Science.gov

Sample records for airborne command post

  1. Offutt Air Force Base, Looking Glass Airborne Command Post, Blast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  2. Offutt Air Force Base, Looking Glass Airborne Command Post, Operational ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  3. Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  4. Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic Fluid Buildings, Northeast of Looking Glass Avenue at southwest side of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  5. The next generation of command post computing

    NASA Astrophysics Data System (ADS)

    Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.

    2015-05-01

    The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.

  6. 63. Aerial view of SAC command post construction, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 67. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 62. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. 68. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. Curriculum Evolution at Air Command and Staff College in the Post-Cold War Era

    ERIC Educational Resources Information Center

    Donovan, William Robert, II.

    2010-01-01

    This qualitative study used a historical research method to eliminate the gap in the historical knowledge of Air Command and Staff College (ACSC) curriculum evolution in the post-Cold War era. This study is the only known analysis of the forces that influenced the ACSC curriculum and the rationale behind curricular change at ACSC in the post-Cold…

  11. Gemini 11 Commander Conrad and Pilot Gordon at post flight press conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gemini 11 Commander Charles Conrad, Jr (left) and Pilot Richard F. Gordon, Jr describe mission activities during their post flight press conference at JSC. Gordon at the microphone talks about the extravehicular activity (EVA) photo projected behind the two crewmembers. During the EVA Gordon attached a tether to the Agena and retrieved a nuclear emulsion experiment package.

  12. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  13. Introducing data parallelism into climate model post-processing through a parallel version of the NCAR Command Language (NCL)

    NASA Astrophysics Data System (ADS)

    Jacob, R. L.; Xu, X.; Krishna, J.; Tautges, T.

    2011-12-01

    The relationship between the needs of post-processing climate model output and the capability of the available tools has reached a crisis point. The large volume of data currently produced by climate models is overwhelming the current, decades-old analysis workflow. The tools used to implement that workflow are now a bottleneck in the climate science discovery processes. This crisis will only worsen as ultra-high resolution global climate models with horizontal scales of 4 km or smaller, running on leadership computing facilities, begin to produce tens to hundreds of terabytes for a single, hundred-year climate simulation. While climate models have used parallelism for several years, the post-processing tools are still mostly single-threaded applications. We have created a Parallel Climate Analysis Library (ParCAL) which implements many common climate analysis operations in a data-parallel fashion using the Message Passing Interface. ParCAL has in turn been built on sophisticated packages for describing grids in parallel (the Mesh Oriented database (MOAB) and for performing vector operations on arbitrary grids (Intrepid). ParCAL is also using parallel I/O through the PnetCDF library. ParCAL has been used to implement a parallel version of the NCAR Command Language (NCL). ParNCL/ParCAL not only speeds up analysis of large datasets but also allows operations to be performed on native grids, eliminating the need to transform everything to latitude-longitude grids. In most cases, users NCL scripts can run unaltered in parallel using ParNCL.

  14. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only

  15. Post-Accident Sporadic Releases of Airborne Radionuclides from the Fukushima Daiichi Nuclear Power Plant Site.

    PubMed

    Steinhauser, Georg; Niisoe, Tamon; Harada, Kouji H; Shozugawa, Katsumi; Schneider, Stephanie; Synal, Hans-Arno; Walther, Clemens; Christl, Marcus; Nanba, Kenji; Ishikawa, Hirohiko; Koizumi, Akio

    2015-12-15

    The Fukushima nuclear accident (March 11, 2011) caused the widespread contamination of Japan by direct deposition of airborne radionuclides. Analysis of weekly air filters has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported (137)Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high (90)Sr contamination (78 ± 8 Bq kg(-1)) as well as a high (90)Sr/(137)Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross (137)Cs activity of ca. 2.8 × 10(11) Bq has been released. PMID:26448161

  16. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS. PMID:25811231

  17. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  18. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  19. TRAVEL WITH COMMANDER QUALICIA

    EPA Science Inventory

    Commander Qualicia is a cartoon character created for an on-line training course that describes the quality system for the National Exposure Research Laboratory. In the training, which was developed by the QA staff and graphics/IT support contractors, Commander Qualicia and the ...

  20. Station Commander Praises AMS

    NASA Video Gallery

    When asked what's the most important International Space Station experiment, Commander Chris Hadfield names the Alpha Magnetic Spectrometer-2, a state-of-the-art particle physics detector that coul...

  1. Commanding Constellations (Pipeline Architecture)

    NASA Technical Reports Server (NTRS)

    Ray, Tim; Condron, Jeff

    2003-01-01

    Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.

  2. Borisenko Hands Over Command to Fossum

    NASA Video Gallery

    Expedition 28 Commander Andrey Borisenko handed over station command duties to Flight Engineer Mike Fossum. Fossum will command Expedition 29. The traditional Change of Command Ceremony took place ...

  3. Automatic Command Sequence Generation

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat

    2007-01-01

    Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the

  4. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    NASA Astrophysics Data System (ADS)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  5. Cost efficient command management

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom

    1996-01-01

    The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.

  6. Economy of Command

    ERIC Educational Resources Information Center

    Medeiros, David Peter

    2012-01-01

    This dissertation proposes a principle of "economy of command", arguing that it provides a simple and natural explanation for some well-known properties of human language syntax. The focus is on the abstract combinatorial system that constructs the hierarchical structure of linguistic expressions, with long-distance dependencies…

  7. Test Telemetry And Command System (TTACS)

    NASA Astrophysics Data System (ADS)

    Fogel, Alvin J.

    1994-11-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for

  8. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for

  9. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C)....

  10. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C)....

  11. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C)....

  12. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C)....

  13. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C)....

  14. Station Change of Command Ceremony

    NASA Video Gallery

    The reins of the International Space Station were passed from Expedition 29 Commander Mike Fossum of NASA to his NASA colleague, newly arrived Expedition 30 Commander Dan Burbank in a ceremony on t...

  15. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... HIGH RADIATION AREA.” (d) Posting of airborne radioactivity areas. The licensee shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, AIRBORNE RADIOACTIVITY AREA” or “DANGER, AIRBORNE RADIOACTIVITY AREA.” (e) Posting of areas...

  16. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... HIGH RADIATION AREA.” (d) Posting of airborne radioactivity areas. The licensee shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, AIRBORNE RADIOACTIVITY AREA” or “DANGER, AIRBORNE RADIOACTIVITY AREA.” (e) Posting of areas...

  17. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... HIGH RADIATION AREA.” (d) Posting of airborne radioactivity areas. The licensee shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, AIRBORNE RADIOACTIVITY AREA” or “DANGER, AIRBORNE RADIOACTIVITY AREA.” (e) Posting of areas...

  18. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HIGH RADIATION AREA.” (d) Posting of airborne radioactivity areas. The licensee shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, AIRBORNE RADIOACTIVITY AREA” or “DANGER, AIRBORNE RADIOACTIVITY AREA.” (e) Posting of areas...

  19. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... HIGH RADIATION AREA.” (d) Posting of airborne radioactivity areas. The licensee shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, AIRBORNE RADIOACTIVITY AREA” or “DANGER, AIRBORNE RADIOACTIVITY AREA.” (e) Posting of areas...

  20. CHeCS Commanding Hardware

    NASA Technical Reports Server (NTRS)

    Moore, Jamie

    2010-01-01

    This slide presentation reviews the Crew Health Care System (CHeCS) commanding hardware. It includes information on the hardware status, commanding plan, and command training status with specific information the EV-CPDS 2 and 3, TEPC, MEC, and T2

  1. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  2. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  3. Telemetry and command standards

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.; Macmedan, Mervyn L.; Lenhart, Klaus

    1990-01-01

    The first phase of the international Consultative Committee for Space Data Systems (CCSDS) efforts toward the definition of standards for space telemetry, spacecraft tracking, and command functions has established a set of standard space communications techniques capable of satisfying almost the entire spectrum of space mission user requirements. This was achieved by focusing on the distinctive problems associated with the space/ground data link, and developing the infrastructural system designated the 'Open Systems Interconnection'. The intrinsically international coordination by CCSDS of development efforts ensures highly flexible mutual support activities by the various national space agencies.

  4. The eutrophication commandments.

    PubMed

    Fulweiler, R W; Rabalais, N N; Heiskanen, A S

    2012-10-01

    Typically, rising atmospheric carbon dioxide concentrations are used to illustrate how humans have impacted the earth. However, we have also dramatically altered the amount of nitrogen (N) and phosphorus (P) cycling through the biosphere. Eventually these nutrients are carried to coastal receiving waters where they cause severe, often negative consequences including increased phytoplankton and macroalgae blooms, loss of submerged aquatic vegetation, low oxygen events, and decreased biodiversity. In many systems mitigation efforts are now underway to return these ecosystems to a less impacted state. While many uncertainties about the best way to manage eutrophic systems remain it is clear that we must take action to lessen our human nutrient footprint. Based on our current understanding of eutrophic systems we present ten eutrophication commandments or guidelines as a tool for scientists, policy makers, managers, and the public. PMID:22889495

  5. Laser Communications Airborne Testbed: Potential For An Air-To-Satellite Laser Communications Link

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert J.

    1988-05-01

    The Laser Communications Airborne Testbed (LCAT) offers an excellent opportunity for testing of an air-to-satellite laser communications link with the NASA Advanced Communications Technology Satellite (ACTS). The direct detection laser portion of the ACTS is suitable for examining the feasibility of an airborne terminal. Development of an airborne laser communications terminal is not currently part of the ACTS program; however, an air-to-satellite link is of interest. The Air Force performs airborne laser communications experiments to examine the potential usefulness of this technology to future aircraft. Lasers could be used, for example, by future airborne command posts and reconnaissance aircraft to communicate via satellite over long distances and transmit large quantities of data in the fastest way possible from one aircraft to another or to ground sites. Lasers are potentially secure, jam resistant and hard to detect and in this regard increase the survivability of the users. Under a contract awarded by Aeronautical Systems Division's Avionics Laboratory, a C-135E testbed aircraft belonging to ASD's 4950th Test Wing will be modified to create a Laser Communications Airborne Testbed. The contract is for development and fabrication of laser testbed equipment and support of the aircraft modification effort by the Test Wing. The plane to be modified is already in use as a testbed for other satellite communications projects and the LCAT effort will expand those capabilities. This analysis examines the characteristics of an LCAT to ACTS direct detection communications link. The link analysis provides a measure of the feasibility of developing an airborne laser terminal which will interface directly to the LCAT. Through the existence of the LCAT, the potential for development of an air-to-satellite laser communications terminal for the experimentation with the ACTS system is greatly enhanced.

  6. Maximizing TDRS Command Load Lifetime

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.

    2002-01-01

    The GNC software onboard ISS utilizes TORS command loads, and a simplistic model of TORS orbital motion to generate onboard TORS state vectors. Each TORS command load contains five "invariant" orbital elements which serve as inputs to the onboard propagation algorithm. These elements include semi-major axis, inclination, time of last ascending node crossing, right ascension of ascending node, and mean motion. Running parallel to the onboard software is the TORS Command Builder Tool application, located in the JSC Mission Control Center. The TORS Command Builder Tool is responsible for building the TORS command loads using a ground TORS state vector, mirroring the onboard propagation algorithm, and assessing the fidelity of current TORS command loads onboard ISS. The tool works by extracting a ground state vector at a given time from a current TORS ephemeris, and then calculating the corresponding "onboard" TORS state vector at the same time using the current onboard TORS command load. The tool then performs a comparison between these two vectors and displays the relative differences in the command builder tool GUI. If the RSS position difference between these two vectors exceeds the tolerable lim its, a new command load is built using the ground state vector and uplinked to ISS. A command load's lifetime is therefore defined as the time from when a command load is built to the time the RSS position difference exceeds the tolerable limit. From the outset of TORS command load operations (STS-98), command load lifetime was limited to approximately one week due to the simplicity of both the onboard propagation algorithm, and the algorithm used by the command builder tool to generate the invariant orbital elements. It was soon desired to extend command load lifetime in order to minimize potential risk due to frequent ISS commanding. Initial studies indicated that command load lifetime was most sensitive to changes in mean motion. Finding a suitable value for mean motion

  7. Safety aspects of spacecraft commanding

    NASA Technical Reports Server (NTRS)

    Peccia, N.

    1994-01-01

    The commanding of spacecraft is a potentially hazardous activity for the safety of the spacecraft. Present day control systems contain safety features in their commanding subsystem and in addition, strict procedures are also followed by operations staff. However, problems have occurred on a number of missions as a result of erroneous commanding leading in some cases to spacecraft contingencies and even to near loss of the spacecraft. The problems of checking commands in advance are increased by the tendency in modern spacecraft to use blocked/time-tagged commands and the increased usage of on-board computers, for which commands changing on-board software tables can radically change spacecraft or subsystem behavior. This paper reports on an on-going study. The study aims to improve the approach to safety of spacecraft commanding. It will show how ensuring 'safe' commanding can be carried out more efficiently, and with greater reliability, with the help of knowledge based systems and/or fast simulators. The whole concept will be developed based on the Object-Oriented approach.

  8. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  9. Station Commander Sends Holiday Greetings

    NASA Video Gallery

    Aboard the International Space Station, Expedition 30 Commander Dan Burbank of NASA sends season's greetings to the world and shares his thoughts about being in orbit aboard the space-based laborat...

  10. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  11. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  12. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command.... Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims attorneys, the Commander of the U.S. Army MEDCOM, the European Medical Command, or other regional...

  13. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command.... Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims attorneys, the Commander of the U.S. Army MEDCOM, the European Medical Command, or other regional...

  14. Command Process Modeling & Risk Analysis

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2011-01-01

    Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.

  15. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  16. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  17. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  18. Selection and Training of Navy Recruit Company Commanders. Final Report.

    ERIC Educational Resources Information Center

    Curry, Thomas F., Jr.; And Others

    This report addresses the selection, training, and utilization of Navy Recruit Company Commanders (Recruit Training Instructors). It represents one in a series of reports concerning the optimization of Navy Recruit Training to meet the needs of the post-1980 period. The report provides a comprehensive review of the Navy's Recruit Company Commander…

  19. 10 commandments of smile esthetics

    PubMed Central

    Machado, Andre Wilson

    2014-01-01

    The search for esthetic treatment has persisted in the routine of dental professionals. Following this trend, dental patients have sought treatment with the primary aim of improving smile esthetics. The aim of this article is to present a protocol to assess patient's smile: The 10 Commandments of smile esthetics. PMID:25279532

  20. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Department Discharge Review System § 724.405 Commandant of the Marine Corps or the Commander, Naval Military... support to the Naval Discharge Review Board and for implementation of departmental discharge review decisions. (See subpart C)....

  1. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Department Discharge Review System § 724.405 Commandant of the Marine Corps or the Commander, Naval Military... support to the Naval Discharge Review Board and for implementation of departmental discharge review decisions. (See subpart C)....

  2. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Department Discharge Review System § 724.405 Commandant of the Marine Corps or the Commander, Naval Military... support to the Naval Discharge Review Board and for implementation of departmental discharge review decisions. (See subpart C)....

  3. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Principal Elements of the Navy Department Discharge Review System § 724.405 Commandant of the Marine Corps or the Commander, Naval...

  4. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Principal Elements of the Navy Department Discharge Review System § 724.405 Commandant of the Marine Corps or the Commander, Naval...

  5. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  6. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  7. Expedition 33/34 Change of Command

    NASA Video Gallery

    Expedition 33 Commander Suni Williams ceremonially handed over command of the International Space Station on Saturday to fellow NASA astronaut Kevin Ford on the eve of her departure from the comple...

  8. Voice command weapons launching system

    NASA Astrophysics Data System (ADS)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  9. Terrain commander UGS operational trials

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.

    2004-09-01

    Operational trials of Textron Systems" Terrain Commander unattended ground sensor (UGS) system are described. Terrain Commander is a powerful new concept in surveillance and remote situational awareness. It leverages a diverse suite of sophisticated unattended ground sensors, day/night electro-optics, satellite data communications, and an advanced Windows based graphic user interface. Terrain Commander OASIS (Optical Acoustic SATCOM Integrated Sensor) provides next generation target detection, classification, and tracking through smart sensor fusion of beam-forming acoustic, seismic, passive infrared, and magnetic sensors. With its fully integrated SATCOM system using internet protocols, virtually any site in the world can be monitored from almost any other location. Multiple remote sites such as airfields, landing zones, base perimeters, road junctions, flanks, and border crossings are monitored with ease from a central location. Intruding personnel or vehicles are automatically detected, classified, and imaged. Results from early operational trials in the outback of Australia and in various locations in the US are described. Probability of detection and recognition against a wide variety of targets including personnel, military and civilian vehicles, in-shore watercraft, and low altitude aircraft are discussed. Environments include snow cover, tropical savannah, rainforest, and woodlands. Experience with alternative SATCOM systems during the trials is also touched upon.

  10. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any...

  11. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any...

