Science.gov

Sample records for airborne eddy correlation

  1. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  2. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  3. Airborne infrared remote sensing characterization of submesoscale eddies

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey; Marmorino, George; Miller, W. David; North, Ryan; Angel-Benavides, Ingrid; Baschek, Burckard

    2016-11-01

    Airborne remote sensing surveys off Santa Catalina Island, CA (33°30' N118°31' W) were conducted as part of a larger study of the occurrence and behavior of submesoscale phenomena. This builds upon previous work by DiGiacomo and Holt, who utilized SAR imagery to characterize the size and distribution of predominately cyclonic 'spiral eddies' in the Southern California Bight. In the present work the thermal surface expression of a single cyclonic eddy captured in February 2013 will be investigated. Advances made in methods to estimate eddy circulation and vorticity directly from the thermal imagery will be discussed and compared with in situ measurements. Inferences about localized mixing and flow instabilities can also be drawn from the imagery, and these too will be discussed in the context of in situ data. A simple model will be offered describing the three dimensional flow in the core of the eddy and how that can be used to explain the surface imagery. Connections between the signatures surrounding the eddy and the core itself will also be discussed in the context of the model.

  4. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  5. Regional Scaling of Airborne Eddy Covariance Flux Observation

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  6. Eddy correlation measurements of submarine groundwater discharge

    USGS Publications Warehouse

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  7. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  8. Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.

  9. Eddy correlation measurements in wet environmental conditions

    NASA Astrophysics Data System (ADS)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  10. PHREATOPHYTE WATER USE ESTIMATED BY EDDY-CORRELATION METHODS.

    USGS Publications Warehouse

    Weaver, H.L.; Weeks, E.P.; Campbell, G.S.; Stannard, D.I.; Tanner, B.D.

    1986-01-01

    Water-use was estimated for three phreatophyte communities: a saltcedar community and an alkali-Sacaton grass community in New Mexico, and a greasewood rabbit-brush-saltgrass community in Colorado. These water-use estimates were calculated from eddy-correlation measurements using three different analyses, since the direct eddy-correlation measurements did not satisfy a surface energy balance. The analysis that seems to be most accurate indicated the saltcedar community used from 58 to 87 cm (23 to 34 in. ) of water each year. The other two communities used about two-thirds this quantity.

  11. Correlation Between Eddy Current Signal Noise and Peened Surface Roughness

    SciTech Connect

    Wendt, S. E.; Hentscher, S. R.; Raithel, D. C.; Nakagawa, N.

    2007-03-21

    For advanced uses of eddy current (EC) NDE models in, e.g., model-assisted POD, there is a need to understand the origin of EC noise sources so that noise estimations can be made for a given set of inspection conditions, in addition to defect signal predictions. This paper focuses on the material-oriented noise sources that exhibit some universality when isolated from electrical and mechanical noises. Specifically, we report on experimental measurements that show explicit correlations between surface roughness and EC noise as seen in post-peen EC measurements of shot-peened roughness specimens. The samples are 3''-by-3'' Inconel 718 and Ti-6A1-4V blocks, pre-polished and shot-peened at Almen intensities ranging from a low of 4N to as high as 16A, created by smaller ({approx}350 {mu}m) and larger ({approx}1 mm) diameter zirconium oxide shots. Strong correlations are observed between the Almen intensities and the measured surface roughness. The EC noise correlates equally strongly with the Almen intensities for the superalloy specimens. The correlation for the Ti-alloy samples is only apparent at higher intensities, while being weak for lower intensities, indicating the grain noise dominance for smoother surfaces.

  12. The ARM eddy correlation system for monitoring surface fluxes

    SciTech Connect

    Hart, R.L.; Cook, D.R.; Wesely, M.L.

    1998-12-31

    The Atmospheric Radiation Measurement (ARM) Program was established by the Department of Energy as part of the US Global Climate Change Research Program to improve methods of determining radiative transfer and cloud processes in large-scale models. The ARM observational facility in the Southern Great Plains (SGP) of the US uses various types of instrument systems to make continuous measurements of the state of the atmosphere, cloud properties, radiative transfer, and other forms of energy transfer. Most of the instrument systems for these continuous observations come from commercial sources; many are adaptations of systems that have been used previously, mostly in short-term field campaigns. Eddy correlation systems (ECORs) are used to measure the air-surface exchange rates of heat, moisture, and momentum at eight locations in the overall area (350 km by 400 km) of the SGP site. At most locations, measurements are made at a height of about three meters above the ground over tilled agricultural land. At 14 other locations, air-surface exchange is measured above grasslands with an energy balance Bowen ratio system.

  13. In Situ Coral Reef Oxygen Metabolism: An Eddy Correlation Study

    PubMed Central

    Long, Matthew H.; Berg, Peter; de Beer, Dirk; Zieman, Joseph C.

    2013-01-01

    Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period) were as high as 4500 mmol O2 m−2 d−1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m−2 s−1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution measurements

  14. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London.

