedom giving them a high degree of redundancy. This redundancy allows them to be used to reach confined areas while avoiding collisions with their environment. In this paper, the author describes a new approach to controlling the joint rates for an n degree of freedom robot such that it moves its end effector to a desired position while simultaneously avoiding collision of any part of the robot arm with obstacles. Joint rates which move the end effector toward the target are found via a Lyapunov stability function. The gradient of an obstacle cost function indicates the direction toward obstacle collision in the joint space. The component of the end effector joint rates orthogonal to the obstacle gradient becomes the commanded joint rates. A notional eleven DOF model is used to numerically demonstrate the efficacy of the control law.

  16. A real-time robot arm collision avoidance system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1992-01-01

    A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.

  17. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  18. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  19. Behavioural accident avoidance science: understanding response in collision incipient conditions.

    PubMed

    Hancock, P A; de Ridder, S N

    2003-10-10

    Road traffic accidents are the single greatest cause of fatality in the workplace and the primary cause of all accidental death in the US to the age of 78. However, behavioural analysis of response in the final seconds and milliseconds before collision has been a most difficult proposition since the quantitative recording of such events has largely been beyond cost feasibility for road transportation. Here, a new and innovative research strategy is reported that permits just such a form of investigation to be conducted in a safe and effective manner. Specifically, a linked simulation environment has been constructed in which drivers are physically located in two adjacent, full-vehicle simulators acting within a shared single virtual driving world. As reported here for the first time, this innovative technology creates situations that provide avoidance responses paralleling those observed in real-world conditions. Within this shared virtual world 46 participants (25 female, 21 male) were tested who met in two ambiguous traffic situations: an intersection and a hill scenario. At the intersection the two drivers approached each other at an angle of 135 degrees and buildings placed at the intersection blocked the view of both drivers from early detection of the opposing vehicle. The second condition represented a 'wrong' way conflict. Each driver proceeded along a three-lane highway from opposite directions. A hill impeded the oncoming view of each driver who only saw the conflicting vehicle briefly as it crested the brow of the hill. Driver avoidance responses of steering wheel, brake, and accelerator activation were recorded to the nearest millisecond. Qualitative results were obtained through a post-experience questionnaire in which participants were asked about their driving habits, simulator experience and their particular response to the experimental events which they had encountered. The results indicated that: (1) situations have been created which provided

  20. Unsafe rear-end collision avoidance in Alzheimer's disease.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew; Anderson, Steven W; Shi, Qian; Dawson, Jeffrey D

    2006-12-21

    Drivers with cognitive impairment are at increased odds for vehicular crashes. Rear-end collisions (REC) are among the most common crash types. We tested REC avoidance in 61 drivers with mild Alzheimer's disease (AD) and 115 elderly controls using a high-fidelity interactive driving simulator. After a segment of uneventful driving, each driver suddenly encountered a lead vehicle stopped at an intersection, creating the potential for a collision with lead vehicle or with another vehicle following closely behind the driver. Eighty-nine percent of drivers with AD had unsafe outcomes, either an REC or an risky avoidance behavior (defined as slowing down abruptly or prematurely, or swerving out of the traffic lane) compared to 65% of controls (P=0.0007). Crash rates were similar in AD (5%) and controls (3%), yet a greater proportion of drivers with AD slowed down abruptly (70% vs. 37%, P<0.0001) or prematurely (66% vs. 45%, P=0.0115). Abrupt slowing increased the odds of being struck from behind by the following vehicle (P=0.0262). Unsafe outcomes were predicted by tests of visual perception, attention, memory, visuospatial/constructional abilities, and executive functions, as well as vehicular control measures during an uneventful driving segment. Drivers with AD had difficulty responding to driving conditions that pose a hazard for a REC. Some cognitive and visual tests were predictive of unsafe outcomes even after adjusting for disease status.

  1. Unifying Time to Contact Estimation and Collision Avoidance across Species

    PubMed Central

    Keil, Matthias S.; López-Moliner, Joan

    2012-01-01

    The -function and the -function are phenomenological models that are widely used in the context of timing interceptive actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: is a decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast, has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a biophysically plausible fashion. Here we propose a new framework – the corrected modified Tau function – capable of predicting both -type (“”) and -type (“”) responses. The outstanding property of our new framework is its resilience to noise. We show that can be derived from a firing rate equation, and, as , serves to describe the response curves of collision sensitive neurons. Furthermore, we show that predicts the psychophysical performance of subjects determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within the framework, links between -type and -type neurons are established. Therefore, it could possibly serve as a model for explaining the co-occurrence of such neurons in the brain. PMID:22915999

  2. Unifying time to contact estimation and collision avoidance across species.

    PubMed

    Keil, Matthias S; López-Moliner, Joan

    2012-01-01

    The τ-function and the η-function are phenomenological models that are widely used in the context of timing interceptive actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: τ is a decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast, g has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a biophysically plausible fashion. Here we propose a new framework--the corrected modified Tau function--capable of predicting both τ-type ("τ(cm)") and g-type ("t(mod)") responses. The outstanding property of our new framework is its resilience to noise. We show that t(mod) can be derived from a firing rate equation, and, as g, serves to describe the response curves of collision sensitive neurons. Furthermore, we show that tcm predicts the psychophysical performance of subjects determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within the framework, links between τ-type and η-type neurons are established. Therefore, it could possibly serve as a model for explaining the co-occurrence of such neurons in the brain.

  3. Insect vision based collision avoidance system for Remotely Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Bevilacqua, Andrew

    2012-06-01

    Remotely Piloted Aircraft (RPA) are designed to operate in many of the same areas as manned aircraft; however, the limited instantaneous field of regard (FOR) that RPA pilots have limits their ability to react quickly to nearby objects. This increases the danger of mid-air collisions and limits the ability of RPA's to operate in environments such as terminals or other high-traffic environments. We present an approach based on insect vision that increases awareness while keeping size, weight, and power consumption at a minimum. Insect eyes are not designed to gather the same level of information that human eyes do. We present a novel Data Model and dynamically updated look-up-table approach to interpret non-imaging direction sensing only detectors observing a higher resolution video image of the aerial field of regard. Our technique is a composite hybrid method combining a small cluster of low resolution cameras multiplexed into a single composite air picture which is re-imaged by an insect eye to provide real-time scene understanding and collision avoidance cues. We provide smart camera application examples from parachute deployment testing and micro unmanned aerial vehicle (UAV) full motion video (FMV).

  4. Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars

    PubMed Central

    Schiffner, Ingo; Srinivasan, Mandyam V.

    2016-01-01

    We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft. PMID:27680488

  5. Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars.

    PubMed

    Schiffner, Ingo; Perez, Tristan; Srinivasan, Mandyam V

    We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft.

  6. Path Planning And Collision Avoidance For An Indoor Security Robot

    NASA Astrophysics Data System (ADS)

    Gilbreath, Gary; Everett, H. R.

    1989-03-01

    Any mobile robot which must operate in a dynamically changing indoor environment, such as an office, laboratory, or warehouse, must be able to detect and successfully avoid unexpected obstacles. Transient objects such as chairs, doors, trash cans, etc. change position or state frequently, and thus cannot be assigned a static representation in an "absolute" X-Y planview map of the workspace. The most simplistic path planning scheme therefore assumes there are no transient objects in this global model for the initial "find-path" operation. For collision avoidance purposes, a secondary "relative" model of the robot's immediate surroundings is created from real world sensor data collected as the robot is moving, and used to find a path around each individual obstruction as it is encountered. No information regarding the position of permanent objects is available in this smaller relative model, and the position of each transient object is forgotten as soon as it no longer obstructs the path. Conversely, if the absolute position of each detected obstruction is simply recorded in the global map, the resulting model eventually fills up with clutter and the find-path operation fails because no free path exists. This paper discusses a robust approach for map maintenance implemented on a prototype security robot, wherein transient objects are added to the global map as they are encountered, and removed from the model later if no longer detected at the same location. In this manner, subsequent find-path operations will avoid previously identified obstructions, and information on the location of both per-manent as well as transient objects is available when reacting to the discovery of a new obstruction.

  7. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... propulsion. If necessary to avoid collision or allow more time to assess the situation, a vessel shall... approaching the other vessel so as to involve risk of collision and shall, when taking action, have full... are approaching one another so as to involve risk of collision....

  8. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... propulsion. If necessary to avoid collision or allow more time to assess the situation, a vessel shall... approaching the other vessel so as to involve risk of collision and shall, when taking action, have full... are approaching one another so as to involve risk of collision....

  9. 33 CFR 83.08 - Action to avoid collision (Rule 8).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... propulsion. If necessary to avoid collision or allow more time to assess the situation, a vessel shall... approaching the other vessel so as to involve risk of collision and shall, when taking action, have full... are approaching one another so as to involve risk of collision....

  10. Stereo-based Collision Avoidance System for Urban Traffic

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Ishikawa, Naoto; Sasaki, Kazuyuki; Nakajima, Masato

    2002-11-01

    Numerous car accidents occur on urban road. However, researches done so far on driving assistance are subjecting highways whose environment is relatively simple and easy to handle, and new approach for urban settings is required. Our purpose is to extend its support to the following conditions in city traffic: the presence of obstacles such as pedestrians and telephone poles; the lane mark is not always drawn on a road; drivers may lack the sense of awareness of the lane mark. We propose a collision avoidance system, which can be applied to both highways and urban traffic environment. In our system, stereo cameras are set in front of a vehicle and the captured images are processed through a computer. We create a Projected Disparity Map (PDM) from stereo image pair, which is a disparity histogram taken along ordinate direction of obtained disparity image. When there is an obstacle in front, we can detect it by finding a peak appeared in the PDM. With a speed meter and a steering sensor, the stop distance and the radius of curvature of the self-vehicle are calculated, in order to set the observation-required area, which does not depend on lane marks, within a PDM. A danger level will be computed from the distance and the relative speed to the closest approaching object detected within the observation-required area. The method has been tested in urban traffic scenes and has shown to be effective for judging dangerous situation, and gives proper alarm to a driver.

  11. Uav Positioning and Collision Avoidance Based on RSS Measurements

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.

    2015-08-01

    In recent years, Unmanned Aerial Vehicles (UAVs) are attracting more and more attention in both the research and industrial communities: indeed, the possibility to use them in a wide range of remote sensing applications makes them a very flexible and attractive solution in both civil and commercial cases (e.g. precision agriculture, security and control, monitoring of sites, exploration of areas difficult to reach). Most of the existing UAV positioning systems rely on the use of the GPS signal. Despite this can be a satisfactory solution in open environments where the GPS signal is available, there are several operating conditions of interest where it is unavailable or unreliable (e.g. close to high buildings, or mountains, in indoor environments). Consequently, a different approach has to be adopted in these cases. This paper considers the use ofWiFi measurements in order to obtain position estimations of the device of interest. More specifically, to limit the costs for the devices involved in the positioning operations, an approach based on radio signal strengths (RSS) measurements is considered. Thanks to the use of a Kalman filter, the proposed approach takes advantage of the temporal dynamic of the device of interest in order to improve the positioning results initially provided by means of maximum likelihood estimations. The considered UAVs are assumed to be provided with communication devices, which can allow them to communicate with each other in order to improve their cooperation abilities. In particular, the collision avoidance problem is examined in this work.

  12. Performance testing of collision-avoidance system for power wheelchairs.

    PubMed

    Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir

    2011-01-01

    The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.

  13. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  14. An optimal control strategy for collision avoidance of mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy.

  15. Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model

    NASA Astrophysics Data System (ADS)

    Yang, Hsin-Hsiang; Peng, Huei

    2010-12-01

    Collision warning/collision avoidance (CW/CA) systems must be designed to work seamlessly with a human driver, providing warning or control actions when the driver's response (or lack of) is deemed inappropriate. The effectiveness of CW/CA systems working with a human driver needs to be evaluated thoroughly because of legal/liability and other (e.g. traffic flow) concerns. CW/CA systems tuned only under open-loop manoeuvres were frequently found to work unsatisfactorily with human-in-the-loop. However, tuning CW/CA systems with human drivers co-existing is slow and non-repeatable. Driver models, if constructed and used properly, can capture human/control interactions and accelerate the CW/CA development process. Design and evaluation methods for CW/CA algorithms can be categorised into three approaches, scenario-based, performance-based and human-centred. The strength and weakness of these approaches were discussed in this paper and a humanised errable driver model was introduced to improve the developing process. The errable driver model used in this paper is a model that emulates human driver's functions and can generate both nominal (error-free) and devious (with error) behaviours. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. Three error-inducing behaviours were introduced: human perceptual limitation, time delay and distraction. By including these error-inducing behaviours, rear-end collisions with a lead vehicle were found to occur at a probability similar to traffic accident statistics in the USA. This driver model is then used to evaluate the performance of several existing CW/CA algorithms. Finally, a new CW/CA algorithm was developed based on this errable driver model.

  16. Influence of person- and situation-specific characteristics on collision avoidance behavior in human locomotion.

    PubMed

    Knorr, Alexander G; Willacker, Lina; Hermsdörfer, Joachim; Glasauer, Stefan; Krüger, Melanie

    2016-09-01

    In everyday situations, pedestrians deploy successful strategies to avoid collisions with other persons crossing their paths. In this study, 2 experiments were conducted to investigate to what extent personal or situational characteristics affect role attribution and contribution to successful collision avoidance in human locomotion. Pairs of subjects walked at their natural speed from a start to a goal point. Walking paths were defined in such a way that subjects would collide halfway on their trajectory, if they did not actively avoid colliding by speed or path adjustments. In the first experiment, we investigated whether crossing order, path, and speed adjustments correlate with subject-specific parameters, such as gender, height, and personality traits. It is interesting that individuals' collision avoidance behavior was not correlated with any of these factors. In the second experiment, initial walking speed and heading were used to predict the crossing order. It was found that these 2 parameters are sufficient to estimate future role attribution with 95% confidence already 2.5 m before the crossing; that is, even before any collision avoidance behavior is initiated. In sum, this suggests that collision avoidance strategies in human locomotion are based on situational rather than on personal characteristics. These situational characteristics result in role attributions, which are highly predictable within and across pairs of pedestrians, whereby the role-dependent contribution of the pedestrian giving way is of greater relevance for successful collision avoidance. (PsycINFO Database Record

  17. Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    NASA Astrophysics Data System (ADS)

    Hieu, Dinh Chi; Masuda, Akeo; Rabarijaona, Verotiana Hanitriniala; Shimamoto, Shigeru

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  18. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    DTIC Science & Technology

    2010-09-01

    objects at the time of closest approach. Keywords: Orbital Debris , Conjunction, Collision Avoidance, Future Debris Field Report Documentation Page...critical satellites can suddenly be lost in a collision. Large spikes in the tracked orbital debris population associated with this collision, the...perform the analysis required for this study, an up-to-date orbital debris model with associated predictions of the future debris field was required. The

  19. Field evidence of an airborne enemy-avoidance kairomone in wolf spiders.

    PubMed

    Schonewolf, Kenneth W; Bell, Ryan; Rypstra, Ann L; Persons, Matthew H

    2006-07-01

    Hogna helluo, Pardosa milvina, and Trochosa ruricola are co-occurring species of wolf spiders within agricultural fields in the eastern USA. The largest species, H. helluo, is a common predator of the two smaller species, P. milvina and T. ruricola. H. helluo frequently resides within soil fissures where P. milvina and T. ruricola may be attacked when they enter or walk near these fissures. We tested the ability of P. milvina and T. ruricola to avoid H. helluo-containing burrows by detecting airborne enemy-avoidance kairomones associated with H. helluo. To simulate soil fissures and control for visual and vibratory means of predator detection, we baited funneled pitfall traps with one of the following (N = 20 traps/treatment): (1) blank (empty trap); (2) one house cricket (Acheta domesticus); (3) one adult female H. helluo; and (4) one adult male H. helluo. Over two separate 3-d periods, we measured pitfall capture rates of P. milvina and T. ruricola as well as other incidentally captured ground-dwelling arthropods. During the day, male P. milvina showed significant avoidance of pitfall traps baited with H. helluo of either sex but showed no avoidance of empty traps or those containing crickets. At night, male T. ruricola showed a qualitatively similar pattern of avoiding H. helluo-baited traps, but the differences were not statistically significant. We found no evidence that other ground-dwelling arthropods either avoided or were attracted to H. helluo-baited traps. This study suggests that an airborne enemy-avoidance kairomone may mediate behavior among male P. milvina in the field.

  20. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  1. Evaluation of human behavior in collision avoidance: a study inside immersive virtual reality.

    PubMed

    Ouellette, Michel; Chagnon, Miguel; Faubert, Jocelyn

    2009-04-01

    During our daily displacements, we should consider the individuals advancing toward us in order to avoid a possible collision with our congeneric. We developed an experimental design in a virtual immersion room, which allows us to evaluate human capacities for avoiding collisions with other people. In addition, the design allows participants to interact naturally inside this immersive virtual reality setup when a pedestrian is moving toward them, creating a possible risk of collision. Results suggest that the performance is associated with visual and motor capacities and could be adjusted by cognitive social perception.

  2. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    SciTech Connect

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh for collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.

  3. Fighting Testing ACAT/FRRP: Automatic Collision Avoidance Technology/Fighter Risk Reduction Project

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A.

    2009-01-01

    This slide presentation reviews the work of the Flight testing Automatic Collision Avoidance Technology/Fighter Risk Reduction Project (ACAT/FRRP). The goal of this project is to develop common modular architecture for all aircraft, and to enable the transition of technology from research to production as soon as possible to begin to reduce the rate of mishaps. The automated Ground Collision Avoidance System (GCAS) system is designed to prevent collision with the ground, by avionics that project the future trajectory over digital terrain, and request an evasion maneuver at the last instance. The flight controls are capable of automatically performing a recovery. The collision avoidance is described in the presentation. Also included in the presentation is a description of the flight test.

  4. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  5. Power mobility with collision avoidance for older adults: user, caregiver, and prescriber perspectives.

    PubMed

    Wang, Rosalie H; Korotchenko, Alexandra; Hurd Clarke, Laura; Mortenson, W Ben; Mihailidis, Alex

    2013-01-01

    Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory, and cognitive impairments, thus enabling independence for more users. Little is known about consumers' perceptions of collision avoidance. This article draws on interviews (29 users, 5 caregivers, and 10 prescribers) to examine views on design and utilization of this technology. Data analysis identified three themes: "useful situations or contexts," "technology design issues and real-life application," and "appropriateness of collision avoidance technology for a variety of users." Findings support ongoing development of collision avoidance for older adult users. The majority of participants supported the technology and felt that it might benefit current users and users with visual impairments, but might be unsuitable for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where collision avoidance might be beneficial (driving backward, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. User desire to maintain driving autonomy supports development of collaboratively controlled systems. This research lays the groundwork for future development by illustrating consumer requirements for this technology.

  6. Experimental Studies Of Pilot Performance At Collision Avoidance During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.

  7. Experimental characterization of collision avoidance in pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Parisi, Daniel R.; Negri, Pablo A.; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

  8. Experimental characterization of collision avoidance in pedestrian dynamics.

    PubMed

    Parisi, Daniel R; Negri, Pablo A; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.

  9. Flight Test Evaluation of AVOID II. (Avionic Observation of Intruder Danger) Collision Avoidance System

    DTIC Science & Technology

    1976-10-13

    31 General Operation Tests ........................................ 31 Altitude Boundary and Altit~ude Discrimination ...Summary ............................... 57 Altitude Zone Discrimination .................................... 61 AVOID I - AVOID II COMPI.TIBILITY...Figure 16. Commad Display Logic. - 33 - NADC-76141 -60 4 ALTITUDE BOUNDARIES AND ALTITUDE DISCRIMINATION TESTS The main objective of these encounters

  10. Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems

    PubMed Central

    Meng, Fanxing; Gray, Rob; Ho, Cristy; Ahtamad, Mujthaba

    2015-01-01

    Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of various vibrotactile warning signals was assessed using a simulated car-following task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). Results: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a looming-intensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). Conclusion: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. Application: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system. PMID:25850161

  11. How Usability Testing Resulted in Improvements to Ground Collision Software for General Aviation: Improved Ground Collision Avoidance System (IGCAS)

    NASA Technical Reports Server (NTRS)

    Lamarr, Michael; Chinske, Chris; Williams, Ethan; Law, Cameron; Skoog, Mark; Sorokowski, Paul

    2016-01-01

    The NASA improved Ground Collision Avoidance System (iGCAS) team conducted an onsite usability study at Experimental Aircraft Association (EAA) Air Venture in Oshkosh, Wisconsin from July 19 through July 26, 2015. EAA Air Venture had approximately 550,000 attendees from which the sample pool of pilots were selected. The objectives of this study were to assess the overall appropriateness and acceptability of iGCAS as a warning system for General Aviation aircraft, usability of the iGCAS displays and audio cues, test terrain avoidance characteristics, performance, functionality, pilot response time, and correlate terrain avoidance performance and pilot response time data.

  12. NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy

    NASA Technical Reports Server (NTRS)

    Gavin, Richard T.

    2010-01-01

    NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.

  13. Collision Avoidance System (CAS): Human Factors Engineering Evaluation.

    DTIC Science & Technology

    1982-12-01

    personnel indicated that the CAS console was much too big for the limited amount of space available on RANGER’s bridge. The console is 40 inches wide...avoidance (C/A) data. > RANGE * 12//2 < (T >~ LOG SPEED 4 10.0 KT < E1 i >~ HEADING 4 270 DEG * < J [ > BRGCRSR * 000 DEG4C/ ADATA < - > TRIAL SPD 4 0 <EJ

  14. Design and evaluation of steering protection for avoiding collisions during a lane change.

    PubMed

    Itoh, Makoto; Inagaki, Toshiyuki

    2014-01-01

    This paper discusses the design of a driver assistance system for avoiding collisions with vehicles in blind spots. The following three types of support systems are compared: (1) a warning system that provides the driver with an auditory alert, (2) a 'soft' protection system that makes the steering wheel stiffer to tell the driver that a lane-change manoeuvre is not recommended and (3) a 'hard' protection system that cancels the driver's input and controls the tyre angle autonomously to prevent lane departure. The results of an experiment showed that the hard protection system was more effective for collision avoidance than either the warning or the soft protection system. The warning and soft protection systems were almost the same in terms of collision avoidance. The results suggest that the human-centred automation principle, which requires the human to have the final authority over the automation, can be violated depending on the context.

  15. An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1993-01-01

    A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.

  16. Optimal motion planning for collision avoidance of mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1992-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the minimum distance between the robot and the object is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. A perturbation control type of approach is used to update the optimal plan. Simulation results verify the value of the proposed strategy.