  12. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any...

  13. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any...

  14. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any...

  15. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard District Commander or District Commander. The term...

  16. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard District Commander or District Commander. The term...

  17. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  18. 7. General view of command center, building 501, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. General view of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  19. 6. General view of command center, building 501, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General view of command center, building 501, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  20. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control...

  1. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control...

  2. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control...

  3. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control...

  4. Command and Service Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.

  5. Station Commander Congratulates New Flight Directors

    NASA Video Gallery

    Aboard the International Space Station, Expedition 29 Commander Mike Fossum congratulates Judd Frieling, Tomas Gonzalez-Torres and Greg Whitney on being selected as NASA's newest flight directors. ...

  6. Waveform command shaping control of multimode systems

    NASA Astrophysics Data System (ADS)

    Alhazza, Khaled A.; Masoud, Ziyad N.

    2016-02-01

    A method for eliminating residual vibrations in multimode systems is presented using a command shaping technique. The proposed command shaping technique captures two main advantages. Namely, the independence of the time length of the shaped command from the resonant frequencies of the system, and the ability to generate the command profile without a full system model. Experiments on systems with partial models represented by their resonant frequencies show that shaped command profiles generated using actual measured resonant frequencies of a system outperform those based on mathematical models. This feature of the proposed command shaping technique makes it very attractive for complicated multimode systems where mathematical models are difficult to build. Profiles of the proposed shaped command are simple and do not require intensive calculations. Performance of the proposed shaped command is validated using numerical simulations and experiments. Numerical simulations prove that the shaped commands are capable of completely eliminating residual vibrations of multimode systems. Experiments show that residual vibration elimination depends on the level of accuracy of the measured resonant frequencies of the system.

  7. Coalition command and control: a Canadian perspective

    NASA Astrophysics Data System (ADS)

    Charpentier, Robert; Demers, David; Gouin, Denis; McCann, Carol; Nourry, Gerard; Pigeau, Ross; Smith, Donald L.; Vezina, Guy; Walker, Robert S.

    1998-08-01

    Canada has been, and remains, committed to participating in coalition operations to promote peace and stability in the post-Cold War world. However, coalition operations challenge traditional command and control concepts, from both the technological and the human perspectives. In the short term, Canada is working closely with traditional NATO and ABCA allies to ensure that the next generation of automated C2 information systems are able to exchange information effectively through structured messages, gateways and standardized data models. Canada is also conducting R&D, and participating in collaborative experiments, to evolve the next generation of systems to permit richer, more dynamic information sharing, along the lines of the Internet and World Wide Web. However, information technology alone will not solve the problems of coalition operations. Research needs to be undertaken to understand task assignment and information flow among coalition partners at the process or operational level. Research is also required at the human level, where differences between coalition partners in culture, personal values, military expectations, religions, and societal values are proving to be less tractable than differences in message formats and communication protocols.

  8. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight... designated by the program manager, must remain the pilot in command at all times during that flight....

  9. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Coast Guard District Commander or District Commander. 42.05-25 Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-25 Coast Guard District Commander or District...

  10. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Coast Guard District Commander or District Commander. 42.05-25 Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-25 Coast Guard District Commander or District...

  11. 32 CFR 552.65 - Command supervision.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Command supervision. 552.65 Section 552.65 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY RESERVATIONS AND....65 Command supervision. (a) All insurance business conducted on Army installation will be...

  12. 76 FR 19893 - Unified Command Plan 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... HOUSE, Washington, April 6, 2011 [FR Doc. 2011-8644 Filed 4-7-11; 11:15 am] Billing code 5000-04-P ...#0;#0; ] Memorandum of April 6, 2011 Unified Command Plan 2011 Memorandum for the Secretary of... the revised Unified Command Plan. Consistent with title 10, United States Code, section 161(b)(2)...

  13. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Command relationships. 215.7 Section 215.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command...

  14. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Command relationships. 215.7 Section 215.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command...

  15. 32 CFR 637.3 - Installation Commander.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Installation Commander. 637.3 Section 637.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.3 Installation Commander....

  16. 32 CFR 637.3 - Installation Commander.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Installation Commander. 637.3 Section 637.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.3 Installation Commander....

  17. 32 CFR 637.3 - Installation Commander.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Installation Commander. 637.3 Section 637.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.3 Installation Commander....

  18. 32 CFR 637.3 - Installation Commander.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Installation Commander. 637.3 Section 637.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.3 Installation Commander....

  19. 32 CFR 637.3 - Installation Commander.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Installation Commander. 637.3 Section 637.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.3 Installation Commander....

  20. XTCE. XML Telemetry and Command Exchange Tutorial

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad; Simon, Jerry

    2010-01-01

    An XML Telemetry Command Exchange (XTCE) tutoral oriented towards packets or minor frames is shown. The contents include: 1) The Basics; 2) Describing Telemetry; 3) Describing the Telemetry Format; 4) Commanding; 5) Forgotten Elements; 6) Implementing XTCE; and 7) GovSat.

  1. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  2. Autonomous Command Operation of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.

  3. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  4. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer...

  5. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer...

  6. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer...

  7. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer...

  8. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer...

  9. 32 CFR 643.120 - Post offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been...

  10. 32 CFR 643.120 - Post offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been...

  11. 32 CFR 643.120 - Post offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been...

  12. 32 CFR 643.120 - Post offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been...

  13. 32 CFR 643.120 - Post offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Post offices. 643.120 Section 643.120 National... Additional Authority of Commanders § 643.120 Post offices. Title 10 U.S.C. 4779b, provides that the SA shall assign suitable space for post office purposes at military posts where post offices have been...

  14. Deepwater Horizon oil spill monitoring using airborne multispectral infrared imagery

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Lewis, Paul E.

    2011-06-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil spill disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 85 missions that included over 325 hours of flight operation. This paper describes several advanced analysis capabilities specifically developed for the Deepwater Horizon mission to correctly locate, identify, characterize, and quantify surface oil using ASPECT's multispectral infrared data. The data products produced using these advanced analysis capabilities provided the Deepwater Horizon Incident Command with a capability that significantly increased the effectiveness of skimmer vessel oil recovery efforts directed by the U.S. Coast Guard, and were considered by the Incident Command as key situational awareness information.

  15. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  16. Expedition 33/34 Change of Command Ceremony

    NASA Video Gallery

    Expedition 33 Commander Suni Williams hands over station command to Expedition 34 Commander Kevin Ford in a ceremony that took place Saturday Nov. 17, 2012. Williams returned to Earth with two crew...

  17. Detail of west wall of south wing of commandant's house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of west wall of south wing of commandant's house with scale Fort Simcoe commandant's house & blockhouse - Fort Simcoe, Commandant's House & Blockhouse, Fort Simcoe Road, White Swan, Yakima County, WA

  18. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been.... (b) The pilot is a career NASA astronaut who has been designated to serve as the pilot on...

  19. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been.... (b) The pilot is a career NASA astronaut who has been designated to serve as the pilot on...

  20. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been.... (b) The pilot is a career NASA astronaut who has been designated to serve as the pilot on...

  1. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been.... (b) The pilot is a career NASA astronaut who has been designated to serve as the pilot on...

  2. Station Commander Captures Unprecedented View of Comet

    NASA Video Gallery

    International Space Station Commander Dan Burbank captured spectacular imagery of Comet Lovejoy as seen from about 240 miles above the Earth’s horizon on Wednesday, Dec. 21. Burbank described se...

  3. STS-81 Commander Mike Baker at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Commander Michael A. Baker talks to the press at the KSC Shuttle Landing Facility after he and his crew arrived at the space center for the final countdown preparations for the fifth Shuttle-Mir docking mission.

  4. Spacecraft command and control using expert systems

    NASA Technical Reports Server (NTRS)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  5. Schema for Spacecraft-Command Dictionary

    NASA Technical Reports Server (NTRS)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  6. Command Preprocessor for Radiotelescopes and Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1999-01-01

    The LQG controllers, designed for the NASA Deep Space Network antennas have small tracking errors and are resistant to wind disturbances. However, during antenna slewing, they induce limit cycling caused by the violation of the antenna rate and acceleration limits. This problem can be avoided by introduction of a command that does not exceed the limits. The command preprocessor presented in this paper generates a command that is equal to the original command if the latter does not exceed the limits, and varies with the maximal (or minimal) allowable rate and acceleration if the limits are met or exceeded. It is comparatively simple since it requires only knowledge of the command at the current and the previous time instants, while other known preprocessors require knowledge of the terminal state and the acquisition time. Thus, the presented preprocessor is more suitable for implementation. In this article analysis of the preprocessor is presented. Also the performances of the preprocessor itself, and of the antenna with the preprocessor is illustrated with typical antenna commands.

  7. ISS Update: Station Command and Data Handling System

    NASA Video Gallery

    NASA Public Affairs Officer Kylie Clem interviews ODIN flight controller Amy Brezinski, who monitors and commands the Command and Data Handling System for the International Space Station. Brezinski...

  8. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  9. Laser links for mobile airborne nodes

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  10. STS-47 Commander Gibson holds sky genie equipment during JSC egress training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson, wearing launch and entry suit (LES), holds sky genie equipment in proper position while listening to a training instructor's directions. Gibson along with the other STS-47 crewmembers is participating in post landing emergency egress procedures at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  11. SOA approach to battle command: simulation interoperability

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.

    2010-04-01

    NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.

  12. Managing the Risk of Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry W.

    2013-01-01

    Command File Error (CFE), as defined by the Jet Propulsion Laboratory's (JPL) Mission Operations Assurance (MOA) is, regardless of the consequence on the spacecraft, either: an error in a command file sent to the spacecraft, an error in the process for developing and delivering a command file to the spacecraft, or the omission of a command file that should have been sent to the spacecraft. The risk consequence of a CFE can be mission ending and thus a concern to space exploration projects during their mission operations. A CFE during space mission operations is often the symptom of some kind of imbalance or inadequacy within the system that comprises the hardware & software used for command generation and the human experts involved in this endeavour. As we move into an era of enhanced collaboration with other NASA centers and commercial partners, these systems become more and more complex and hence it is all the more important to formally model and analyze CFEs in order to manage the risk of CFEs. Here we will provide a summary of the ongoing efforts at JPL in this area and also explain some more recent developments in the area of developing quantitative models for the purpose of managing CFE's.

  13. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard...

  14. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Coast Guard District Commander or District Commander. 42.05-25 Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-25 Coast...

  15. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Coast Guard District Commander or District Commander. 42.05-25 Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-25 Coast...

  16. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard...

  17. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Coast Guard District Commander or District Commander. 42.05-25 Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-25 Coast...

  18. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Coast Guard District Commander or District Commander. 50.10-5 Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-5 Coast Guard...

  19. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the... subordinate commands are fully aware of the importance of strong, dynamic leadership and its relationship to the overall efficiency and readiness of naval forces. Commanders shall exercise positive...

  20. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval base. 700.1054 Section 700.1054 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval...

  1. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a...

  2. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a...

  3. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval base. 700.1054 Section 700.1054 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval...

  4. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  5. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  6. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  7. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  8. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  9. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5... General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-OES) is the Office of Operating... Commandant (CG-OES), U.S. Coast Guard Headquarters, 2100 2nd St. SW., Stop 7126, Washington, DC...

  10. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Commandant (CG-522); address. 147.5 Section 147.5... General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating... Commandant (CG-522), U.S. Coast Guard Headquarters, 2100 2nd St. SW., Stop 7126, Washington, DC...

  11. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Commandant (CG-522); address. 147.5 Section 147.5... General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating... Commandant (CG-522), U.S. Coast Guard Headquarters, 2100 2nd St. SW., Stop 7126, Washington, DC...

  12. Robot Task Commander with Extensible Programming Environment

    NASA Technical Reports Server (NTRS)

    Hart, Stephen W (Inventor); Yamokoski, John D. (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  13. Lessons learned in simulating a command center

    NASA Astrophysics Data System (ADS)

    Mack, Gregory A.; Cantor, Robert M.; Wenzel, Gregory

    1995-06-01

    This paper presents some lessons learned from simulating the operation of a command center in distributed interactive simulations (DIS). We present the design of the Booz Allen Command Center Systems Interface (C2SI) in terms of its functional architecture as well as the technologies used in its implementation. We discuss the design of the distributed component interfaces based on cooperating software agent pairs. We discuss aspects of several issues in simulating command and control systems in the ADS/DIS environment, namely, interoperation of constructive and virtual simulation, situation awareness, communication with adjacent C2 entities, control of subordinate entities and external sensors, terrain/environmental data management, and data collection for after-action reporting.

  14. Natural language interface for command and control

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    1986-01-01

    A working prototype of a flexible 'natural language' interface for command and control situations is presented. This prototype is analyzed from two standpoints. First is the role of natural language for command and control, its realistic requirements, and how well the role can be filled with current practical technology. Second, technical concepts for implementation are discussed and illustrated by their application in the prototype system. It is also shown how adaptive or 'learning' features can greatly ease the task of encoding language knowledge in the language processor.

  15. Visualization for cyber security command and control

    NASA Astrophysics Data System (ADS)

    Langton, John T.; Newey, Brent; Havig, Paul R.

    2010-04-01

    To address the unique requirements of cyber Command and Control (C2), new visualization methods are needed to provide situation awareness and decision support within the cyber domain. A key challenge is the complexity of relevant data: it is immense and multidimensional, includes streaming and log data, and comes from multiple, disparate applications and devices. Decision makers must be afforded a view of a) the current state of the cyber battlespace, b) enemy and friendly capabilities and vulnerabilities, c) correlations between cyber events, and d) potential effects of alternative courses of action within cyberspace. In this paper we present requirements and designs for Visualization for Integrated Cyber Command and Control (VIC3).

  16. Increased productivity in flight with voice commanding

    NASA Technical Reports Server (NTRS)

    Jordan, W. T.

    1985-01-01

    Automatic Speech Recognition technology has matured to the point where it can provide a viable means of increasing productivity by naturalizing the man-machine interface. With ever increasing workloads being placed on astronauts, speech recognition may provide an alternative means of system controlling that would reduce the task burden. Voice commanding, allowing hands-free operation, can be especially effective during operations requiring simultaneous system control. A flight experiment is under development to demonstrate the operational effectiveness of voice control by commanding the Space Shuttle's Closed Circuit Television (CCIV) system. This experiment will help direct future applications of voice entry to space operations.

  17. 33 CFR 150.606 - After learning of a possible violation, what does the Sector Commander, or the MSU Commander...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false After learning of a possible violation, what does the Sector Commander, or the MSU Commander, with COTP and OCMI authority do? 150.606....606 After learning of a possible violation, what does the Sector Commander, or the MSU Commander,...

  18. 33 CFR 150.606 - After learning of a possible violation, what does the Sector Commander, or the MSU Commander...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false After learning of a possible violation, what does the Sector Commander, or the MSU Commander, with COTP and OCMI authority do? 150.606....606 After learning of a possible violation, what does the Sector Commander, or the MSU Commander,...

  19. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  20. Positive commandable oiler for satellite bearing lubrication

    NASA Technical Reports Server (NTRS)

    James, G. E.

    1977-01-01

    On-orbit commandable lubrication of ball bearings accomplished by direct oil application to the moving ball surfaces was studied. Test results for the lubricant applicator portion of the system are presented in conjunction with a design approach for the reservoir and metering components.

  1. Positive commandable oiler for satellite bearing lubrication

    NASA Technical Reports Server (NTRS)

    James, G. E.

    1977-01-01

    The results of a feasibility study showed that on-orbit commandable lubrication of ball bearings can be accomplished by direct oil application to the moving ball surfaces. Test results for the lubricant applicator portion of the system are presented, in conjunction with a design approach for the reservoir and metering components.

  2. APOLLO 11 COMMANDER NEIL ARMSTRONG IN SIMULATOR

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 commander Neil Armstrong is going through flight training in the lunar module simulator situated in the flight crew training building at KSC. Armstrong will pilot the lunar module to a moon landing on July 20, following launch from KSC on July 16.

  3. Command Line Image Processing System (CLIPS)

    NASA Astrophysics Data System (ADS)

    Fleagle, S. R.; Meyers, G. L.; Kulinski, R. G.

    1985-06-01

    An interactive image processing language (CLIPS) has been developed for use in an image processing environment. CLIPS uses a simple syntax with extensive on-line help to allow even the most naive user perform complex image processing tasks. In addition, CLIPS functions as an interpretive language complete with data structures and program control statements. CLIPS statements fall into one of three categories: command, control,and utility statements. Command statements are expressions comprised of intrinsic functions and/or arithmetic operators which act directly on image or user defined data. Some examples of CLIPS intrinsic functions are ROTATE, FILTER AND EXPONENT. Control statements allow a structured programming style through the use of statements such as DO WHILE and IF-THEN - ELSE. Utility statements such as DEFINE, READ, and WRITE, support I/O and user defined data structures. Since CLIPS uses a table driven parser, it is easily adapted to any environment. New commands may be added to CLIPS by writing the procedure in a high level language such as Pascal or FORTRAN and inserting the syntax for that command into the table. However, CLIPS was designed by incorporating most imaging operations into the language as intrinsic functions. CLIPS allows the user to generate new procedures easily with these powerful functions in an interactive or off line fashion using a text editor. The fact that CLIPS can be used to generate complex procedures quickly or perform basic image processing functions interactively makes it a valuable tool in any image processing environment.