    PubMed

    Font, A; Grimmond, C S B; Kotthaus, S; Morguí, J-A; Stockdale, C; O'Connor, E; Priestman, M; Barratt, B

    2015-01-01

    Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO(2) emissions at the meso-scale. Daytime CO(2) fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO(2) m(-2) s(-1) for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by 37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.

  15. Tests of a robust eddy correlation system for sensible heat flux

    NASA Astrophysics Data System (ADS)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  16. A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods

    USGS Publications Warehouse

    Stannard, D.I.; Rosenberry, D.O.

    1991-01-01

    Concurrent short-term measurements of evaporation from a shallow lake, using eddy correlation and energy budget methods, indicate that sensible and latent heat flux between lake and atmosphere, and energy storage in the lake, may vary considerably across the lake. Measuring net radiation with a net radiometer on the lake appeared to be more accurate than measuring incoming radiation nearby and modeling outgoing radiation. Short-term agreement between the two evaporation measurements was obtained by using an energy storage term that was weighted to account for the area-of-influence of the eddy correlation sensors. Relatively short bursts of evaporation were indicated by the eddy correlation sensors shortly after midnight on two of three occasions. ?? 1991.

  17. On the Computation of Space-Time Correlations by Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    He, Guo-Wei; Wang, Meng; Lele, Sanjiva K.

    2003-01-01

    Numerical comparisons in decaying isotropic turbulence suggest that there exist discrepancies in time correlations evaluated by DNS and LES using eddy-viscosity-type SGS models. This is consistent with the previous observations in forced isotropic turbulence. Therefore, forcing is not the main cause of the discrepancies. Comparisons among different SGS models in the LES also indicate that the model choice affects the time correlations in the LES. The multi-scale LES method using the dynamic Smagorinsky model on the small scale equation is the most accurate of the all models, the classic Smagorinsky model is the least accurate and the dynamic Smagorinsky model and spectral eddy viscosity model give intermediate results with small differences. The generalized sweeping hypothesis implies that time correlations in decaying isotropic turbulence are mainly determined by the instantaneous energy spectra and sweeping velocities. The analysis based on the sweeping hypothesis explains the discrepancies in our numerical simulations: the LES overpredicts the decorrelation time scales because the sweeping velocities are smaller than the DNS values, and underpredicts the magnitudes of time correlations because the energy spectrum levels are lower than the DNS ones. Since the sweeping velocity is determined by the energy spectra, one concludes that an accurate prediction of the instantaneous energy spectra guarantees the accuracy of time correlations. An analytical expression of sound power spectra based on Lighthill's theory and the quasi-normal closure assumption suggests that the sound power spectra are sensitive to errors in time correlations. Small errors in time correlations can cause significant errors in the sound power spectra, which exhibit a sizable drop at moderate to high frequencies accompanied by a shift of the peaks to lower frequencies. Based on the above analysis, two possible ways to improve the acoustic power spectrum predictions can be considered. The first

  18. Eddy correlation measurements of NO, NO{sub 2}, and O{sub 3} fluxes

    SciTech Connect

    Gao, W.; Wesely, M.L.; Cook, D.R.; martin, T.J.

    1996-06-01

    The micrometeorological technique of eddy correlation was used to measure the vertical fluxes of NO, NO{sub 2}, and ozone in rural North Carolian during spring 1995 as part of the Natural emission of Oxidant precurssors-Validation of techniques and Assessment (NOVA) field experiment. Net flux densities were measured at heights 5 and 10 m above an agricultural field with short corn plants and large amount of exposed bare soil between the rows. Large upward eddy fluxes of NO{sub 2} were seen, and strong NO emissions from the soil were measured by collaborators using environmental enclosures on the soil surface. Data indicate that about 50% of the nitrogen emitted from the soil as NO was converted into NO{sub 2} at 5 m. Rest of the emitted nitrogen may remain as NO flux and be returned back to the vegetation and soil by deposition. Divergence of the NO{sub 2} and O{sub 3} fluxes were detected between 5 and 10 m. This is consistent with likely net NO{sub 2} and O{sub 3} destruction rates. The data will be used to help develop parameterizations of the flux of nitrogen oxides into the lower troposphere.

  19. Isoprene Fluxes Measured By Eddy-correlation Over A Mixed Deciduous Forest In Italy

    NASA Astrophysics Data System (ADS)

    Finco, A.; Cieslik, S.