  17. Effectiveness and driver acceptance of a semi-autonomous forward obstacle collision avoidance system.

    PubMed

    Itoh, Makoto; Horikome, Tatsuya; Inagaki, Toshiyuki

    2013-09-01

    This paper proposes a semi-autonomous collision avoidance system for the prevention of collisions between vehicles and pedestrians and objects on a road. The system is designed to be compatible with the human-centered automation principle, i.e., the decision to perform a maneuver to avoid a collision is made by the driver. However, the system is partly autonomous in that it turns the steering wheel independently when the driver only applies the brake, indicating his or her intent to avoid the obstacle. With a medium-fidelity driving simulator, we conducted an experiment to investigate the effectiveness of this system for improving safety in emergency situations, as well as its acceptance by drivers. The results indicate that the system effectively improves safety in emergency situations, and the semi-autonomous characteristic of the system was found to be acceptable to drivers.

  18. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  19. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli

    PubMed Central

    Chan, R. WM.; Gabbiani, F.

    2013-01-01

    SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572

  20. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli.

    PubMed

    Chan, R W M; Gabbiani, F

    2013-02-15

    Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from - but also towards - the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight.

  1. GENERAL: Collision avoidance for a mobile robot based on radial basis function hybrid force control technique

    NASA Astrophysics Data System (ADS)

    Wen, Shu-Huan

    2009-10-01

    Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.

  2. How Much Control is Enough for Network Connectivity Preservation and Collision Avoidance?

    PubMed

    Chen, Zhiyong; Fan, Ming-Can; Zhang, Hai-Tao

    2015-08-01

    For a multiagent system in free space, the agents are required to generate sufficiently large cohesive force for network connectivity preservation and sufficiently large repulsive force for collision avoidance. This paper gives an energy function based approach for estimating the control force in a general setting. In particular, the force estimated for network connectivity preservation and collision avoidance is separated from the force for other collective behavior of the agents. Moreover, the estimation approach is applied in three typical collective control scenarios including swarming, flocking, and flocking without velocity measurement.

  3. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    PubMed Central

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Óscar

    2012-01-01

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed. PMID:23443391

  4. Autonomous manoeuvring systems for collision avoidance on single carriageway roads.

    PubMed

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar

    2012-11-29

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  5. Input and output characteristics of collision avoidance behavior in the frog Rana catesbeiana.

    PubMed

    Yamamoto, Keisuke; Nakata, Maki; Nakagawa, Hideki

    2003-01-01

    Input and output characteristics of collision avoidance behavior in the bullfrog were examined using computer graphics to model a looming stimulus. The means of time-to-collision of avoidance behavior in response to looming visual stimuli approaching at a velocity of either 2 or 4 m/s were significantly different (t141) = 7.93, p < 0.05). On the other hand, mean threshold sizes of visual stimuli triggering avoidance behavior were not significantly different in either case (t201) = 0.54, p > 0.05). Furthermore, we showed that the mean threshold sizes changed in a predictable manner depending on the distance between the displayed stimulus and the animal. These results strongly suggest that the frog displays collision avoidance behavior when the visual angle of a looming object reaches a constant value (about 20 degrees ). The mean maximum velocities of the avoidance behavior in response to the two visual stimuli were not significantly different (t198) = 1.44, p > 0.05). However, we found that the frog could control the velocity depending on the location of an approaching object in its dorsal visual field. Finally, we demonstrated that habituation significantly affected the mean probability of avoidance behavior occurrence (ANOVA, at 2 m/s, F(2,15) = 14.25; at 4 m/s, F(2,15) = 13.35, p < 0.05), but not those of time-to-collision, threshold size and maximum velocity (ANOVA, at 2 m/s, F(2,13) = 0.07, F(2,14) = 0.46 and F(2,14) = 0.70, respectively; at 4 m/s, F(2,15) = 0.50, F(2,14) = 0.68 and F(2,14) = 0.41, respectively, p > 0.05). Thus, frog collision avoidance behavior seems to have an all or none-like property.

  6. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and

  7. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    PubMed Central

    Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.

    2013-01-01

    Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of

  8. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task.

    PubMed

    Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A

    2013-01-01

    Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of

  9. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Advanced Collision Avoidance System for UAS (ACAS Xu) Interoperability White Paper Presentation

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    The Phase 1 DAA Minimum Operational Performance Standards (MOPS) provided requirements for two classes of DAA equipment: equipment Class 1 contains the basic DAA equipment required to assist a pilot in remaining well clear, while equipment Class 2 integrates the Traffic Alert and Collision Avoidance (TCAS) II system. Thus, the Class 1 system provides RWC functionality only, while the Class 2 system is intended to provide both RWC and Collision Avoidance (CA) functionality, in compliance with the Minimum Aviation System Performance (MASPS) for the Interoperability of Airborne Collision Avoidance Systems. The FAAs TCAS Program Office is currently developing Airborne Collision Avoidance System X (ACAS X) to support the objectives of the Federal Aviation Administrations (FAA) Next Generation Air Transportation System Program (NextGen). ACAS X has a suite of variants with a common underlying design that are intended to be optimized for their intended airframes and operations. ACAS Xu being is designed for UAS and allows for new surveillance technologies and tailored logic for platforms with different performance characteristics. In addition to Collision Avoidance (CA) alerting and guidance, ACAS Xu is being tuned to provide RWC alerting and guidance in compliance with the SC 228 DAA MOPS. With a single logic performing both RWC and CA functions, ACAS Xu will provide industry with an integrated DAA solution that addresses many of the interoperability shortcomings of Phase I systems. While the MOPS for ACAS Xu will specify an integrated DAA system, it will need to show compliance with the RWC alerting thresholds and alerting requirements defined in the DAA Phase 2 MOPS. Further, some functional components of the ACAS Xu system such as the remote pilots displayed guidance might be mostly references to the corresponding requirements in the DAA MOPS. To provide a seamless, integrated, RWC-CA system to assist the pilot in remaining well clear and avoiding collisions, several

  10. Biologically inspired collision avoidance system for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  11. Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers.

    PubMed

    Olivier, Anne-Hélène; Marin, Antoine; Crétual, Armel; Pettré, Julien

    2012-07-01

    This study investigated collision avoidance between two walkers by focusing on the conditions that lead to avoidance manoeuvres in locomotor trajectories. Following the hypothesis of a reciprocal interaction, we suggested a mutual variable as a continuous function of the two walkers' states, denoted minimum predicted distance (MPD). This function predicts the risk of collision, and its evolution over time captures the motion adaptations performed by the walkers. By groups of two, 30 walkers were assigned locomotion tasks which lead to potential collisions. Results showed that walkers adapted their motions only when required, i.e., when MPD is too low (<1 m). We concluded that walkers are able (i) to accurately estimate their reciprocal distance at the time the crossing will occur, and (ii) to mutually adapt this distance. Furthermore, the study of MPD evolution showed three successive phases in the avoidance interaction: observation where MPD(t) is constant, reaction where MPD(t) increases to acceptable values by adapting locomotion and regulation where MPD(t) reaches a plateau and slightly decreases. This final phase demonstrates that collision avoidance is actually performed with anticipation. Future work would consist in inspecting individual motion adaptations and relating them with the variations of MPD.

  12. Calibration, Information, and Control Strategies for Braking to Avoid a Collision

    ERIC Educational Resources Information Center

    Fajen, Brett R.

    2005-01-01

    This study explored visual control strategies for braking to avoid collision by manipulating information about speed of self-motion. Participants watched computer-generated displays and used a brake to stop at an object in the path of motion. Global optic flow rate and edge rate were manipulated by adjusting eyeheight and ground-texture size.…

  13. Five- to Twelve-Year-Olds' Control of Movement Velocity in a Dynamic Collision Avoidance Task

    ERIC Educational Resources Information Center

    te Velde, Arenda F.; van der Kamp, John; Savelsbergh, Geert J. P.

    2008-01-01

    We investigated age-related differences in a dynamic collision avoidance task that bears a resemblance to pedestrian road crossing. Five- to seven-year-old children, ten- to twelve-year-old children and adults were instructed to push a doll across a small-scale road between two toy vehicles, which approached one after the other. We analysed the…

  14. Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study

    NASA Astrophysics Data System (ADS)

    Platzer, André; Clarke, Edmund M.

    Aircraft collision avoidance maneuvers are important and complex applications. Curved flight exhibits nontrivial continuous behavior. In combination with the control choices during air traffic maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear hybrid systems, we analyze collision freedom of roundabout maneuvers in air traffic control, where appropriate curved flight, good timing, and compatible maneuvering are crucial for guaranteeing safe spatial separation of aircraft throughout their flight. We show that formal verification of hybrid systems can scale to curved flight maneuvers required in aircraft control applications. We introduce a fully flyable variant of the roundabout collision avoidance maneuver and verify safety properties by compositional verification.

  15. Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Guo, Yanning; Ma, Guangfu; Zeng, Tianyi

    2017-03-01

    A novel zero-effort-miss (ZEM)/zero-effort-velocity (ZEV) optimal feedback guidance is proposed in order to rule out the possibility of Martian surface collision caused by the classical ZEM/ZEV optimal feedback guidance. The main approach is to add a collision avoidance term, which has self-adjustment capacity to ensure the near fuel optimality. Its main improvement is that it can not only successfully avoid collisions with the thruster constraint but also guarantee the near fuel optimality, and both of them are pivotal performances in Mars landing missions. Simulations are made to show the effectiveness of the proposed guidance and the parameters effects are simulated as well to analyze the properties of the proposed guidance.

  16. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  17. Design and hardware-in-loop implementation of collision avoidance algorithms for heavy commercial road vehicles

    NASA Astrophysics Data System (ADS)

    Rajaram, Vignesh; Subramanian, Shankar C.

    2016-07-01

    An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.

  18. Collision avoidance behavior as a function of aging and tennis playing.

    PubMed

    Lobjois, Régis; Benguigui, Nicolas; Bertsch, Jean; Broderick, Michael P

    2008-02-01

    Daily living often requires pedestrians and drivers to adapt their behavior to the displacement of other objects in their environment in order to avoid collision. Yet little research has paid attention to the effect of age on the completion of such a challenging task. The purpose of this study was to examine the relationship between age and collision avoidance skill and whether a sporting activity affects this. Three age groups (20-30, 60-70, and 70-80 years) of tennis players and non-players launched a projectile toward a target in order to hit it before it was hit by another "object" (a stimulus represented by apparent motion of lights). If the participant judged that time-to-collision (TTC) of the moving stimulus was not long enough for him/her to launch the projectile in time to arrive before the stimulus, the participant had to inhibit the launching. Results showed that for the non-players the number of errors in the 70-80 year-old group was significantly higher than those of the 20-30 and 60-70 year-old groups, which did not differ from each other. However, this increase was not observed in the 70-80 year-old tennis players, demonstrating a beneficial effect of playing tennis on collision avoidance skill. Results also revealed that the older groups of both tennis players and non-players were subject to the typical age-related increase in response time. Additional analyses indicated that the 70-80 year-old non-players did not adjust their actions to these age-related changes in response time. The older tennis-playing participants, however, were more likely to adjust collision avoidance behavior to their diminished response times.

  19. A method for evaluating collision avoidance systems using naturalistic driving data.

    PubMed

    McLaughlin, Shane B; Hankey, Jonathan M; Dingus, Thomas A

    2008-01-01

    This paper describes a method for use in evaluating the performance of collision avoidance systems (CASs) using naturalistic driving data collected during real crashes and near-crashes. The method avoids evaluation of algorithms against specific assumptions of reaction times or response inputs. It minimizes interpretation of the involved driver's perception and response levels which permits generalizing findings beyond the performance of the involved driver. The method involves four parts: input of naturalistic crash data into alert models to determine when alerts would occur, kinematic analysis to determine when different responses would be required to avoid collision, translation of the time available into an estimate of the percentage of the population able to avoid the specific event, and an evaluation of the frequency of alerts that would be generated by the CASs. The method permits comparison of CAS performance and provides guidance for CAS development. The method is described primarily in the context of Forward Collision Warning CASs, but is applicable to other CAS types.

  20. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    NASA Astrophysics Data System (ADS)

    Khalifa, N. S.

    2015-06-01

    The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change Δ V ‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser Δ V ‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  1. Vision-based on-board collision avoidance system for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Candamo, Joshua; Kasturi, Rangachar; Goldgof, Dmitry; Sarkar, Sudeep

    2006-05-01

    This paper presents an automated classification system for images based on their visual complexity. The image complexity is approximated using a clutter measure, and parameters for processing it are dynamically chosen. The classification method is part of a vision-based collision avoidance system for low altitude aerial vehicles, intended to be used during search and rescue operations in urban settings. The collision avoidance system focuses on detecting thin obstacles such as wires and power lines. Automatic parameter selection for edge detection shows a 5% and 12% performance improvement for medium and heavily cluttered images respectively. The automatic classification enabled the algorithm to identify near invisible power lines in a 60 frame video footage from a SUAV helicopter crashing during a search and rescue mission at hurricane Katrina, without any manual intervention.

  2. An airborne low SWaP-C UAS sense and avoid system

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Lin, Xingping; Xiang, Xingyu; Blasch, Erik; Pham, Khanh; Chen, Genshe; Shen, Dan; Jia, Bin; Wang, Gang

    2016-05-01

    This paper presents a low size, weight and power - cost (SWaP-C) airborne sense and avoid (ABSAA) system, which is based on a linear frequency modulated continuous wave (LFMCW) radar and can be mounted on small unmanned aircraft system (UAS). The system satisfies the constraint of the available sources on group 2/3 UAS. To obtain the desired sense and avoid range, a narrow band frequency (or range) scanning technique is applied for reducing the receiver's noise floor to improve its sensitivity, and a digital signal integration with fast Fourier transform (FFT) is applied to enhance the signal to noise ratio (SNR). The gate length and chirp rate are intelligently adapted to not only accommodate different object distances, speeds and approaching angle conditions, but also optimize the detection speed, resolution and coverage range. To minimize the radar blind zone, a higher chirp rate and a narrowband intermediate frequency (IF) filter are applied at the near region with a single antenna signal for target detection. The offset IF frequency between transmitter (TX) and receiver (RX) is designed to mitigate the TX leakage to the receiver, especially at close distances. Adaptive antenna gain and beam-width are utilized for searching at far distance and fast 360 degree middle range. For speeding up the system update rate, lower chirp rates and wider IF and baseband filters are applied for obtaining larger range scanning step length out of the near region. To make the system working with a low power transmitter (TX), multiple-antenna beamforming, digital signal integration with FFT, and a much narrower receiver (RX) bandwidth are applied at the far region. The ABSAA system working range is 2 miles with a 1W transmitter and single antenna signal detection, and it is 5 miles when a 5W transmitter and 4-antenna beamforming (BF) are applied.

  3. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.

    PubMed

    Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-01-01

    The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced.

  4. Preliminary design of the collision avoidance device on the fiber positioning units of LAMOST

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Zhou, Zhikun; Jin, Yi; Hu, Hongzhuan

    2006-06-01

    This paper constructed two protecting methods of diminishing the collision during the opposite movement of the adjoining fiber unit in the LAMOST Positioning System. Auto-positioning mode is applied to every fiber positioning unit of LAMOST Positioning System. The observing region is a circular region with the diameter of 33 mm. To ensure the whole focal plane is covered by the observing region of 4000 fiber units, there must be superposition of observing region of each adjoining fiber units, which induced the collision of adjoining fiber holder in the movement process and resulted in the failing of orientation and mangling of structure. The mode of avoiding the collision comprises two methods. One is hard protected mode, according to this method sensors are installed at each fiber positioning unit, then the motion of the fiber units will be stopped immediately when the adjoining fiber units close to a dangerous distance. The other is soft protected mode, which deliberates every situation of software from the observation programming to the motion path designing for avoiding the collision. This paper expounds the designing and achievement of these two methods mentioned formally.

  5. Wireless Telemetry of In-Flight Collision Avoidance Neural Signals in Insects

    DTIC Science & Technology

    2010-09-01

    AFRL-RW-EG-TR-2010-110 Wireless Telemetry of In-Flight Collision Avoidance Neural Signals in Insects Reid R. Harrison Fabrizio...in Insects 5b. GRANT NUMBER FA8651-07-1-0007 5c. PROGRAM ELEMENT NUMBER 62602F 6. AUTHOR(S) Reid R. Harrison Fabrizio Gabbiani Ryan J...14. ABSTRACT Modern neuroscience research often relies on experiments using small animals such as mice and insects . For example, flying insects

  6. COLREGS-Compliant Autonomous Collision Avoidance Using Multi-Objective Optimization with Interval Programming

    DTIC Science & Technology

    2014-06-01

    Tokyo to Los Angeles carrying highly flammable cargo such as liquefied natural gas (LNG). This merchant certainly values efficiency to maintain costs as...followed by vehicles, the vehicles maneuvered for collision avoidance and naturally found themselves off the prescribed track resulting in non-canonical... naturally to a metric for efficiency as the ratio of distances, or η = d1 d2 , where d1 was defined as the ideal travel distance between any two

  7. Three-dimensional audio versus head-down traffic alert and collision avoidance system displays.

    PubMed

    Begault, D R; Pittman, M T

    1996-01-01

    The advantage of a head-up auditory display for situational awareness was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: standard head-down Traffic Alert and Collision Avoidance System display and three-dimensional (3-D) audio Traffic Alert and Collision Avoidance System presentation. (The technology used for 3-D audio presentation allows a stereo headphone user to potentially localize a sound at any externalized position in 3-D auditory space). Ten commercial airline crews were tested under full-mission simulation conditions at the NASA-Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft that activated a 3-D aural advisory (the head-up auditory condition) or a standard, visual-audio TCAS advisory (map display with monaural audio alert). Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio Traffic Alert and Collision Avoidance System condition by 500 ms.

  8. Deadlock-free Path Following Control with Collision Avoidance for Multiple Robots

    NASA Astrophysics Data System (ADS)

    Sakurama, Kazunori; Nakano, Kazushi

    This paper deals with a path following problem with collision avoidance for multiple robots. The path following aims to move the robots along reference paths with assigned velocities. When there are geometric errors between the robots' positions and the reference paths, or when the differences between their velocities and assigned velocities are not zero, we expect to reduce these errors. Unfortunately, if the multiple robots try to realize the exact path following, they may collide with one another in areas where the reference paths intersect. In this case, the robots have to avoid collision at the expense of the original paths. This paper introduces a value function including geometric and velocity errors, and proposes a new online collision avoidance method which constrains the value function. The proposed method minimizes the time derivative of the value function in each instance. Moreover, this method prevents deadlocks of the robots with the following strategy: design a time-varying function which moves slowly along the reference path for each robot, and append a penalty function to the value function which increases when the position of the robot becomes less than the time-varying function.

  9. Application of radar for automotive collision avoidance. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.

  10. Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications.

    PubMed

    Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.

  11. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  12. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes.

    PubMed

    Bertrand, Olivier J N; Lindemann, Jens P; Egelhaaf, Martin

    2015-11-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  13. Numerical approach of collision avoidance and optimal control on robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wang, Jyhshing Jack

    1990-01-01

    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.

  14. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  15. SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance

    SciTech Connect

    Popple, R; Cardan, R

    2015-06-15

    Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images. The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a grant

  16. Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators

    NASA Technical Reports Server (NTRS)

    Lumelsky, Vladimir J.; Cheung, Edward

    1993-01-01

    A hybrid robot teleoperation system is presented which makes use of the methodology of motion planning for whole-sensitive robots to assist the operator in generating collision-free motion in a master-slave robot arm manipulator system. The system combines operator commands with data from the sensitive skin to guarantee safe motion for the entire body of the robot arm. The arm avoids obstacles automatically and in real time and moves in a collision-free manner although no prior knowledge of the objects in the environment is available to the motion planning system and no constraints are imposed on the obstacle shapes. The operator is thus relieved of the task of providing safety of the robot arm and surrounding objects.

  17. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  18. Advanced Whale Detection Methods to Improve Whale-Ship Collision Avoidance

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Tougher, B.

    2010-12-01

    Collisions between whales and ships are now estimated to account for fully a third of all whale deaths worldwide. Such collisions can incur costly ship repairs, and may damage or disable ship steering requiring costly response efforts from state and federal agencies. While collisions with rare whale species are problematic in further reducing their low population numbers, collisions with some of the more abundant whale species are also becoming more common as their populations increase. The problem is compounded as ship traffic likewise continues to grow, thus posing a growing risk to both whales and ships. Federal agencies are considering policies to alter shipping lanes to minimize whale-ship collisions off California and elsewhere. Similar efforts have already been undertaken for the Boston Harbor ship approach, where a bend in the shipping lane was introduced to reduce ship traffic through a favorite area of the highly endangered North Atlantic Right Whale. The Boston shipping approach lane was also flanked with a system of moorings with whale detection hydrophones which broadcast the presence of calling whales in or near the ship channel to approaching ships in real time. When so notified, ships can post lookouts to avoid whale collisions, and reduce speed to reduce the likelihood of whale death, which is highly speed dependent. To reduce the likelihood and seriousness of whale-ship collisions off California and Alaska in particular, there is a need to better know areas of particularly high use by whales, and consider implementation of reduced ship speeds in these areas. There is also an ongoing discussion of altering shipping lanes in the Santa Barbara Channel to avoid habitual Blue whales aggregation areas in particular. However, unlike the case for Boston Harbor, notification of ships that whales are nearby to reduce or avoid collisions is complicated because many California and Alaska whale species do not call regularly, and would thus be undetected by

  19. Drivers' eye movements as a function of collision avoidance warning conditions in red light running scenarios.

    PubMed

    Zhang, Yuting; Yan, Xuedong; Li, Xiaomeng; Xue, Qingwan

    2016-11-01

    The intersection collision avoidance warning systems (ICAWSs) have substantial potentials in improving driving performance and reducing the number and severity of intersection collisions, through helping drivers timely detect hazardous conflicting vehicles in precrash scenarios. However, the influences of ICAWS on drivers' visual performance have barely been discussed. This study focuses on exploring the patterns in drivers' eye movements as a function of ICAWS's warning conditions in red light running scenarios based on a driving simulation experiment. Two types of speech warning conditions including warning timings (varied form 2.5s to 5.5s) and directional information (with or without) are examined, and the no-warning condition is the baseline. The results revealed that more subjects would be likely to benefit from the ICWAS under the earlier warning timings. The warning condition of 4.5s ahead of a collision had the best effectiveness in terms of visual performances. Under such a warning timing, drivers had shorter fixation duration and higher frequency of searching for the red light running (RLR) vehicles. Compared to the warning condition without directional information, the directional warning information could capture drivers' attention more efficiently, help driver direct fixations toward the RLR vehicles more quickly and lead to more scanning activities. Compared to female drivers, male drivers had more scanning activities when approaching intersections, detected the RLR vehicles more quickly and were more likely to avoid the RLR collisions. Besides, the experiment results indicated that the female drivers were more inclined to trust the warning information and got more benefits from the RLR-ICAWS in terms of the crash risk reduction rate than male drivers. Finally, the conclusions lead the way toward warning condition design recommendations for improving the effectiveness of the RLR-ICAWSs.