  4. Apollo 13 Command Module recovery after splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Crewmen aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission, hoist the Command Module aboard ship. The Apollo 13 crewmen were already aboard the Iwo Jima when this photograph was taken. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970 in the South Pacific Ocean.

  5. Lessons learned in command environment development

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel F.; Collie, Brad E.

    2000-11-01

    As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.

  6. Commander Brand sleeps on aft flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, with hands folded in front of his chest, sleeps on aft flight deck. Brand's head is just above aft flight deck floor with his back to onorbit station panels. The back and feet of a second crewmember appear next to Brand.

  7. RELATIONSHIP BETWEEN LINGUISTIC UNITS AND MOTOR COMMANDS.

    ERIC Educational Resources Information Center

    FROMKIN, VICTORIA A.

    ASSUMING THAT SPEECH IS THE RESULT OF A NUMBER OF DISCRETE NEUROMUSCULAR EVENTS AND THAT THE BRAIN CAN STORE ONLY A LIMITED NUMBER OF MOTOR COMMANDS WITH WHICH TO CONTROL THESE EVENTS, THE RESEARCH REPORTED IN THIS PAPER WAS DIRECTED TO A DETERMINATION OF THE SIZE AND NATURE OF THE STORED ITEMS AND AN EXPLANATION OF HOW SPEAKERS ENCODE A SEQUENCE…

  8. Ten Commandments for the School Nurse.

    ERIC Educational Resources Information Center

    Dworak, Esther S.

    2001-01-01

    This 1982 paper presents 10 commandments to guide school nurses, including: never allowing oneself to be ignored; always being included in school functions regarding child health; always participating in kindergarten roundups and similar activities to promote child health; always respecting parents' primary responsibility to the child; and always…

  9. iTOUGH2 Command Reference

    SciTech Connect

    Finsterle, Stefan

    2002-06-18

    iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media. This report contains a detailed description of all iTOUGH2 commands.

  10. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  11. Aero Commander in flight - Upswept fuselage study

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The NASA Flight Research Center's Aero Commander 680F is shown in flight with tufts attached to the side and bottom sections of the aircraft. These were placed on the aircraft for a Upswept Fuselage Study to see if the flow separated on the aft section of a small aircraft for comparison of data acquired from a large cargo-type aircraft with an upswept aft section. The photo of the tufts demonstrates that the flow is attached with no turbulence present. (Note the straight lines of tufts). The Aero Commander was used both for support and as a research aircraft. Among other uses, it was flown to outlying dry lakebeds, used as emergency landing sites, before X-15 flights. It could reach the lakebeds quickly and land on the hard-packed surfaces to ensure they were not soft from rainfall or some other cause. Between 1964 and 1966, the Flight Research Center used the aircraft in the Aviation Safety and Operating Problems Program to evaluate the aerodynamics of various light aircraft and to define possible technological improvements. The Aero Commander left what had become the Dryden Flight Research Center on March 14, 1979, and was transferred to the Customs Air Branch in San Diego. The Aero Commander 680F (N6297), built by the Aero Commander Company of Bethany, Oklahoma, is a pressurized five-place aircraft that is powered by two 380-horsepower reciprocating engines built by Lycoming Company. The fuselage length is 24.2 feet with a wing span of 35.98 feet.

  12. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  13. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  14. Remote Task-level Commanding of Centaur over Time Delay

    NASA Astrophysics Data System (ADS)

    Schreckenghost, Debra; Ngo, Tam; Burridge, Robert; Wang, Lui; Izygon, Michel

    2008-01-01

    Remote operation of robots on the lunar surface by ground controllers poses unique human-robot interaction challenges due to time delay and constrained bandwidth. One strategy for addressing these challenges is to provide task-level commanding of robots by a ground controller. Decision-support tools are being developed at JSC for remote task-level commanding over time-delay. The approach is to provide ground procedures that guide a controller when executing task-level command sequences and aid awareness of the state of command execution in the robot. This approach is being evaluated using the Centaur robot at JSC. The Centaur Central Commander provides a task-level command interface that executes on the robot side of the delay. Decision support tools have been developed for a human Supervisor in the JSC Cockpit to use when interacting with the Centaur Central Commander. Commands to the Central Commander are defined as instructions in a procedure. Sequences of these instructions are grouped into procedures for the Cockpit Supervisor. When a Supervisor is ready to perform a task, a procedure is loaded into the decision support tool. From this tool, the Supervisor can view command sequences and dispatch individual commands to Centaur. Commands are queued for execution on the robot side of the delay. Reliable command sequences can be dispatched automatically upon approval by the Supervisor. The decision support tool provides the Supervisor with feedback about which commands are waiting for execution and which commands have finished. It also informs the Supervisor when a command fails to have its intended effect. Cockpit procedures are defined using the Procedure Representation Language (PRL) developed at JSC for mission operations. The decision support tool is based on a Procedure Sequencer and multi-agent software developed for human-robot interaction. In this paper the approach for remote task-level commanding of robots is described and the results of the evaluation

  15. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  16. Domain specific software architectures: Command and control

    NASA Technical Reports Server (NTRS)

    Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave

    1992-01-01

    GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.

  17. Ground-Commanded Television Assembly (GCTA)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A ground-commanded color television assembly (GCTA) was designed for use on lunar explorations associated with NASA manned Apollo missions. The camera system as seen on Apollo 15 provided television coverage in the vicinity of the lunar module (LM) landing site, and was mounted on the lunar roving vehicle (LRV) to provide color coverage of astronaut activity and lunar topography during traverses on the surface. Remote control of the camera from earth was accomplished through the existing real-time Apollo command links. The assembly is illustrated. The configuration satisfied all anticipated requirements of the Apollo 15 mission and was fully responsive to specifications. The technical approach was based on proven designs and offered maximum mission flexibility, potential growth, and capability to withstand environmental extremes encountered on the lunar surface.

  18. ARAC: A unique command and control resource

    SciTech Connect

    Bradley, M.M.; Baskett, R.L.; Ellis, J.S.

    1996-04-01

    The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) is a centralized federal facility designed to provide real-time, world-wide support to military and civilian command and control centers by predicting the impacts of inadvertent or intentional releases of nuclear, biological, or chemical materials into the atmosphere. ARAC is a complete response system consisting of highly trained and experienced personnel, continually updated computer models, redundant data collection systems, and centralized and remote computer systems. With over 20 years of experience responding to domestic and international incidents, strong linkages with the Department of Defense, and the ability to conduct classified operations, ARAC is a unique command and control resource.

  19. Evaluation of a trajectory command concept for manual control of carrier approaches and landings

    NASA Technical Reports Server (NTRS)

    Mcneill, W. E.; Smith, G. A., Jr.; Gerdes, R. M.

    1982-01-01

    A novel trajectory control system concept was implemented to provide manual control of a conventional jet aircraft. This concept, called Total Aircraft Flight Control System (TAFCOS), utilizes an inverse model of the aerodynamic and propulsion characteristics and employs feedforward control to provide the required acceleration command. The concept requires on-board digital computations which can easily be handled by a modern airborne computer. The system was studied in a piloted simulation of the carrier approach and landing task with primarily visual flight and guidance cues. The principal modes of vertical flight-path control investigated were vertical velocity command and vertical acceleration command. The study included manual carrier approaches with and without moderate ship motion and associated air disturbances, and tests of the effects of discrete gusts. Manual control of flight path through this new concept was shown to be feasible as an addition to an automatic control system and to have potential as an improved mode of control over conventional control for the carrier approach task.

  20. Commander Lousma records PGU data on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Lousma, wearing communications kit assembly (ASSY) mini headset (HDST), records Plant Growth Unit (PGU) data for the Influence of Weightlessness on Plant Lignification Experiment at forward middeck locker MF14K. The experiment is designed to demonstrate the effect of weightlessness on the quantity and rate of lignin formation in different plant species during early stages of development. Port side bulkhead with window shade and filter kit appears behind Lousma and potable water tank below him. Trash bag also appears in view.

  1. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  2. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  3. Apollo 13 Command Module recovery after splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Crewmen aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission, guide the Command Module (CM) atop a dolly on board the ship. The CM is connected by strong cable to a hoist on the vessel. The Apollo 13 crewmen were already aboard the Iwo Jima when this photograph was taken. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970 in the South Pacific Ocean.

  4. Ground-Commanded Television Assembly (GCTA)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics of the Ground-Commanded Television Assembly (GCTA) are discussed. The equipment was used to provide television coverage of lunar surface explorations during Apollo 15, 16, and 17 missions. The subjects include the following; (1) yoke/faceplate qualification data, (2) elevation drive improvement program, (3) Apollo 17 thermal data, (4) equipment status, and (5) drawing status. Illustrations of the components of the assembly are provided. Tables of data are developed to show the performance of the components.

  5. Apollo experience report: Command module uprighting system

    NASA Technical Reports Server (NTRS)

    White, R. D.

    1973-01-01

    A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.

  6. Haise Commands First Enterprise Test Flights

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first crew members for the Space Shuttle Approach and Landing Tests (ALT) are photographed at the Rockwell International Space Division's Orbiter Assembly Facility at Palmdale, California. The Shuttle Enterprise is Commanded by former Apollo 13 Lunar Module pilot, Fred Haise (left) with C. Gordon Fullerton as pilot. The Shuttle Orbiter Enterprise was named after the fictional Starship Enterprise from the popular 1960's television series, Star Trek.

  7. 32 CFR 536.7 - Responsibilities of the Commander USARCS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... responsibilities set forth in § 536.9(a)(12). (p) Develop and maintain plans for a disaster or civil disturbance in... to any legal office or command throughout the world. When authorized by the chain of command...

  8. Astronaut Vance Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Vance D. Brand, command module pilot of the American ASTP crew, is seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  9. Expedition 27/28 Change of Command Ceremony

    NASA Video Gallery

    At 11:41 a.m. EDT Sunday, Dmitry Kondratyev, who has been the commander of Expedition 27 aboard the International Space Station, conducted a ceremonial change of command with Andrey Borisenko, who ...

  10. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation and for the time necessary to accomplish the mission. The appropriate major Army command (MACOM... coordination with the Commander USARCS, the MACOM will designate the area of responsibility for each...

  11. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation and for the time necessary to accomplish the mission. The appropriate major Army command (MACOM... coordination with the Commander USARCS, the MACOM will designate the area of responsibility for each...

  12. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation and for the time necessary to accomplish the mission. The appropriate major Army command (MACOM... coordination with the Commander USARCS, the MACOM will designate the area of responsibility for each...

  13. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft commander... 19 Customs Duties 1 2011-04-01 2011-04-01 false Responsibility of aircraft commander....

  14. Is EURONET C.C.L. a "Common" Command Language?

    ERIC Educational Resources Information Center

    Verheijen-Voogd, C.

    1981-01-01

    Presents a chart which compares selected command functions of DIMDI and IRS/ESA, two major versions of the EURONET Common Command Language, with the IRS/ESA-Quest retrieval language and includes specific remarks for most of the commands. (RBF)

  15. 32 CFR 700.902 - Eligibility for command at sea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Eligibility for command at sea. 700.902 Section... Present Contents § 700.902 Eligibility for command at sea. All officers of the line of the Navy, including... deck duties afloat, are eligible for command at sea....

  16. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard....

  17. 46 CFR 30.10-17 - Commandant-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Commandant-TB/ALL. 30.10-17 Section 30.10-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-17 Commandant—TB/ALL. The term Commandant means the Commandant of the Coast Guard....

  18. View of Apollo 14 crewmen in Command Module simulation training

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The members of the prime crew of the Apollo 14 lunar landing mission participate in Command Module simulation training at the Kennedy Space Center. Left to right, are Astronauts Edgar D. Mitchell, lunar module pilot; Sturat A. Roosa, command module pilot; and Alan B. Shepard Jr., commander.

  19. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a...

  20. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a...

  1. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  3. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Owens, T. M.; Mielke, R. R.

    1981-01-01

    Calculated principal-and off-principal plane patterns are presented for the following aircraft: de Havilland DHC-7, Rockwell Sabreliner 75A, Piper PA-31T Cheyenne, Lockheed Jet Star II, Piper PA-31-350 Navajo Chieftain, Beechcraft Duke B60, Rockwell Commander 700, Cessna Citation 3, Piper PA-31P Pressurized Navajo, Lear Jet, and Twin Otter DHC-6.

  4. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  5. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  6. STS-47 Commander Gibson and Pilot Brown at CCT side hatch during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson (right) and Pilot Curtis L. Brown, Jr, wearing launch and entry suits (LESs), pose in front of the Crew Compartment Trainer (CCT) mockup side hatch during post landing emergency egress procedures held at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note that the crew escape system (CES) pole is in position at side hatch but is not extended.

  7. Cognitive task analysis: Techniques applied to airborne weapons training

    SciTech Connect

    Terranova, M.; Seamster, T.L.; Snyder, C.E.; Treitler, I.E.; Carlow Associates, Inc., Fairfax, VA; Martin Marietta Energy Systems, Inc., Oak Ridge, TN; Tennessee Univ., Knoxville, TN )

    1989-01-01

    This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented along with the results. 6 refs., 2 figs., 4 tabs.

  8. 24 Command Fire Improvement Action Program Plan

    SciTech Connect

    GRIFFIN, G.B.

    2000-12-01

    Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements.

  9. Effective inpatient medication reconciliation: The 10 commandments.

    PubMed

    Siu, Henry K

    2015-01-01

    Medication Reconciliation (MedRec) is the comprehensive process of medication verification, clarification and documentation in an effort to avoid medication errors. There are many reasons that contribute to the inadequacies of current day inpatient MedRec. Among these include the limited medical literacy of patients, communication between providers and teams of providers, and the intrinsic difficulties of medical charting. Although the best approach to inpatient MedRec is not known, the following outlines the 10 most important aspects, or "Commandments", for effective inpatient MedRec. The tenets are not listed in any particular order of importance. PMID:25758318

  10. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  11. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  12. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  13. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  14. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Functions of the Commander, Naval Medical... PERSONNEL NAVAL DISCHARGE REVIEW BOARD Director, Secretary of the Navy Council of Review Boards and President Naval Discharge Review Board; Responsibilities in Support of the Naval Discharge Review...

  17. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the Commander, Naval Medical... PERSONNEL NAVAL DISCHARGE REVIEW BOARD Director, Secretary of the Navy Council of Review Boards and President Naval Discharge Review Board; Responsibilities in Support of the Naval Discharge Review...

  18. The command of biotechnology and merciful conquest in military opposition.

    PubMed

    Guo, Ji-Wei

    2006-11-01

    Biotechnology has an increasingly extensive use for military purposes. With the upcoming age of biotechnology, military operations are depending more on biotechnical methods. Judging from the evolving law of the theory of command, the command of biotechnology is feasible and inevitable. The report discusses some basic characteristics of modern theories of command, as well as the mature possibility of the command theory of military biotechnology. The evolution of the command theory is closely associated with the development of military medicine. This theory is expected to achieve successes in wars in an ultramicro, nonlethal, reversible, and merciful way and will play an important role in biotechnological identification and orientation, defense and attack, and the maintenance of fighting powers and biological monitoring. The command of military biotechnology has not become a part of the virtual military power yet, but it is an exigent strategic task to construct and perfect this theory. PMID:17153559

  19. The Arecibo Remote Command Center Program

    NASA Astrophysics Data System (ADS)

    Crawford, Fronefield; Jenet, Fredrick; Siemens, Xavier; Dolch, Timothy; Stovall, Kevin

    2016-07-01

    The Arecibo Remote Command Center (ARCC) is a multi-institution research and education program that introduces undergraduates to the field of pulsar research. Specifically, the program trains students to work in small teams to operate several of the world's largest radio telescopes (both Arecibo and the Green Bank Telescope). Students conduct survey observations for the PALFA Galactic plane pulsar survey and conduct timing observations of millisecond pulsars (MSPs) for the NANOGrav search for gravitational waves using these telescopes. In addition, ARCC students search pulsar candidates generated from processed survey data in order to find both new radio MSPs and non-recycled pulsars. The ARCC program currently operates at four U.S. institutions and involves more than 50 undergraduate students each year. To date, ARCC students have discovered 64 new pulsars in this program.

  20. A spacecraft computer repairable via command.

    NASA Technical Reports Server (NTRS)

    Fimmel, R. O.; Baker, T. E.

    1971-01-01

    The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.