    A measuring campaign was conducted from July to September 2001 at a mixed de- ciduous forest located at a flat site (Nonantola, 4441' N; 1107' E) in the North- ern Italian plain to determine isoprene fluxes. The measuring station, operated by the CNR-ISAO (Bologna ) and CNR-IATA (Florence) was part of the CARBOEU- ROFLUX network, whose main goal is the study of the carbon balance in European forests. The flux measuring system used the eddy-correlation technique and consisted of a Gill sonic anemometer installed at 13 m a.g.l., and a LI-COR CO2/H2O analyser. For isoprene, a Hills Fast Isoprene Sensor was used.In this forest, about 50% of the trees (oaks, poplars and willows) are isoprene emitters. The canopy is very dense and homogeneous; its average height is 8 meters a.g.l. The general daily course of isoprene concentrations consisted in an increase during morning hours, followed with a sharp maximum and a rapid decrease. Maximum val- ues were quite high (around 15 ppb) in July and August, decreasing in September. During daytime, fluxes appeared to be strongly correlated with latent heat fluxes, con- firming the hypothesis of emission through stomata. The concentration decrease ob- served in the afternoon shows exponential decay, suggesting that no emission occurs after the concentration maximum, when stomata are progressively closing. A resistance analysis confirmed the above hypothesis : the role of stomatal emission appears essential, practically excluding other pathways. A mathematical investigation of the stationarity state of the lower atmosphere dur- ing the observations was made in order to draw attention on limitations of the eddy- correlation method. During nighttime, non-stationary situations are frequent, causing apparent peaks of isoprene flux, not due to an emission from the plants. The method developed permits to eliminate these biases.

  20. Daytime CO2 Urban-Regional Scale Surface Fluxes from Airborne Measurements, Eddy-Covariance Observations and Emissions Inventories in Greater London

    NASA Astrophysics Data System (ADS)

    Font, A. M.; Grimmond, S. B.; Morgui, J. A.; Kotthaus, S.; Priestman, M.; Barratt, B.

    2014-12-01

    As the global population becomes increasingly urbanized, spatially concentrated centres of anthropogenic CO2 and other greenhouse gases (GHG) arise. While mitigation measures exist at national and international scales, their implementation will be more effective if linked to the urban-scale of the sources. Routine top-down approaches that quantify emissions of GHG from cities and megacities are needed to understand the dynamics of the urban carbon cycle to eventually define relevant policy decisions. London is the biggest urban conurbation in Western Europe with more than 8 million inhabitants. It emitted roughly 45000 ktn CO2 in 20101. To understand the carbon dynamics and quantify anthropogenic emissions from London, airborne surveys of atmospheric CO2, O3, particles and meteorological variables were carried out over the city, onboard the NERC-ARSF Dornier-228 UK research aircraft. We applied an Integrative Mass Boundary Layer method (IMBL) using airborne CO2 observations obtained in horizontal transects crossing London at 360 m at different times of the day and by sampling upwind-downwind profiles. IMBL CO2 fluxes were compared to an emissions inventory and neighbourhood-scale eddy-covariance fluxes in central London. Daytime fluxes in October 2011 from the IMBL calculations ranged from 46 to 104 μmolCO2 m-2 s-1 and covered 30-70% of the urban region. The IMBL CO2 fluxes were the same order of magnitude as observed eddy-covariance fluxes and were statistically comparable to the emission inventory for the same footprint area. A sensitivity analysis suggested that horizontal variability of the CO2 field in the urban mixing layer is the most critical factor affecting IMBL fluxes. The determination of the boundary height and vertical wind speed had more impact on fluxes calculated from upwind-downwind profiles. Furthermore, low-altitude airborne measurements of CO2 provide the advantage of direct observation of the CO2 urban dome of a megacity and relate the

  1. Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors

    PubMed Central

    Holtappels, Moritz; Noss, Christian; Hancke, Kasper; Cathalot, Cecile; McGinnis, Daniel F.; Lorke, Andreas; Glud, Ronnie N.

    2015-01-01

    In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m-2 d-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend

  2. A time and space correlated turbulence synthesis method for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Castro, Hugo G.; Paz, Rodrigo R.

    2013-02-01

    In the present work the problem of generating synthesized turbulence at inflow boundaries of the simulation domain is addressed in the context of the Large Eddy Simulation (LES) method. To represent adequately certain statistical properties of a turbulent process, we propose a synthesized turbulence method which is based on previous works (Huang et al., 2010; Smirnov et al., 2001) [15,28]. For this purpose, time and space correlations are introduced strictly in the mathematical formulation of the synthetic turbulence inflow data. It is demonstrated that the proposed approach inherits the properties of the methods on which it is based while presents some particular advantages as well. The strategy of imposing conditions on the inlet velocity field through turbulence synthesis is implemented in the parallel multiphysics code called PETSc-FEM (http://www.cimec.org.ar/petscfem) primarily targeted to calculations throughout finite elements on general unstructured 2D and 3D grids. We present several numerical tests in order to validate and evaluate the method describing the dynamic phenomena that take place in “real-life” problems, such as a swirling turbulent flow inside a diffuser and the airflow around a vehicle model inside a wind tunnel at high Reynolds number.

  3. Fluxes by eddy correlation over heterogeneous landscape: How shall we apply the Reynolds average?

    NASA Astrophysics Data System (ADS)

    Dobosy, R.