  20. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.

    PubMed

    Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting

    2016-12-01

    Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in

  1. Application of radar for automotive collision avoidance. Volume 2: Development plan and progress reports

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Christopher L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. Items within the scope of the one-year effort were to: (1) review previous authors' work in this field; (2) select a suitable radar approach; (3) develop a system design; (4) perform basic analyses and observations pertinent to radar design, performance, and effects; (5) fabricate and collect radar data from a data collection radar; (6) analyze and derive conclusions from the radar data; and (7) make recommendations about the likelihood of success of the investigated radar techniques. The final technical report presenting all conclusions is contained in Volume 1.

  2. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    NASA Technical Reports Server (NTRS)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  3. A Summary of the NASA ISS Space Debris Collision Avoidance Program

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph

    2002-01-01

    Creating and implementing a process for the mitigation of the impact hazards due to cornets and asteroids will prove to be a complex and involved process. The closest similar program is the collision avoidance process currently used for protection of the International Space Station (ISS). This process, in operation for over three years, has many similarities to the NEG risk problem. By reviewing the ISS program, a broader perspective on the complications of and requirements for a NEO risk mitigation program might be obtained. Specifically, any lessons learned and continuing issues of concern might prove useful in the development of a NEO risk assessment and mitigation program.

  4. Collision Avoidance Short Course: Conjunction Assessment Risk Analysis - NASA Robotic CARA. Part I: ; Theory

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Frigm, Ryan C.

    2015-01-01

    Satellite conjunction assessment is perhaps the fastest growing area in space situational awareness and protection with military, civil and commercial satellite owner-operators embracing more and more sophisticated processes to avoid the avoidable - namely collisions between high value space assets and orbital debris. NASA and Centre National d'Etudes Spatiales (CNES) have collaborated to offer an introductory short course on all the major aspects of the conjunctions assessment problem. This half-day course will cover satellite conjunction dynamics and theory. Joint Space Operations Center (JsPOC) conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.

  5. Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1991-01-01

    Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.

  6. Real-time 3D reconstruction for collision avoidance in interventional environments.

    PubMed

    Ladikos, Alexander; Benhimane, Selim; Navab, Nassir

    2008-01-01

    With the increased presence of automated devices such as C-arms and medical robots and the introduction of a multitude of surgical tools, navigation systems and patient monitoring devices, collision avoidance has become an issue of practical value in interventional environments. In this paper, we present a real-time 3D reconstruction system for interventional environments which aims at predicting collisions by building a 3D representation of all the objects in the room. The 3D reconstruction is used to determine whether other objects are in the working volume of the device and to alert the medical staff before a collision occurs. In the case of C-arms, this allows faster rotational and angular movement which could for instance be used in 3D angiography to obtain a better reconstruction of contrasted vessels. The system also prevents staff to unknowingly enter the working volume of a device. This is of relevance in complex environments with many devices. The recovered 3D representation also opens the path to many new applications utilizing this data such as workflow analysis, 3D video generation or interventional room planning. To validate our claims, we performed several experiments with a real C-arm that show the validity of the approach. This system is currently being transferred to an interventional room in our university hospital.

  7. Modeling of driver's collision avoidance maneuver based on controller switching model.

    PubMed

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  8. Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2014-09-01

    The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.

  9. Elderly adults delay proprioceptive reweighting during the anticipation of collision avoidance when standing.

    PubMed

    Eikema, D J A; Hatzitaki, V; Konstantakos, V; Papaxanthis, C

    2013-03-27

    The ability to reweight visual and proprioceptive information is critical for maintaining postural stability in a dynamic environment. In this study, we examined whether visual anticipation of collision avoidance (AV) while standing could facilitate the down-weighting of altered proprioception in young and elderly adults. Twelve young (24.91±6.44years) and 12 elderly (74.8±6.42years) participants stood upright for 180s under two task conditions: (a) quiet stance (QS) and (b) standing while anticipating virtual objects to be avoided. In order to disrupt the accuracy of proprioceptive input participants were exposed to bilateral Achilles tendon vibration during the middle 60s of standing in both tasks. Visual field dependence was assessed using the Rod and Frame Test (RFT). Elderly demonstrated significantly higher visual field dependence compared to the young participants. Analysis of the normalized Root Mean Square (RMS) of the Center of Pressure velocity (dCoP) revealed that young participants immediately reduced the sway velocity variability induced by tendon vibration during the anticipation of collision AV compared to the QS task. In the elderly, however, the modulating influence of visual anticipation was delayed and became significant only in the last two time intervals of the vibration phase. These results suggest that volitionally shifting reliance on vision when anticipating a collision AV event facilitates the down-weighting of altered proprioception. Elderly adults seem to be unable to dynamically exploit visual anticipation in order to down weight the altered proprioception possibly as a result of their more permanent up-weighting of the visual modality. Sensory reweighting seems to be a more time consuming process in aging which may have important clinical implications for falling.

  10. Gaze patterns predicting successful collision avoidance in patients with homonymous visual field defects.

    PubMed

    Papageorgiou, Eleni; Hardiess, Gregor; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-07-15

    Aim of the present study was to identify efficient compensatory gaze patterns applied by patients with homonymous visual field defects (HVFDs) under virtual reality (VR) conditions in a dynamic collision avoidance task. Thirty patients with HVFDs due to vascular brain lesions and 30 normal subjects performed a collision avoidance task with moving objects at an intersection under two difficulty levels. Based on their performance (i.e. the number of collisions), patients were assigned to either an "adequate" (HVFD(A)) or "inadequate" (HVFD(I)) subgroup by the median split method. Eye and head tracking data were available for 14 patients and 19 normal subjects. Saccades, fixations, mean number of gaze shifts, scanpath length and the mean gaze eccentricity, were compared between HVFD(A), HVFD(I) patients and normal subjects. For both difficulty levels, the gaze patterns of HVFD(A) patients (N=5) compared to HVFD(I) patients (N=9) were characterized by longer saccadic amplitudes towards both the affected and the intact side, larger mean gaze eccentricity, more gaze shifts, longer scanpaths and more fixations on vehicles but fewer fixations on the intersection. Both patient groups displayed more fixations in the affected compared to the intact hemifield. Fixation number, fixation duration, scanpath length, and number of gaze shifts were similar between HVFD(A) patients and normal subjects. Patients with HVFDs who adapt successfully to their visual deficit, display distinct gaze patterns characterized by increased exploratory eye and head movements, particularly towards moving objects of interest on their blind side. In the context of a dynamic environment, efficient compensation in patients with HVFDs is possible by means of gaze scanning. This strategy allows continuous update of the moving objects' spatial location and selection of the task-relevant ones, which will be represented in visual working memory.

  11. The airborne volcanic object imaging detector (AVOID): A new tool for airborne atmospheric remote sensing of clouds

    NASA Astrophysics Data System (ADS)

    Prata, F.; Durant, A.; Kylling, A.

    2012-04-01

    A new dual thermal imaging infrared camera system has been developed for aircraft in order to investigate water and volcanic clouds ahead. The system, AVOID, uses interference filters to discriminate clouds of water and ice from volcanic substances (silicates) by utilising the spectral features of these substances at wavelengths between 8-12 µm. Tests of the system were recently conducted in Sicily, in the vicinity of Mt Etna volcano and at Stromboli volcano, during emission of ash and SO2. The data were acquired from altitudes up to 12,000 ft, sampling from two cameras at frequencies down to 1 Hz. Corrections for the aircraft attitude were made using a very fast sampling attitude sensor, collocated with the imaging system. About 30 hours of data were acquired - over 90% of these measurements were of meteorological clouds of water droplets and ice. Using a radiative transfer model and information on the spectral refractive indices of water, ice and silicate ash, a retrieval scheme has been devised to determine the mass loading and effective particle radius of these substances and some preliminary results are presented. We have also developed a sophisticated simulation tool that allows us to model the 3D structure of clouds based on Monte Carlo radiative transfer. By utilising a narrow bandpass filter centred on 8.6 µm, AVOID can also detect SO2 gas and some illustrative examples are shown. During March 2012 the AVOID system will be mounted onto an AIRBUS A340 and flown at altitudes up to 38,000 ft. These tests will include measurements of clouds, as well as drifting volcanic ash and SO2 gas. We intend to present some of these initial results.

  12. Head-up auditory displays for traffic collision avoidance system advisories: a preliminary investigation.

    PubMed

    Begault, D R

    1993-12-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece headsets, but there was no significant difference in the number of targets acquired.

  13. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  14. Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)

    NASA Technical Reports Server (NTRS)

    Schmalz, Tyler; Ryan, Jack

    2011-01-01

    Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.

  15. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  16. Assessment of the possibility of avoiding the collision of the earth with a cosmic body

    NASA Astrophysics Data System (ADS)

    Shkadov, L. M.; Illarionov, V. F.; Sonin, V. V.

    1989-10-01

    A method that could be used for avoiding the collision, or a dangerous approach to it, of the earth with a cosmic body is considered. The method involves changing the location of the earth on the orbit at a given moment by imparting a moderate velocity impulse to the moon. Estimates of the needed earth deviation with respect to its position in an undisturbed motion are presented, together with allowable safe distances between a passing-by body and the earth, determined as a function of the body's mass. The required energy expenditures and the fraction of the moon's ejected mass necessary to impart the required velocity impulse to the moon are also estimated.

  17. A study of a collision avoidance system mounted on a curved ground plane

    NASA Technical Reports Server (NTRS)

    Law, P. H.; Burnside, W. D.; Rojas, R. G.

    1986-01-01

    Research conducted on a traffic advisory and collision avoidance system (TCAS 2) mounted on a curved ground plane is described. It is found that a curved finite ground plane can be used as a good simulation model for the fuselage of an aircraft but may not be good enough to model a whole aircraft due to the shadowing of the vertical stabilizer, wings, etc. The surface curvature of this curved disc significantly affects the monopulse characteristics in the azimuth plane but not as much in the elevation plane. These variations of the monopulse characteristics verify the need of a lookup table for the 64 azimuth beam positions. The best location of a TCAS 2 array on a Boeing 737 is to move it as far from the vertical stabilizer as possible.

  18. Comparing and validating models of driver steering behaviour in collision avoidance and vehicle stabilisation

    NASA Astrophysics Data System (ADS)

    Markkula, G.; Benderius, O.; Wahde, M.

    2014-12-01

    A number of driver models were fitted to a large data set of human truck driving, from a simulated near-crash, low-friction scenario, yielding two main insights: steering to avoid a collision was best described as an open-loop manoeuvre of predetermined duration, but with situation-adapted amplitude, and subsequent vehicle stabilisation could to a large extent be accounted for by a simple yaw rate nulling control law. These two phenomena, which could be hypothesised to generalise to passenger car driving, were found to determine the ability of four driver models adopted from the literature to fit the human data. Based on the obtained results, it is argued that the concept of internal vehicle models may be less valuable when modelling driver behaviour in non-routine situations such as near-crashes, where behaviour may be better described as direct responses to salient perceptual cues. Some methodological issues in comparing and validating driver models are also discussed.

  19. Planning and control in a manual collision avoidance task by children with hemiparesis.

    PubMed

    te Velde, Arenda F; van der Kamp, John; Becher, Jules G; van Bennekom, Coen; Savelsbergh, Geert J P

    2005-10-01

    We examined whether deficits in planning and control during a manual collision avoidance task in children with hemiparesis are associated with damage to the left or right hemisphere (LHD and RHD). Children pushed a doll across a scale-size road between two approaching toy cars. Movement onset and velocity served as indicators of planning and control. In Experiment 1, children with hemiparesis collided more frequently, and controlled velocity less appropriately compared to typically-developing children. Children with LHD initiated their movement later than children with RHD. Experiment 2 compared the preferred and non-preferred hand of children with LHD and RHD. Children with RHD crossed less with their non-preferred hand, while children with LHD initiated later than children with RHD. Moreover, the groups showed differences in velocity control. It is argued that planning deficits may be related to LHD. The hypothesized association between control deficits and RHD, however, was not confirmed.

  20. Formation control and collision avoidance for multi-agent systems based on position estimation.

    PubMed

    Xia, Yuanqing; Na, Xitai; Sun, Zhongqi; Chen, Jing

    2016-03-01

    In this paper, formation control strategies based on position estimation for double-integrator systems are investigated. Firstly, an optimal control formation control strategy is derived based on the estimator. It is proven that the control inputs are able to drive the agents to the predefined formation and the controller is optimal even based on the estimation law if the estimator has converged to stable. Secondly, a consensus law based on the estimator is presented, which enables the agents converge to the formation in a cooperative manner. The stability can be guaranteed by proper parameters. Thirdly, extra control input for inter collision avoidance is added into the derived consensus control strategy, and efficacy analysis are provided in detail. Finally, the effectiveness of the strategies proposed are shown by simulation and experiment results.

  1. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.

    PubMed

    Khakhalin, Arseny S; Koren, David; Gu, Jenny; Xu, Heng; Aizenman, Carlos D

    2014-09-01

    Information processing in the vertebrate brain is thought to be mediated through distributed neural networks, but it is still unclear how sensory stimuli are encoded and detected by these networks, and what role synaptic inhibition plays in this process. Here we used a collision avoidance behavior in Xenopus tadpoles as a model for stimulus discrimination and recognition. We showed that the visual system of the tadpole is selective for behaviorally relevant looming stimuli, and that the detection of these stimuli first occurs in the optic tectum. By comparing visually guided behavior, optic nerve recordings, excitatory and inhibitory synaptic currents, and the spike output of tectal neurons, we showed that collision detection in the tadpole relies on the emergent properties of distributed recurrent networks within the tectum. We found that synaptic inhibition was temporally correlated with excitation, and did not actively sculpt stimulus selectivity, but rather it regulated the amount of integration between direct inputs from the retina and recurrent inputs from the tectum. Both pharmacological suppression and enhancement of synaptic inhibition disrupted emergent selectivity for looming stimuli. Taken together these findings suggested that, by regulating the amount of network activity, inhibition plays a critical role in maintaining selective sensitivity to behaviorally-relevant visual stimuli.

  2. A Collision Avoidance Strategy for a Potential Natural Satellite Around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Carpenter, Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  3. A Collision Avoidance Strategy for a Potential Natural Satellite around the Asteroid Bennu for the OSIRIS-REx Mission

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Carpenter, J. Russell

    2016-01-01

    The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

  4. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  5. Operational support to collision avoidance activities by ESA's space debris office

    NASA Astrophysics Data System (ADS)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  6. Conceptual model for collision detection and avoidance for runway incursion prevention

    NASA Astrophysics Data System (ADS)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  7. An airborne magnetometry study across Zagros collision zone along Ahvaz-Isfahan route in Iran

    NASA Astrophysics Data System (ADS)

    Oskooi, Behrooz; Abedi, Maysam

    2015-12-01

    Convergence between the Eurasian and Arabian plates formed the Zagros orogenic belt between Late Cretaceous and Pliocene as a relatively young and active fold-thrust belt in Iran. The structural geology along Ahvaz to Isfahan route across Zagros is investigated employing magnetic data in order to determine the crustal structure in the collision zone of the two Palaeo-continents. Airborne magnetometry data with a line space of survey of 7.5 km have been used to image the variations of the apparent magnetic susceptibility along this route. At first the airborne data were stably 500-m downward continued to the ground surface in order to enhance subtle changes of the Earth's magnetic field. Then 3D inverse modeling of magnetic data was implemented, while the cross section of the magnetic susceptibility variations along the route was mapped down to a depth of 100 km. The acquired magnetic susceptibility model could appropriately predict the observed magnetic data as well. In addition, the analytic signal filter was applied to the reduced-to-pole magnetic data leading to the determination of active faults in Zagros fold-thrust belt (ZFTB) structural zone based upon the generated peaks. Some probable locations of fault events were also suggested in Sanandaj-Sirjan Zone (SSZ). The locations of faults correspond well to the magnetic susceptibility variations on the inverted section. Probable direction, slope and depth extension of these faults were also plotted on the magnetic susceptibility model, showing an intensively tectonized zone of the SSZ. The main difference between two domains is that the Eurasian plate seems to contain high magnetic susceptible materials compared to the Arabian plate. The recovered model of the apparent magnetic susceptibility values indicated that the average thickness of the non-magnetic sedimentary units is about 11 km and the Curie depth locates approximately at depth of 24 km for the whole studied area.

  8. The Traffic-Alert and Collision Avoidance System (TCAS) in the glass cockpit

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.

    1988-01-01

    This volume contains the contributions of the participants in the NASA Ames Research Center workshop on the traffic-alert and collision avoidance system (TCAS) implementation for aircraft with cathode ray tube (CRT) or flat panel displays. To take advantage of the display capability of the advanced-technology aircraft, NASA sponsored this workshop with the intent of bringing together industry personnel, pilots, and researchers so that pertinent issues in the area could be identified. During the 2-day workshop participants addressed a number of issues including: What is the optimum format for TCAS advisories. Where and how should maneuver advisories be presented to the crew. Should the maneuver advisories be presented on the primary flight display. Is it appropriate to have the autopilot perform the avoidance maneuver. Where and how should traffic information be presented to the crew. Should traffic information be combined with weather and navigation information. How much traffic should be shown and what ranges should be used. Contained in the document are the concepts and suggestions produced by the workshop participants.

  9. Step 1:Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Collision Avoidance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).

  10. Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.

    PubMed

    Lindemann, Jens Peter; Weiss, Holger; Möller, Ralf; Egelhaaf, Martin

    2008-03-01

    Behavioural and electrophysiological experiments suggest that blowflies employ an active saccadic strategy of flight and gaze control to separate the rotational from the translational optic flow components. As a consequence, this allows motion sensitive neurons to encode during translatory intersaccadic phases of locomotion information about the spatial layout of the environment. So far, it has not been clear whether and how a motor controller could decode the responses of these neurons to prevent a blowfly from colliding with obstacles. Here we propose a simple model of the blowfly visual course control system, named cyberfly, and investigate its performance and limitations. The sensory input module of the cyberfly emulates a pair of output neurons subserving the two eyes of the blowfly visual motion pathway. We analyse two sensory-motor interfaces (SMI). An SMI coupling the differential signal of the sensory neurons proportionally to the yaw rotation fails to avoid obstacles. A more plausible SMI is based on a saccadic controller. Even with sideward drift after saccades as is characteristic of real blowflies, the cyberfly is able to successfully avoid collisions with obstacles. The relative distance information contained in the optic flow during translatory movements between saccades is provided to the SMI by the responses of the visual output neurons. An obvious limitation of this simple mechanism is its strong dependence on the textural properties of the environment.

  11. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  12. Concept of an enhanced V2X pedestrian collision avoidance system with a cost function-based pedestrian model.

    PubMed

    Kotte, Jens; Schmeichel, Carsten; Zlocki, Adrian; Gathmann, Hauke; Eckstein, Lutz

    2017-04-03

    Objective State-of-the-art collision avoidance and collision mitigation systems predict the behavior of pedestrians based on trivial models that assume a constant acceleration or velocity. New sources of sensor information, for example smart devices (smartphones, tablets, smartwatches, …), can support enhanced pedestrian behavior models. The objective of this paper is the development and implementation of a V2X pedestrian collision avoidance system that uses new information sources. Methods A literature review of existing state-of-the-art pedestrian collision avoidance systems, pedestrian behavior models in Advanced Driver Assistance Systems (ADAS), and traffic simulations is conducted together with an analysis of existing studies on typical pedestrian patterns in traffic. Based on this analysis, possible parameters for predicting pedestrian behavior were investigated. The results led to new requirements from which a concept was developed and implemented. Results The analysis of typical pedestrian behavior patterns in traffic situations showed the complexity of predicting pedestrian behavior. Requirements for an improved behavior prediction were derived. A concept for a V2X collision avoidance system, based on a cost function that predicts pedestrian near future presence, and its implementation, is presented. The concept presented considers several challenges such as information privacy, inaccuracies of the localization, and inaccuracies of the prediction. Conclusion A concept for an enhanced V2X pedestrian collision avoidance system was developed and introduced. The concept uses new information sources such as smart devices to improve the prediction of the pedestrian's presence in the near future and considers challenges that come along with the usage of these information sources.

  13. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    PubMed

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  14. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  15. Collision avoidance during teleoperation using whole arm proximity sensors coupled to a virtual environment

    SciTech Connect

    Novak, J.L.; Feddema, J.T.; Miner, N.E.; Stansfield, S.A.

    1993-08-01

    Much of the current robotics effort at the US DOE is directed toward remote handling of hazardous waste. Telerobotic systems are being developed to remotely inspect, characterize, and process waste. This paper describes a collision avoidance system using Whole Arm Proximity (WHAP) sensors on an articulated robot arm. The capacitance-based sensors generate electric fields which completely encompass the robot arm and detect obstacles as they approach from any direction. The robot is moved through the workspace using a velocity command generated either by an operator through a force-sensing input device or a preprogrammed sequence of motions. The directional obstacle information gathered by the WHAP sensors is then used in a matrix column maximization algorithm that automatically selects the sensor closest to an obstacle during each robot controller cycle. The distance from this sensor to the obstacle is used to reduce the component of the command input velocity along the normal axis of the sensor, allowing graceful perturbation of the velocity command to prevent a collision. By scaling only the component of the velocity vector in the direction of the nearest obstacle, the control system restricts motion in the direction of an obstacle while permitting unconstrained motion in other directions. The actual robot joint positions and the WHAP sensor readings are communicated to an operator interface consisting of a graphical model of the Puma robot and its environment. Circles are placed on the graphical robot surface at positions corresponding to the locations of the WHAP sensor. As the individual sensors detect obstacles, the associated circles change color, providing the operator with visual feedback as to the location and relative size of the obstacle. At the same time, the graphical robot position is updated to reflect the actual state of the robot. This information permits the operator to plan alternative paths around unmodeled, but sensed, obstacles.

  16. Verbal collision avoidance messages during simulated driving: perceived urgency, alerting effectiveness and annoyance.