  1. STS-99 Commander Kregel arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  2. STS-70 Mission Commander Henricks inspects tire

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Commander Terence 'Tom' Henricks inspects the nose wheel landing gear tires of the Space Shuttle Orbiter Discovery along with Mission Specialist Mary Ellen Weber after the spaceplane touched down on KSC's Runway 33 to successfully conclude the nearly nine-day space flight. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995 on the second landing attempt after the first opportunity was waved off. The orbiter was originally scheduled to land on the 21st, but fog and low visibility at the Shuttle Landing Facility led to the one-day extension. This was the 24th landing at KSC and the 70th Space Shuttle mission. During the space flight, the five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS- G). The other crew members were Pilot Kevin R. Kregel and Mission Specialists Nancy Jane Currie and Donald A. Thomas.

  3. STS-81 Commander Mike Baker suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Commander Michael A. Baker is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Baker is on his fourth space flight and will have responsibility for the 10-day mission, including the intricate docking and undocking maneuvers with the Russian Mir space station. He will also be in charge of two in-flight Risk Mitigation experiments and be the subject of a Human Life Sciences experiment. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  4. Collins named First Woman Shuttle Commander

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Just a few hours after NASA revealed that there is water ice on the Moon, U.S. First Lady Hillary Rodham Clinton introduced Air Force Lieutenant Colonel Eileen Collins to a packed auditorium at Dunbar Senior High School in Washington, D.C., as the first woman who will command a NASA space shuttle mission. With students at this school, which is noted for its pre-engineering program, cheering, Clinton said that Collins' selection “is one big step forward for women and one giant step for humanity.” Clinton added, “It doesn't matter if you are a boy or a girl, you can be an astronaut or a pilot, if you get a first-rate education in math and science.”

  5. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  6. Using HMI Weintek in command of an industrial robot arm

    NASA Astrophysics Data System (ADS)

    Barz, C.; Latinovic, T.; Balan, I. B. A.; Pop-Vadean, A.; Pop, P. P.

    2015-06-01

    The present paper intends to highlight the utility and importance of HMI in the control of the robotic arm, commanding a Siemens PLC. The touch screen HMI Weinteke MT3070a is the user interface in the process command of Siemens PLC, in which the distances and displacement speeds are introduced on the three axes. The interface includes monitoring robotic arm movement but also allows its command by incrementing step by step the motion over axis.

  7. Data acquisition command interface using VAX/VMS DCL

    SciTech Connect

    Poore, R.V.; Barrus, D.M.; Cort, G.; Goldstone, J.A.; Miller, L.B.; Nelson, R.O.

    1985-01-01

    The user interface to a data acquisition system is being developed at the Los Alamos Weapons Neutron Research Facility using the VAX/VMS command language interface DCL. Commands are being implemented which provide for system initialization and control functions and FASTBUS diagnostics. The data acquisition system incorporates the concept of a data acquisition ''state'' (running, halted, etc.) where a certain subset of input commands is allowed.

  8. Astronaut Alan Bean assisted with egressing command module after landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, is assisted with egressing the Apollo 12 Command Module by a U.S. Navy underwater demolition team swimmer during recovery operations in the Pacific Ocean. Already in the life raft are Astronauts Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot. The Apollo 12 splashdown occured at 2:58 p.m., November 24, 1969 near American Samoa.

  9. Conference room 211, adjacent to commander's quarters, with vault door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Conference room 211, adjacent to commander's quarters, with vault door at right. Projection area at center is equipped with automatic security drapes. Projection room uses a 45 degree mirror to reflect the image onto the frosted glass screen. Door on far left leads to display area senior battle staff viewing bridge, and the commander's quarters - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  10. An emergency command recognizer for voiced system control

    NASA Astrophysics Data System (ADS)

    Wetterlind, P.; Johnston, Waymon L.

    1987-10-01

    An algorithm for accepting speaker-independent voiced input, aimed especially at accommodating emergency acoustic commands, is described. The algorithm is directed toward correctly identifying commands from speaker-independent acoustic input using machine recognition of common, standarized phonemic input, using these recognized sounds to reconstruct entire words and phrases. Speaker-dependent phonemes are not used during the command reconstruction process, so that speaker idiosyncracies are accommodated. Machine recognition extends to voice pitch and emotional tension characteristics.

  11. XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad

    2008-01-01

    These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.

  12. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  13. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  14. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  15. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  16. 17. SITE BUILDING 002 SCANNER BUILDING COMMANDER'S OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SITE BUILDING 002 - SCANNER BUILDING - COMMANDER'S OFFICE VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. An implantable micropower command receiver for telemetry battery power switching.

    PubMed

    Sweeney, J D; Leung, A; Ko, W H

    1981-01-01

    Command receivers that control the functioning of additional implanted circuitry can be useful in many medical telemetry applications. The authors have designed and constructed a thick-film hybrid command receiver system that directly interfaces with the second-generation ICP telemetry system. This command receiver controls telemetry on/off state through enabling/disabling the telemetry pulse generator stage. Lithium battery powering of the implant is made practical through use of this command receiver. An automatic power shutdown feature is incorporated to guard against accidental battery drain. The unit uses two commercial CMOS integrated circuits, a transistor, a resistor and an RF coil. PMID:7295932

  18. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  19. Implications of an Improvised Nuclear Device Detonation on Command and Control for Surrounding Regions at the Local, State and Federal Levels

    SciTech Connect

    Pasquale, David A.; Hansen, Richard G.

    2013-01-23

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would the current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?

  20. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  1. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  2. Pulsed Doppler lidar airborne scanner

    NASA Astrophysics Data System (ADS)

    Dimarzio, C. A.; McVicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-10-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  3. 46 CFR 90.10-9 - Coast Guard District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Coast Guard District Commander. 90.10-9 Section 90.10-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-9 Coast Guard District Commander. This...

  4. 46 CFR 167.05-15 - Coast Guard District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Coast Guard District Commander. 167.05-15 Section 167.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-15 Coast Guard District Commander. This term means an officer of...

  5. 46 CFR 90.10-9 - Coast Guard District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Coast Guard District Commander. 90.10-9 Section 90.10-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-9 Coast Guard District Commander. This...

  6. 46 CFR 167.05-15 - Coast Guard District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Coast Guard District Commander. 167.05-15 Section 167.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-15 Coast Guard District Commander. This term means an officer of the Coast Guard designated as such by...

  7. 46 CFR 188.10-13 - Coast Guard District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Coast Guard District Commander. 188.10-13 Section 188.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-13 Coast Guard District Commander. This term means an officer of the...

  8. 46 CFR 90.10-9 - Coast Guard District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Coast Guard District Commander. 90.10-9 Section 90.10-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-9 Coast Guard District Commander. This...

  9. 46 CFR 167.05-15 - Coast Guard District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Coast Guard District Commander. 167.05-15 Section 167.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-15 Coast Guard District Commander. This term means an officer of the Coast Guard designated as such by...

  10. 46 CFR 90.10-9 - Coast Guard District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Coast Guard District Commander. 90.10-9 Section 90.10-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-9 Coast Guard District Commander. This...

  11. 46 CFR 188.10-13 - Coast Guard District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Coast Guard District Commander. 188.10-13 Section 188.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-13 Coast Guard District Commander. This term means an officer of the...

  12. 46 CFR 90.10-9 - Coast Guard District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Coast Guard District Commander. 90.10-9 Section 90.10-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-9 Coast Guard District Commander. This...

  13. 46 CFR 167.05-15 - Coast Guard District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Coast Guard District Commander. 167.05-15 Section 167.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-15 Coast Guard District Commander. This term means an officer of...

  14. 46 CFR 167.05-15 - Coast Guard District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Coast Guard District Commander. 167.05-15 Section 167.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-15 Coast Guard District Commander. This term means an officer of...

  15. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  16. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  17. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  18. Photocopy of photograph (original located in Command Historian's Archives, Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original located in Command Historian's Archives, Naval Facilities Engineering Command, Port Hueneme, California). George E. Kidder-Smith, photographer, April 1945, Photograph #109-1. BUILDING 10, SOUTH SIDE, FACING NORTHWEST - Roosevelt Base, Fleet Landing Building, Bounded by Richardson & Pratt Avenues, Maryland & West Virginia Streets, Long Beach, Los Angeles County, CA

  19. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system requirements. 417.303 Section 417.303 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.303 Command control system requirements. (a) General....

  20. 32 CFR Appendix A to Part 192 - Checklist for Commanders

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Checklist for Commanders A Appendix A to Part...) MISCELLANEOUS EQUAL OPPORTUNITY IN OFF-BASE HOUSING Pt. 192, App. A Appendix A to Part 192—Checklist for Commanders A. Are all assigned personnel informed of the Equal Opportunity in Off-Base Housing...

  1. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305 Section 417.305 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A...

  2. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305 Section 417.305 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A...

  3. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106 Section 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system,...

  4. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106 Section 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system,...

  5. Apollo 9 Command/Service Modules photographed from Lunar Module

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 9 Command/Service Modules photographed from the Lunar Module, 'Spider', on the fifth day of the Apollo 9 earth-orbital mission. Docking mechanism is visible in nose of the Command Module, 'Gumdrop'. Object jutting out from the Service Module aft bulkhead is the high-gain S-Band antenna.

  6. 76 FR 1975 - Disestablishment of United States Joint Forces Command

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ..., 2011 [FR Doc. 2011-590 Filed 1-10-11; 11:15 am] Billing code 5000-04-P ... Memorandum of January 6, 2011--Disestablishment of United States Joint Forces Command #0; #0; #0... of United States Joint Forces Command Memorandum for the Secretary of Defense Pursuant to...

  7. 3 CFR - Disestablishment of United States Joint Forces Command

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Disestablishment of United States Joint Forces... of United States Joint Forces Command Memorandum for the Secretary of Defense Pursuant to my... States Joint Forces Command, effective on a date to be determined by the Secretary of Defense. I...

  8. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subordinate commands are fully aware of the importance of strong, dynamic leadership and its relationship to the overall efficiency and readiness of naval forces. Commanders shall exercise positive leadership and actively develop the highest qualities of leadership in persons with positions of authority...

  9. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subordinate commands are fully aware of the importance of strong, dynamic leadership and its relationship to the overall efficiency and readiness of naval forces. Commanders shall exercise positive leadership and actively develop the highest qualities of leadership in persons with positions of authority...

  10. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subordinate commands are fully aware of the importance of strong, dynamic leadership and its relationship to the overall efficiency and readiness of naval forces. Commanders shall exercise positive leadership and actively develop the highest qualities of leadership in persons with positions of authority...

  11. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subordinate commands are fully aware of the importance of strong, dynamic leadership and its relationship to the overall efficiency and readiness of naval forces. Commanders shall exercise positive leadership and actively develop the highest qualities of leadership in persons with positions of authority...

  12. 32 CFR 809a.10 - Military commanders' responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Military commanders' responsibilities. 809a.10... Disturbance Intervention and Disaster Assistance § 809a.10 Military commanders' responsibilities. (a... enforced by the military. These will be announced by local proclamation or order, and will be given...

  13. 32 CFR 809a.10 - Military commanders' responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Military commanders' responsibilities. 809a.10... Disturbance Intervention and Disaster Assistance § 809a.10 Military commanders' responsibilities. (a... enforced by the military. These will be announced by local proclamation or order, and will be given...

  14. 32 CFR 809a.10 - Military commanders' responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Military commanders' responsibilities. 809a.10... Disturbance Intervention and Disaster Assistance § 809a.10 Military commanders' responsibilities. (a... enforced by the military. These will be announced by local proclamation or order, and will be given...

  15. Team Cognition in Experienced Command-and-Control Teams

    ERIC Educational Resources Information Center

    Cooke, Nancy J.; Gorman, Jamie C.; Duran, Jasmine L.; Taylor, Amanda R.

    2007-01-01

    Team cognition in experienced command-and-control teams is examined in an UAV (Uninhabited Aerial Vehicle) simulation. Five 3-person teams with experience working together in a command-and-control setting were compared to 10 inexperienced teams. Each team participated in five 40-min missions of a simulation in which interdependent team members…

  16. Commander's conference room (room 202), closet and hallway to bathroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Commander's conference room (room 202), closet and hallway to bathroom and bedroom, leading to conference room 211. Viewing windows look down on the display area. View to north - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  17. SOUTH ELEVATION OF BATTERY COMMAND CENTER WITH GRADUATED MEASURING POLE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF BATTERY COMMAND CENTER WITH GRADUATED MEASURING POLE. THE ENTRY STAIRWAY IS IN THE FOREGROUND. THE ABOVE-GROUND SECTION OF THE STRUCTURE IS ON THE RIGHT, UNDERGROUND PORTION ON THE LEFT. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  18. Young Children and Turtle Graphics Programming: Understanding Turtle Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    The LOGO programing language developed for children includes a set of primitive graphics commands that control the displacement and rotation of a display screen cursor called a turtle. The purpose of this study was to examine 4- to 7-year-olds' understanding of single turtle commands as transformations that connect turtle states and to…

  19. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305 Section 417.305 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A...

  20. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305 Section 417.305 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A...

  1. 32 CFR 809a.10 - Military commanders' responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Military commanders' responsibilities. 809a.10... Disturbance Intervention and Disaster Assistance § 809a.10 Military commanders' responsibilities. (a... enforced by the military. These will be announced by local proclamation or order, and will be given...

  2. Teachers' Commands and Their Role in Preschool Classrooms

    ERIC Educational Resources Information Center

    Bertsch, Kathy M.; Houlihan, Daniel; Lenz, Melissa A.; Patte, Christi A.

    2009-01-01

    Introduction: Many aspects of teacher competency have been previously examined, particularly a teacher's ability to give commands effectively. Teachers' instructions to students within the classroom, aid in the acquisition of both the students' academic and nonacademic skills. Teachers' commands promote verbal and social skills, and facilitate…

  3. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type... appropriate category and class rating; and (2) An instrument rating or privilege that applies to the aircraft being flown if the flight is under IFR; and (3) The appropriate pilot type rating for the...

  4. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type... appropriate category and class rating; and (2) An instrument rating or privilege that applies to the aircraft being flown if the flight is under IFR; and (3) The appropriate pilot type rating for the...

  5. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type... appropriate category and class rating; and (2) An instrument rating or privilege that applies to the aircraft being flown if the flight is under IFR; and (3) At least a pilot type rating for the aircraft...

  6. 19 CFR 122.36 - Responsibility of aircraft commander.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Responsibility of aircraft commander. 122.36...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.36 Responsibility of aircraft commander. If an aircraft lands in the U.S. and Customs officers have not arrived, the aircraft...

  7. Frogmen on Apollo command module boilerplate flotation collar during recovery

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Apollo command module boilerplate floats in the Atlantic Ocean during a practice recovery exercise. Frogmen in a liferaft and on the flotation collar secure the command module boilerplate for hoisting onto a nearby recovery ship. The exercise was conducted in preparation for the forthcoming Apollo-Saturn 201 (AS-201) mission.

  8. Apollo 11 Facts [Post Flight Press Conference]. Part 2 of 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A continuation of 'Apollo 11 Facts: Post Flight Press Conference, Part 1 of 2' (internal ID 2001181405), this video shows Apollo 11 Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin, Jr., and Command Module Pilot Michael Collins during a post flight press conference, where they describe their experiences on the mission. The astronauts then answer questions from the audience.

  9. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  10. Program for Editing Spacecraft Command Sequences

    NASA Technical Reports Server (NTRS)

    Gladden, Roy; Waggoner, Bruce; Kordon, Mark; Hashemi, Mahnaz; Hanks, David; Salcedo, Jose

    2006-01-01

    Sequence Translator, Editor, and Expander Resource (STEER) is a computer program that facilitates construction of sequences and blocks of sequences (hereafter denoted generally as sequence products) for commanding a spacecraft. STEER also provides mechanisms for translating among various sequence product types and quickly expanding activities of a given sequence in chronological order for review and analysis of the sequence. To date, construction of sequence products has generally been done by use of such clumsy mechanisms as text-editor programs, translating among sequence product types has been challenging, and expanding sequences to time-ordered lists has involved arduous processes of converting sequence products to "real" sequences and running them through Class-A software (defined, loosely, as flight and ground software critical to a spacecraft mission). Also, heretofore, generating sequence products in standard formats has been troublesome because precise formatting and syntax are required. STEER alleviates these issues by providing a graphical user interface containing intuitive fields in which the user can enter the necessary information. The STEER expansion function provides a "quick and dirty" means of seeing how a sequence and sequence block would expand into a chronological list, without need to use of Class-A software.

  11. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  12. Implementation of a medical command and control team in Switzerland.