    2007-12-01

    Top-down estimates of carbon exchange across the earth's surface are implicitly an integral scheme, deriving bulk exchanges over large areas. Bottom-up estimates explicitly integrate the individual components of exchange to derive a bulk value. If these approaches are to be properly compared, their estimates should represent the same quantity. Over heterogeneous landscape, eddy-covariance flux computations from towers or aircraft intended for comparison with top-down approach face a question of the proper definition of the mean or base state, the departures from which yield the fluxes by Reynolds averaging. 1)≠Use a global base state derived over a representative sample of the surface, insensitive to land use. The departure quantities then fail to sum to zero over any subsample representing an individual surface type, violating Reynolds criteria. Yet fluxes derived from such subsamples can be directly composed into a bulk flux, globally satisfying Reynolds criteria. 2)≠Use a different base state for each surface type. satisfying Reynolds criteria individually. Then some of the flux may get missed if a surface's characteristics significantly bias its base state. Base state≠(2) is natural for tower samples. Base state≠(1) is natural for airborne samples over heterogeneous landscape, especially in patches smaller than an appropriate averaging length. It appears (1) incorporates a more realistic sample of the flux, though desirably there would be no practical difference between the two schemes. The schemes are related by the expression w¯*a*)C - w¯'a¯')C = w¯'ã¯)C+ wtilde ¯a¯')C+ wtilde ¯ã¯)C Here w is vertical motion, and a is some scalar, such as CO2. The star denotes departure from the global base state≠(1), and the prime from the base state≠(2), defined only over surface class≠C. The overbar with round bracket denotes average over samples drawn from class≠C, determined by footprint model. Thus a¯')C = 0 but a¯*)C ≠ 0 in general. The

  4. Seasonal distribution of methane flux in Minnesota Peatland measured by eddy correlation

    SciTech Connect

    Shurpali, N.J.; Verma, S.B.; Clement, R.J.; Billesbach, D.P.

    1993-11-20

    Methane flux was measured using the micrometerological eddy correlation technique during 62 days in mid-May through mid-October 1991 in a peatland ecosystem in north central Minnesota. Application of this technique allows measurement of spatially integrated fluxes. The distribution of methane flux consisted of a gradual pattern with several episodic emissions superimposed. The gradual (nonepisodic) pattern of methane flux (daytime average) exhibited an increase from 30-120 mg m{sup {minus}2}/d in late May to early July to 125-160 mg m{sup {minus}2}/d in mid-July to mid-August and then a decline to 100-35 mg m{sup {minus}2}/d in early September to mid-October. Peat temperature (at 0.1 m depth) and water table depth accounted for about 70% of the variance in the methane flux data. The episodic emissions were associated with drops in atmospheric pressure and a declining water table. Generally, the hourly values of daytime methane flux were fairly stable, perhaps with a slight depression during the midday. However, on days with episodic emissions, the daytime methane flux had a peak during the midafternoon, and its pattern appeared to be similar to those of the standard deviation of atmospheric pressure flunctuations and mean horizontal wind velocity. The ratio of soil CO{sub 2} to methane fluxes (during nonepisodic emission periods) increased with increasing water table depth in a manner similar to that observed in a laboratory study of peat columns from different wetland types in Quebec. The annual methane emission for this ecosystem was estimated to be about 16-19.5 gm{sup {minus}2}yr{sup {minus}1}. 29 refs., 7 figs., 2 tabs.

  5. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  6. Correlation of haemoglobin-acrylamide adducts with airborne exposure: an occupational survey.

    PubMed

    Jones, Kate; Garfitt, Sarah; Emms, Vicky; Warren, Nick; Cocker, John; Farmer, Peter

    2006-04-10

    This paper reports an occupational hygiene survey of exposure to acrylamide comparing acrylamide haemoglobin adduct measurements with personal air monitoring and glove liner analysis. The air monitoring data showed that exposure to acrylamide was well-controlled with all samples below the UK maximum exposure limit (MEL) of 300 microg/m(3) with mean exposure about one tenth of the MEL. Each worker provided two blood samples approximately 3 months apart. These samples were well correlated (r=0.61) with a slope of 0.74, indicating that exposure was reasonably constant. Mean personal airborne acrylamide levels and mean acrylamide haemoglobin adduct levels were well correlated (r=0.72, N=46) and using the calculated linear correlation, exposure at the MEL would be expected to give rise to a haemoglobin adduct level of 1,550 pmol/g globin. Smoking status did not affect the correlation. There was also a correlation between levels of acrylamide detected on gloves and haemoglobin adduct levels. A combined regression model between haemoglobin adducts, airborne acrylamide and acrylamide glove contamination was significant for both airborne acrylamide and gloves with a regression coefficient of 0.89. The study showed that haemoglobin adduct level was a good biomarker of acrylamide exposure which correlated to both inhaled and potentially skin absorbed acrylamide estimates. There was excellent discrimination between well-controlled occupational levels and environmental levels from diet and smoking, allowing haemoglobin adduct measurement to be used to determine even low level exposures. Due to the complexity of the current methodology, new techniques would be useful in making haemoglobin adducts more widely applicable.