    PubMed

    Baldwin, Carryl L

    2011-04-01

    Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Two experiments describe the impact of acoustic and semantic parameters on ratings of perceived urgency, annoyance and alerting effectiveness and on alarm response speed. Within a simulated driving context, participants rated and responded to collision avoidance system (CAS) messages spoken by a female or male voice (experiments 1 and 2, respectively). Results indicated greater perceived urgency and faster alarm response times as intensity increased from -2 dB signal to noise (S/N) ratio to +10 dB S/N, although annoyance ratings increased as well. CAS semantic content interacted with alarm intensity, indicating that at lower intensity levels participants paid more attention to the semantic content. Results indicate that both acoustic and semantic parameters independently and interactively impact CAS alert perceptions in divided attention conditions and this work can inform auditory alarm design for effective hazard matching. Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Here, both acoustic and semantic parameters independently and interactively impacted CAS alert perceptions in divided attention conditions. This work can inform auditory alarm design for effective hazard matching. STATEMENT OF RELEVANCE: Results indicate that both acoustic parameters and semantic content can be used to design collision warnings with a range of urgency levels. Further, these results indicate that verbal warnings tailored to a specific hazard situation may improve hazard-matching capabilities without substantial trade-offs in perceived annoyance.

  17. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    DTIC Science & Technology

    2014-09-01

    J.; Marshall, W.; Levit, C.; Smith, C.; Olivier, S.; Pertica . A.; De Vries, W.“LightForce: An Update on Orbital Collision Avoidance Using Photon...php?option=com_docman&task=doc_view&gid=775&Itemid=26 . 24. Nikolaev, S.; Phillion, D.; Springer, H.K.; de Vries,W.; Jiang,M.; Pertica , A.; Henderson

  18. Longitudinal driver model and collision warning and avoidance algorithms based on human driving databases

    NASA Astrophysics Data System (ADS)

    Lee, Kangwon

    Intelligent vehicle systems, such as Adaptive Cruise Control (ACC) or Collision Warning/Collision Avoidance (CW/CA), are currently under development, and several companies have already offered ACC on selected models. Control or decision-making algorithms of these systems are commonly evaluated under extensive computer simulations and well-defined scenarios on test tracks. However, they have rarely been validated with large quantities of naturalistic human driving data. This dissertation utilized two University of Michigan Transportation Research Institute databases (Intelligent Cruise Control Field Operational Test and System for Assessment of Vehicle Motion Environment) in the development and evaluation of longitudinal driver models and CW/CA algorithms. First, to examine how drivers normally follow other vehicles, the vehicle motion data from the databases were processed using a Kalman smoother. The processed data was then used to fit and evaluate existing longitudinal driver models (e.g., the linear follow-the-leader model, the Newell's special model, the nonlinear follow-the-leader model, the linear optimal control model, the Gipps model and the optimal velocity model). A modified version of the Gipps model was proposed and found to be accurate in both microscopic (vehicle) and macroscopic (traffic) senses. Second, to examine emergency braking behavior and to evaluate CW/CA algorithms, the concepts of signal detection theory and a performance index suitable for unbalanced situations (few threatening data points vs. many safe data points) are introduced. Selected existing CW/CA algorithms were found to have a performance index (geometric mean of true-positive rate and precision) not exceeding 20%. To optimize the parameters of the CW/CA algorithms, a new numerical optimization scheme was developed to replace the original data points with their representative statistics. A new CW/CA algorithm was proposed, which was found to score higher than 55% in the

  19. Effects of experience and electronic stability control on low friction collision avoidance in a truck driving simulator.

    PubMed

    Markkula, Gustav; Benderius, Ola; Wolff, Krister; Wahde, Mattias

    2013-01-01

    Two experiments were carried out in a moving-base simulator, in which truck drivers of varying experience levels encountered a rear-end collision scenario on a low-friction road surface, with and without an electronic stability control (ESC) system. In the first experiment, the drivers experienced one instance of the rear-end scenario unexpectedly, and then several instances of a version of the scenario adapted for repeated collision avoidance. In the second experiment, the unexpected rear-end scenario concluded a stretch of driving otherwise unrelated to the study presented here. Across both experiments, novice drivers were found to collide more often than experienced drivers in the unexpected scenario. This result was found to be attributable mainly to longer steering reaction times of the novice drivers, possibly caused by lower expectancy for steering avoidance. The paradigm for repeated collision avoidance was able to reproduce the type of steering avoidance situation for which critical losses of control were observed in the unexpected scenario and, here, ESC was found to reliably reduce skidding and control loss. However, it remains unclear to what extent the results regarding ESC benefits in repeated avoidance are generalisable to unexpected situations. The approach of collecting data by appending one unexpected scenario to the end of an otherwise unrelated experiment was found useful, albeit with some caveats.

  20. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.

  1. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    PubMed Central

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian. PMID:25097870

  2. Passivity-based control with collision avoidance for a hub-beam spacecraft

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Chen, Ti; Jin, Dongping; Hu, Haiyan

    2017-01-01

    For the application of robotically assembling large space structures, a feedback control law is synthesized for transitional and rotational maneuvers of a 'tug' spacecraft in order to transport a flexible element to a desired position without colliding with other space bodies. The flexible element is treated as a long beam clamped to the 'tug' spacecraft modelled as a rigid hub. First, the physical property of passivity of Euler-Lagrange system is exploited to design the position and attitude controllers by taking a simpler obstacle-free control problem into account. To reduce sensing and actuating requirements, the vibration modes of the beam appendage are supposed to be not directly measured and actuated on. Besides, the requirements of measuring velocities are removed with the aid of a dynamic extension technique. Second, the bounding boxes in the form of super-quadric surfaces are exploited to enclose the maximal extents of the obstacles and the hub-beam spacecraft. The collision avoidance between bounding boxes is achieved by applying additional repulsive force and torque to the spacecraft based on the method of artificial potential field. Finally, the effectiveness of proposed control scheme is numerically demonstrated via case studies.

  3. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks

    PubMed Central

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-01-01

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037

  4. Magneto-inductive skin sensor for robot collision avoidance: A new development

    NASA Technical Reports Server (NTRS)

    Chauhan, D. S.; Dehoff, Paul H.

    1989-01-01

    Safety is a primary concern for robots operating in space. The tri-mode sensor addresses that concern by employing a collision avoidance/management skin around the robot arms. This rf-based skin sensor is at present a dual mode (proximity and tactile). The third mode, pyroelectric, will complement the other two. The proximity mode permits the robot to sense an intruding object, to range the object, and to detect the edges of the object. The tactile mode permits the robot to sense when it has contacted an object, where on the arm it has made contact, and provides a three-dimensional image of the shape of the contact impression. The pyroelectric mode will be added to permit the robot arm to detect the proximity of a hot object and to add sensing redundancy to the two other modes. The rf-modes of the sensing skin are presented. These modes employ a highly efficient magnetic material (amorphous metal) in a sensing technique. This results in a flexible sensor array which uses a primarily inductive configuration to permit both capacitive and magnetoinductive sensing of object; thus optimizing performance in both proximity and tactile modes with the same sensing skin. The fundamental operating principles, design particulars, and theoretical models are provided to aid in the description and understanding of this sensor. Test results are also given.

  5. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.

    PubMed

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-06-05

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.

  6. Self-organized complementary joint action: Behavioral dynamics of an interpersonal collision-avoidance task.

    PubMed

    Richardson, Michael J; Harrison, Steven J; Kallen, Rachel W; Walton, Ashley; Eiler, Brian A; Saltzman, Elliot; Schmidt, R C

    2015-06-01

    Understanding stable patterns of interpersonal movement coordination is essential to understanding successful social interaction and activity (i.e., joint action). Previous research investigating such coordination has primarily focused on the synchronization of simple rhythmic movements (e.g., finger/forearm oscillations or pendulum swinging). Very few studies, however, have explored the stable patterns of coordination that emerge during task-directed complementary coordination tasks. Thus, the aim of the current study was to investigate and model the behavioral dynamics of a complementary collision-avoidance task. Participant pairs performed a repetitive targeting task in which they moved computer stimuli back and forth between sets of target locations without colliding into each other. The results revealed that pairs quickly converged onto a stable, asymmetric pattern of movement coordination that reflected differential control across participants, with 1 participant adopting a more straight-line movement trajectory between targets, and the other participant adopting a more elliptical trajectory between targets. This asymmetric movement pattern was also characterized by a phase lag between participants and was essential to task success. Coupling directionality analysis and dynamical modeling revealed that this dynamic regime was due to participant-specific differences in the coupling functions that defined the task-dynamics of participant pairs. Collectively, the current findings provide evidence that the dynamical coordination processes previously identified to underlie simple motor synchronization can also support more complex, goal-directed, joint action behavior, and can participate the spontaneous emergence of complementary joint action roles.

  7. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    PubMed

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  8. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Astrophysics Data System (ADS)

    Stupl, J.; Faber, N.; Foster, C.; Yang, F.; Nelson, B.; Aziz, J.; Nuttall, A.; Henze, C.; Levit, C.

    2014-09-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has proven that a few ground-based systems consisting of 10 kW class lasers directed by 1.5 m telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present both our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system.

  9. Effective usage of a clearance check to avoid a collision in Gamma Knife Perfexion radiosurgery with the Leksell skull frame.

    PubMed

    Nakazawa, Hisato; Tsugawa, Takahiko; Mori, Yoshimasa; Hagiwara, Masahiro; Komori, Masataka; Hashizume, Chisa; Shibamoto, Yuta; Kobayashi, Tatsuya

    2014-11-01

    Skull frame attachment is one of the most significant issues with Gamma Knife radiosurgery. Because of the potential for suffering by patients, careful control of the frame position is required to avoid circumstances such as collision between the frame or the patient's head and the collimator helmet, and inaccessible target coordinates. This study sought to develop a simulation method to find the appropriate frame location on the patient's head by retrospective analysis of treatment plans for brain metastasis cases. To validate the accuracy of the collision warning, we compared the collision distance calculated using Leksell GammaPlan (LGP) with actual measured distances. We then investigated isocenter coordinates in near-collision cases using data from 844 previously treated patients and created a clearance map by superimposing them on CT images for just the frame, post and stereotactic fiducial box. The differences in distance between the simulation in LGP and the measured values were <1.0 mm. In 177 patients, 213 lesions and 461 isocenters, there was a warning of one possible collision. The clearance map was helpful for simulating appropriate skull frame placement. The clearance simulation eliminates the psychological stress associated with potential collisions, and enables more comfortable treatment for the patient.

  10. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  11. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana.

    PubMed

    Nakagawa, Hideki; Nishida, Yuuya

    2012-11-15

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r(2) = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r(2) = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r(2) = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r(2) = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r(2) = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  12. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    NASA Astrophysics Data System (ADS)

    Jie, Hao; Ma-li, Gong; Peng-fei, Du; Bao-jie, Lu; Fan, Zhang; Hai-tao, Zhang; Xing, Fu

    2016-07-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. Project supported by Tsinghua University Initiative Scientific Research Program, China (Grant No. 2014z21035).

  13. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  14. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster.

    PubMed

    Tammero, Lance F; Dickinson, Michael H

    2002-09-01

    Flies rely heavily on visual feedback for several aspects of flight control. As a fly approaches an object, the image projected across its retina expands, providing the fly with visual feedback that can be used either to trigger a collision-avoidance maneuver or a landing response. To determine how a fly makes the decision to land on or avoid a looming object, we measured the behaviors generated in response to an expanding image during tethered flight in a visual closed-loop flight arena. During these experiments, each fly varied its wing-stroke kinematics to actively control the azimuth position of a 15 degrees x 15 degrees square within its visual field. Periodically, the square symmetrically expanded in both the horizontal and vertical directions. We measured changes in the fly's wing-stroke amplitude and frequency in response to the expanding square while optically tracking the position of its legs to monitor stereotyped landing responses. Although this stimulus could elicit both the landing responses and collision-avoidance reactions, separate pathways appear to mediate the two behaviors. For example, if the square is in the lateral portion of the fly's field of view at the onset of expansion, the fly increases stroke amplitude in one wing while decreasing amplitude in the other, indicative of a collision-avoidance maneuver. In contrast, frontal expansion elicits an increase in wing-beat frequency and leg extension, indicative of a landing response. To further characterize the sensitivity of these responses to expansion rate, we tested a range of expansion velocities from 100 to 10 000 degrees s(-1). Differences in the latency of both the collision-avoidance reactions and the landing responses with expansion rate supported the hypothesis that the two behaviors are mediated by separate pathways. To examine the effects of visual feedback on the magnitude and time course of the two behaviors, we presented the stimulus under open-loop conditions, such that the fly

  15. Changes in Drivers’ Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections

    PubMed Central

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824

  16. Changes in Drivers' Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections.

    PubMed

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers' eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers' visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers' ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers' visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety.

  17. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  18. The Impact of a Traffic Alert and Collision Avoidance System on the Air Traffic Control Radar Beacon System and Mode S System in the Los Angeles Basin.

    DTIC Science & Technology

    1985-05-01

    FAAIPM-84130 The Impact of a Traffic Alert and Program Engineering Collision Avoidance System on the and Maintenance Service Air Traffic Control Radar...ON4 THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM 6.~ eforming organization Cede AND THE MODE :3 SYSTEM IN THE LOS ANGELES BASIN P032 7 A~,re~lIS...performed to predict the impact of the Traffic Alert and Collision Avoidance System (TCAS) on the performance of selected air traffic control and surveil

  19. Using artificial intelligence for automating testing of a resident space object collision avoidance system on an orbital spacecraft

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-06-01

    Resident space objects (RSOs) pose a significant threat to orbital assets. Due to high relative velocities, even a small RSO can cause significant damage to an object that it strikes. Worse, in many cases a collision may create numerous additional RSOs, if the impacted object shatters apart. These new RSOs will have heterogeneous mass, size and orbital characteristics. Collision avoidance systems (CASs) are used to maneuver spacecraft out of the path of RSOs to prevent these impacts. A RSO CAS must be validated to ensure that it is able to perform effectively given a virtually unlimited number of strike scenarios. This paper presents work on the creation of a testing environment and AI testing routine that can be utilized to perform verification and validation activities for cyber-physical systems. It reviews prior work on automated and autonomous testing. Comparative performance (relative to the performance of a human tester) is discussed.

  20. Control of a self guided tracked vehicle for hazardous waste removal using GPS positioning and ultrasonic collision avoidance

    SciTech Connect

    Roy, B.; Lokhorst, D.; Fung, P.; Rice, P.

    1996-12-31

    In 1994 a large hydraulic telerobotic tracked transport vehicle (TTV) was built for Lockheed Idaho Technologies by a team of companies consisting of RAHCO International of Spokane, Spar Aerospace of Toronto and RSI Research of Victoria. The TTV was developed as a part of the Department of Energy`s Buried Waste Integrated Demonstration Program to transport low level transuranic waste in a safe, dust-free manner minimizing the potential spread of airborne contaminants. The TTV was controlled from a remote control station by an operator relying on video and sensor feedback. This paper describes the control system of SGTV, a self guided version of the TTV developed in 1995 to travel autonomously between loading and off-loading points while automatically avoiding obstacles in its path. Self-guidance is divided between a supervisory Mission Planning and Control computer (WC) and an on-board system of five networked computers.

  1. Risk management algorithm for rear-side collision avoidance using a combined steering torque overlay and differential braking

    NASA Astrophysics Data System (ADS)

    Lee, Junyung; Yi, Kyongsu; Yoo, Hyunjae; Chong, Hyokjin; Ko, Bongchul

    2015-06-01

    This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.

  2. Active Beacon Collision Avoidance System (BCAS) Conference Proceedings, January 27-28, 1981.

    DTIC Science & Technology

    1981-01-01

    PERFORMANCE OF THE FIRST GENERATION ACTIVE BCAS EQUIPMENTS DESIGNED BY MITRE CORPORATION. THE EQUIPMENTS EVALUATED DURING L980 WERE BASED ON A SECOND...and medium density airspace to include airspace not under surveillance by ground- based radars. It is designed to resolve reliably collision and near...CONSTRUCTIVE COMMENTS. BASED ON THESE COMMENTS, THE COMPLETION OF THE TECHNICAL AND OPERATIONAL EVALUATIONS, WE EXPECT TO PRODUCE THE FINAL, APPROVED

  3. Avoiding Collisions in Space: Is It Time for an International Space Integration Center?

    DTIC Science & Technology

    2007-03-30

    fuel consumption, forcing a choice between collision mitigation and mission duration. To that end, the 1995 USG Orbital Debris Mitigation Standards...are in the process of adopting guidelines like the USG Orbital Debris Mitigation Standard Practices. The short fall of these policies is an... Orbital Debris Program Office, “ Orbital Debris Frequently Asked Questions,” available from http://orbitaldebris.jsc.nasa.gov/faqs.html#1; Internet

  4. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  5. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Astrophysics Data System (ADS)

    Prinz, F. B.

    1991-11-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  6. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B.

    1991-01-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  7. A time tree medium access control for energy efficiency and collision avoidance in wireless sensor networks.

    PubMed

    Lee, Kilhung

    2010-01-01

    This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme.

  8. Application of a real neural collision avoidance system based on the locust to AGV navigation

    NASA Astrophysics Data System (ADS)

    Rind, F. C.; Allen, Charles R.

    1992-11-01

    The superb aereal performance of flying insects is achieved with comparatively simple neural machinery. Insects react rapidly to changing visual images. The abilities of insects to perform these computations in real time has already led to a successful prototype autonomous guided vehicle with a sensor and control structure modelled on the fly eye. Increasingly in visual neuroscience it is possible to isolate the critical image cues used by identified neurones to achieve a selective response to a feature or group of features within the changing visual image. In this paper we describe a biological neural network based on the input organization of such an identified motion detecting neurone, which responds selectively to the images of an object approaching on a collision course with the animal. We compare the response of the artificial neural network with the biological neural network in the same colliding stimulus. This approach led to a series of testable predictions about the organization of the biological neural network.

  9. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.

    PubMed

    Rind, F Claire; Santer, Roger D; Wright, Geraldine A

    2008-08-01

    Locusts have two large collision-detecting neurons, the descending contralateral movement detectors (DCMDs) that signal object approach and trigger evasive glides during flight. We sought to investigate whether vision for action, when the locust is in an aroused state rather than a passive viewer, significantly alters visual processing in this collision-detecting pathway. To do this we used two different approaches to determine how the arousal state of a locust affects the prolonged periods of high-frequency spikes typical of the DCMD response to approaching objects that trigger evasive glides. First, we manipulated arousal state in the locust by applying a brief mechanical stimulation to the hind leg; this type of change of state occurs when gregarious locusts accumulate in high-density swarms. Second, we examined DCMD responses during flight because flight produces a heightened physiological state of arousal in locusts. When arousal was induced by either method we found that the DCMD response recovered from a previously habituated state; that it followed object motion throughout approach; and--most important--that it was significantly more likely to generate the maintained spike frequencies capable of evoking gliding dives even with extremely short intervals (1.8 s) between approaches. Overall, tethered flying locusts responded to 41% of simulated approaching objects (sets of 6 with 1.8 s ISI). When we injected epinastine, the neuronal octopamine receptor antagonist, into the hemolymph responsiveness declined to 12%, suggesting that octopamine plays a significant role in maintaining responsiveness of the DCMD and the locust to visual stimuli during flight.

  10. Traffic Alert and Collision Avoidance System (TCAS): Cockpit Display of Traffic Information (CDTI) investigation. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Burgess, Malcolm; Davis, Dean; Hollister, Walter; Sorensen, John A.

    1991-01-01

    The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight.

  11. Impact of adverse weather on sensors for vehicle collision avoidance systems

    NASA Astrophysics Data System (ADS)

    Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.

    1995-12-01

    This paper treats the use of in-vehicle imaging sensors to achieve lateral control to avoid single vehicle roadway departure crashes. Since the sensor is expected to function under a variety of weather conditions, it is important to determine the overall performance envelope of the combined sensor/image processing algorithm. Initial roadway imagery was acquired under favorable ambient conditions and subsequently transformed to specified levels of adverse weather by means of software originally developed for military sensor applications. The transformed imagery was utilized to determine the relationship between adverse weather, measured in visibility ranges, versus the ability of the sensor/image processing algorithm to maintain lateral vehicle stability.

  12. Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts.

    PubMed

    Gray, J R; Lee, J K; Robertson, R M

    2001-03-01

    We recorded the activity of the right and left descending contralateral movement detectors responding to 10-cm (small) or 20-cm (large) computer-generated spheres approaching along different trajectories in the locust's frontal field of view. In separate experiments we examined the steering responses of tethered flying locusts to identical stimuli. The descending contralateral movement detectors were more sensitive to variations in target trajectory in the horizontal plane than in the vertical plane. Descending contralateral movement detector activity was related to target trajectory and to target size and was most sensitive to small objects converging on a direct collision course from above and to one side. Small objects failed to induce collision avoidance manoeuvres whereas large objects produced reliable collision avoidance responses. Large targets approaching along a converging trajectory produced steering responses that were either away from or toward the side of approach of the object, whereas targets approaching along trajectories that were offset from the locust's mid-longitudinal body axis primarily evoked responses away from the target. We detected no differences in the discharge properties of the descending contralateral movement detector pair that could account for the different collision avoidance behaviours evoked by varying the target size and trajectories. We suggest that descending contralateral movement detector properties are better suited to predator evasion than collision avoidance.

  13. Miniaturized, multibeam, solid state scanning laser radar in automobile collision avoidance sensor systems

    NASA Astrophysics Data System (ADS)

    Sargent, Ronald A.

    1995-06-01

    Recent intelligent transportation systems (ITS) initiatives sponsored by commercial transportation companies and the U.S. Department of Transportation include an area dedicated to Automated Vehicle Control Systems (AVCS). AVCS systems are dedicated to improving passenger automobile safety, efficiency, and impact on the environment. Minimizing the number of automobile collisions through automated obstacle detection and vehicle response is vital to this effort. Simple, reliable, low cost sensors installed in automobiles to provide driver warning and/or input to vehicle systems such as braking or cruise control are the key piece to making this technology as common as air bags and seat belts. EPA emission regulations now require specific areas to periodically report the mix of vehicle types. These reports must include in the mix the 13 possible categories for vehicles. Simple low cost senors installed as part of the traffic management system will facilitate the determination of vehicle category. Laser Atlanta has recently developed two distinct types of sensors that utilize a unique multi- beam approach to detect `targets' that are potential hazards. They also provide range and range rate data to automobile control and traffic management systems.

  14. Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Young-Jun; Park, Maru; Park, Sun-Youp; Bae, Young-Ho; Roh, Dong-Goo; Cho, Sungki; Park, Young-Sik; Jang, Hyun-Jung; Kim, Ji-Hye; Park, Jang-Hyun

    2015-12-01

    Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

  15. Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control.

    PubMed

    Brydges, Ryan; Dubrowski, Adam

    2009-10-01

    Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.

  16. Relative positioning-based system with tau control for collision avoidance in swarming application

    NASA Astrophysics Data System (ADS)

    Bahiki, M. R.; Talib, N. N. A.; Azrad, S.