    PubMed

    Carron, Pierre-Nicolas; Reigner, Philippe; Vallotton, Laurent; Clouet, Jean-Gabriel; Danzeisen, Claude; Zürcher, Mathias; Yersin, Bertrand

    2014-04-01

    In case of a major incident or disaster, the advance medical rescue command needs to manage several essential tasks simultaneously. These include the rapid deployment of ambulance, police, fire and evacuation services, and their coordinated activity, as well as triage and emergency medical care on site. The structure of such a medical rescue command is crucial for the successful outcome of medical evacuation at major incidents. However, little data has been published on the nature and structure of the command itself. This study presents a flexible approach to command structure, with two command heads: one emergency physician and one experienced paramedic. This approach is especially suitable for Switzerland, whose federal system allows for different structures in each canton. This article examines the development of these structures and their efficiency, adaptability and limitations with respect to major incident response in the French-speaking part of the country. PMID:24601925

  13. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  14. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  15. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  16. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  17. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  18. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  19. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  20. Use of modern control theory in military command and control

    NASA Astrophysics Data System (ADS)

    Busch, Timothy E.

    2001-09-01

    This paper discusses the use of modern control theoretic approaches in military command and control. The military enterprise is a highly dynamic and nonlinear environment. The desire on the part of military commanders to operate at faster operational tempos while still maintaining a stable and robust system, naturally leads to the consideration of a control theoretic approach to providing decision aids. I will present a brief history of the science of command and control of military forces and discuss how modern control theory might be applied to air operations.

  1. STS-48 Commander Creighton, in LES, uses sky genie during JSC egress exercise

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Commander John O. Creighton, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), works his way to the ground using a sky genie device. Creighton exited JSC's Full Fuselage Trainer (FFT) via an aft flight deck overhead window and lowers himself to the ground as technicians assist and look on. Creighton, along with the other crewmembers, participated in post-landing emergency egress procedures in the Mockup and Integration Laboratory (MAIL) Bldg 9A.

  2. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  3. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  4. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  5. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  6. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  7. 33 CFR 67.40-1 - Notification to District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... notify the District Commander by either telegram or overnight mail on the day they begin construction... same manner as prescribed in the case of Class “A” structures, except that the telegram on the...

  8. 33 CFR 67.40-1 - Notification to District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... notify the District Commander by either telegram or overnight mail on the day they begin construction... same manner as prescribed in the case of Class “A” structures, except that the telegram on the...

  9. 33 CFR 67.40-1 - Notification to District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... notify the District Commander by either telegram or overnight mail on the day they begin construction... same manner as prescribed in the case of Class “A” structures, except that the telegram on the...

  10. STS-85 Commander Curtis Brown arrives at SLF for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Commander Curtis L. Brown, Jr., arrives at the Shuttle Landing Facility for his mission's Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The liftoff of STS-85 is targeted for August 7, 1997.

  11. 32 CFR 809a.10 - Military commanders' responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION INSTALLATION ENTRY POLICY, CIVIL DISTURBANCE INTERVENTION AND DISASTER ASSISTANCE Civil Disturbance Intervention and Disaster Assistance § 809a.10 Military commanders' responsibilities. (a..., floods, hurricanes, and other natural disasters, arrangements should be made for the identification...

  12. Astronauts Stafford and Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two American ASTP crewmen, Astronauts Thomas P. Stafford (foreground) and Vance D. Brand are seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  13. 14 CFR § 1214.703 - Chain of command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... astronaut who has been designated to serve as commander on a particular flight, and who shall have the... Space Center, Houston, TX. (b) The pilot is a career NASA astronaut who has been designated to serve...

  14. ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL DETAILS. DATED 03/15/1971 - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  15. 49. COMMAND INFORMATION CENTER (CIC) AFT LOOKING FORWARD PORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. COMMAND INFORMATION CENTER (CIC) - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING VARIOUS TYPES OF RADAR UNITS, PLOT TABLES AND PLOTTING BOARDS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. ISS Commander Plays Alabama Fight Song from Space

    NASA Video Gallery

    Even the International Space Station is abuzz about the BCS Championship game. NASA astronaut Kevin Ford, who is the current commander of the station, is a Notre Dame alumnus, and he’s been havin...

  17. 70. Commander's launch control console, plexiglass shield down, looking southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Commander's launch control console, plexiglass shield down, looking southeast, filing cabinet in corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  18. Command shaping for residual vibration free crane maneuvers

    NASA Astrophysics Data System (ADS)

    Parker, G. G.; Petterson, B.; Dohrmann, C.; Robinett, R. D.

    1995-01-01

    Cranes used in the construction and transportation industries are generally devices with multiple degrees of freedom including variable load-line length, variable jib length (usually via a trolley), and variable boom angles. Point-to-point payload maneuvers using cranes are performed so as not to excite the spherical pendulum modes of their cable and payload assemblies. Typically, these pendulum modes, although time-varying, exhibit low frequencies. Current crane maneuvers are therefore performed slowly contributing to high construction and transportation costs. This investigation details a general method for applying command shaping to various multiple degree of freedom cranes such that the payload moves to a specified point without residual oscillation. A dynamic programming method is used for general command shaping for optimal maneuvers. Computationally, the dynamic programming approach requires order M calculations to arrive at a solution, where M is the number of discretizations of the input commands. This feature is exploited for the crane command shaping problem allowing for rapid calculation of command histories. Fast generation of commands is a necessity for practical use of command shaping for the applications described in this work. These results are compared to near-optimal solutions where the commands are linear combinations of acceleration pulse basis functions. The pulse shape is required due to hardware requirements. The weights on the basis functions are chosen as the solution to a parameter optimization problem solved using a Recursive Quadratic Programming technique. Simulation results and experimental verification for a variable load-line length rotary crane are presented using both design procedures.

  19. Command shaping for residual vibration free crane maneuvers

    SciTech Connect

    Parker, G.G.; Petterson, B.; Dohrmann, C.; Robinett, R.D.

    1995-07-01

    Cranes used in the construction and transportation industries are generally devices with multiple degrees of freedom including variable load-line length, variable jib length (usually via a trolley), and variable boom angles. Point-to-point payload maneuvers using cranes are performed so as not to excite the spherical pendulum modes of their cable and payload assemblies. Typically, these pendulum modes, although time-varying, exhibit low frequencies. Current crane maneuvers are therefore performed slowly contributing to high construction and transportation costs. This investigation details a general method for applying command shaping to various multiple degree of freedom cranes such that the payload moves to a specified point without residual oscillation. A dynamic programming method is used for general command shaping for optimal maneuvers. Computationally, the dynamic programming approach requires order M calculations to arrive at a solution, where M is the number of discretizations of the input commands. This feature is exploited for the crane command shaping problem allowing for rapid calculation of command histories. Fast generation of commands is a necessity for practical use of command shaping for the applications described in this work. These results are compared to near-optimal solutions where the commands are linear combinations of acceleration pulse basis functions. The pulse shape is required due to hardware requirements. The weights on the basis functions are chosen as the solution to a parameter optimization problem solved using a Recursive Quadratic Programming technique. Simulation results and experimental verification for a variable load-line length rotary crane are presented using both design procedures.

  20. Command Preprocessor for the Beam-Waveguide Antennas

    NASA Astrophysics Data System (ADS)

    Gawronski, W.

    1998-10-01

    The high-gain linear quadratic Gaussian (LQG) controllers, designed for 32-GHz (Ka-band) monopulse tracking, have small tracking errors and are resistant to wind disturbances. However, during antenna slewing, they induce limit cycling caused by the violation of the antenna rate and acceleration limits. This problem can be avoided by the introduction of a command that does not exceed the limits. The command preprocessor presented in this article generates a command that is equal to the original command if the latter does not exceed the limits and varies with the maximal (or minimal) allowable rate and acceleration if the limits are met or exceeded. It is comparatively simple since it requires only knowledge of the command at the current and the previous time instants, while other known preprocessors require knowledge of the terminal state and the acquisition time. Thus, the presented preprocessor is more suitable for implementation into the antenna control software. In this article, analysis of the preprocessor is presented. Also, the performances of the preprocessor itself and of the antenna with the preprocessor are illustrated with typical antenna commands.

  1. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  2. Use of Spacecraft Command Language for Advanced Command and Control Applications

    NASA Technical Reports Server (NTRS)

    Mims, Tikiela L.

    2008-01-01

    The purpose of this work is to evaluate the use of SCL in building and monitoring command and control applications in order to determine its fitness for space operations. Approximately 24,325 lines of PCG2 code was converted to SCL yielding a 90% reduction in the number of lines of code as many of the functions and scripts utilized in SCL could be ported and reused. Automated standalone testing, simulating the actual production environment, was performed in order to generalize and gauge the relative time it takes for SCL to update and write a given display. The use of SCL rules, functions, and scripts allowed the creation of several test cases permitting the detection of the amount of time it takes update a given set of measurements given the change in a globally existing CUI or CUI. It took the SCL system an average 926.09 ticks to update the entire display of 323 measurements.

  3. Command and Data Handling Branch Internship

    NASA Technical Reports Server (NTRS)

    Billings, Rachel Mae

    2016-01-01

    Modular Integrated Stackable Layers (MISL) is a computer system designed for simple, fast, and cost effective flexible reconfiguration in space environments such as the ISS and Orion projects for various uses. Existing applications include wireless and wired communications, data acquisition and instrumentation, and camera systems, and potential applications include bus protocol converters and subsystem control. MISL is based on Texas Instruments (TI)' MSP430 16-bit ultra-low-power microcontroller device. The purpose of my project was to integrate the MISL system with a liquid crystal display (LCD) touchscreen. The LCD, manufactured by Crystalfontz and part number CFAF320240F-035T-TS, is a 320 by 240 RGB resistive color screen including an optional carrier board. The vast majority of the project was done with Altium Designer, a tool for printed circuit board (PCB) schematic capture, 3D design, and FPGA (Field Programmable Gate Array) development. The new PCB was to allow the LCD to directly stack to the rest of MISL. Research was done with datasheets for the TI microcontroller and touchscreen display in order to meet desired hardware specifications. Documentation on prior MISL projects was also utilized. The initial step was to create a schematic for the LCD, power bus, and data bus connections between components. A layout was then designed with the required physical dimensions, routed traces and vias, power and ground planes, layer stacks, and other specified design rules such as plane clearance and hole size. Multiple consultation sessions were held with Hester Yim, the technical discipline lead for the Command and Data Handling Branch, and Christy Herring, the lead PCB layout designer in the Electronic Design and Manufacturing Branch in order to ensure proper configuration. At the moment, the PCB is awaiting revision by the latter-mentioned branch. Afterwards, the board will begin to undergo the manufacturing and testing process. Throughout the internship at

  4. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  5. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  6. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  7. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  8. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  9. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  10. Extension to distributed annotation system: Summary and summaryplot commands.

    PubMed

    Chrysostomou, Charalambos; Brookes, Anthony J

    2015-08-01

    In recent years, the development of high-throughput sequencing technologies provided an effective way to generate data from entire genomes and test variants from thousands of individuals. The information acquired from analysing the data generated from high-throughput sequencing technologies provided useful insights into applications like whole-exome sequencing and targeted sequencing to discover the genetic cause of complex diseases and drug responses. The Distributed Annotation System (DAS) is one of the proposed solution developed to share and unify biological data from multiple local and remote DAS annotation servers. The researchers can use DAS to request data from federated or centralised databases and integrate them into a unified view. Furthermore, with the use of Reference DAS servers, structural and sequence data can be used to accompany annotation data, for the pursue of new knowledge for a particular feature or region. In this paper, two additional commands, summary and summary-plot commands, to the existing DAS protocol are proposed and implemented. The proposed commands were created in order to give the users the capabilities to request a summary of features for a particular region of interest. The summary command was created in order to extend the capabilities of the current DAS protocol, while the summaryplot command was created to provide a more user-friendly alternative to standard XML DAS responses. Finally, three examples are presented based on the GENCODE annotation data. PMID:26738065

  11. Command and control displays for space vehicle operations

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Zetocha, Paul; Aleva, Denise

    2010-04-01

    This paper shall examine several command and control facility display architectures supporting space vehicle operations, to include TacSat 2, TacSat 3, STPSat 2, and Communications Navigation Outage Forecasting System (CNOFS), located within the Research Development Test & Evaluation Support Complex (RSC) Satellite Operations Center 97 (SOC-97) at Kirtland Air Force Base. A principal focus is to provide an understanding for the general design class of displays currently supporting space vehicle command and control, e.g., custom, commercial-off-the-shelf, or ruggedized commercial-off-the-shelf, and more specifically, what manner of display performance capabilities, e.g., active area, resolution, luminance, contrast ratio, frame/refresh rate, temperature range, shock/vibration, etc., are needed for particular aspects of space vehicle command and control. Another focus shall be to address the types of command and control functions performed for each of these systems, to include how operators interact with the displays, e.g., joystick, trackball, keyboard/mouse, as well as the kinds of information needed or displayed for each function. [Comparison with other known command and control facilities, such as Cheyenne Mountain and NORAD Operations Center, shall be made.] Future, anticipated display systems shall be discussed.

  12. A packet-based concept for spacecraft command planning

    NASA Technical Reports Server (NTRS)

    Barnes, Valerie B.

    1993-01-01

    The current generation of spacecraft being developed and operated by the Applied Physics Laboratory provides users with access to a broad spectrum of scientific instruments on maneuverable platforms that can be oriented for observation of both moving and stationary targets of interest. The capability of these increasingly complex spacecraft to perform data collection operations is approaching one observation per orbit. To enable both rapid configuration and generation of complex spacecraft command sequences, as well as reusability of command sequences among data collection operations, a packet-based concept for spacecraft command planning has been developed. The configuration of the spacecraft for any operation is designed using 'packets' where a packet represents a set of commands that is reusable. The packets can be combined in varying levels of functionality, and in varying time relationships, to create an observation timeline. At the lowest packet level are primitives. Primitives relate the details of command generation for a particular spacecraft to a 'message template.' Thus the packet concept itself is reusable from one spacecraft to the next.

  13. ITOUGH2 command reference. Version 3.1

    SciTech Connect

    Finsterle, S.

    1997-04-01

    This report contains a detailed description of all ITOUGH2 commands. It complements the ITOUGH2 User`s Guide and the collection of ITOUGH2 sample problems. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media. Extensive experience in using TOUGH2 is a prerequisite for using ITOUGH2. The preparation of an input file for TOUGH2 or its derivatives is described in separate manuals and is not part of this report. The ITOUGH2 user`s guide summarizes the inverse modeling theory pertaining to ITOUGH2, and describes the program output. Furthermore, information about code architecture and installation are given. In Chapter 2 of this report, a brief summary of inverse modeling theory is given to restate the main concepts implemented in ITOUGH2 and to introduce certain definitions. Chapter 3 introduces the basic concepts of the ITHOUGH2 input language and the main structure of an ITOUGH2 input file. Chapter 4, the main part of this report, provides detailed descriptions of each ITOUGH2 command in alphabetical order. It is complemented by a command index in Appendix B in which the commands are given in logical order. The content of Chapter 4 is also available on-line using command it2help. Chapter 5 describes the usage of the UNIX script files for executing, checking, and terminating ITOUGH2 simulations.

  14. Virtual command center for distributed collaborative undersea warfare

    NASA Astrophysics Data System (ADS)

    Barton, Robert J., III; Encarnacao, L. M.; Shane, Richard T.; Drew, Ernest; Mulhearn, Jim F.

    2000-08-01

    The Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT) and its partners have developed a prototype CTI (Command Technology Initiatives) Test Bed to demonstrate the utility of a facility where warfighters, government, academia and industry can evaluate the application of collaborate decision support and advanced computer graphics technologies to submarine command and control. The CTI Test bed is currently comprised of three components: Collaborative Visualization Environment (CVE) for Submarine Command and Control, which provides a coherent 3-D display of the perceived undersea battlespace. Individual windows can display multi-dimensional data/information to support a common picture of undersea battlespace management and tactical control; Submarine Fleet Mission Programming Library (SFMPL) which provides environmental data, such as transmission loss, to CVE; Command and Control Data Server which provides contact reports, areas of uncertainty, and ownship/contact motion to CVE Facilitated by a CORBA4 (Common Object Request Broker Architecture) compliant architecture, remotely connected collaborators interact via a computer network to generate and share information. Additionally, collaborators communicate orally via network telephony. Currently, the CTI Test bed is configured to provide volumetric displays of: undersea battlespace w/ bathymetry; Detection/Counter-detection regions for a given probability of detection; Contact(s) Volume of Uncertainty The CTI Test Bed provides a CORBA compliant framework, which can be readily expanded to evaluate candidate applications of collaborative command and tactical decision support and advanced computer graphics technologies.

  15. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  16. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  17. 32 CFR 700.880 - Duties of the prospective commanding officer of a ship.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Duties of the prospective commanding officer of... RECORDS The Commanding Officer Special Circumstances/prospective Commanding Officers § 700.880 Duties of the prospective commanding officer of a ship. (a) Except as may be prescribed by the Chief of...