  7. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  8. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  9. Combined role of molecular diffusion, mean streaming and helicity in the eddy diffusivity of short-correlated random flows

    NASA Astrophysics Data System (ADS)

    Martins Afonso, Marco; Mazzino, Andrea; Gama, Sílvio

    2016-10-01

    We analytically investigate the effective-diffusivity tensor of a tracer particle in a fluid flow endowed with a short correlation time. By means of functional calculus and a multiscale expansion, we write down the main contributions to the eddy diffusivity due to each single physical effect and to their interplays. Namely, besides molecular diffusivity and a constant uniform mean streaming, we take into account the possibility for the (incompressible, Gaussian, stationary, homogeneous, isotropic) turbulent fluctuations to break parity invariance. With respect to the classical turbulence-driven diffusivity amplification for delta-correlated flows, we find that the presence of a short temporal correlation induces a diminution even when coupled with such effects, with two principal exceptions. Notably, the diffusivity is—perturbatively—enlarged not only by the helical contribution itself, but also by the interference between molecular diffusion and mean flow.

  10. Water Velocity as a Driver of Stream Metabolism: a Parallel Application of the Open Water and Eddy Correlation Techniques

    NASA Astrophysics Data System (ADS)

    Koopmans, D.; Berg, P.

    2013-12-01

    Inland waters respire or store a large portion of net terrestrial ecosystem production. As a result their metabolism is significant to the global carbon budget. The proximal drivers of aquatic respiration are organic matter availability, temperature, nutrients, and water velocity. Among these water velocity may be the least quantified. A partial explanation is that the footprint of the open water technique is typically hundreds of meters of river length, while the effect of a change in velocity may be specific to a local benthic environment, e.g., a riffle. With the eddy correlation technique oxygen flux is calculated from the turbulent fluctuation of vertical velocity and the oxygen concentration at a point in the water column. The footprint of the technique scales with the height of the point of measurement allowing an investigation of the in situ oxygen flux at the scale of a riffle. The combination of techniques, then, can be used to investigate the coupling of hydrodynamic conditions and benthic environments in driving aquatic ecosystem metabolism. This parallel approach was applied seasonally to examine the drivers of metabolism in a nutrient-rich, sand-bed coastal stream on the Eastern Shore of Virginia. An ecosystem-scale oxygen flux was calculated with the open water technique while pool-, run-, riffle-, and freshwater tidal-scale oxygen fluxes were calculated with the eddy correlation technique. At the ecosystem scale the stream bed functioned as an effective biocatalytic filter with an average annual net oxygen consumption of 300 mmol m^-2 d^-1. Prior to a stage-discharge shift water velocity explained 90% of the variance in ecosystem respiration (n = 63 days). After the stage-discharge shift water velocity explained 96 % of it (n = 40 days). Hyporheic exchange supported respiration in this system, contributing to its close correlation with water velocity. Among the physically similar benthic environments of the run, riffle, and freshwater tidal sites

  11. Correlation analysis of size-resolved airborne particulate matter with classified meteorological conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Viet; Park, Gee-Hyeong; Lee, Byeong-Kyu

    2017-02-01

    This study analyzed correlations between classified meteorological conditions and size-resolved particulate matter (PM) concentrations over year. Seasonal measurements of airborne PM were conducted on the roof of a university building located in an urban residential area in Ulsan, Korea. A total of 267 daily PM samples were obtained using a nine-stage cascade impactor during the 12-month sampling period (March 2011-March 2012). Among this period, the average PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were the lowest during the summer. The highest and lowest monthly average PM concentrations for all particle size ranges were observed in dry April and humid July, respectively. The PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were negatively correlated ( p < 0.01 or 0.05) with humidity level under high humid conditions (>80 %) and under moderate humidity conditions (50-80 %) only during the winter season. PM concentrations also negatively correlated with precipitation ( p < 0.01 or 0.05) under heavy (>30 mm) and moderate (10-30 mm) rainfall conditions and only under light rainfall (<10 mm) during the winter season. PM concentrations positively correlated ( p < 0.01 or 0.05) with easterly wind speed [strong (>7 m/s) and moderate (3-7 m/s) wind]. Most PM concentrations correlated positively with ambient temperature, however, only on days with an average temperature above 20 °C. High and moderate temperatures negatively correlated with high and moderate humid conditions, while low and extra low temperatures in winter period showed positive correlation with high and moderate humidity.

  12. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  13. Correlation between polycyclic aromatic hydrocarbons concentration and airborne particle mutagenicity in the rubber factory.