    2016-10-01

    In this paper, a relative positioning system by fusing infrared and ultrasonic range sensors data is employed to provide a more reliable relative distance data between quadcopters to achieve close proximity formation flight. This is due to lack of accuracy of positioning data from GPS due to its error of two to five meters. A leader-follower formation control strategy is used to control the distance between the quadcopters by applying data from the relative positioning system. An experiment to test the capability of the proposed strategy was done in the test platform environment equipped with Optitrack motion capture camera. Tau control was implemented as a braking system for the follower to avoid aggressive maneuvers that will make the quadcopters having high pitch along the formation control, which will affect the range detection of sensors. It has been proven from the results that close proximity formation flight is able to be achieved.

  17. Real-time obstacle and collision avoidance system for fixed wing unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Esposito, Julien F.

    The first original contribution of this research is the Advanced Mapping and Waypoint Generator (AMWG), a piece of software which processes publicly available elevation data in order to only retain the information necessary for a given altitude-specific flight mission. The AMWG is what makes systematic offline trajectory possible. The AMWG first creates altitude groups in order to discard elevations points which are not relevant to a specific mission because of the altitude flown at. Those groups referred to as altitude layers can in turn be reused if the original layer becomes unsafe for the altitude range in use, and the other layers are used for altitude re-scheduling in order to update the current altitude layer to a safer layer. Each layer is bounded by a lower and higher altitude, within which terrain contours are considered constant according to a conservative approach involving the principle of natural erosion. The AMWG then proceeds to obstacle contours extraction using threshold and edge detection vision algorithms. A simplification of those obstacle contours and their corresponding free space zones counterparts is performed using a fixed -tolerance Douglas-Peucker algorithm. This simplification allows free space zones to be described by vectors instead of point clouds, which enables UAS point location. The final product of the AWMG is a network of connected free space trapezoidal cells with embedded connectivity information referred to as the Synthetic Terrain Avoidance (STA network). The walls of the trapezoidal cells are then extruded as the AWMG essentially approximates a three-dimensional world by considering it as a stratification of two-dimensional layers, but the real-time phase needs 3D support. Using the graph conceptual view and the depth first search algorithm, all the connected cell sequences joining the departure to the arrival cell can be listed, a capability which is used during aircraft rerouting. By connecting two adjacent cells

  18. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    NASA Astrophysics Data System (ADS)

    Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  19. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2016-04-01

    Multiple spacecraft that work in concert to assemble as a cohesive unit will play an important role in future space missions. In addition, the individual spacecraft trends to be more and more flexible. A typical flexible spacecraft usually consists of a relatively rigid craft body with one or more flexible appendages, which can be reasonably simplified as free-floating hub-beam system and formulated in a floating frame. The formulation of the network of hub-beam systems is a team of Lagrangian systems in essence. In this study, a compound controller which combines an output consensus controller and a collision avoidance controller to a team of hub-beam systems is proposed. To achieve the assembly mission and suppress the vibration of flexible spacecraft appendages, the design of the control law is decomposed into four steps. Firstly, the hub-beam systems in the team are numbered according to specific rules. Secondly, the attitudes of the hubs are regulated to the desired values synchronously. Thirdly, the whole team of hub-beam systems is driven to the pre-assembly states. Fourthly, the team of hub-beam systems is assembled. In the second and the third step, the compound controller is used to actuate the team to the target configuration. In the fourth step, only the output consensus controller is needed. Finally, two case studies are given to verify the effectiveness of the proposed autonomous assembly strategy.

  20. SU-E-T-64: CG-Based Radiation Therapy Simulator with Physical Modeling for Avoidance of Collisions Between Gantry and Couch Or Patient

    SciTech Connect

    Yamanouchi, M; Arimura, H; Yuda, I

    2014-06-01

    Purpose: It is time-consuming and might cause re-planning to check couch-gantry and patient-gantry collisions on a radiotherapy machine when using couch rotations for non-coplanar beam angles. The aim of this study was to develop a computer-graphics (CG)-based radiation therapy simulator with physical modeling for avoidance of collisions between gantry and couch or patient on a radiotherapy machine. Methods: The radiation therapy simulator was three-dimensionally constructed including a radiotherapy machine (Clinac iX, Varian Medical Systems), couch, and radiation treatment room according to their designs by using a physical-modeling-based computer graphics software (Blender, free and open-source). Each patient was modeled by applying a surface rendering technique to their planning computed tomography (CT) images acquired from 16-slice CT scanner (BrightSpeed, GE Healthcare). Immobilization devices for patients were scanned by the CT equipment, and were rendered as the patient planning CT images. The errors in the collision angle of the gantry with the couch or patient between gold standards and the estimated values were obtained by fixing the gantry angle for the evaluation of the proposed simulator. Results: The average error of estimated collision angles to the couch head side was -8.5% for gantry angles of 60 to 135 degree, and -5.5% for gantry angles of 225 to 300 degree. Moreover, the average error of estimated collision angles to the couch foot side was -1.1% for gantry angles of 60 to 135 degree, and 1.4% for gantry angles of 225 to 300 degree. Conclusion: The CG-based radiation therapy simulator could make it possible to estimate the collision angle between gantry and couch or patient on the radiotherapy machine without verifying the collision angles in the radiation treatment room.

  1. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  2. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    NASA Technical Reports Server (NTRS)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  3. Usability testing of multimodal feedback interface and simulated collision-avoidance power wheelchair for long-term-care home residents with cognitive impairments.

    PubMed

    Wang, Rosalie H; Mihailidis, Alex; Dutta, Tilak; Fernie, Geoff R

    2011-01-01

    Many older adults in long-term-care homes have complex physical and cognitive impairments and have difficulty propelling manual wheelchairs. Power wheelchair use is restricted owing to safety concerns. Power wheelchairs with collision-avoidance features are being developed to enable safe and independent mobility; however, a paucity of information exists on interface features to help users navigate away from obstacles. We developed a system combining an interface with auditory, visual, and haptic feedback and a simulated collision-avoidance power wheelchair. This device allowed the investigator to stop movement of the power wheelchair when users approached obstacles and to deliver feedback to help them navigate. Five long-term-care home residents with mild or moderate cognitive impairments evaluated device usability, which included effectiveness, efficiency, and user satisfaction. Each resident used the device for six 1 h sessions. Observations, feedback interviews, and outcome questionnaires were completed during and after the sessions. We found the device effective in enabling residents to achieve basic driving tasks and self-identified indoor mobility goals. Furthermore, residents perceived workload to be low and were satisfied with the device. Residents also felt that the feedback was useful to help them navigate away from obstacles.

  4. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.

  5. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.

  6. The Infrared Imaging Spectrograph (IRIS) for TMT: motion planning with collision avoidance for the on-instrument wavefront sensors

    NASA Astrophysics Data System (ADS)

    Chapin, Edward L.; Dunn, Jennifer; Weiss, Jason; Gillies, Kim; Hayano, Yutaka; Johnson, Chris; Larkin, James; Moore, Anna; Riddle, Reed L.; Sohn, Ji Man; Smith, Roger; Suzuki, Ryuji; Walth, Gregory; Wright, Shelley

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be a first-light client instrument for the Narrow Field Infrared Adaptive Optics System (NFIRAOS) on the Thirty Meter Telescope. IRIS includes three configurable tip/tilt (TT) or tip/tilt/focus (TTF) On-Instrument Wavefront Sensors (OIWFS). These sensors are positioned over natural guide star (NGS) asterisms using movable polar-coordinate pick-ofi arms (POA) that patrol an approximately 2-arcminute circular field-of-view (FOV). The POAs are capable of colliding with one another, so an algorithm for coordinated motion that avoids contact is required. We have adopted an approach in which arm motion is evaluated using the gradient descent of a scalar potential field that includes an attractive component towards the goal configuration (locations of target stars), and repulsive components to avoid obstacles (proximity to adjacent arms). The resulting vector field is further modified by adding a component transverse to the repulsive gradient to avoid problematic local minima in the potential. We present path planning simulations using this computationally inexpensive technique, which exhibit smooth and efficient trajectories.

  7. Conspicuity of target lights: The influence of flash rate and brightness. [collision avoidance - visual discrimination/pilot performance, aircraft lights

    NASA Technical Reports Server (NTRS)

    Connors, M. M.

    1975-01-01

    The stimulus characteristics of lights that might aid a pilot to see and avoid, by alerting him to a potential threat were studied. The relative conspicuity of foveally equated, point-source, steady and flashing lights of several brightnesses, seen against a star background was examined. From the subject's viewpoint, these target lights could appear anywhere within a large (40 deg horizontal by 35 deg vertical) field of view. The lights appeared at random time intervals while the subject was periodically distracted by a simulated cockpit task. The results indicate that correct target detection increases and reaction time decreases with increased target intensity. Steady lights are missed more frequently and acquired more slowly than flashing lights, but no significant differences are found among the wide range of flash rates employed. The intensity of the light has a greater effect on both detection and reaction time to steady lights than to flashing lights. These results are compared with results of other researchers who used targets which appeared at fixed locations. The longest reaction times were recorded to lights which appeared either at the extremes or at the very center of the visual field.

  8. Separation Assurance and Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Lauderdale, Todd

    2010-01-01

    Objective SACA-1: Determine the level of safety provided by tactical separation assurance safety monitoring systems for UAS missions. a) Rationale: Continuous mission-risk monitoring can provide equivalent levels of safety for UAS operations possibly reducing the burden on other safety systems. b) Approach: Utilize and adapt algorithms and approaches developed for the NextGen Airspace Systems Program for UAS applications.

  9. Airborne Sense and Avoid Radar Panel

    DTIC Science & Technology

    2014-10-01

    land and crop surveys, aerial photography , and critical infrastructure protection—their widespread usage within the National Airspace System is...RFIC) developed for the ABSAA panel enable state-of-the- art performance by providing two indepen- dent channels for the amplification, the phase

  10. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  11. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  12. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  13. Collision Avoidance and Resolution Multiple Access

    DTIC Science & Technology

    1999-03-01

    X C Y Z2ð Z\\[ ] �à "!5!p� @7A!)< Y "*2,(A!=6P� )64 a,(">"" mP6 $,(8g,(>"+D51�,(A!G.YA/658/8!P>c�uI/Ŝ&d@7A/Q.Ag...5*-,+.)65*%+*?65.< ),kI!P>Q6P`h658/IS.A/658?8!P>o,(">"" mP6 $,(8�l[P.0,(>8A5W¦ED.#"+*?6$<P*,(A! 658/65>` ,(".)65>P...S¬?­�»Ü qr8z,(A/Q*=*%P.0,(8z@7XI&)� e6Z> p@7)󈧆/8/IF8v,(A!D6P� )Y64 g,(Q>" mP6 $,(8F512,(A!D.YA/658/8!P>f65* @7

  14. Trajectory Optimization for Spacecraft Collision Avoidance

    DTIC Science & Technology

    2013-09-01

    versus out-of plane maneuvering. This study made use of the Radau Pseudospectral Method to develop this minimum thrust profile. This method was run in... p Equinoctial element q Equinoctial element r Inertial position vector r Magnitude of the inertial position vector T Thrust magnitude t Time t0...imported into MATLAB® for optimization using General Pseudospectral Optimal Control Software (GPOPS-II). This software utilized the Radau Pseudospectral

  15. Passive Collision Avoidance System for UAS

    DTIC Science & Technology

    2008-09-01

    85 Figure 77: Schematic of a GMR membrane (purple) above a pixel (light blue). ........................85 Figure 78: SEM of a wire grid...be for the alpha-silicon and the vanadium oxide detectors. 1/f noise may be the limiting noise source for both detectors, especially at the higher...alpha-silicon. We have not seen any data on vanadium oxide at lower temperatures for comparison. 22 SNR vs. range case #1 320x240-28um, FOV40

  16. Shade Avoidance

    PubMed Central

    Casal, Jorge J.

    2012-01-01

    The presence of neighboring vegetation modifies the light environment experienced by plants, generating signals that are perceived by phytochromes and cryptochromes. These signals cause large changes in plant body form and function, including enhanced growth of the hypocotyl and petioles, a more erect position of the leaves and early flowering in Arabidopsis thaliana. Collectively, these so-called shade-avoidance responses tend to reduce the degree of current or future shade by neighbors. Shade light signals increase the abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins, promote the synthesis and redirection of auxin, favor the degradation of DELLA proteins and increase the expression of auxin, gibberellins and brassinosteroid-promoted genes, among other events downstream the photoreceptors. Selectively disrupting these events by genetic or pharmacological approaches affects shade-avoidance responses with an intensity that depends on the developmental context and the environment. Shade-avoidance responses provide a model to investigate the signaling networks used by plants to take advantage of the cues provided by the environment to adjust to the challenges imposed by the environment itself. PMID:22582029

  17. Asteroidal collision probabilities

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Greenberg, R.

    1993-05-01

    Several past calculations of collision probabilities between pairs of bodies on independent orbits have yielded inconsistent results. We review the methodologies and identify their various problems. Greenberg's (1982) collision probability formalism (now with a corrected symmetry assumption) is equivalent to Wetherill's (1967) approach, except that it includes a way to avoid singularities near apsides. That method shows that the procedure by Namiki and Binzel (1991) was accurate for those cases where singularities did not arise.

  18. 75 FR 20671 - Seventieth Meeting: RTCA Special Committee 147: Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY: Federal... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment meeting. SUMMARY...: Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems...

  19. 75 FR 52590 - Seventy-First Meeting: RTCA Special Committee 147: Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY: Federal... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment meeting. SUMMARY...: Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems...

  20. 76 FR 58077 - Seventy-Third Meeting: RTCA Special Committee 147: Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY: Federal... Operational Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment...: Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance Systems...

  1. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  2. Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.

  3. Teachers Avoiding Learners' Avoidance: Is It Possible?

    ERIC Educational Resources Information Center

    Tadayyon, Maedeh; Zarrinabadi, Nourollah; Ketabi, Saeed

    2016-01-01

    Dealing with learners who prefer to take the back seat and avoid classroom participation can be every teacher's nightmare. This lack of participation may cause teacher frustration, and possibly the only way to reduce this lack of participation is to access the concept of avoidance strategy. Avoidance strategy is the abandonment of a classroom task…

  4. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  5. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  6. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  7. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  8. 78 FR 6401 - Seventy Fifth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Operational Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY... RTCA Special Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision... Alert and Collision Avoidance Systems Airborne Equipment. DATES: The meeting will be held February...

  9. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  10. Avoidance maneuevers selected while viewing cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Ellis, S. R.; Lee, E.

    1982-01-01

    Ten airline pilots rates the collision danger of air traffic presented on cockpit displays of traffic information while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threst situations pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's own ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilots' turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.

  11. Recommendations for Sense and Avoid Policy Compliance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a human on board, they need to have a sense and avoid capability that provides an "equivalent level of safety" (ELOS) to manned aircraft. The question then becomes - is sense and avoid ELOS for unmanned aircraft adequate to satisfy the requirements of 14 CFR 91.113? Access 5 has proposed a definition of sense and avoid, but the question remains as to whether any sense and avoid system can comply with 14 CFR 91.113 as currently written. The Access 5 definition of sense and avoid ELOS allows for the development of a sense and avoid system for unmanned aircraft that would comply with 14 CFR 91.113. Compliance is based on sensing and avoiding other traffic at an equivalent level of safety for collision avoidance, as manned aircraft. No changes to Part 91 are necessary, with the possible exception of changing "see" to "sense," or obtaining an interpretation from the FAA General Counsel that "sense" is equivalent to "see."

  12. Avoiding the Flu

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Flu Avoiding the Flu Past Issues / Fall 2009 Table of Contents Children ... help avoid getting and passing on the flu. Influenza (Seasonal) The flu is a contagious respiratory illness ...

  13. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  14. How do walkers avoid a mobile robot crossing their way?

    PubMed

    Vassallo, Christian; Olivier, Anne-Hélène; Souères, Philippe; Crétual, Armel; Stasse, Olivier; Pettré, Julien

    2017-01-01

    Robots and Humans have to share the same environment more and more often. In the aim of steering robots in a safe and convenient manner among humans it is required to understand how humans interact with them. This work focuses on collision avoidance between a human and a robot during locomotion. Having in mind previous results on human obstacle avoidance, as well as the description of the main principles which guide collision avoidance strategies, we observe how humans adapt a goal-directed locomotion task when they have to interfere with a mobile robot. Our results show differences in the strategy set by humans to avoid a robot in comparison with avoiding another human. Humans prefer to give the way to the robot even when they are likely to pass first at the beginning of the interaction.

  15. Avoiding health information.

    PubMed

    Barbour, Joshua B; Rintamaki, Lance S; Ramsey, Jason A; Brashers, Dale E

    2012-01-01

    This study investigated why and how individuals avoid health information to support the development of models of uncertainty and information management and offer insights for those dealing with the information and uncertainty inherent to health and illness. Participants from student (n = 507) and community (n = 418) samples reported that they avoided health information to (a) maintain hope or deniability, (b) resist overexposure, (c) accept limits of action, (d) manage flawed information, (e) maintain boundaries, and (f) continue with life/activities. They also reported strategies for avoiding information, including removing or ignoring stimuli (e.g., avoiding people who might provide health advice) and controlling conversations (e.g., withholding information, changing the subject). Results suggest a link between previous experience with serious illness and health information avoidance. Building on uncertainty management theory, this study demonstrated that health information avoidance is situational, relatively common, not necessarily unhealthy, and may be used to accomplish multiple communication goals.

  16. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  17. Collision-free motion of two robot arms in a common workspace

    NASA Technical Reports Server (NTRS)

    Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.

    1987-01-01

    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.

  18. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  19. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  20. 3D model generation using an airborne swarm

    SciTech Connect

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  1. Avoiding Cancer Risk Information

    PubMed Central

    Emanuel, Amber S.; Kiviniemi, Marc T.; Howell, Jennifer L.; Hay, Jennifer L.; Waters, Erika A.; Orom, Heather; Shepperd, James A.

    2015-01-01

    RATIONALE Perceived risk for health problems such as cancer is a central construct in many models of health decision making and a target for behavior change interventions. However, some portion of the population actively avoids cancer risk information. The prevalence of, explanations for, and consequences of such avoidance are not well understood. OBJECTIVE We examined the prevalence and demographic and psychosocial correlates of cancer risk information avoidance preference in a nationally representative sample. We also examined whether avoidance of cancer risk information corresponds with avoidance of cancer screening. RESULTS Based on our representative sample, 39% of the population indicated that they agreed or strongly agreed that they would “rather not know [their] chance of getting cancer.” This preference was stronger among older participants, female participants, and participants with lower levels of education. Preferring to avoid cancer risk information was stronger among participants who agreed with the beliefs that everything causes cancer, that there’s not much one can do to prevent cancer, and that there are too many recommendations to follow. Finally, the preference to avoid cancer risk information was associated with lower levels of screening for colon cancer. CONCLUSION These findings suggest that cancer risk information avoidance is a multi-determined phenomenon that is associated with demographic characteristics and psychosocial individual differences and also relates to engagement in cancer screening. PMID:26560410

  2. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  3. Avoiding Computer Viruses.

    ERIC Educational Resources Information Center

    Rowe, Joyce; And Others

    1989-01-01

    The threat of computer sabotage is a real concern to business teachers and others responsible for academic computer facilities. Teachers can minimize the possibility. Eight suggestions for avoiding computer viruses are given. (JOW)

  4. Avoidant personality disorder

    MedlinePlus

    American Psychiatric Association. Avoidant personality disorder. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 . 5th ed. Arlington, VA: American Psychiatric Publishing. 2013;672-675. Blais MA, Smallwood ...

  5. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  6. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  7. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  8. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  9. Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    DTIC Science & Technology

    2014-12-26

    can be classified as indicator methods [92], including Big M [93, 94] and active set [95] methods, and mixed-norm methods [92, 96]; however, these...instance, Big M methods implement “either-or constraints” [94] using a binary indicator variable along with a suciently large constraint variable (M...indicator variable equivalent to those in Big M methods [95]. In addition, mixed-norm methods typically formulate a set of conditional constraints as a

  10. Integrated Guidance and Control of UAVs for Reactive Collision Avoidance

    DTIC Science & Technology

    2011-10-18

    only to the inner loop, the nonlinear and distributed uncertainties of the aerodynamic coefficients in complete Six-DOF model is taken into account...33 4.9 Total velocity and its direction . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.10 Forward velocity and aerodynamic angles ...adaptive controller is designed for the inner loop to overcome the uncertainty mainly in the aerodynamic coefficients which may get amplified during

  11. Reversing the Collision-Avoidance Handshake in Wireless Networks

    DTIC Science & Technology

    1999-01-01

    scheme have been developed since SRMA was first proposed, including MACA [6], MACAW [1], IEEE 802.11 [5], and FAMA [3]. These examples of MAC proto...carrier sens- ing constitutes a fruitful area of research. References [1] V. Bharghavan, A. Demers, S. Shenker and L. Zhang, “ MACAW : A Media Access

  12. Collision Avoidance Techniques for Packet-Radio Networks

    DTIC Science & Technology

    1998-06-01

    results for various con gurations . . . . . . . . . . . . . . . . . 114 4.2 Throughput comprison of FAMA-NCS, IEEE 802.11 and MACAW . . . . . 116 5.1...Kar90] and its modi ed version MACAW (MACA for Wireless) [BDSZ94] were proposed to operate with hidden terminal using a simple three-way dialogue...interference free packets, and does not detect any other type of activity on the channel). However, the performance of MACA and MACAW degrade to

  13. 14 CFR 125.224 - Collision avoidance system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... more than 33,000 pounds maximum certificated takeoff weight (1) An appropriate class of Mode S... system equivalent to TSO C-119b (version 7.0), or a later version, capable of coordinating with units... than 33,000 pounds maximum certificated takeoff weight (1) TCAS I that meets TSO C-118, or a...

  14. Traffic Alert and Collision Avoidance System. Developmental Simulation.

    DTIC Science & Technology

    1982-07-01

    TRAINTNCn CHECKLIST 1 APPENDIX C POST FLIG4T nilESTIONNAIRE C.lI APPENPIy nl nERRIEFTNG OINIESTIONNAIRF v LIST OF FIGURES FIGURE NO: TITLE PAGE 1.n-1...A-6 A.9.1-7 Internal View of Blue Cah A-7 A.7-1 CAS Simulation Equipment Layout A- c A.2.1-1 Advisory Messaqn Byte Definition A-il A.?.3-1 TCAS Audio...the TCAS criteria and represents a potential threat. Non-mode C Aircraft An aircraft that has a transponder but has no altitude reportinq from the

  15. Performance Evaluation of Evasion Maneuvers for Parallel Approach Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Winder, Lee F.; Kuchar, James K.; Waller, Marvin (Technical Monitor)

    2000-01-01

    Current plans for independent instrument approaches to closely spaced parallel runways call for an automated pilot alerting system to ensure separation of aircraft in the case of a "blunder," or unexpected deviation from the a normal approach path. Resolution advisories by this system would require the pilot of an endangered aircraft to perform a trained evasion maneuver. The potential performance of two evasion maneuvers, referred to as the "turn-climb" and "climb-only," was estimated using an experimental NASA alerting logic (AILS) and a computer simulation of relative trajectory scenarios between two aircraft. One aircraft was equipped with the NASA alerting system, and maneuvered accordingly. Observation of the rates of different types of alerting failure allowed judgement of evasion maneuver performance. System Operating Characteristic (SOC) curves were used to assess the benefit of alerting with each maneuver.