  18. Research into command, control, and communications in space construction

    NASA Technical Reports Server (NTRS)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  19. STS-93 Commander Eileen Collins waves to her family

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen M. Collins waves to her family nearby, a last meeting before launch of mission STS-93 on July 20. Liftoff is scheduled for 12:36 a.m. EDT. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  20. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  1. Mission operations and command assurance - Automating an operations TQM task

    NASA Technical Reports Server (NTRS)

    Welz, Linda; Kazz, Sheri; Potts, Sherrill; Witkowski, Mona; Bruno, Kristin

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of mission operations through defect prevention and error management. A major element of this program, Mission Operations and Command Assurance (MO&CA), provides a system level function on flight projects to instill quality in mission operations. MO&CA embodies the total quality management TQM principle of continuous process improvement (CPI) and uses CPI in applying automation to mission operations to reduce risk and costs. MO&CA has led efforts to apply and has implemented automation in areas that impact the daily flight project work environment including Incident Surprise Anomaly tracking and reporting; command data verification, tracking and reporting; and command support data usage. MO&CA's future work in automation will take into account that future mission operations systems must be designed to avoid increasing error through the introduction of automation, while adapting to the demands of smaller flight teams.

  2. Reliability Analysis and Standardization of Spacecraft Command Generation Processes

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Grenander, Sven; Evensen, Ken

    2011-01-01

    center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.

  3. (abstract) Automated Constraint Checking of Spacecraft Command Sequences

    NASA Technical Reports Server (NTRS)

    Horvath, Joan; Alkalaj, Leon; Schneider, Karl; Spitale, Joseph

    1994-01-01

    Making certain that spacecraft command sequences do not violate any constraints is often tedious and expensive in terms of both personnel and software development. To reduce this cost, we have pursued the development of a flexible system for specifying models of spacecraft behavior in response to commands as well as constraints on that behavior. The potential need for modeling complex spacecraft behavior required that the system be designed to be usable both on a conventional workstation and a parallel supercomputer. Finally, it needed to be intuitive enough for the the intended mission operations users to easily design sets of rules and models to automate tedious, resource-consuming constraint checking of commands. We have defined a Specification And Verification Environment (SAVE) for spacecraft flight rules.

  4. Intentional Voice Command Detection for Trigger-Free Speech Interface

    NASA Astrophysics Data System (ADS)

    Obuchi, Yasunari; Sumiyoshi, Takashi

    In this paper we introduce a new framework of audio processing, which is essential to achieve a trigger-free speech interface for home appliances. If the speech interface works continually in real environments, it must extract occasional voice commands and reject everything else. It is extremely important to reduce the number of false alarms because the number of irrelevant inputs is much larger than the number of voice commands even for heavy users of appliances. The framework, called Intentional Voice Command Detection, is based on voice activity detection, but enhanced by various speech/audio processing techniques such as emotion recognition. The effectiveness of the proposed framework is evaluated using a newly-collected large-scale corpus. The advantages of combining various features were tested and confirmed, and the simple LDA-based classifier demonstrated acceptable performance. The effectiveness of various methods of user adaptation is also discussed.

  5. Swing-Free Cranes via Input Shaping of Operator Commands

    SciTech Connect

    Groom, Kenneth N.; Parker, Gordon G.; Robinett, Rush D.; Leban, Frank

    1999-08-25

    This paper presents an open-loop control method for suppressing payload oscillation or swing caused by operator commanded maneuvers in rotary boom cranes and the method is experimentally verified on a one-sixteenth scale model of a Hagglunds shipboard crane. The crane configuration consists of a payload mass that swings like a spherical pendulum on the end of a lift-line which is attached to a boom capable of hub rotation (slewing) and elevation (luffing). Positioning of the payload is accomplished through the hub and boom angles and the load-line length. Since the configuration of the crane affects the excitation and response of the payload, the swing control scheme must account for the varying geometry of the system. Adaptive forward path command filters are employed to remove components of the command signal which induce payload swing.

  6. Apollo 8 Commander Frank Borman Receives Presidential Call

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Apollo 8 Astronaut Frank Borman, commander of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Borman, along with astronauts William Anders, Lunar Module (LM) pilot, and James Lovell, Command Module (CM) pilot, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.

  7. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  8. Enhanced intelligence through optimized TCPED concepts for airborne ISR

    NASA Astrophysics Data System (ADS)

    Spitzer, M.; Kappes, E.; Böker, D.

    2012-06-01

    Current multinational operations show an increased demand for high quality actionable intelligence for different operational levels and users. In order to achieve sufficient availability, quality and reliability of information, various ISR assets are orchestrated within operational theatres. Especially airborne Intelligence, Surveillance and Reconnaissance (ISR) assets provide - due to their endurance, non-intrusiveness, robustness, wide spectrum of sensors and flexibility to mission changes - significant intelligence coverage of areas of interest. An efficient and balanced utilization of airborne ISR assets calls for advanced concepts for the entire ISR process framework including the Tasking, Collection, Processing, Exploitation and Dissemination (TCPED). Beyond this, the employment of current visualization concepts, shared information bases and information customer profiles, as well as an adequate combination of ISR sensors with different information age and dynamic (online) retasking process elements provides the optimization of interlinked TCPED processes towards higher process robustness, shorter process duration, more flexibility between ISR missions and, finally, adequate "entry points" for information requirements by operational users and commands. In addition, relevant Trade-offs of distributed and dynamic TCPED processes are examined and future trends are depicted.

  9. Three dimensional visualization to support command and control

    SciTech Connect

    Van Slambrook, G.A.

    1997-04-01

    Virtual reality concepts are changing the way one thinks about and with computers. The concepts have already proven their potential usefulness in a broad range of applications. This research was concerned with exploring and demonstrating the utility of virtual reality in robotics and satellite command and control applications. The robotics work addressed the need to quickly build accurate graphical models of physical environments by allowing a user to interactively build a model of a remote environment by superimposing stereo graphics onto live stereo video. The satellite work addressed the fusion of multiple data sets or models into one synergistic display for more effective training, design, and command and control of satellite systems.

  10. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  11. STS-87 Commander Kregel addresses the media at the SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel addresses members of the press and media at Kennedy Space Center's Shuttle Landing Facility after arriving for the final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The STS-87 crew members are, from left to right, Mission Specialists Winston Scott and Takao Doi, Ph.D., of the National Space Development Agency of Japan; Commander Kevin Kregel; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; and Pilot Steven Lindsey. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  12. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Survey of Command Execution Systems for NASA Spacecraft and Robots

    NASA Technical Reports Server (NTRS)

    Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich

    2005-01-01

    NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.

  14. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  15. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. Scalable Unix commands for parallel processors : a high-performance implementation.

    SciTech Connect

    Ong, E.; Lusk, E.; Gropp, W.

    2001-06-22

    We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.

  18. VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems

    NASA Technical Reports Server (NTRS)

    Gee, T. H.; Geist, J. M.

    1973-01-01

    Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.

  19. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master...

  20. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master...

  1. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master...

  2. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master...

  3. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master...

  4. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  5. Classification of command and control messages througth the use of AI techniques

    SciTech Connect

    Broderson, R.L.; Hargrove, K.D.; O`Mara, P.A.; Rowley, M.S.

    1992-06-01

    The US Army`s Tactical Command and Control System (ATCCS) is currently in development. To facilitate early system experimentation, the Army established the ATCCS Experimentation Site (AES) at Fort Lewis, WA. The AES provides a capability for material and combat developers to experiment with systems and subsystems so problems can be identified and corrected at the earliest possible point in system development. Systems and subsystems are subject to experimentation in both the field and the laboratory. The field tests typically involve large-scale command post exercises (CPXs), during which automated command and control (C2) system message traffic may be captured and subject to analysis. This can involve thousands of messages, and to analyze their content it is necessary for humans to read each message and classify the content based on a standardized taxonomy. Although this process has been successful, it requires considerable time and effort. Several approaches have been used to reduce the time and the amount of human effort needed. This paper describes work performed by the Pacific Northwest Laboratory in support of the AES`s efforts to develop an efficient technique for categorizing and analyzing the content of C2 system message traffic. The paper is divided into five major sections. The first section provides background on the problem faced by the AES and previous attempts to solve that problem. The second section describes the goals and objectives of the current effort. The third section describes the methodology used and provides insight into the data sources, preprocessing of the data, and the tools used in the analysis. The fourth section provides emerging results of the effort, and the final section describes possible future efforts.

  6. Classification of command and control messages througth the use of AI techniques

    SciTech Connect

    Broderson, R.L.; Hargrove, K.D.; O'Mara, P.A.; Rowley, M.S.

    1992-06-01

    The US Army's Tactical Command and Control System (ATCCS) is currently in development. To facilitate early system experimentation, the Army established the ATCCS Experimentation Site (AES) at Fort Lewis, WA. The AES provides a capability for material and combat developers to experiment with systems and subsystems so problems can be identified and corrected at the earliest possible point in system development. Systems and subsystems are subject to experimentation in both the field and the laboratory. The field tests typically involve large-scale command post exercises (CPXs), during which automated command and control (C2) system message traffic may be captured and subject to analysis. This can involve thousands of messages, and to analyze their content it is necessary for humans to read each message and classify the content based on a standardized taxonomy. Although this process has been successful, it requires considerable time and effort. Several approaches have been used to reduce the time and the amount of human effort needed. This paper describes work performed by the Pacific Northwest Laboratory in support of the AES's efforts to develop an efficient technique for categorizing and analyzing the content of C2 system message traffic. The paper is divided into five major sections. The first section provides background on the problem faced by the AES and previous attempts to solve that problem. The second section describes the goals and objectives of the current effort. The third section describes the methodology used and provides insight into the data sources, preprocessing of the data, and the tools used in the analysis. The fourth section provides emerging results of the effort, and the final section describes possible future efforts.

  7. 46 CFR 188.10-13 - Coast Guard District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Coast Guard District Commander. 188.10-13 Section 188.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-13 Coast Guard District...

  8. 46 CFR 188.10-13 - Coast Guard District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Coast Guard District Commander. 188.10-13 Section 188.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-13 Coast Guard District...

  9. 46 CFR 188.10-13 - Coast Guard District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Coast Guard District Commander. 188.10-13 Section 188.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-13 Coast Guard District...

  10. Joint Forward Operating Base Elements of Command and Control

    NASA Astrophysics Data System (ADS)

    Summers, William C.

    2002-01-01

    Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.

  11. CACTUS: Command and Control Training Using Knowledge-Based Simulations.

    ERIC Educational Resources Information Center

    Hartley, J. R.; And Others

    1992-01-01

    Describes a computer simulation, CACTUS, that was developed in the United Kingdom to help police with command and control training for large crowd control incidents. Use of the simulation for pre-event planning and decision making is discussed, debriefing is described, and the role of the trainer is considered. (LRW)

  12. Development of a Testbed for Distributed Satellite Command and Control

    NASA Astrophysics Data System (ADS)

    Zetocha, Paul; Brito, Margarita

    2002-01-01

    At the Air Force Research Laboratory's Space Vehicles Directorate we are investigating and developing architectures for commanding and controlling a cluster of cooperating satellites through prototype development for the TechSat-21 program. The objective of this paper is to describe a distributed satellite testbed that is currently under development and to summarize near term prototypes being implemented for cluster command and control. To design, develop, and test our architecture we are using eight PowerPC 750 VME-based single board computers, representing eight satellites. Each of these computers is hosting the OSE(TM) real-time operating system from Enea Systems. At the core of our on-board cluster manager is ObjectAgent. ObjectAgent is an agent-based object-oriented framework for flight systems, which is particularly suitable for distributed applications. In order to handle communication with the ground as well as to assist with the cluster management we are using the Spacecraft Command Language (SCL). SCL is also at the centerpiece of our ground control station and handles cluster commanding, telemetry decommutation, state-of-health monitoring, and Fault Detection, Isolation, and Resolution (FDIR). For planning and scheduling activities we are currently using ASPEN from NASA/JPL. This paper will describe each of the above components in detail and then present the prototypes being implemented.

  13. CACTUS: Command and Control Training Using Knowledge-Based Simulations

    ERIC Educational Resources Information Center

    Hartley, Roger; Ravenscroft, Andrew; Williams, R. J.

    2008-01-01

    The CACTUS project was concerned with command and control training of large incidents where public order may be at risk, such as large demonstrations and marches. The training requirements and objectives of the project are first summarized justifying the use of knowledge-based computer methods to support and extend conventional training…

  14. 106. Air defense command "master plan", base map," RCA Service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. Air defense command "master plan", base map," RCA Service Company tab no. F-1, sheet 1 of 2, dated 22 October, 1965. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Command and organizational relationships. 536.3 Section 536.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND... relationships. (a) The Secretary of the Army. The Secretary of the Army (SA) heads the Army Claims System...

  16. 32 CFR 536.3 - Command and organizational relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Command and organizational relationships. 536.3 Section 536.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND... relationships. (a) The Secretary of the Army. The Secretary of the Army (SA) heads the Army Claims System...

  17. Cognitive Systems Modeling and Analysis of Command and Control Systems

    NASA Technical Reports Server (NTRS)

    Norlander, Arne

    2012-01-01

    Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.

  18. Apollo Command and Service Module Propulsion Systems Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.

  19. 34. Launch Control Center, bottom of drawer of commander's console, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Launch Control Center, bottom of drawer of commander's console, signed by alert crew members on their last alerts. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  20. Commander Brand stows trash in jettison bag on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand disposes of empty food containers and dry trash in jettison bag and stows bag in middeck volume under MA73C control panel. Side hatch is visible behind Brand. Brand is wearing constant wear garment with communications kit assembly headset interface unit (HIU) and note pad strapped to his thighs.

  1. Commander Brand shaves in front of forward middeck lockers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, wearing shorts, shaves in front of forward middeck lockers using personal hygiene mirror assembly (assy). Open modular locker single tray assy, Field Sequential (FS) crew cabin camera, communications kit assy mini headset (HDST) and HDST interface unit (HIU), personal hygiene kit, and meal tray assemblies appear in view.

  2. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to...

  3. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to...

  4. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to...

  5. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to...

  6. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to...

  7. Command module/service module reaction control subsystem assessment

    NASA Technical Reports Server (NTRS)

    Weary, D. P.

    1971-01-01

    Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.

  8. Modular fuzzy-neuro controller driven by spoken language commands.

    PubMed

    Pulasinghe, Koliya; Watanabe, Keigo; Izumi, Kiyotaka; Kiguchi, Kazuo

    2004-02-01

    We present a methodology of controlling machines using spoken language commands. The two major problems relating to the speech interfaces for machines, namely, the interpretation of words with fuzzy implications and the out-of-vocabulary (OOV) words in natural conversation, are investigated. The system proposed in this paper is designed to overcome the above two problems in controlling machines using spoken language commands. The present system consists of a hidden Markov model (HMM) based automatic speech recognizer (ASR), with a keyword spotting system to capture the machine sensitive words from the running utterances and a fuzzy-neural network (FNN) based controller to represent the words with fuzzy implications in spoken language commands. Significance of the words, i.e., the contextual meaning of the words according to the machine's current state, is introduced to the system to obtain more realistic output equivalent to users' desire. Modularity of the system is also considered to provide a generalization of the methodology for systems having heterogeneous functions without diminishing the performance of the system. The proposed system is experimentally tested by navigating a mobile robot in real time using spoken language commands. PMID:15369072

  9. Command and Control during Security Incidents/Emergencies

    SciTech Connect

    Knipper, W.

    2013-10-16

    This presentation builds on our response to events that pose, or have the potential to pose, a serious security or law enforcement risk and must be responded to and controlled in a clear a decisive fashion. We will examine some common concepts in the command and control of security-centric events.

  10. Astronaut Jack Lousma egresses Skylab 3 Command Module

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, U.S.S. New Orleans, during recovery operations in the Pacific Ocean. Note surgical masks on those assisting Lousma. This is to prevent the astronauts from contracting infections.

  11. Apollo 15 mission. Temporary loss of command module television picture

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An investigation was made into the temporary loss of command module color television picture by the ground station converter at Mission Control Center. Results show the picture loss was caused by a false synchronization pulse that resulted from the inability of the black level clipping circuit to respond adequately to the video signal when bright sunlight suddenly entered the camera's field of view.

  12. Accelerating Academic Literacy: The Commanding English Program for Immigrant Students

    ERIC Educational Resources Information Center

    Murie, Robin; Bents, Mary

    2008-01-01

    The University of Minnesota is helping provide greater college access for students from immigrant families who must learn to negotiate a new culture and language as well as manage lives often marked by poverty and under-funded urban schools. In the University's Commanding English program, immigrant high school students study both at their high…

  13. STS-69 Mission Commander David M. Walker in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker chats with white room closeout crew members Bob Saulnier (left), Regulo Villalobos and closeout crew leader Travis Thompson prior to entering the flight deck of the Space Shuttle Endeavour at Launch Pad 39A.

  14. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User command and tracking data. 1215.106 Section 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users §...