    PubMed

    Barański, B; Palus, J; Rogaczewska, T; Szymczak, W; Spiechowicz, E

    1992-01-01

    The study was undertaken to evaluate the correlation between benzo[a]pyrene and coal tar pitch volatiles concentrations and mutagenic activity of airborne particles sampled at different workplaces of the factory producing various types of tires. The solid phase of aerosols was collected on Whatman glass-fibers filters using Staplex pumps. Coal tar pitch volatiles (CTPVs) were extracted from sample filters using ultrasonic-benzene extraction and determined by the gravimetric method. Benzo[a]pyrene (BaP) analysis was performed using high performance liquid chromatography with a spectrofluorimetric detector. The mutagenic substances were extracted from collected material with acetone. The mutagenic properties were estimated with the Ames' test using S. typhimurium strain TA98 without and with S9 fraction. At nearly all workplaces the concentrations of BaP and CTPVs were within the range of 4-61 ng/m3 and 0.11-1.26 mg/m3, respectively. Only at weighing were they much higher and amounted to 172-2261 ng/m3 for BaP and 3.05-4.07 mg/m3 for CTPVs. The highest exposure to mutagenic airborne particulate matter was found at weighing (1500 rev/m3), the mixers loading level (> 500 rev/m3) and the carbon black station (> 150 rev/m3). The air mutagenic activity at other workplaces, especially at the extruder mill of the mixer (> 90 rev/m3), the two-roll mill of mixers (> 70 rev/m3), mixer I loading (> 70 rev/m3), calendering (> 70 rev/m3) and fender vulcanizing (> 80 rev/m3) was even much more higher than that found in the urban indoor and outdoor air (2-9 rev/m3).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  15. Variability in the correlation between nicotine and PM2.5 as airborne markers of second-hand smoke exposure.

    PubMed

    Fu, Marcela; Martínez-Sánchez, Jose M; Galán, Iñaki; Pérez-Ríos, Mónica; Sureda, Xisca; López, María J; Schiaffino, Anna; Moncada, Albert; Montes, Agustín; Nebot, Manel; Fernández, Esteve

    2013-11-01

    The aim of this study was to assess the relationship between particulate matter of diameter≤2.5 µm (PM2.5) and airborne nicotine concentration as markers of second-hand smoke exposure with respect to the setting studied, the intensity of exposure, and the type of environment studied (indoors or outdoors). Data are derived from two independent studies that simultaneously measured PM2.5 and nicotine concentrations in the air as airborne markers of second-hand smoke exposure in public places and workplaces, including health care centres, bars, public administration offices, educational centres, and transportation. We obtained 213 simultaneous measures of airborne nicotine and PM2.5. Nicotine in the air was measured with active samplers containing a sodium bisulphate-treated filter that was analysed by gas chromatography/mass spectrometry. PM2.5 was measured with a SidePak AM510 Personal Aerosol Monitor. We calculated Spearman's rank correlation coefficient and its 95% confidence intervals (95% CI) between both measures for overall data and stratified by setting, type of environment (indoors/outdoors), and intensity of second-hand smoke exposure (low/high, according to the global median nicotine concentration). We also fitted generalized regression models to further explore these relationships. The median airborne nicotine concentration was 1.36 µg/m3, and the median PM2.5 concentration was 32.13 µg/m3. The overall correlation between both markers was high (Spearman's rank correlation coefficient=0.709; 95% CI: 0.635-0.770). Correlations were higher indoors (Spearman's rank correlation coefficient=0.739; 95% CI: 0.666-0.798) and in environments with high second-hand smoke exposure (Spearman's rank correlation coefficient=0.733; 95% CI: 0.631-0.810). The multivariate analysis adjusted for type of environment and intensity of second-hand smoke exposure confirmed a strong relationship (7.1% increase in geometric mean PM2.5 concentration per µg/m3 nicotine

  16. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica)

    NASA Astrophysics Data System (ADS)

    Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.

    2010-08-01

    This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.

  17. Spatial Correlation of Airborne Magnetic Anomalies with Reservoir Temperatures of Geothermal Fields, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ertekin, Can; Ekinci, Yunus Levent

    2013-04-01

    Geothermal areas in Western Anatolia are remarkably located throughout Büyük Menderes Graben (BMG) and Gediz Graben (GG). These E-W trending grabens have been subjected to N-E stretching since Miocene. Except for these major outcomes of the extensional forces, NE-SW oriented and relatively short grabens take place in Western Anatolia as well. Among them, BMG and GG are remarkable with topographic escarpments that reveal footwall of steeply-dipping active normal faults. They manifest themselves via numerous earthquakes and geothermal activity (fluid discharges from springs and wells). Geothermal discharges are aligned along the rims of E-W trending normal faults trending over detachment faults. Concerning BMG, geothermal manifestations extend along the northern sector of the graben. Geothermal reservoirs inside BMG are the limestone and conglomerate units within Neogene sediments and the marble-quartzite units within The Menderes Massif rocks. The main high and low enthalpy geothermal fields along BMG and their reservoir temperatures are as follows: Kızıldere (242°C), Germencik (232°C), Aydın-Ilıcabası (101°C), Yılmazköy (142°C), Salavatlı (171°C), Söke (26°C), Pamukkale (36°C), Karahayıt (59°C), Gölemezli (101°C) and Yenice (70°C). Through GG, reservoir temperatures decrease from east to west. Geothermal reservoirs inside GG are metamorphics and granodiorite of the Menderes Massif rocks. The Neogene sediments act as cap rock of the geothermal reservoirs. Geothermal fields inside the graben and their reservoir temperatures are as follows: Alaşehir (215°C), Salihli (155°C), Urganlı (85°C), Kurşunlu (135°C), Caferbey (150°C), Sart (100°C). In order to investigate the spatial correlation of magnetic anomalies and the reservoir temperatures of geothermal fields in the region, we analysed airborne magnetic data which were collected by General Directorate of Mineral Research and Exploration (MTA) of Turkey. Airborne magnetic data were taken