  16. Survey of Collision Avoidance and Ranging Sensors for Mobile Robots.

    DTIC Science & Technology

    1988-03-01

    mounted on a m icroprocessor-control led scanning platform. Detection of the reflected beam is performed by a single linear CCD array Reticon camera...Phase 1. Technical Report No. DNA-TR-85-260, Defense Nuclear Agency, Washington, D.C. 23. Jalkio, Jeffery, A., et al., November/December 1985. "Three

  17. Traffic Alert and Collision Avoidance System - Operational Simulation.

    DTIC Science & Technology

    1985-03-01

    must be understood that the parameter settings used (in the TCAS logic] depend upon a prompt and positive response on the part of the pilot".(3) Since...4.2.1-3) was located in the weather radar position (on the forward panel of the center aisle stand). A separately installed speaker presented the alert...during both the training and test flight, and the reasons for these procedures, every flight crew was observed to make intentional, positive and

  18. Helicopter collision avoidance and brown-out recovery with HELLAS

    NASA Astrophysics Data System (ADS)

    Seidel, Christian; Schwartz, Ingo; Kielhorn, Peter

    2008-10-01

    EADS Germany is the world market leader in commercial and military Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Federal Police and Royal Thai Air Force. HELLAS was also successfully evaluated by the Foreign Comparative Test Program (FCT) of the U.S. Army and other governmental agencies. Currently the successor system for military applications, HELLAS-Awareness, is in qualification phase. It will have extended sensor performance, enhanced real-time data processing capabilities and advanced human machine interface (HMI) features. Flight tests on NH90 helicopter have been successfully performed. Helicopter series integration is scheduled to begin from 2009. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate. We will show the HMI representations. This HELLAS system is the basis for a 3 dimensional see-and-remember-system for brown-out recovery. When landing in sandy or dusty areas the downwash of the helicopter rotor causes clouds of visually-restrictive material that can completely obstruct the pilot's outside reference, resulting in a complete loss of situational awareness and spatial orientation of the pilot which can end up in total loss of aircraft control and dangerous accidents. The brown-out recovery system presented here creates an augmented enhanced synthetic vision of the landing area with the surrounding which is based on HELLAS range image data as well as altimeter and inertial reference information.

  19. Optimal collision avoidance guidance for formation-flying applications

    NASA Technical Reports Server (NTRS)

    Singh, G.; Hadaegh, F.

    2001-01-01

    Several proposed space science missions require deployment of a number of spacecraft to form a single functional unit or a formation flying spacecraft. There are many applications of a formation flying spacecraft; variable baseline optical space interferometry is one of them.

  20. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  1. Obstacle avoidance sonar for submarines

    NASA Astrophysics Data System (ADS)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  2. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  3. Vigour in active avoidance.

    PubMed

    Nord, Camilla L; Prabhu, Gita; Nolte, Tobias; Fonagy, Peter; Dolan, Ray; Moutoussis, Michael

    2017-12-01

    It would be maladaptive to learn about catastrophes by trial and error alone. Investment in planning and effort are necessary. Devoting too many resources to averting disaster, however, can impair quality of life, as in anxiety and paranoia. Here, we developed a novel task to explore how people adjust effort expenditure (vigor) so as to avoid negative consequences. Our novel paradigm is immersive, enabling us to measure vigor in the context of (simulated) disaster. We found that participants (N = 118) exerted effort to avoid disaster-associated states, adjusting their effort expenditure according to the baseline probability of catastrophe, in agreement with theoretical predictions. Furthermore, negative subjective emotional states were associated both with threat level and with increasing vigor in the face of disaster. We describe for the first time effort expenditure in the context of irreversible losses, with important implications for disorders marked by excessive avoidance.

  4. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  5. An Investigation of Alerting and Prioritization Criteria for Sense and Avoid (SAA)

    DTIC Science & Technology

    2013-10-01

    Unmanned Aircraft System (UAS), Traffic and Collision Avoidance System (TCAS) 15. NUMBER OF PAGES 37 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...If Aircraft 2 immediately begins a standard rate turn, it would not be able to cause a near mid- air collision . Even if Aircraft 1 and 2 immediately...begin a standard rate turn towards each other, the aircraft will not collide (or result in a near mid- air collision ), as shown in Figure 6. This

  6. Flight Test Evaluation of AVOID I (Avionic Observation of Intruder Danger) Collision Avoidance System

    DTIC Science & Technology

    1975-05-01

    During the TAU evaluation process of one target in ’I7 NADC-75056-60 TABLE 1-4. TAU ZONE 2 - THREAT EVALUATION Threat Rang Inteval nWdh Rdesired Rminimum... bound - aries by asking the intruder a series of logical questions concerning his alti- tude relative to received altitude encoded interrogations. As...the upper and lower bounds of the round times for intruders -- 1300 feet and intruders ,1300 feet could be determined with fruit rate as a parameter

  7. Psychological Treatments to Avoid

    ERIC Educational Resources Information Center

    Thomason, Timothy C.

    2010-01-01

    Certain psychological treatments should be avoided, and a list of such treatments would provide valuable guidance for counselors, as well as potential clients. It is well established that some therapies are potentially dangerous, and some fringe therapies are highly unlikely to help clients beyond a placebo effect. This article provides an…

  8. Plants to Avoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of poisonous plants is extremely important for home owners, gardeners, farmers, hunters, hikers, and the rest of the general public. Among the most important plants to avoid in the Delta Region are poison ivy, bull nettle, eastern black nightshade, Queen Ann’s lace, jimsonweed, and trumpe...

  9. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  10. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  11. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  12. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  13. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  14. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  15. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  16. Puck collisions

    NASA Astrophysics Data System (ADS)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  17. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  18. Airborne ultrasound enters the ear through the eyes

    NASA Astrophysics Data System (ADS)

    Lenhardt, Martin

    2005-09-01

    Musical spectrum above 20000 Hz has been demonstrated to influence human judgments and physiology. Moreover airborne ultrasonic noise has been implicated in hearing loss, tinnitus, and other subjective effects such as headaches and fullness in the ear. Contact ultrasound, i.e., with a transducer affixed to the skin of the head/neck, is audible; assumed by bone conduction. However, lightly touching the soft tissues of the head, avoiding bone, can also produce audibility. When contact ultrasound is applied to the head, energy from 25 to ~60 kHz can be recorded from the closed eyelid, with care to avoid sensor contact with the orbit. If the same frequency band of noise is passed through a transducer in from of the eye, with just air coupling, the same response is again recordable on the head. An acrylic barrier between the eye and the transducer eliminates the response. Once airborne ultrasound exceeds the impedance mismatch of the eye it readily propagates through the soft tissues of the eye and brain via one of the fluid windows (end lymphatic, perilymphatic or vascular) to the cochlea. The eye fenestration explains how people can detect airborne ultrasonic components in music and develop ear effects from airborne ultrasonic noise.

  19. An information theoretic approach for generating an aircraft avoidance Markov Decision Process

    NASA Astrophysics Data System (ADS)

    Weinert, Andrew J.

    Developing a collision avoidance system that can meet safety standards required of commercial aviation is challenging. A dynamic programming approach to collision avoidance has been developed to optimize and generate logics that are robust to the complex dynamics of the national airspace. The current approach represents the aircraft avoidance problem as Markov Decision Processes and independently optimizes a horizontal and vertical maneuver avoidance logics. This is a result of the current memory requirements for each logic, simply combining the logics will result in a significantly larger representation. The "curse of dimensionality" makes it computationally inefficient and unfeasible to optimize this larger representation. However, existing and future collision avoidance systems have mostly defined the decision process by hand. In response, a simulation-based framework was built to better understand how each potential state quantifies the aircraft avoidance problem with regards to safety and operational components. The framework leverages recent advances in signals processing and database, while enabling the highest fidelity analysis of Monte Carlo aircraft encounter simulations to date. This framework enabled the calculation of how well each state of the decision process quantifies the collision risk and the associated memory requirements. Using this analysis, a collision avoidance logic that leverages both horizontal and vertical actions was built and optimized using this simulation based approach.

  20. Obstacle avoidance in social groups: new insights from asynchronous models.

    PubMed

    Croft, Simon; Budgey, Richard; Pitchford, Jonathan W; Wood, A Jamie

    2015-05-06

    For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures.

  1. Obstacle avoidance in social groups: new insights from asynchronous models

    PubMed Central

    Croft, Simon; Budgey, Richard; Pitchford, Jonathan W.; Wood, A. Jamie

    2015-01-01

    For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures. PMID:25833245

  2. The influence of object identity on obstacle avoidance reaching behaviour.

    PubMed

    de Haan, A M; Van der Stigchel, S; Nijnens, C M; Dijkerman, H C

    2014-07-01

    When reaching for target objects, we hardly ever collide with other objects located in our working environment. Behavioural studies have demonstrated that the introduction of non-target objects into the workspace alters both spatial and temporal parameters of reaching trajectories. Previous studies have shown the influence of spatial object features (e.g. size and position) on obstacle avoidance movements. However, obstacle identity may also play a role in the preparation of avoidance responses as this allows prediction of possible negative consequences of collision based on recognition of the obstacle. In this study we test this hypothesis by asking participants to reach towards a target as quickly as possible, in the presence of an empty or full glass of water placed about half way between the target and the starting position, at 8 cm either left or right of the virtual midline. While the spatial features of full and empty glasses of water are the same, the consequences of collision are clearly different. Indeed, when there was a high chance of collision, reaching trajectories veered away more from filled than from empty glasses. This shows that the identity of potential obstacles, which allows for estimating the predicted consequences of collision, is taken into account during obstacle avoidance.

  3. Mean field and collisions in hot nuclei

    SciTech Connect

    K /umlt o/hler, H.S.

    1989-06-01

    Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs.

  4. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  5. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  6. Avoiding Death by Vacuum

    NASA Astrophysics Data System (ADS)

    Barroso, A.; Ferreira, P. M.; Ivanov, I.; Santos, R.; Silva, João P.

    2013-07-01

    The two-Higgs doublet model (2HDM) can have two electroweak breaking, CP-conserving, minima. The possibility arises that the minimum which corresponds to the known elementary particle spectrum is metastable, a possibility we call the "panic vacuum". We present analytical bounds on the parameters of the softly broken Peccei-Quinn 2HDM which are necessary and sufficient conditions to avoid this possibility. We also show that, for this particular model, the current LHC data already tell us that we are necessarily in the global minimum of the theory, regardless of any cosmological considerations about the lifetime of the false vacua.

  7. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  8. Predicting attention and avoidance: when do avoiders attend?

    PubMed

    Klein, Rupert; Knäuper, Bärbel

    2009-09-01

    Three avoidance measures, the Miller Behavioural Style Scale (MBSS), Index of Self-Regulation of Emotion (ISE) and Mainz Coping Inventory (MCI), were compared in their ability to predict attention and avoidance of threats in the emotional Stroop task. It was also examined if the avoidance mechanism of individuals who would normally avoid threat-indicating words becomes disrupted under conditions of dopamine reduction. Results show that only the ISE predicted attention/avoidance of threat-indicating words. In addition, the avoidance mechanism, as measured by the ISE and MCI, was not activated when regular smokers abstained from smoking.

  9. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  10. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  11. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  12. Use of a Prototype Airborne Separation Assurance System for Resolving Near-Term Conflicts During Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.

    2003-01-01

    NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAGTM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. In order to perform these tasks, pilots use prototype conflict detection, prevention, and resolution tools, collectively known as an Airborne Separation Assurance System (ASAS). While ASAS would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. An experiment was conducted in NASA Langley's Air Traffic Operations Lab to evaluate the prototype ASAS for enabling pilots to resolve near-term conflicts and examine possible operational effects associated with the use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. In an effort to improve compliance rate, ASAS design changes are currently under consideration. Further studies will of evaluate these design changes and consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).

  13. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  14. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  15. Measuring Experiential Avoidance in Adults: The Avoidance and Fusion Questionnaire

    ERIC Educational Resources Information Center

    Schmalz, Jonathan E.; Murrell, Amy R.

    2010-01-01

    To date, general levels of experiential avoidance are primarily measured by the Acceptance and Action Questionnaire-II (AAQ-II), but it includes items of questionable comprehensibility. The Avoidance and Fusion Questionnaire for Youth (AFQ-Y), previously validated as a measure of experiential avoidance with children and adolescents, was…

  16. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  17. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  18. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  19. Avoiding Infection After Ear Piercing

    MedlinePlus

    ... Text Size Email Print Share Avoiding Infection After Ear Piercing Page Content Article Body What is the best way to avoid infection after ear piercing? Ears may be pierced for cosmetic reasons ...

  20. CAT altitude avoidance system

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1982-01-01

    A method and apparatus are provided for indicating the altitude of the tropopause or of an inversion layer wherein clear air turbulence (CAT) may occur, and the likely severity of any such CAT, includes directing a passive microwave radiometer on the aircraft at different angles with respect to the horizon. The microwave radiation measured at a frequency of about 55 GHz represents the temperature of the air at an ""average'' range of about 3 kilometers, so that the sine of the angle of the radiometer times 3 kilometers equals the approximate altitude of the air whose temperature is measured. A plot of altitude (with respect to the aircraft) versus temperature of the air at that altitude, can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT has been detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer.

  1. Locomotor avoidance behaviours during a visually guided task involving an approaching object.

    PubMed

    Cinelli, Michael E; Patla, Aftab E

    2008-11-01

    Collision avoidance behaviours in situations where a collision may occur and one's planned movement is restricted, reveals that one's response is not as simple as a visual input producing some motor output. In this study, the participants (N=6) walked along a 9.5m path towards an air-filled human doll (180 degrees from their travel path) that would approach them on some trials. A spatial constraint (i.e. doorframe) was placed along the path and the participants had to determine if they could pass through the constraint prior to avoiding a collision or not. The constraint was set-up so that it was either at the theoretical collision point or 1.5m before or after the theoretical collision point. This study aimed to determine: (1) how the presence of a spatial constraint affects one's ability to perceive when to avoid a collision with an approaching object; (2) if the individuals use action parameters (i.e. velocity modifications, change in heading, etc.) in a consistent manner independent of the spatial constraint location and object's approach velocity; (3) if a consistent safety zone exists independent of the object's approach velocity. The results showed that the placement of the spatial constraint, but not the velocity of the object had a significant effect on the initiation of a change in heading. Participants used two-stage avoidance behaviour; change heading and then adjust walking velocity. The initial avoidance behaviour was initiated when the object was at a constant distance away (i.e. 3.73 m). Overall, it appears as though collision avoidance with approaching objects has cognitive as well as perceptual influences.

  2. Design and implementation of digital airborne multispectral camera system

    NASA Astrophysics Data System (ADS)

    Lin, Zhaorong; Zhang, Xuguo; Wang, Li; Pan, Deai

    2012-10-01

    The multispectral imaging equipment is a kind of new generation remote sensor, which can obtain the target image and the spectra information simultaneously. A digital airborne multispectral camera system using discrete filter method had been designed and implemented for unmanned aerial vehicle (UAV) and manned aircraft platforms. The digital airborne multispectral camera system has the advantages of larger frame, higher resolution, panchromatic and multispectral imaging. It also has great potential applications in the fields of environmental and agricultural monitoring and target detection and discrimination. In order to enhance the measurement precision and accuracy of position and orientation, Inertial Measurement Unit (IMU) is integrated in the digital airborne multispectral camera. Meanwhile, the Temperature Control Unit (TCU) guarantees that the camera can operate in the normal state in different altitudes to avoid the window fogging and frosting which will degrade the imaging quality greatly. Finally, Flying experiments were conducted to demonstrate the functionality and performance of the digital airborne multispectral camera. The resolution capability, positioning accuracy and classification and recognition ability were validated.

  3. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  4. Sensor management for collision alert in orbital object tracking

    NASA Astrophysics Data System (ADS)

    Xu, Peiran; Chen, Huimin; Charalampidis, D.; Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2011-06-01

    Given the increasingly dense environment in both low-earth orbit (LEO) and geostationary orbit (GEO), a sudden change in the trajectory of any existing resident space object (RSO) may cause potential collision damage to space assets. With a constellation of electro-optical/infrared (EO/IR) sensor platforms and ground radar surveillance systems, it is important to design optimal estimation algorithms for updating nonlinear object states and allocating sensing resources to effectively avoid collisions among many RSOs. Previous work on RSO collision avoidance often assumes that the maneuver onset time or maneuver motion of the space object is random and the sensor management approach is designed to achieve efficient average coverage of the RSOs. Few attempts have included the inference of an object's intent in the response to an RSO's orbital change. We propose a game theoretic model for sensor selection and assume the worst case intentional collision of an object's orbital change. The intentional collision results from maximal exposure of an RSO's path. The resulting sensor management scheme achieves robust and realistic collision assessment, alerts the impending collisions, and identifies early RSO orbital change with lethal maneuvers. We also consider information sharing among distributed sensors for collision alert and an object's intent identification when an orbital change has been declared. We compare our scheme with the conventional (non-game based) sensor management (SM) scheme using a LEO-to-LEO space surveillance scenario where both the observers and the unannounced and unplanned objects have complete information on the constellation of vulnerable assets. We demonstrate that, with adequate information sharing, the distributed SM method can achieve the performance close to that of centralized SM in identifying unannounced objects and making early warnings to the RSO for potential collision to ensure a proper selection of collision avoidance action.

  5. MEST- avoid next extinction

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2012-11-01

    Asteroid 2011 AG5 will impact on Earth in 2040. (See Donald K. Yoemans, ``Asteroid 2011 AG5 - A Reality Check,'' NASA-JPL, 2012) In 2011, The author say: the dark hole will take the dark comet to impact our solar system in 20 years, and give a systemic model between the sun and its companion-dark hole to explain why were there periodicity mass extinction on earth. (see Dayong Cao, BAPS.2011.CAL.C1.7, BAPS.2011.DFD.LA.24, BAPS.2012.APR.K1.78 and BAPS.2011.APR.K1.17) The dark Asteroid 2011 AG5 (as a dark comet) is made of the dark matter which has a space-time (as frequence-amplitude square) center- a different systemic model from solar systemic model. It can asborb the space-time and wave. So it is ``dark.'' When many dark matters hit on our earth, they can break our atom structure and our genetic code to trigger the Mass Extinction. In our experiments, consciousness can change the systematic model and code by a life-informational technology. So it can change the output signals of the solar cell. (see Dayong Cao, BAPS.2011.MAR.C1.286 and BAPS.2012.MAR.P33.14) So we will develop the genetic code of lives to evolution and sublimation, will use the dark matter to change the systemic model between dark hole and sun and will avoid next extinction.

  6. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  7. Collision-free trajectory planning algorthm for manipulators

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.; Han, J. Y.

    1987-01-01

    Collision-free trajectory planning for robotic manipulators is investigated. The task of the manipulator is to move its end-effector from one point to another point in an environment with polyhedral obstacles. An on-line algorithm is developed based on finding the required joint angles of the manipulator, according to goals with different priorities. The highest priority is to avoid collisions, the second priority is to plan the shortest path for the end effector, and the lowest priority is to minimize the joint velocity for smooth motion. The pseudo-inverse of the Jacobian matrix is applied for inverse kinematics. When a possible collision is detected, a constrained inverse kinematic problem is solved such that the collision is avoided. This algorithm can also be applied to a time-variant environment.

  8. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  9. Stimulus conflict triggers behavioral avoidance.

    PubMed

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  10. Collision detection as a model for sensory-motor integration.

    PubMed

    Fotowat, Haleh; Gabbiani, Fabrizio

    2011-01-01

    Visually guided collision avoidance is critical for the survival of many animals. The execution of successful collision-avoidance behaviors requires accurate processing of approaching threats by the visual system and signaling of threat characteristics to motor circuits to execute appropriate motor programs in a timely manner. Consequently, visually guided collision avoidance offers an excellent model with which to study the neural mechanisms of sensory-motor integration in the context of a natural behavior. Neurons that selectively respond to approaching threats and brain areas processing them have been characterized across many species. In locusts in particular, the underlying sensory and motor processes have been analyzed in great detail: These animals possess an identified neuron, called the LGMD, that responds selectively to approaching threats and conveys that information through a second identified neuron, the DCMD, to motor centers, generating escape jumps. A combination of behavioral and in vivo electrophysiological experiments has unraveled many of the cellular and network mechanisms underlying this behavior.

  11. Real-time decision aiding - Aircraft guidance for wind shear avoidance

    NASA Technical Reports Server (NTRS)

    Stratton, D. A.; Stengel, Robert F.

    1992-01-01

    Modern control theory and artificial intelligence technology are applied to the Wind Shear Safety Advisor, a conceptual airborne advisory system to help flight crews avoid or survive encounter with hazardous low-altitude wind shear. Numerical and symbolic processes of the system fuse diverse, time-varying data from ground-based and airborne measurements. Simulated wind-shear-encounter scenarios illustrate the need to consider a variety of factors for optimal decision reliability. The wind-shear-encounter simulations show the Wind Shear Safety Advisor's potential for effectively integrating the available information, highlighting the benefits of the computational techniques employed.

  12. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  13. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  14. Chemical avoidance responses of fishes.

    PubMed

    Tierney, Keith B

    2016-05-01

    The hydrosphere is a repository for all of our waste and mistakes, be they sewage, garbage, process-affected waters, runoff, and gases. For fish living in environments receiving undesirable inputs, moving away seems an obvious way to avoid harm. While this should occur, there are numerous examples where it will not. The inability to avoid harmful environments may lead to sensory impairments that in turn limit the ability to avoid other dangers or locate benefits. For avoidance to occur, the danger must first be perceived, which may not happen if the fish is 'blinded' in some capacity. Second, the danger must be recognized for what it is, which may also not happen if the fish is cognitively confused or impaired. Third, it is possible that the fish may not be able to leave the area, or worse, learns to prefer a toxic environment. Concerning generating regulations around avoidance, there are two possibilities: that an avoidance threshold be used to set guidelines for effluent release with the intention of driving fishes away; the second is to set a contaminant concentration that would not affect the avoidance or attraction responses to other cues. With the complexities of the modern world in which we release diverse pollutants, from light to municipal effluents full of 1000s of chemicals, to the diversity present in ecosystems, it is impossible to have avoidance data on every stimulus-species combination. Nevertheless, we may be able to use existing avoidance response data to predict the likelihood of avoidance of untested stimuli. Where we cannot, this review includes a framework that can be used to direct new research. This review is intended to collate existing avoidance response data, provide a framework for making decisions in the absence of data, and suggest studies that would facilitate the prediction of risk to fish health in environments receiving intentional and unintentional human-based chemical inputs.