  15. 9. Photocopy of command flow chart of NIKE Battalion, Headquarters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of command flow chart of NIKE Battalion, Headquarters Battery and Missile Battery from Procedures and Drills for NIKE Ajax System, Department of the Army Field Manual, FM-44-80 from Institute for Military History, Carlisle Barracks, Carlisle, PA 1956 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  16. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  17. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; Hirsh, Robert

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  18. 40. Upper level, electronic racks, left to rightstatus command message ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Upper level, electronic racks, left to right--status command message processing group, UHF radio, impss rack security, power supply group rack - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  19. RMS end effector waiting for command and SPAS-01 nearby

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The end effector of the remote manipulator system (RMS) appears to be waiting for its next command at the top of this frame and the Shuttle pallet satellite (SPAS-01), in its free flying mode, appears nearby. The three letters legible on the SPAS stand for Messerschmitt-Boelkow-Blohm Gmbit, a West German firm.

  20. The influence of central command on baroreflex resetting during exercise

    NASA Technical Reports Server (NTRS)

    Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.

    2002-01-01

    The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.

  1. Using voluntary motor commands to inhibit involuntary arm movements.

    PubMed

    Ghosh, Arko; Rothwell, John; Haggard, Patrick

    2014-11-01

    A hallmark of voluntary motor control is the ability to stop an ongoing movement. Is voluntary motor inhibition a general neural mechanism that can be focused on any movement, including involuntary movements, or is it mere termination of a positive voluntary motor command? The involuntary arm lift, or 'floating arm trick', is a distinctive long-lasting reflex of the deltoid muscle. We investigated how a voluntary motor network inhibits this form of involuntary motor control. Transcranial magnetic stimulation of the motor cortex during the floating arm trick produced a silent period in the reflexively contracting deltoid muscle, followed by a rebound of muscle activity. This pattern suggests a persistent generator of involuntary motor commands. Instructions to bring the arm down voluntarily reduced activity of deltoid muscle. When this voluntary effort was withdrawn, the involuntary arm lift resumed. Further, voluntary motor inhibition produced a strange illusion of physical resistance to bringing the arm down, as if ongoing involuntarily generated commands were located in a 'sensory blind-spot', inaccessible to conscious perception. Our results suggest that voluntary motor inhibition may be a specific neural function, distinct from absence of positive voluntary motor commands. PMID:25253453

  2. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAVAL DEFENSIVE SEA AREAS; NAVAL AIRSPACE RESERVATIONS, AREAS UNDER NAVY ADMINISTRATION, AND THE TRUST...) Commander U.S. Naval Forces Caribbean. Authorization for all persons, ships, and aircraft to enter the Guantanamo Bay Naval Defensive Sea Area and the Guantanamo Naval Airspace Reservation. (This...

  3. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NAVAL DEFENSIVE SEA AREAS; NAVAL AIRSPACE RESERVATIONS, AREAS UNDER NAVY ADMINISTRATION, AND THE TRUST...) Commander U.S. Naval Forces Caribbean. Authorization for all persons, ships, and aircraft to enter the Guantanamo Bay Naval Defensive Sea Area and the Guantanamo Naval Airspace Reservation. (This...

  4. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NAVAL DEFENSIVE SEA AREAS; NAVAL AIRSPACE RESERVATIONS, AREAS UNDER NAVY ADMINISTRATION, AND THE TRUST...) Commander U.S. Naval Forces Caribbean. Authorization for all persons, ships, and aircraft to enter the Guantanamo Bay Naval Defensive Sea Area and the Guantanamo Naval Airspace Reservation. (This...

  5. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NAVAL DEFENSIVE SEA AREAS; NAVAL AIRSPACE RESERVATIONS, AREAS UNDER NAVY ADMINISTRATION, AND THE TRUST...) Commander U.S. Naval Forces Caribbean. Authorization for all persons, ships, and aircraft to enter the Guantanamo Bay Naval Defensive Sea Area and the Guantanamo Naval Airspace Reservation. (This...

  6. 32 CFR 761.9 - Entry Control Commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAVAL DEFENSIVE SEA AREAS; NAVAL AIRSPACE RESERVATIONS, AREAS UNDER NAVY ADMINISTRATION, AND THE TRUST...) Commander U.S. Naval Forces Caribbean. Authorization for all persons, ships, and aircraft to enter the Guantanamo Bay Naval Defensive Sea Area and the Guantanamo Naval Airspace Reservation. (This...

  7. Navy frogmen attach flotation collar to Apollo 7 command module

    NASA Technical Reports Server (NTRS)

    1968-01-01

    U.S. Navy frogmen attach a flotation collar to the Apollo 7 command module during recovery operations in the Atlantic. The Apollo 7 spacecraft splashed down at 7:11 a.m., October 22, 1968, approximately 200 nautical miles south-southwest of Bermuda.

  8. Command and Control. Radiological Transportation Emergencies Course. Revision Three.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…

  9. STS-79 Commander William Readdy in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy gets ready to climb into the flight deck of the Space Shuttle Atlantis at Launch Pad 39A. Assisting him are white room closeout crew members Travis Thompson (from left), Jean Alexander and Jim Davis.

  10. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  11. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  12. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  13. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  14. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  15. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  16. STS-67 post flight presentation

    NASA Astrophysics Data System (ADS)

    1995-04-01

    This video is the post-flight presentation by the astronauts of the STS-67 Space Shuttle Mission. The astronauts were: Steve Oswald (Mission Commander), Bill Gregory (Shuttle Pilot), John Grunsfeld (Mission Specialist), Sam Durrance (Payload Specialist), Ron Parise (Payload Specialist), and Tammy Jernigan (Payload Commander). Footage includes: pre-launch suitup and launch (liftoff), the deployment of the telescope package payload (Hopkins UV telescope, Wisconsin UV polarimeter, and Astrostar Tracker) for their astronomical observations of different stellar objects, inside Shuttle shots of data collection stations, protein crystal growth experiments, medical BSO of head and eye functions in microgravity environment, storm activity over the United States and other Earth observation shots, Mid-deck Act Control Experiments, school-Shuttle direct radio communication, and descent and landing footage. This launch was a night launch and the flight was a 17 day flight (extended two days from original flight plan).

  17. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  18. Apollo 11 Facts [Post Flight Press Conference]. Part 1 of 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Apollo 11 Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin, Jr., and Command Module Pilot Michael Collins are seen during this post-mission conference, where they give details about the mission, concentrating on their activities on the Moon. They then answer questions from the audience. The second part of this conference is seen on 'Apollo 11 Facts: Post Flight Press Conference, Part 2 of 2' (internal ID 2001181396).

  19. Intelligent tutoring in the spacecraft command/control environment

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.

    1988-01-01

    The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.

  20. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David

    2009-01-01

    NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.

  1. Training injuries--how clinicians can help commanders avoid them.

    PubMed

    Cordell, R F

    2004-12-01

    The aim of this paper is to reflect on the proceedings of three training injuries symposia run by the British Army's training organization from 2001 to 2003. The essence of the presentations are reproduced, highlighting the role of medical staff in advising commanders on how injuries might be prevented. The importance of placing the emphasis on prevention rather than rehabilitation as a means of reducing the impact of training injuries is first examined. Pre-employment medical selection standards, the design of training courses, nutrition, smoking, training injuries among women, heat injury and the psycho-social environment are then all reviewed. Finally, the outcome of workshop discussion groups are presented as practical guidance for medical officers and other clinicians, advising commanders on how training injuries amongst their personnel might be minimised. PMID:15732411

  2. Mission operations and command assurance: Instilling quality into flight operations

    NASA Astrophysics Data System (ADS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-03-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  3. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Fuzzy logic sliding mode control for command guidance law design.

    PubMed

    Elhalwagy, Y Z; Tarbouchi, M

    2004-04-01

    Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control. PMID:15098583

  5. A simulated force generator with an adaptive command structure

    NASA Astrophysics Data System (ADS)

    Hanes, P. Jeff

    2006-05-01

    The Force Laydown Automated Generator (FLAG) is a script-driven behavior model that automatically creates military formations from the platoon level up to division level for use in simulations built on the FLAMES simulation framework. The script allows users to define formation command structure, command relationships, vehicle type and equipment, and behaviors. We have used it to automatically generate more than 3000 units in a single simulation. Currently, FLAG is used in the Air Force Research Laboratory Munitions Directorate (AFRL/MN) to assist their Comprehensive Analysis Process (CAP). It produces a reasonable threat laydown of red forces for testing their blue concept weapons. Our success in the application of FLAG leads us to believe that it offers an invaluable potential for use in training environments and other applications that need a large number of reactive, adaptive forces - red or blue.

  6. Human performance under two different command and control paradigms.

    PubMed

    Walker, Guy H; Stanton, Neville A; Salmon, Paul M; Jenkins, Daniel P

    2014-05-01

    The paradoxical behaviour of a new command and control concept called Network Enabled Capability (NEC) provides the motivation for this paper. In it, a traditional hierarchical command and control organisation was pitted against a network centric alternative on a common task, played thirty times, by two teams. Multiple regression was used to undertake a simple form of time series analysis. It revealed that whilst the NEC condition ended up being slightly slower than its hierarchical counterpart, it was able to balance and optimise all three of the performance variables measured (task time, enemies neutralised and attrition). From this it is argued that a useful conceptual response is not to consider NEC as an end product comprised of networked computers and standard operating procedures, nor to regard the human system interaction as inherently stable, but rather to view it as a set of initial conditions from which the most adaptable component of all can be harnessed: the human. PMID:24094585

  7. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  8. STS-93 Commander Collins signs autographs after mission presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen M. Collins signs autographs after a mission presentation for KSC employees. The five-day mission primarily released the Chandra X-ray Observatory, allowing scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. STS-93 was also the first mission to have a woman serving as Shuttle commander.

  9. Line drawing of Apollo 14 Command/Service Modules

    NASA Technical Reports Server (NTRS)

    1971-01-01

    a line drawing illustrating a cutaway view of the Apollo 14 Command/Service Modules, showing the engineering changes in the CSM which were recommended by the Apollo 13 Review Board. The major changes to the Apollo 14 CSM include adding a third cryogenic oxygen tank installed in an empty bay (in Sector one) of the Service Module (SM), addition of the auxiliary battery in the SM as a backup in case of fuel cell failure, and removal of destratification fans in the cryogenic oxygen tanks and removal of thermostat switches from the oxygen tank heater circuits. Provision for stowage of an emergency five gallon supply of drinking water has been added to the Command Module (CM).

  10. Telemetry, tracking, and command consolidation in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Odea, J. Andrew; Bryant, Scott H.; Guerreo, Ana Maria P.; Louie, John J.

    2001-01-01

    Currently, in NASA's Deep Space Network (DSN), telemetry, tracking, and command (TT&C) functions are distributed between multiple subsystem computers. Control design of these subsystems did not consider the interaction necessary between the functions, which create opportunities for loss of data. Also, the current controller design can force the use of equipment that is not needed for the task at hand, to the detriment of others. As part of the Network Simplification Project (NSP), the TTC implementation has been re-examined, New telemetry and commanding equipment is being built, and the control of the TT&C functions is being consolidated into two controllers, Uplink and Downlink. The new equipment uses commercial components, as opposed to the custom built equipment it is replacing, which improves reliability and simplifies maintenance.

  11. Tone based command system for reception of very weak signals

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert Steven (Inventor); Jensen, James Robert (Inventor)

    2006-01-01

    This disclosure presents a communication receiver system for spacecraft that includes an open loop receiver adapted to receive a communication signal. An ultrastable oscillator (USO) and a tone detector are connected to the open loop receiver. The open loop receiver translates the communication signal to an intermediate frequency signal using a highly stable reference frequency from the USO. The tone detector extracts commands from the communication signal by evaluating the difference between tones of the communication signal.

  12. STS-82 Payload Commander Mark Lee arrives for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Payload Commander Mark C. Lee grins for the cameras after he arrives via T-38 jet from Houston, TX, at KSCs Shuttle Landing Facility. Lee and the other six crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The crew aboard the Space Shuttle Discovery on STS-82 will conduct the second Hubble Space Telescope servicing mission. The 10-day flight is targeted for a Feb. 11 liftoff.

  13. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  14. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  15. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  16. Application of decision aid technology to command and control

    SciTech Connect

    Wanner, E.; Steigerwald, R.; Clark, D.

    1984-03-01

    The development of decision aids for command and control (C/sup 2/), including a look at the C/sup 2/ environment and objectives are reviewed. Developing computer based decision aids can involve the use of techniques ranging from simple automation of manual tasks to the use of artificial intelligence for complex automation of an expert's heuristic reasoning ability. Database management techniques, operations research and decision analysis are also useful. 7 references.

  17. Commander Lousma adds water to a beverage container on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Lousma, wearing communications kit assembly (assy) mini headset (HDST), fills beverage container using the JSC water dispenser kit water gun to prepare a juice drink. Lousma is wearing the trousers and shirt of a three-piece shuttle constant wear garment as he floats above the potable water tank on the middeck floor. The constant wear garment jacket is secured on a side hatch handle (background) to avoid zero gravity effect.

  18. Spaceport Command and Control System User Interface Testing

    NASA Technical Reports Server (NTRS)

    Huesman, Jacob

    2016-01-01

    The Spaceport Command and Control System will be the National Aeronautics and Space Administration's newest system for launching commercial and government owned spacecraft. It's a large system with many parts all in need of testing. To improve upon testing already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of Kennedy Space Center has hired a group of interns each of the last few semesters to develop novel ways of improving the testing process.

  19. View of Apollo 13 Lunar Module from the Command Module

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This view of the Apollo 13 Lunar Module (LM) was photographed from the Command Module (CM) just after the LM had been jettisoned. The jettisoning occurred a few minutes after 11 a.m., April 17, 1970, just over an hour prior to splashdown of the CM in the South Pacific Ocean. The apparent explosion of oxygen tank number two in the Apoll 13 Service Module caused the Apollo 13 crewmen to rely on the LM as a 'lifeboat'.

  20. Apollo 17 command module splashdown in South Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 17 command module, with astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt aboard, nears splashdown in the South Pacific Ocean to conclude the final lunar landing mission in the Apollo program. This overhead view was taken from a recovery aircraft seconds before the spacecraft hit the water. The splashdown occurred at 304:31:59 ground elapsed time, 1:24:59 p.m. December 19, 1972 about 350 nautical miles southeast of the Samoan Islands.

  1. STS-87 Commander Kevin R. Kregel in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel is assisted with his ascent and re- entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. A veteran of two space flights (STS-70 and -78), Kregel has logged more than 618 hours in space.

  2. RMS end effector waiting for command and SPAS-01 nearby

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The end effector of the remote manipulator system (RMS) appears to be waiting for its next command at the top of this frame and the Shuttle pallet satellite (SPAS-01), in its free flying mode, appears nearby. The three letters legible on the SPAS stand for Messerschmitt-Boelkow-Blohm Gmbit, a West German firm. The earth's horizon is visible at the bottom of the frame.

  3. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  4. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  5. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  6. Marine Tactical Command and Control System (MTACCS), Field Development System-1 (FDS-1) assessment: Volume 2

    SciTech Connect

    Avery, L W; Hunt, S T; Savage, S F; McLaughlin, P D; Shepard, A P; Worl, J C

    1992-04-01

    The following appendices contain the detailed analysis data for the questionnaires and various FDS-1 after action reports submitted to the Marine Corps Systems Command (MARCORSYSCOM) Marine Tactical Command and Control System (MTACCS) Systems' Engineer.

  7. Advanced interactive displays for deployable command and control centers

    NASA Astrophysics Data System (ADS)

    Jedrysik, Peter A.; Parada, Francisco E.; Stedman, Terrance A.; Zhang, Jingyuan

    2003-09-01

    Command and control in today's battlefield environment requires efficient and effective control of massive amounts of constantly changing information from a variety of databases and real-time sensors. Using advanced information technology for presentation and interactive control enables more extensive data fusion and correlation to present an accurate picture of the battlespace to commanders and their staffs. The Interactive DataWall being developed by the Advanced Displays and Intelligent Interfaces (ADII) technology team of the Air Force Research Laboratory's Information Directorate (AFRL/IF) is a strong contender for solving the information management problems facing the 21st century military commander. It provides an ultra high-resolution large screen display with multi-modal, wireless interaction. Commercial off-the-shelf (COTS) technology has been combined with specialized hardware and software developed in-house to provide a unique capability for multimedia data display and control. The technology once isolated to a laboratory environment has been packaged into deployable systems that have been successfully transitioned to support the warfighter in the field.