  18. Evaluation of sensible heat flux from remote sensing and eddy correlation data for two Portuguese cork-oak forests

    NASA Astrophysics Data System (ADS)

    Cunha, John; Paço, Teresa A.; Silva, Filipe Costa e.; David, Jorge S.; Pereira, João S.; Rufino, Iana; Galvão, Carlos; Valente, Fernanda

    2015-04-01

    Energy balance is a major determinant of Earth surface temperature and climate. However, the physics of energy balance computations are complex and vary in space and in time. Most of the data available on the energy balance of non-agricultural systems is from local measurements, only representative of the area around the measuring point. To overcome this, remote sensing techniques have been widely used, particularly in studies on the temporal land-cover changes and on their influences on the energy and water balances. Several remote sensors with different spatial, temporal and spectral resolutions have been used to understand these processes. In many applications, the main objective is to understand how landscape's changes over time can influence regional climate. Orbital information enables the analysis of the spatial and temporal features of the Earth's surface, and to understand the interactions between different land-cover types with topography, atmospheric and anthropogenic action. However, to test for accuracy and precision, data from satellite sensors and their derivatives need to be compared with ground-level field data. This study evaluates and tests sensible heat flux data obtained from the SEBAL algorithm using images by Thematic Mapper (TM) sensor aboard Landsat 5 satellite. These sensible heat flux data were compared with those of two ground level experiments, with the Eddy Covariance technique, in Évora and Coruche, Portugal. The footprints of the sensible heat flux measurements were calculated for six scenes of sensor TM, allowing the comparison between satellite data and surface flux data. Results showed a high correlation between sensible heat flux data derived from remote sense and ground-level measurements (R2=0.94). We conclude that the remote sensing technique is useful in estimating this energy balance component and may contribute to the understanding of vegetation dynamics.

  19. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  20. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  1. Energy budget measurements using eddy correlation and Bowen ratio techniques at the Kinosheo Lake tower site during the Northern Wetlands Study

    NASA Technical Reports Server (NTRS)

    Den Hartog, G.; Neumann, H. H.; King, K. M.; Chipanshi, A. C.

    1994-01-01

    Fluxes of heat and water vapor were measured on a 20-m tower at Kinosheo Lake in the Hudson Bay lowlands using eddy correlation and Bowen ratio energy balance techniques. The study period was June 25 to July 28, 1990. Measurements were made over a peat bog consisting of a mixture of sphagnum moss and lichen hummocks and black pools. About 200 m west of the tower were several shallow ponds. The hummocks had a dry, insulating surface and were underlain by an ice layer near 50 cm depth until mid-July. At the beginning of the period the black pools were covered with water, and although the free water gradually disappeared over the study period, they remained saturated to the end of July. The depth of peat near the tower was about 3 m. Despite the ice layer under the hummocks, their daytime surface temperatures were high, near 35 C, and after the middle of July, above 40 C. Inspection of temperature, precipitation, and radiation data showed that the midsummer period of 1990 was warmer, drier, and sunnier than usual at Moosonee and so by influence at Lake Kinosheo. When all the data were combined to yield average diurnal energy balance components, the eddy correlation fluxes accounted for 90% of the available energy. Latent heat flux averaged 46% of the total available energy and the sensible heat flux averaged 34%. Daytime Bowen ratios were near 1 for the experimental period, suggesting that the bog behaved more like a dryland than a wetland. Eddy correlation measurements of sensible heat and latent heat flux were less than those measured using the Bowen ratio energy balance technique, the average ratios being 0.81 and 0.86 respectively. These differences were possibly due to the difficulty in measuring energy balance components of net radiation and ground heat flux over the mosaic surface.

  2. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California; with a section on estimating evapotranspiration using the energy-budget eddy-correlation technique

    USGS Publications Warehouse

    Czarnecki, John B.; Stannard, David I.

    1997-01-01

    Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.

  3. Estimates of evapotranspiration in alkaline scrub and meadow communities of Owens Valley, California, using the Bowen-ratio, eddy-correlation, and Penman-combination methods

    USGS Publications Warehouse

    Duell, L. F. W.

    1988-01-01

    In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared to other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy budget measurements. Penman-combination potential ET estimates were determined to be unusable because they overestimated actual ET. Modification in the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 300 mm at a low-density scrub site to 1,100 mm at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied. (Author 's abstract)

  4. Estimates of evapotranspiration in alkaline scrub and meadow communities of Owens Valley, California, using the Bowen-ratio, eddy-correlation, and penman-combination methods

    USGS Publications Warehouse

    Duell, Lowell F. W.

    1990-01-01

    In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared with other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy-budget measurements. Penman-combination potential-ET estimates were determined to be unusable because they overestimated actual ET. Modification of the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods described in this report may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix of this report. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 301 millimeters at a low-density scrub site to 1,137 millimeters at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied.