  15. An investigation of collisions between fiber positioning units in LAMOST

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jie; Wang, Gang

    2016-04-01

    The arrangement of fiber positioning units in the LAMOST focal plane may lead to collisions during the fiber allocation process. To avoid these collisions, a software-based protection system has to abandon some targets located in the overlapping field of adjacent fiber units. In this paper, we first analyze the probability of collisions between fibers and infer their possible reasons. It is useful to solve the problem of collisions among fiber positioning units so as to improve the efficiency of LAMOST. Based on this, a collision handling system is designed by using a master-slave control structure between the micro control unit and microcomputer. Simulated experiments validate that the system can provide real-time inspection and swap information between the fiber unit controllers and the main controller.

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  18. Group force mobility model and its obstacle avoidance capability

    NASA Astrophysics Data System (ADS)

    Williams, Sean A.; Huang, Dijiang

    2009-10-01

    Many mobility models attempt to provide realistic simulation to many real world scenarios. However, existing mobility models, such as RPGM [X. Hong, M. Gerla, G. Pei, C. Chiang, A group mobility model for ad hoc wireless networks, in: Proceedings of ACM/IEEE MSWiM'99, Seattle, WA, August 1999, pp. 53-60] and others, fail to address many aspects. These limitations range from mobile node (MN) collision avoidance, obstacle avoidance, and the interaction of MNs within a group. Our research, the group force mobility model (GFMM) [S.A. Williams, D. Huang, A group force mobility model, Appeared at 9th Communications and Networking Simulation Symposium, April 2006], proposes a novel idea which introduces the concept of attraction and repulsion forces to address many of these limitations. Williams and Huang [A group force mobility model, Appeared at 9th Communications and Networking Simulation Symposium, April 2006] described some of the limitations and drawbacks that many models neglect. This model effectively simulates the interaction of MNs within a group, the interaction of groups to one another, the coherency of a group, and the avoidance of collision with groups, nodes, and obstacles. This paper provides an overview of GFMM and particularly illustrates the GFMM's ability to avoid collision with obstacles, which is a vital property to posses in order to provide a realistic simulaition. We compare our model with the commonly used RPGM model and provide statistical assessments based on connectivity metrics such as link changed, link duration, and relative speed. All will be detailed and explained in this paper.

  19. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  20. Postcopulatory inbreeding avoidance in guppies.

    PubMed

    Fitzpatrick, J L; Evans, J P

    2014-12-01

    In many species, the negative fitness effects of inbreeding have facilitated the evolution of a wide range of inbreeding avoidance mechanisms. Although avoidance mechanisms operating prior to mating are well documented, evidence for postcopulatory mechanisms of inbreeding avoidance remain scarce. Here, we examine the potential for paternity biases to favour unrelated males when their sperm compete for fertilizations though postcopulatory inbreeding avoidance mechanisms in the guppy, Poecilia reticulata. To test this possibility, we used a series of artificial inseminations to deliver an equal number of sperm from a related (either full sibling or half sibling) and unrelated male to a female while statistically controlling for differences in sperm quality between rival ejaculates. In this way, we were able to focus exclusively on postcopulatory mechanisms of inbreeding avoidance and account for differences in sperm competitiveness between rival males. Under these carefully controlled conditions, we report a significant bias in paternity towards unrelated males, although this effect was only apparent when the related male was a full sibling. We also show that sperm competition generally favours males with highly viable sperm and thus that some variance in sperm competitiveness can be attributed to difference in sperm quality. Our findings for postcopulatory inbreeding avoidance are consistent with prior work on guppies, revealing that sperm competition success declines linearly with the level of relatedness, but also that such effects are only apparent at relatedness levels of full siblings or higher. These findings reveal that postcopulatory processes alone can facilitate inbreeding avoidance.

  1. Vertical jumping and signaled avoidance

    PubMed Central

    Cándido, Antonio; Maldonado, Antonio; Vila, Jaime

    1988-01-01

    This paper reports an experiment intended to demonstrate that the vertical jumping response can be learned using a signaled-avoidance technique. A photoelectric cell system was used to record the response. Twenty female rats, divided equally into two groups, were exposed to intertrial intervals of either 15 or 40 s. Subjects had to achieve three successive criteria of acquisition: 3, 5, and 10 consecutive avoidance responses. Results showed that both groups learned the avoidance response, requiring increasingly larger numbers of trials as the acquisition criteria increased. No significant effect of intertrial interval was observed. PMID:16812559

  2. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  3. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  4. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  5. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  6. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  7. A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Sreekumar, Muthuswamy

    2016-07-01

    Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.

  8. How to avoid exercise injuries

    MedlinePlus

    ... gov/ency/patientinstructions/000859.htm How to avoid exercise injuries To use the sharing features on this ... injury and stay safe during exercise. What Causes Exercise Injuries? Some of the most common causes of ...

  9. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  10. Vision-based obstacle avoidance

    DOEpatents

    Galbraith, John

    2006-07-18

    A method for allowing a robot to avoid objects along a programmed path: first, a field of view for an electronic imager of the robot is established along a path where the electronic imager obtains the object location information within the field of view; second, a population coded control signal is then derived from the object location information and is transmitted to the robot; finally, the robot then responds to the control signal and avoids the detected object.

  11. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  12. Predator Avoidance in Extremophile Fish

    PubMed Central

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337

  13. Turbulent collision statistics of cloud droplets at low dissipation rates

    NASA Astrophysics Data System (ADS)

    Banerjee, Sandipan

    inertial response time, rather than the time step necessary for the flow simulation. This situation makes the simulations very expensive to perform. With the motivation to speed up the simulations, we implement the asymptotic expansion approach (as in Maxey, 1987) for particle tracking as this method is suitable for low particle Stokes number and avoids the numerical integration of the stiff equation of motion of droplets. We first validate our implementation using the simpler 2-D cellular flow. Next, we compare the collision statistics of the newly implemented asymptotic approach with our existing approach of particle tracking as well as with published results from journal papers. Finally, we provide the run time comparison for both methods.

  14. Driving-Simulator-Based Test on the Effectiveness of Auditory Red-Light Running Vehicle Warning System Based on Time-To-Collision Sensor

    PubMed Central

    Yan, Xuedong; Xue, Qingwan; Ma, Lu; Xu, Yongcun

    2014-01-01

    The collision avoidance warning system is an emerging technology designed to assist drivers in avoiding red-light running (RLR) collisions at intersections. The aim of this paper is to evaluate the effect of auditory warning information on collision avoidance behaviors in the RLR pre-crash scenarios and further to examine the casual relationships among the relevant factors. A driving-simulator-based experiment was designed and conducted with 50 participants. The data from the experiments were analyzed by approaches of ANOVA and structural equation modeling (SEM). The collisions avoidance related variables were measured in terms of brake reaction time (BRT), maximum deceleration and lane deviation in this study. It was found that the collision avoidance warning system can result in smaller collision rates compared to the without-warning condition and lead to shorter reaction times, larger maximum deceleration and less lane deviation. Furthermore, the SEM analysis illustrate that the audio warning information in fact has both direct and indirect effect on occurrence of collisions, and the indirect effect plays a more important role on collision avoidance than the direct effect. Essentially, the auditory warning information can assist drivers in detecting the RLR vehicles in a timely manner, thus providing drivers more adequate time and space to decelerate to avoid collisions with the conflicting vehicles. PMID:24566631

  15. Driving-simulator-based test on the effectiveness of auditory red-light running vehicle warning system based on time-to-collision sensor.

    PubMed

    Yan, Xuedong; Xue, Qingwan; Ma, Lu; Xu, Yongcun

    2014-02-21

    The collision avoidance warning system is an emerging technology designed to assist drivers in avoiding red-light running (RLR) collisions at intersections. The aim of this paper is to evaluate the effect of auditory warning information on collision avoidance behaviors in the RLR pre-crash scenarios and further to examine the casual relationships among the relevant factors. A driving-simulator-based experiment was designed and conducted with 50 participants. The data from the experiments were analyzed by approaches of ANOVA and structural equation modeling (SEM). The collisions avoidance related variables were measured in terms of brake reaction time (BRT), maximum deceleration and lane deviation in this study. It was found that the collision avoidance warning system can result in smaller collision rates compared to the without-warning condition and lead to shorter reaction times, larger maximum deceleration and less lane deviation. Furthermore, the SEM analysis illustrate that the audio warning information in fact has both direct and indirect effect on occurrence of collisions, and the indirect effect plays a more important role on collision avoidance than the direct effect. Essentially, the auditory warning information can assist drivers in detecting the RLR vehicles in a timely manner, thus providing drivers more adequate time and space to decelerate to avoid collisions with the conflicting vehicles.

  16. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  17. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  18. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  19. Whole arm obstacle avoidance for teleoperated robots

    SciTech Connect

    Feddema, J.T.; Novak, J.L.

    1993-10-01

    This paper describes a collision avoidance system using Whole Arm Proximity (WHAP) sensors on a PUMA 560 robot arm. The capacitance-based sensors generate electric fields which can completely encompass the robot arm and detect obstacles as they approach from any direction. The directional obstacle information gathered by the WHAP sensors together with the sensor geometry and robot configuration is used to scale the commanded joint velocities of the robot. A linearized relationship between the WHAP sensor reading and the distance from the obstacle allows direct transformation of perturbations in VHAP readings to perturbations in joint velocities. The VHAP reading is used to directly reduce the component of the command input velocity along the normal axis of the sensor, allowing graceful reductions in speed as the arm approaches the obstacle. By scaling only the component of the velocity vector in the,direction of the nearest obstacles, the control system restricts motion in the direction of obstacles while permitting unconstrained motion in other directions.

  20. Coincidence studies of ion-molecule collisions

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    1998-05-01

    Two of the simplest collision systems one can imagine are H^+ + H(1s) and H^+ + D(1s). Electron transfer is resonant in the first and nearly resonant in the latter because of the 3.7 meV gap between the H(1s) and D(1s). Once the collision velocity becomes small enough quantum effects become more pronounced and the electron transfer rate as a function of collision energy exhibits many resonances(G. Hunter and M. Kuriyan, Proc. Roy. Soc. Lond. A 358), 321 (1977).^,(J.P. Davis and W.R. Thorson, Can. J. Phys. 56), 996 (1978).. However, most of the interesting features appear at very low energies, of a few meV, and these collision systems which are the ``theorist's dream'' become a nightmare to experimentalists. Nevertheless, we are undertaking the challenging measurement of near resonant electron transfer in the H^+ + D(1s) collision system. When a HD molecule is ionized quickly, such that the transition to the HD^+ molecular ion is vertical, about 1% of the HD^+(1sσ) is in the vibrational continuum. The transition probability falls off approximately exponentially above threshold and its width is about 200 meV. During the dissociation, the electron initially centered on the D core can make a transition to the H core when the 2pσ and 1sσ potential energy curves associated with the two dissociation limits get close to each other. It is important to note that during molecular dissociation the ``avoided crossing'' is crossed only once in contrast to twice during a full collision. Using a localized cold HD target and 3D imaging of the low energy H^+ and D^+ dissociation fragments one can experimentally determine the transition probability between these two states as a function of the dissociation energy. Clearly, a recoil energy resolution of the order of a meV is necessary, which is the primary experimental challenge.

  1. Considering the collision probability of Active Debris Removal missions

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto; Urrutxua, Hodei

    2017-02-01

    Active Debris Removal (ADR) methods are being developed due to a growing concern about the congestion on-orbit and sustainability of spaceflight. This study examined the probability of an on-orbit collision between an ADR target, whilst being de-orbited, and all the objects in the public catalogue published by the US Strategic Command. Such a collision could have significant effects because the target is likely to be located in a densely populated orbital regime and thus follow-on collisions could take place. Six impulsive and three low-thrust example ADR mission trajectories were screened for conjunctions. Extremely close conjunctions were found to result in as much as 99% of the total accumulated collision probability. The need to avoid those conjunctions is highlighted, which raises concerns about ADR methods that do not support collision avoidance. Shortening the removal missions, at an expense of more ΔV and so cost, will also lower their collision probability by reducing the number of conjunctions that they will experience.

  2. Development of an in-vehicle intersection collision countermeasure

    NASA Astrophysics Data System (ADS)

    Pierowicz, John

    1997-02-01

    Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.

  3. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  4. Approach/avoidance in dreams.

    PubMed

    Malcolm-Smith, Susan; Koopowitz, Sheri; Pantelis, Eleni; Solms, Mark

    2012-03-01

    The influential threat simulation theory (TST) asserts that dreaming yields adaptive advantage by providing a virtual environment in which threat-avoidance may be safely rehearsed. We have previously found the incidence of biologically threatening dreams to be around 20%, with successful threat avoidance occurring in approximately one-fifth of such dreams. TST asserts that threat avoidance is over-represented relative to other possible dream contents. To begin assessing this issue, we contrasted the incidence of 'avoidance' dreams with that of their opposite: 'approach' dreams. Because TST states that the threat-avoidance function is only fully activated in ecologically valid (biologically threatening) contexts, we also performed this contrast for populations living in both high- and low-threat environments. We find that 'approach' dreams are significantly more prevalent across both contexts. We suggest these results are more consistent with the view that dreaming is generated by reward-seeking systems than by fear-conditioning systems, although reward-seeking is clearly not the only factor determining the content of dreams.

  5. A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    ERIC Educational Resources Information Center

    Elder, David M.; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…

  6. A capacitance-based proximity sensor for whole arm obstacle avoidance

    SciTech Connect

    Novak, J.L.; Feddema, J.T.

    1992-11-02

    This paper discusses an application of capacitive sensors for detecting incipient collisions during robot motion in unknown or partially modeled environments. Forty-five sensors capable of detecting obstacles up to 330 mm (13 in.) away were distributed over the surface of a PUMA 560 robot arm. Each sensor consisted of a 4 mm thick, 37 mm diameter rings around 21 mm diameter disks. These sensors can detect both conductive and non-conductive obstacles of arbitrary color and shape. The sensor hardware is reliable and inexpensive, and it may be fabricated using flexible printed circuit boards to provide whole-arm and joint protection for any robot or manipulator. Simple collision avoidance control algorithms that perturb the joint commands from a spaceball to avoid collisions have been implemented on the PUMA 560 robot.

  7. Java Architecture for Detect and Avoid Extensibility and Modeling

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor; Mueller, Eric Richard; Johnson, Marcus A.; Abramson, Michael; Snow, James William

    2015-01-01

    Unmanned aircraft will equip with a detect-and-avoid (DAA) system that enables them to comply with the requirement to "see and avoid" other aircraft, an important layer in the overall set of procedural, strategic and tactical separation methods designed to prevent mid-air collisions. This paper describes a capability called Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM), developed to prototype and help evaluate various DAA technological requirements by providing a flexible and extensible software platform that models all major detect-and-avoid functions. Figure 1 illustrates JADEM's architecture. The surveillance module can be actual equipment on the unmanned aircraft or simulators that model the process by which sensors on-board detect other aircraft and provide track data to the traffic display. The track evaluation function evaluates each detected aircraft and decides whether to provide an alert to the pilot and its severity. Guidance is a combination of intruder track information, alerting, and avoidance/advisory algorithms behind the tools shown on the traffic display to aid the pilot in determining a maneuver to avoid a loss of well clear. All these functions are designed with a common interface and configurable implementation, which is critical in exploring DAA requirements. To date, JADEM has been utilized in three computer simulations of the National Airspace System, three pilot-in-the-loop experiments using a total of 37 professional UAS pilots, and two flight tests using NASA's Predator-B unmanned aircraft, named Ikhana. The data collected has directly informed the quantitative separation standard for "well clear", safety case, requirements development, and the operational environment for the DAA minimum operational performance standards. This work was performed by the Separation Assurance/Sense and Avoid Interoperability team under NASA's UAS Integration in the NAS project.

  8. Collision management utilizing CCD and remote sensing technology

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Harvey E., Jr.

    1995-01-01

    With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).

  9. Using collision cones to assess biological deconfliction methods

    PubMed Central

    Hedrick, Tyson L.; Theriault, Diane H.; Fuller, Nathan W.; Wu, Zheng; Betke, Margrit; Parrish, Julia K.; Grünbaum, Daniel; Morgansen, Kristi A.

    2016-01-01

    Biological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithm to find a safe velocity requiring minimal deviation from the original velocity. The subset of obstacles provided to the algorithm was determined by the animal's sensing range in terms of metric and topological distance. The algorithmic calculated velocities showed good agreement with observed biological velocities, indicating that the algorithm was an informative basis for comparison with the three species and could potentially be improved for engineered applications with further study. PMID:27655669

  10. Using collision cones to assess biological deconfliction methods.

    PubMed

    Brace, Natalie L; Hedrick, Tyson L; Theriault, Diane H; Fuller, Nathan W; Wu, Zheng; Betke, Margrit; Parrish, Julia K; Grünbaum, Daniel; Morgansen, Kristi A

    2016-09-01

    Biological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithm to find a safe velocity requiring minimal deviation from the original velocity. The subset of obstacles provided to the algorithm was determined by the animal's sensing range in terms of metric and topological distance. The algorithmic calculated velocities showed good agreement with observed biological velocities, indicating that the algorithm was an informative basis for comparison with the three species and could potentially be improved for engineered applications with further study.

  11. Motive to Avoid Success, Locus of Control, and Reinforcement Avoidance.

    ERIC Educational Resources Information Center

    Katovsky, Walter

    Subjects were four groups of 12 college women, high or low in motive to avoid success (MAS) and locus of control (LC), were reinforced for response A on a fixed partial reinforcement schedule on three concept learning tasks, one task consisting of combined reward and punishment, another of reward only, and one of punishment only. Response B was…

  12. Food Avoidance Diets for Dermatitis.

    PubMed

    Scott, Jeffrey F; Hammond, Margaret I; Nedorost, Susan T

    2015-10-01

    Food allergy is relatively common in both children and adults, and its prevalence is increasing. Early exposure of food allergens onto skin with an impaired epidermal barrier predisposes to sensitization and prevents the development of oral tolerance. While immediate-type food allergies are well described, less is known about delayed-type food allergies manifesting as dermatitis. This is due, in part, to limitations with current diagnostic testing for delayed-type food allergy, including atopy patch testing. We conducted a systematic review of food avoidance diets in delayed-type food allergies manifesting as dermatitis. While beneficial in some clinical circumstances, avoidance diets should be used with caution in infants and children, as growth impairment and developmental delay may result. Ultimately, dermatitis is highly multifactorial and avoidance diets may not improve symptoms of delayed-type food allergy until combined with other targeted therapies, including restoring balance in the skin microbiome and re-establishing proper skin barrier function.

  13. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  14. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  15. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  16. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  17. Fast swept-volume distance for robust collision detection

    SciTech Connect

    Xavier, P.G.

    1997-04-01

    The need for collision detection arises in several robotics areas, including motion-planning, online collision avoidance, and simulation. At the heart of most current methods are algorithms for interference detection and/or distance computation. A few recent algorithms and implementations are very fast, but to use them for accurate collision detection, very small step sizes can be necessary, reducing their effective efficiency. We present a fast, implemented technique for doing exact distance computation and interference detection for translationally-swept bodies. For rotationally swept bodies, we adapt this technique to improve accuracy, for any given step size, in distance computation and interference detection. We present preliminary experiments that show that the combination of basic and swept-body calculations holds much promise for faster accurate collision detection.

  18. 78 FR 61445 - Seventy-Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY: Federal... Special Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance...-Sixth meeting of RTCA Special Committee 147, Minimum Operational Performance Standards for Traffic...

  19. 78 FR 66419 - Seventy Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Performance Standards for Traffic Alert and Collision Avoidance Systems Airborne Equipment AGENCY: Federal... Special Committee 147, Minimum Operational Performance Standards for Traffic Alert and Collision Avoidance... Sixth meeting of RTCA Special Committee 147, Minimum Operational Performance Standards for Traffic...

  20. Avoiding unfavourable outcomes in liposuction

    PubMed Central

    Khanna, Atul; Filobbos, George

    2013-01-01

    The origin of liposuction can be traced to an adverse event by Dujarrier in 1921 when he used a uterine curette to remove fat from the knees of a ballerina ending in an amputation secondary to damage of the femoral artery. The history of liposuction since then has been one of avoiding complications and optimising outcome. After this adverse event, liposuction was abandoned until the 1960's when Schrudde revived the practice using small stab incisions and sharp curettage with the secondary suction to aspirate the freed tissue. This technique was associated with a high incidence of complications especially seroma and skin necrosis. Illouz then replaced the curette with a blunt cannula connected to vacuum pump thus avoiding the complications of a sharp curette. Despite the presence of various techniques for liposuction, suction assisted liposuction (SAL) is still the standard technique of liposuction. This article aims to discuss literature regarding the various aspects of liposuction (SAL) and to highlight the salient points in the literature and in the senior author's experience in order to avoid unfavourable outcomes in liposuction. A literature review on avoiding complication is in liposuction including some of the seminal papers on liposuction. Liposuction is generally a safe procedure with reproducible outcome. Just like any surgical procedure it should be treated with the utmost care. Illouz published 10 commandments for liposuction in 1989 and we review these commandments to demonstrate how liposuction has evolved. PMID:24501475

  1. Biochar aging reduces earthworm avoidance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar, a black carbon substance produced by the pyrolysis of organic feedstocks, has been used in many soil improvement strategies ranging from nutrient addition to sequestration of C. Simple toxicity studies and laboratory preference/avoidance assays are recommended but results rarely reported. ...

  2. Styles of Cenozoic collisions in the western and southwestern Pacific and their applications to Palaeozoic collisions in the Tasmanides of eastern Australia

    NASA Astrophysics Data System (ADS)

    Glen, R. A.; Meffre, S.