  8. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  9. A Friendly Command, Control, and Information System for Astronomy

    NASA Astrophysics Data System (ADS)

    McGraw, John T.; Duric, Nebojsa; Sjulin, Michael; Slezak, Scott; Westpfahl, David

    Virtually real user interfaces and device independent communications systems provide a robust, secure and efficient means for remote control of telescopes, data transfer, and interaction among personnel at distant sites. A variety of techniques has been implemented for remote operation of telescopes. This paper describes a new system incorporating secured, compacted, simultaneous information transfer of multiple data types, robust command structure and a user interface which pre-tests commands for security. Testing is accomplished by manipulating and displaying planned allowable motions using a virtual telescope and instrument before real hardware executes the desired motions. Embedded in this system is the ability to create efficient interfaces for all classes of users, data and system security, error correction and multiple forms of data compression. The system results from a merger of a military command and control system and a control system for robots operating in hazardous environments. Both systems were developed by Sandia National Laboratories. The merged system is proposed to enable elementary school children to access remotely operable telescopes and other assets of the LodeStar Project, which provides science education and research capability throughout New Mexico. The definition and constraints on the system are appropriate for its use by the professional astronomical community, as well, perhaps as a standard control and communications system supported, in part, within the national laboratories. In this paper we discuss implementation of the prototype system, its features, and its constraints, particularly with respect to bandwidth limitations.

  10. Command Detection and Classification in Tongue Drive Assistive Technology

    PubMed Central

    Sadeghian, Elnaz Banan; Huo, Xueliang; Ghovanloo, Maysam

    2013-01-01

    Tongue Drive System (TDS) is a new assistive technology that enables individuals with severe disabilities such as those with spinal cord injury (SCI) to regain environmental control using their tongue motion. We have developed a new sensor signal processing (SSP) algorithm which uses four 3-axial magneto-resistive sensor outputs to accurately detect and classify between seven different user-control commands in stationary as well as mobile conditions. The new algorithm employs a two-stage classification method with a combination of 9 classifiers to discriminate between 4 commands on the left or right side of the oral cavity (one neutral command shared on both sides). Evaluation of the new SSP algorithm on five able-bodied subjects resulted in true positive rates in the range of 70–99% with corresponding false positive rates in the range of 5–7%, showing a notable improvement in the resulted true-false (TF) differences when compared to the previous algorithm. PMID:22255574

  11. Voluntary motor commands reveal awareness and control of involuntary movement.

    PubMed

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2016-10-01

    The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action. PMID:27399155

  12. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  13. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  14. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  15. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  16. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  17. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  18. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  19. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  20. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  1. 32 CFR 700.602 - The Commandant of the Coast Guard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false The Commandant of the Coast Guard. 700.602... States Coast Guard (When Operating as a Service in the Navy) § 700.602 The Commandant of the Coast Guard. (a) The Commandant of the Coast Guard is the senior officer of the United States Coast Guard....

  2. 32 CFR 700.602 - The Commandant of the Coast Guard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false The Commandant of the Coast Guard. 700.602... States Coast Guard (When Operating as a Service in the Navy) § 700.602 The Commandant of the Coast Guard. (a) The Commandant of the Coast Guard is the senior officer of the United States Coast Guard....

  3. 32 CFR 700.602 - The Commandant of the Coast Guard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false The Commandant of the Coast Guard. 700.602... States Coast Guard (When Operating as a Service in the Navy) § 700.602 The Commandant of the Coast Guard. (a) The Commandant of the Coast Guard is the senior officer of the United States Coast Guard....

  4. 32 CFR 700.602 - The Commandant of the Coast Guard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false The Commandant of the Coast Guard. 700.602... States Coast Guard (When Operating as a Service in the Navy) § 700.602 The Commandant of the Coast Guard. (a) The Commandant of the Coast Guard is the senior officer of the United States Coast Guard....

  5. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  6. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  7. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  8. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  9. 32 CFR 700.602 - The Commandant of the Coast Guard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false The Commandant of the Coast Guard. 700.602... States Coast Guard (When Operating as a Service in the Navy) § 700.602 The Commandant of the Coast Guard. (a) The Commandant of the Coast Guard is the senior officer of the United States Coast Guard....

  10. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Administration and discipline: Separate and... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate...

  11. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Administration and discipline: Staff unassigned... REGULATIONS AND OFFICIAL RECORDS Commanders In Chief and Other Commanders Administration and Discipline § 700.722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is...

  12. 14 CFR 125.291 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command: Instrument proficiency... AIRCRAFT Flight Crewmember Requirements § 125.291 Pilot in command: Instrument proficiency check requirements. (a) No certificate holder may use any person, nor may any person serve, as a pilot in command...

  13. 14 CFR 135.299 - Pilot in command: Line checks: Routes and airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Crewmember Testing Requirements § 135.299 Pilot in command: Line checks: Routes and airports. (a) No certificate holder may use a pilot, nor may any person serve, as a pilot in command of a flight unless, since... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command: Line checks: Routes...

  14. 14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander § 1214.702 Authority and responsibility of the Space Shuttle commander. (a) During all flight phases of a Space Shuttle flight, the...

  15. 14 CFR § 1214.702 - Authority and responsibility of the Space Shuttle commander.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Shuttle commander. § 1214.702 Section § 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander § 1214.702 Authority and responsibility of the Space Shuttle commander. (a) During all flight phases of a Space Shuttle flight, the...

  16. 14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander § 1214.702 Authority and responsibility of the Space Shuttle commander. (a) During all flight phases of a Space Shuttle flight, the...

  17. Increasing Classroom Compliance: Using a High-Probability Command Sequence with Noncompliant Students

    ERIC Educational Resources Information Center

    Axelrod, Michael I.; Zank, Amber J.

    2012-01-01

    Noncompliance is one of the most problematic behaviors within the school setting. One strategy to increase compliance of noncompliant students is a high-probability command sequence (HPCS; i.e., a set of simple commands in which an individual is likely to comply immediately prior to the delivery of a command that has a lower probability of…

  18. STS-32 Commander Brandenstein displays birthday card on OV-102's flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Commander Daniel C. Brandenstein, sitting at the commanders station, displays his birthday card on Columbia's, Orbiter Vehicle (OV) 102's, flight deck. Appearing around Brandenstein are the forward flight deck control panels, forward windows, commanders seatback, and a 'GO NAVY' decal attached to panel O1.

  19. Air Force Commanders and Barriers to Entry into a Doctoral Business Program

    ERIC Educational Resources Information Center

    Williams, Tony; LeMire, Steven D.

    2011-01-01

    The authors examined professionally qualified Air Force commanders' barriers to entry into a business doctoral degree program related to the factors of time, financial means, academics, and motivation. Of the 116 present commanders, 63% were interested in pursuing a doctorate in business. For the commanders interested in obtaining a doctorate…

  20. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Recent flight experience: Pilot in command....57 Recent flight experience: Pilot in command. (a) General experience. (1) Except as provided in paragraph (e) of this section, no person may act as a pilot in command of an aircraft carrying passengers...

  1. ASTP crewmen in Apollo Command Module Trainer during training session at JSC

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An interior view of the Apollo Command Module trainer in bldg 35 showing the three American ASTP prime crewmen lying in their couches during Apollo Soyuz Test Project (ASTP) training at JSC. They are, left to right, Astronauts Donald K. Slayton, docking module pilot; Vance D. Brand, command module pilot; and Thomas P. Stafford, commander.

  2. Digit and command interpretation for electronic book using neural network and genetic algorithm.

    PubMed

    Lam, H K; Leung, Frank H F

    2004-12-01

    This paper presents the interpretation of digits and commands using a modified neural network and the genetic algorithm. The modified neural network exhibits a node-to-node relationship which enhances its learning and generalization abilities. A digit-and-command interpreter constructed by the modified neural networks is proposed to recognize handwritten digits and commands. A genetic algorithm is employed to train the parameters of the modified neural networks of the digit-and-command interpreter. The proposed digit-and-command interpreter is successfully realized in an electronic book. Simulation and experimental results will be presented to show the applicability and merits of the proposed approach. PMID:15619928

  3. Man/terminal interaction evaluation of computer operating system command and control service concepts. [in Spacelab

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    The Experiment Computer Operating System (ECOS) of the Spacelab will allow the onboard Payload Specialist to command experiment devices and display information relative to the performance of experiments. Three candidate ECOS command and control service concepts were reviewed and laboratory data on operator performance was taken for each concept. The command and control service concepts evaluated included a dedicated operator's menu display from which all command inputs were issued, a dedicated command key concept with which command inputs could be issued from any display, and a multi-display concept in which command inputs were issued from several dedicated function displays. Advantages and disadvantages are discussed in terms of training, operational errors, task performance time, and subjective comments of system operators.

  4. Interior view of the Flight Deck looking forward, the Commander's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. MIR 19 Mission Commander Anatoly Y. Solovyev suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Veteran Russian cosmonaut and STS-71 crew member Anatoly Y. Solovyev looks relaxed and at ease as he dons his launch/entry suit with assistance from a suit technician in the Operations and Checkout Building. His fourth trip into space will be both historic and unusual for Solovyev. He and fellow crew member Nikolai Budarin are scheduled to transfer to the Mir Space Station during STS-71 and remain there, meaning they will begin their spaceflight in one country, the United States, and complete it with a return trip home to another, Russia. Solovyev is assigned as the Mir 19 mission commander, while Budarin is the Mir 19 flight engineer.

  6. STS-71 Payload Commander Dr. Ellen S. Baker suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Payload Commander Dr. Ellen S. Baker is assisted by a suit technician as she dons her launch/entry suit in the Operations and Checkout Building. Her third spaceflight will be an historic one for Baker, a medical doctor, as she oversees the series of scientific investigations that will be conducted during the first docking of the U.S. Space Shuttle to the Russian Space Station Mir. Baker and six fellow crew members -- four Americans and two Russian cosmonauts -- will shortly depart for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff during a 10- minute launch window opening at 3:32 p.m. EDT.

  7. Apollo experience report: Postflight testing of command modules

    NASA Technical Reports Server (NTRS)

    Hamilton, D. T.

    1973-01-01

    Various phases of the postflight testing of the command modules used in the Apollo Program are presented. The specific tasks to be accomplished by the task force recovery teams, the National Aeronautics and Space Administration Lyndon B. Johnson Space Center, (formerly the Manned Spacecraft Center) and the cognizant contractors/subcontractors are outlined. The means and methods used in postflight testing and how such activities evolved during the Apollo Program and were tailored to meet specific test requirements are described. Action taken to resolve or minimize problems or anomalies discovered during the flight, the postflight test phase, or mission evaluation is discussed.

  8. STS-87 Commander Kevin R. Kregel suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel sits in his launch and entry suit in the Operations and Checkout Building holding a cap of his sons soccer team of which Kregel is the coach. Shortly, he and the five other crew members of STS-87 will depart for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. A veteran of two space flights (STS-70 and -78), Kregel has logged more than 618 hours in space.

  9. Pulsar Search Results from the Arecibo Remote Command Center

    NASA Astrophysics Data System (ADS)

    Garcia, Alejandro; Stovall, K.; Banaszak, S. A.; Becker, A.; Biwer, C. M.; Boehler, K.; Caballero, K.; Christy, B.; Cohen, S.; Crawford, F.; Cuellar, A.; Danford, A.; Dartez, L. P.; Day, D.; Flanigan, J. D.; Gonzalez, A.; Gustavson, K.; Handzo, E.; Hinojosa, J.; Jenet, F.; Kaplan, D. L.; Kayal, K.; Lommen, A. N.; Longoria, C.; Lopez, J.; Lunsford, G.; Mahany, N.; Martinez, J.; Mata, A.; Miller, A.; Murray, J.; Pankow, C.; Ramirez, I.; Reser, J.; Rojas, P.; Rohr, M.; Rolph, K.; Rose, C.; Rudnik, P.; Siemens, X.; Tellez, A.; Tillman, N.; Walker, A.; Wells, B. L.; Zermeno, A.; Consortium, GBNCC; Consortium, PALFA; Consortium, GBTDrift; Consortium, AO327

    2014-01-01

    The Arecibo Remote Command Center (ARCC) at the University of Texas at Brownsville, in collaboration with various Universities, is currently engaged in searching through ongoing radio telescope surveys for radio pulsars. ARCC is an integrated research/education program that allows students at the high school and undergraduate level to be directly involved with the research at the Arecibo and Green Bank radio telescopes. We discuss the progress of our search effort with PRESTO pulsar search pipelines. Web based tools have been developed so that high school, undergraduate, and graduate students could rank the pulsar candidates created by PRESTO pipelines. We describe these tools and present our current discoveries.

  10. STS-112 Commander Ashby suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  11. STS-112 Commander Ashby in white room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- In the White Room at Launch Pad 39B, STS-112 Commander Jeffrey Ashby receives assistance with his spacesuit before boarding Space Shuttle Atlantis. Liftoff is schedued for 3:46 p.m. EDT. Along with a crew of six, Atlantis will carry the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  12. Center Director Roy Bridges presents photo to STS-88 Commander

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In a ceremony in the KSC Training Auditorium, Center Director Roy Bridges (left) presents STS-88 Commander Robert D. Cabana (right) with a framed photo of the mission. The STS-88 crew are back at the center to give employees a review of the mission, which was the first U.S. flight for assembly of the International Space Station. The prime objective of the mission, to mate the U.S.- built Unity connecting module with the Russian-built Zarya control module, was successfully achieved. STS-88 launched Dec. 3 from Launch Pad 39A and, after a 12-day journey, landed Dec. 15 at the Shuttle Landing Facility.

  13. STS-82 Payload Commander Mark Lee at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Payload Commander Mark C. Lee prepares to step down from the T-38 jet he flew from an air field serving the astronauts home base at Johnson Space Center, Houston, TX, to KSCs Shuttle Landing Facility. Lee and the other six members of the STS-82 crew will spend the last few days before launch at KSC. STS-82 is scheduled for liftoff on Feb. 11 during a 65-minute launch window which opens at 3:56 a.m. EST. The 10-day flight aboard the Space Shuttle Discovery will be the second Hubble Space Telescope servicing mission.

  14. STS-82 Payload Commander Mark C. Lee Suitup

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Payload Commander Mark C. Lee relaxes for a moment after donning his launch and entry suit in the Operations and Checkout Building. Suit technicians help the astronauts put on their suits and make final adjustments. This is Lee''';s fourth space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  15. STS-81 Commander Michael Baker at SLF for TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-81 Mission Commander Michael A. Baker arrives at KSC's Shuttle Landing Facility in his NASA T-38 jet. He and five other crew members will participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for the planned Jan. 12 launch. STS-81 will be the fifth Shuttle-Mir docking. During the flight, Mission Specialist J.M. 'Jerry' Linenger will transfer to the Russian Mir Space Station for an extended stay, replacing astronaut John E. Blaha, who will return to Earth on the Space Shuttle orbiter Atlantis at the conclusion of the scheduled nine-day STS-81 mission.

  16. PACSAT: A passive communication satellite for survivable command and control

    NASA Astrophysics Data System (ADS)

    Bedrosian, E.

    1981-11-01

    Examines passive COMSATS as alternatives to active COMSATS in the hostile environment that may exist in the postattack period of a nuclear war. Inexpensive, survivable, and jam resistant, they offer an attractive low-data-rate capability. PACSAT is a proliferable candidate for this role. It consists of a long (about 1 km), gravity-gradient-stabilized array of small beads (about 1 cm in diameter) that reflects a narrow, conical, frequency-steerable beam back to the Earth. The properties of PACSAT are presented and its performance in a representative system for the command and control of MX is evaluated.

  17. Plant Habitat Telemetry / Command Interface and E-MIST

    NASA Technical Reports Server (NTRS)

    Walker, Uriae M.

    2013-01-01

    Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting

  18. Evaluation of aero commander propeller acoustic data: Taxi operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1979-01-01

    The acoustic data from ground tests performed on an Aero Commander propeller driven aircraft are analyzed. An array of microphones flush mounted on the side of the fuselage were used to record data. The propeller blade passage noise during operations at several different taxi speeds is considered and calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones are included. The measured results are compared to theoretical predictions for propeller noise and various evaluations which reveal important details of propeller noise characteristics are presented.

  19. The USAF Systems Command and R and D productivity

    NASA Technical Reports Server (NTRS)

    Luchainger, V.

    1985-01-01

    The United States Air Force Systems Command (AFSC) is charged with the development and acquisition of aerospace technology systems. Much of that activity is concerned with space systems development, acquisition, and operations. Heavy emphasis is being placed on productivity in organizational and process functions which will keep aerospace systems on the leading edge of technology, with plans extending capability into the future. The productivity emphasis ranges from people-oriented activities to resource and technological functions which support national aerospace objectives. The AFSC space-related missions is discussed as a special area of productivity efforts.

  20. A model-based executive for commanding robot teams

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2005-01-01

    The paper presents a way to robustly command a system of systems as a single entity. Instead of modeling each component system in isolation and then manually crafting interaction protocols, this approach starts with a model of the collective population as a single system. By compiling the model into separate elements for each component system and utilizing a teamwork model for coordination, it circumvents the complexities of manually crafting robust interaction protocols. The resulting systems are both globally responsive by virtue of a team oriented interaction model and locally responsive by virtue of a distributed approach to model-based fault detection, isolation, and recovery.