    2009-12-01

    The western and southwestern Pacific preserve evidence of Cenozoic collisions that guide our understanding of processes and geometries involved in collisions in ancient orogens, in particular in this case, the Palaeozoic Tasmanides of southeastern Australia. Although several styles of collisions are present in the Pacific, ranging from arc-arc collision to arc-plateau collision, the dominant two are oblique and strike-slip collisions between island arcs and rifted continental fragments, and collisions between forearc lithosphere and continental fragments. The 58 Ma collision along the northern margin of the Australian plate in New Guinea, the 44-34 Ma collision preserved in New Caledonia and the 26-25 Ma collision in the North Island of New Zealand may be parts of a single plate boundary collision that migrated southwards along the plate boundary. They characterize the main style of deformation in which a collision between forearc crust and continental fragment produces subduction flip or rollback, thereby avoiding a classic arc-continent collision. Processes involved in, and geometries that have developed from, SW and W Pacific style collisions have been applied to the interpretation of the evolution of the Delamerian Orogen and Lachlan Orogen in the southern Tasmanides with varying degrees of success. The ophiolite obduction model has been successfully applied to the western Tasmania part of the Delamerian Orogen, although there is discussion about its applicability to the mainland. The best example of an arc accretion, that of the Ordovician Macquarie Arc in the eastern Lachlan Orogen, developed from rare geometry in the western Pacific wherein (with the constraint that no forearc or subduction complex has been identified) the arc lies on the continental plate, above a continental-dipping subduction zone. The multiple subduction zone model of Halmahera has been widely applied to the back arc of the Lachlan Orogen, but evidence for clear subduction zones or arcs

  3. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2015-05-01

    This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions.

  4. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  5. USAF Airborne Sense and Avoid (ABSAA) Airworthiness and Operational Approval Approach. Version 1.0

    DTIC Science & Technology

    2014-01-31

    Aircraft Systems (UAS) Operational Approval”, July 2013 MIL - HDBK -516B, “Airworthiness Certification Criteria”, 29 Feb 2008 Title 14 Code of Federal...process is sufficient for supporting airworthiness approval of a UAS with ABSAA. However, the existing guidance, such as MIL - HDBK -516(), needs to be...8 Paragraph 1.2.1 of MIL - HDBK -516B Change 1 states in part, “Not all of the airworthiness criteria apply to every type of

  6. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  7. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Astrophysics Data System (ADS)

    Frigm, R.; Johnson, L.

    The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive

  8. Whole-arm obstacle avoidance system conceptual design

    SciTech Connect

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER&WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER&WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor ``bracelets,`` which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  9. Whole-arm obstacle avoidance system conceptual design

    SciTech Connect

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor bracelets,'' which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  10. Keeping Safe: Intra-individual Consistency in Obstacle Avoidance Behaviour Across Grasping and Locomotion Tasks

    PubMed Central

    Kangur, Karina; Billino, Jutta

    2017-01-01

    Successful obstacle avoidance requires a close coordination of the visual and the motor systems. Visual information is essential for adjusting movements in order to avoid unwanted collisions. Yet, established obstacle avoidance paradigms have typically either focused on gaze strategies or on motor adjustments. Here we were interested in whether humans show similar visuomotor sensitivity to obstacles when gaze and motor behaviour are measured across different obstacle avoidance tasks. To this end, we measured participants’ hand movement paths when grasping targets in the presence of obstacles as well as their gaze behaviour when walking through a cluttered hallway. We found that participants who showed more pronounced motor adjustments during grasping also spent more time looking at obstacles during locomotion. Furthermore, movement durations correlated positively in both tasks. Results suggest considerable intra-individual consistency in the strength of the avoidance response across different visuomotor measures potentially indicating an individual’s tendency to perform safe actions. PMID:28321287

  11. Keeping Safe: Intra-individual Consistency in Obstacle Avoidance Behaviour Across Grasping and Locomotion Tasks.

    PubMed

    Kangur, Karina; Billino, Jutta; Hesse, Constanze

    2017-01-01

    Successful obstacle avoidance requires a close coordination of the visual and the motor systems. Visual information is essential for adjusting movements in order to avoid unwanted collisions. Yet, established obstacle avoidance paradigms have typically either focused on gaze strategies or on motor adjustments. Here we were interested in whether humans show similar visuomotor sensitivity to obstacles when gaze and motor behaviour are measured across different obstacle avoidance tasks. To this end, we measured participants' hand movement paths when grasping targets in the presence of obstacles as well as their gaze behaviour when walking through a cluttered hallway. We found that participants who showed more pronounced motor adjustments during grasping also spent more time looking at obstacles during locomotion. Furthermore, movement durations correlated positively in both tasks. Results suggest considerable intra-individual consistency in the strength of the avoidance response across different visuomotor measures potentially indicating an individual's tendency to perform safe actions.

  12. Rapid jamming avoidance in biosonar.

    PubMed

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2007-03-07

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.

  13. Rapid jamming avoidance in biosonar

    PubMed Central

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2006-01-01

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming (‘jamming avoidance response’; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with ‘playback stimuli’ consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, ‘jumping’ over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch—suggesting that rapid jamming avoidance is important for the bat. PMID:17254989

  14. SAPIR collision alert system as part of IR MWS suite for helicopter fleets

    NASA Astrophysics Data System (ADS)

    Nadav, Shavit; Varsano, Louisa; Oz, Saar; Schlisselberg, Raanan

    2009-05-01

    SAPIR system provides a suite of IR based situation awareness functions offered as add on system for ELISRA PAWS family of missile warning solutions. A major operational need for airborne platforms flying in formation is automatic collision alert capability. By using covert IR-MWS technology SAPIR passively tracks and monitors wingman position thereby enabling aircrew to focus on mission goals without compromising their safety. The paper presents results of operational problem study, system design and field testing demonstration of performance for SAPIR collision alert function targeting helicopter fleets.

  15. Particle filtering for obstacle tracking in UAS sense and avoid applications.

    PubMed

    Tirri, Anna Elena; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection.

  16. Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications

    PubMed Central

    Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154

  17. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  18. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  19. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  20. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  1. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  2. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  3. EO/IR satellite constellations for the early detection and tracking of collision events

    NASA Astrophysics Data System (ADS)

    Zatezalo, A.; El-Fallah, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    The detection and tracking of collision events involving existing Low Earth Orbit (LEO) Resident Space Objects (RSOs) is becoming increasingly important with the higher LEO space objects traffic volume which is anticipated to increase even further in the near future. Changes in velocity that can lead to a collision are hard to detect early on time, and before the collision happens. Several collision events can happen at the same time and continuous monitoring of the LEO orbit is necessary in order to determine and implement collision avoidance strategies. We present a simulation of a constellation system consisting of multiple platforms carrying EO/IR sensors for the detection of such collisions. The presented simulation encompasses the full complexity of LEO trajectories changes which can collide with currently operating satellites. Efficient multitarget filter with information-theoretic multisensor management is implemented and evaluated on different constellations.

  4. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  5. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  6. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  7. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  8. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  9. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  10. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  11. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  12. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  13. Magnetic characterization of airborne particulates

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Yu, Y.

    2010-12-01

    Burning fossil fuels from vehicles, domestics, industries and power plants in the large urban or industrial areas emit significant quantity of anthropogenic particulates which become a potential threat to human health. Here, we present temporal variability of particulate pollution associated with compositional differences, using magnetic measurements and electron microscopic observations. Six different grain-sizes of airborne particulates have been collected by filtering from 10 precipitation events in Seoul, Korea from February 2009 to June 2009. Magnetic concentration proxies show relatively better (R2 >0.6) and poorer correlations (R2 <0.3) with the masses of samples filtered by >0.45 μm and <0.45 μm sizes, respectively, suggesting the usefulness of magnetic characterization for the >0.45 μm particulates. Temporally, magnetic concentrations are higher in the cold season than the warm season. In particular, a significant increase of magnetic concentration is observed in 3 μm and 1 μm filters after the Chinese wind-blown dust events, indicating additional influx of fine-grained anthropogenic particulates into Seoul. Microscopic observations identify that increase of magnetic concentration is highly linked with the frequent occurrence of combustion derived particulates (i.e., carbon and/or sulfur mixed particles) than natural alumino-silicates. Overall, the present study demonstrates that magnetic measurements efficiently reflect the concentration of particulates produced from fossil-fuel combustion among the airborne particles from various sources.

  14. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  15. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  16. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  17. Interparticle collision mechanism in turbulence.

    PubMed

    Choi, Jung-Il; Park, Yongnam; Kwon, Ohjoon; Lee, Changhoon

    2016-01-01

    Direct numerical simulations of particle-laden homogeneous isotropic turbulence are performed to investigate interparticle collisions in a wide range of Stokes numbers. Dynamics of the particles are described by Stokes drag including particle-particle interactions via hard-sphere collisions, while fluid turbulence is solved using a pseudospectral method. Particular emphasis is placed on interparticle-collision-based conditional statistics of rotation and dissipation rates of the fluid experienced by heavy particles, which provide essential information on the collision process. We also investigate the collision statistics of collision time interval and angle. Based on a Lamb vortex model for a vortex structure, we claim that collision events occur in the edge region for vortical structures in the intermediate-Stokes-number regime, suggesting that the sling effect enhances collision as well as clustering.

  18. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  19. Obstacle-avoiding navigation system

    DOEpatents

    Borenstein, Johann; Koren, Yoram; Levine, Simon P.

    1991-01-01

    A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.

  20. Adaptive Avoidance of Reef Noise

    PubMed Central

    Simpson, Stephen D.; Radford, Andrew N.; Tickle, Edward J.; Meekan, Mark G.; Jeffs, Andrew G.

    2011-01-01

    Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise. PMID:21326604

  1. Adaptive avoidance of reef noise.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Tickle, Edward J; Meekan, Mark G; Jeffs, Andrew G

    2011-02-04

    Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise.

  2. Threshold-avoiding proteomics pipeline.

    PubMed

    Suits, Frank; Hoekman, Berend; Rosenling, Therese; Bischoff, Rainer; Horvatovich, Peter

    2011-10-15

    We present a new proteomics analysis pipeline focused on maximizing the dynamic range of detected molecules in liquid chromatography-mass spectrometry (LC-MS) data and accurately quantifying low-abundance peaks to identify those with biological relevance. Although there has been much work to improve the quality of data derived from LC-MS instruments, the goal of this study was to extend the dynamic range of analyzed compounds by making full use of the information available within each data set and across multiple related chromatograms in an experiment. Our aim was to distinguish low-abundance signal peaks from noise by noting their coherent behavior across multiple data sets, and central to this is the need to delay the culling of noise peaks until the final peak-matching stage of the pipeline, when peaks from a single sample appear in the context of all others. The application of thresholds that might discard signal peaks early is thereby avoided, hence the name TAPP: threshold-avoiding proteomics pipeline. TAPP focuses on quantitative low-level processing of raw LC-MS data and includes novel preprocessing, peak detection, time alignment, and cluster-based matching. We demonstrate the performance of TAPP on biologically relevant sample data consisting of porcine cerebrospinal fluid spiked over a wide range of concentrations with horse heart cytochrome c.

  3. Conservative bin-to-bin fractional collisions

    NASA Astrophysics Data System (ADS)

    Martin, Robert

    2016-11-01

    Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the

  4. Multifunction laser source for ground and airborne applications

    NASA Astrophysics Data System (ADS)

    Crépy, Bruno

    2011-06-01

    Multiple ground and airborne vehicles could share common and multifunctional laser modules. The host system constraints and requirements have similarities making a laser modular concept interesting. Among the desired functions, the core ones are the designation and the rangefinding capabilities. A diode pumped laser source at 1μm with a switchable OPO stage for wavelength conversion fully satisfies the designation and rangefinding tasks. Over the last years, CILAS has developed the key technologies for the improvement of the main system parameters with the imperative constraints to be International Traffic in Arm Regulations Free (ITAR Free). Particularly, this novel architecture avoids thermo electric cooler (TEC) generally used to stabilise the wavelength of the laser diode pump source within the entire operational thermal range.

  5. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  6. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  7. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  8. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  9. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  10. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  11. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  12. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  13. The avoidable costs of population.

    PubMed

    Sadie, J L

    1987-07-01

    The social and economic consequences of current demographic trends in South Africa are analyzed using the concept of avoidable costs. The author presents projections of the population up to the year 2000 organized under four major categories: executive and managerial; professional; semi-skilled; and the unskilled, peasants, underemployed, and very poor. Comparisons are made with projections for the same four categories for Canada to show the problems faced by South Africa, in that relatively small growth in the first two classes is contrasted to massive growth in the other, and particularly the least privileged, classes. Consideration is given to the implications for the provision of schools and for the labor force. The author concludes that "if a problem is to be tackled at its roots it is to the control of human numbers that our attention is to be directed."

  14. Bone tumor mimics: avoiding misdiagnosis.

    PubMed

    Gould, C Frank; Ly, Justin Q; Lattin, Grant E; Beall, Douglas P; Sutcliffe, Joseph B

    2007-01-01

    Whether discovered incidentally or as part of a focused diagnostic evaluation, the finding of a benign osseous lesion that has radiologic features resembling a bone tumor is not uncommon. Some of the more common benign and nonneoplastic entities that can sometimes be confused with tumors are the following: cortical desmoid, Brodie abscess, synovial herniation pit, pseudocyst, enostosis, intraosseous ganglion cyst, fibrous dysplasia, stress fracture, avulsion fracture (healing stage), bone infarct, myositis ossificans, brown tumor, and subchondral cyst. Accurate diagnosis and management of these lesions require a basic understanding of their epidemiology, clinical presentations, anatomic distributions, imaging features, differential considerations, and therapeutic options. This in-depth review of 13 potential bone tumor mimics will assist the radiologist in correctly identifying these benign lesions and in avoiding misdiagnosis and related morbidity. This review will also aid the radiologist in making appropriate recommendations to the referring physician for management or further imaging.

  15. Autonomous hazard detection and avoidance

    NASA Technical Reports Server (NTRS)

    Pien, Homer

    1992-01-01

    During GFY 91, Draper Laboratory was awarded a task by NASA-JSC under contract number NAS9-18426 to study and evaluate the potential for achieving safe autonomous landings on Mars using an on-board autonomous hazard detection and avoidance (AHDA) system. This report describes the results of that study. The AHDA task had four objectives: to demonstrate, via a closed-loop simulation, the ability to autonomously select safe landing sites and the ability to maneuver to the selected site; to identify key issues in the development of AHDA systems; to produce strawman designs for AHDA sensors and algorithms; and to perform initial trade studies leading to better understanding of the effect of sensor/terrain/viewing parameters on AHDA algorithm performance. This report summarizes the progress made during the first year, with primary emphasis on describing the tools developed for simulating a closed-loop AHDA landing. Some cursory performance evaluation results are also presented.

  16. Adapting a Low-Cost Selective Compliant Articulated Robotic Arm for Spillage Avoidance.

    PubMed

    McMorran, Darren; Chung, Dwayne Chung Kim; Li, Jonathan; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2016-12-01

    Flexible automation systems provide the needed adaptability to serve shorter-term projects and specialty applications in biochemical analysis. A low-cost selective compliant articulated robotic arm designed for liquid spillage avoidance is developed here. In the vertical-plane robotic arm movement test, the signals from an inertial measurement unit (IMU) and accelerometer were able to sense collisions. In the horizontal movement test, however, only the signals from the IMU enabled collision to be detected. Using a calculation method developed, it was possible to chart the regions where the obstacle was likely to be located when a collision occurred. The low cost of the IMU and its easy incorporation into the robotic arm offer the potential to meet the pressures of lowering operating costs, apply laboratory automation in resource-limited venues, and obviate human intervention in response to sudden disease outbreaks.

  17. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  18. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  19. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  20. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  1. Toolsets for Airborne Data Web Application

    Atmospheric Science Data Center

    2014-09-17

    ... relevant issues. Features Include Select data based on mission, date and/or scientific parameter Output original data ... Details:  Toolsets for Airborne Data (TAD) Web Application Category:  Instrument Specific Search, ...

  2. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation

    PubMed Central

    Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron

    2015-01-01

    Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381

  3. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  4. Algorithm Plans Collision-Free Path for Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Diaz-Calderon, Antonio

    2007-01-01

    An algorithm has been developed to enable a computer aboard a robot to autonomously plan the path of the manipulator arm of the robot to avoid collisions between the arm and any obstacle, which could be another part of the robot or an external object in the vicinity of the robot. In simplified terms, the algorithm generates trial path segments and tests each segment for potential collisions in an iterative process that ends when a sequence of collision-free segments reaches from the starting point to the destination. The main advantage of this algorithm, relative to prior such algorithms, is computational efficiency: the algorithm is designed to make minimal demands upon the limited computational resources available aboard a robot. This path-planning algorithm utilizes a modified version of the collision-detection method described in "Improved Collision-Detection Method for Robotic Manipulator" (NPO-30356), NASA Tech Briefs, Vol. 27, No. 3 (June 2003), page 72. The method involves utilization of mathematical models of the robot constructed prior to operation and similar models of external objects constructed automatically from sensory data acquired during operation. This method incorporates a previously developed method, known in the art as the method of oriented bounding boxes (OBBs), in which an object is represented approximately, for computational purposes, by a box that encloses its outer boundary. Because many parts of a robotic manipulator are cylindrical, the OBB method has been extended in this method to enable the approximate representation of cylindrical parts by use of octagonal or other multiple-OBB assemblies denoted oriented bounding prisms (OBPs). A multiresolution OBB/OBP representation of the robot and its manipulator arm and a multiresolution OBB representation of external objects (including terrain) are constructed and used in a process in which collisions at successively finer resolutions are detected through computational detection of overlaps

  5. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  6. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  7. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  8. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    PubMed Central

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  9. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-12-26

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  10. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  11. Collision Dynamics of Decimeter Bodies

    NASA Astrophysics Data System (ADS)

    Deckers, Johannes; Teiser, J.

    2013-10-01

    The collision dynamics of decimeter bodies are important for the early phase of planet formation. Planets form by accretion of km-sized objects, the so called planetesimals. These planetesimals evolve from small grains, but their formation process is not yet understood entirely. Two groups of models try to explain the formation process. Decimeter bodies and their collision behavior play a vital role in both groups. The threshold between bouncing and fragmentation is especially interesting for coagulation models, as decimeter bodies are the direct precursors to meter sized bodies. But the collision dynamics are also relevant for the models, which describe planetesimal formation by gravitational collapse in dense regions of the protoplanetary disk. We will present preliminary results of our collision experiments. Previous experiments on mutual collisions of decimeter dust agglomerates showed that the threshold between bouncing and fragmentation lies at a collision velocity of 16.2 cm/s, which corresponds to a specific kinetic energy of 5 mJ/kg. We expand these experiments to investigate the conditions for “catastrophic disruption” of decimeter dust bodies. Here, “catastrophic disruption” means that the largest fragment of a collision partner has only half the mass of the original body. Furthermore, we extend the parameter range to ice aggregates. We will present first experimental results of collisions of ice aggregates in the decimeter range. In these first experiments we will analyze the threshold conditions for solid ice. We will investigate the collision dynamics for both central and non-central collisions.

  12. Avoidance of aluminum by rainbow trout

    SciTech Connect

    Exley, C.

    2000-04-01

    Aluminum is the principal toxicant in fish in acid waters. The ability to avoid Al, particularly at low concentrations, would confer a considerable ecological advantage, but previous research into avoidance of Al has produced mixed results. The author used a cylindrical perspex tank, 150 cm in length, to study avoidance of Al by rainbow trout fry. The fish avoided Al, and their response was dependent on pH. Avoidance that was demonstrated at pHs of 5.00, 5.50, 5.50, and 5.75 was abolished at a pH of 6.00. Fry avoided very low Al concentrations being sensitive to [Al] > 1.00 {micro}mol L{sup {minus}1} at a pH of 5.00. This unequivocal demonstration of avoidance by rainbow trout fry of Al may have important implications for the ecology of indigenous fish populations in surface waters impacted by acidic deposition.

  13. Collision-sensitive neurons in the optic tectum of the bullfrog, Rana catesbeiana.

    PubMed

    Nakagawa, Hideki; Hongjian, Kang

    2010-11-01

    In this study, we examined the neuronal correlates of frog collision avoidance behavior. Single unit recordings in the optic tectum showed that 11 neurons gave selective responses to objects approaching on a direct collision course. The collision-sensitive neurons exhibited extremely tight tuning for collision bound trajectories with mean half-width at half height values of 0.8 and 0.9° (n = 4) for horizontal and vertical deviations, respectively. The response of frog collision-sensitive neurons can be fitted by a function that simply multiplies the size dependence of its response, e(-αθ(t)), by the image's instantaneous angular velocity θ'(t). Using fitting analysis, we showed that the peak firing rate always occurred after the approaching object had reached a constant visual angle of 24.2 ± 2.6° (mean ± SD; n = 8), regardless of the approaching velocity. Moreover, a linear relationship was demonstrated between parameters l/v (l: object's half-size, v: approach velocity) and time-to-collision (time difference between peak neuronal activity and the predicted collision) in the 11 collision-sensitive neurons. In addition, linear regression analysis was used to show that peak firing rate always occurred after the object had reached a constant angular size of 21.1° on the retina. The angular thresholds revealed by both theoretical analyses were comparable and showed a good agreement with that revealed by our previous behavioral experiments. This strongly suggests that the collision-sensitive neurons of the frog comprise a threshold detector, which triggers collision avoidance behavior.

  14. Interactions among Drosophila larvae before and during collision

    PubMed Central

    Otto, Nils; Risse, Benjamin; Berh, Dimitri; Bittern, Jonas; Jiang, Xiaoyi; Klämbt, Christian

    2016-01-01

    In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM2c), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae. PMID:27511760

  15. The risk of pedestrian collisions with peripheral visual field loss

    PubMed Central

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L.; Goldstein, Robert B.

    2016-01-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development. PMID:27919101

  16. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  17. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  18. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  19. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  20. Image processing algorithm for integrated sense and avoid systems

    NASA Astrophysics Data System (ADS)

    Forlenza, Lidia; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-10-01

    To allow Unmanned Aircraft Systems (UAS) accessing National Airspace System (NAS) "Equivalent levels of safety" to the ones of human vision must be guaranteed. Therefore, an appropriate "Sense and Avoid" technology must be developed that is capable of detecting, tracking, and avoiding obstacles. The Department of Aerospace Engineering at University of Naples has been involved in a project funded by the Italian Aerospace Research Centre (CIRA) for the realization of a prototypical "Obstacle Detection & Identification" (ODID) System. It is installed onboard a Very Light Aircraft (VLA) and it is characterized by a hierarchical sensor configuration in which the radar is the main sensor while EO cameras are the auxiliary ones in order to increase accuracy and data rate so that anti-collision requirements are fulfilled. This paper focuses on the Image Processing algorithm for the panchromatic camera. Among the several techniques listed in literature the edge detection - labeling one resulted as the best compromise in terms of computational load, detection range, false alarm rate, miss detection rate and adaptability at different background luminosity conditions. Moreover it has been customized in order to allow for reliable operation in a wide range of flight and luminance configurations and it has been tested and run on a sequence of real images taken during flight tests. At the end, a table that summarizes those results is presented. Indeed, the output tracking measurements accuracy increases by an order of magnitude with respect to standalone radar one.