  5. In vitro tests to assess toxic effects of airborne PM(10) samples. Correlation with metals and chlorinated dioxins and furans.

    PubMed

    Roig, Neus; Sierra, Jordi; Rovira, Joaquim; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-01-15

    Inhalation is an important exposure pathway to airborne pollutants such as heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and particulate matter. Chronic exposure to those chemicals, which form part of complex environmental mixtures, may mean important human health risks. In the present study, the suitability of different in vitro tests to evaluate the toxic effects of air PM(10) pollutants is investigated. In addition, it is also assessed how to distinguish the contribution of chemical pollutants to toxicity. Sixty-three air samples were collected in various areas of Catalonia (Spain), and the levels of ecotoxicity, cytotoxicity and genotoxicity were evaluated. Aqueous acidic extractions of quartz fiber filters, where PM(10) had been retained, were performed. The photo-luminescent bacteria Vibrio fischeri (Microtox®) bioassay was performed to assess ecotoxicity. Moreover, MTT and Comet Assays, both using human lung epithelial cells A549 as target cells, were applied to assess the cytotoxicity and genotoxicity of air samples, respectively. The results show that Microtox® is an excellent screening test to perform a first evaluation of air quality, as it presented a significant correlation with chemical contaminants, contrasting with MTT Assay. Although none of the samples exhibited genotoxicity, a high correlation was found between this in vitro test and carcinogenic agents. Urban samples from traffic-impacted areas would be significantly more toxic. Finally, environmental temperature was identified as a key parameter, as higher values of ecotoxicity were found in winter.

  6. Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    NASA Technical Reports Server (NTRS)

    Edwards, G. C.; Neumann, H. H.; Den Hartog, G.; Thurtell, G. W.; Kidd, G.

    1994-01-01

    As part of the Canadian Northern Wetlands Study (NOWES) measurements of methane flux were made at the Kinosheo Lake tower site for a 1-month period during the 1990 summer intensive. The measurements were made with a diode-laser-based methane sensor using the eddy correlation technique. Measurements of the methane fluxes were made at two levels, 5 or 18 m. Approximately 900 half-hour average methane flux measurements were obtained. Weak temporal and diurnal trends were observed in the data. Fluxes averaged over the study period showed an overall methane emission of 16 mg CH4 m(exp -2)/d with a daytime average of 20 mg CH4 m(exp -2)/d and a nighttime average of 9 mg CH4 m(exp -2)/d. The effect of emission footprint was evident in the data. A strong relationship between the daily average methane flux and wet bog temperature at 20-cm depth was observed.

  7. Variation of correlations between factors and culturable airborne bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Gao, Min; Yan, Xu; Qiu, Tianlei; Han, Meilin; Wang, Xuming

    2016-03-01

    Bioaerosols, including their characteristics and overall changes correlated with environmental factors, have the potential to impact human health and influence atmospheric dynamics. In this study, the varying interrelationship between the concentration and diameter of culturable bioaerosols and twelve factors including PM2.5 (AQI), PM10 (AQI), sampling time, sampling season, temperature, relative humidity, dew, pressure, wind, O3, NO2, and SO2 is determined for twelve months during non-haze and haze days in Beijing. Results of principal component analysis (PCA) indicated that the influence of factors on culturable bioaerosols is mainly associated with haze levels, sampling time, and season. Multiple linear regressions showed that the correlation between PM10 (AQI) or temperature and culturable bioaerosols varied at different haze levels. The seasonal influence of PM2.5 (AQI) was observed in culturable bioaerosol concentrations, but not their diameters. A temporal relationship between PM10 (AQI) and culturable bioaerosol concentration was detected during rush hour. SO2 and NO2 show positive and negative correlations with culturable bioaerosol concentrations in the morning/evening and mid-day, respectively. These results are useful for accurately evaluating the health effects of exposure to bioaerosols.

  8. Comparison of Bowen-ratio, eddy-correlation, and weighing-lysimeter evapotranspiration for two sparse-canopy sites in eastern Washington

    USGS Publications Warehouse

    Tomlinson, S.A.

    1996-01-01

    This report compares evapotranspiration estimated with the Bowen-ratio and eddy-correlation methods with evapotranspiration measured by weighing lysimeters for two sparse-canopy sites in eastern Washington. The sites are located in a grassland area (grass lysimeter site) and a sagbrush- covered area (sage lysimeter site) on the Arid Lands Ecology Reserve in Benton County, Washington. Lysimeter data were collected at the sites from August 1990 to November 1994. Bowen-ratio data were collected for varying periods from May 1993 to November 1994. Additional Bowen-ratio data without interchanging air- temperature and vapor-pressure sensors to remove sensor bias (fixed-sensor system) were collected from October 1993 to June 1994. Eddy-correlation data were collected at the grass lysimeter site from March to April 1994, and at the sage lysimeter site from April to May 1994. The comparisons of evapotranspiration determined by the various methods differed considerably, depending on the periods of record being compared and the sites being analyzed. The year 1993 was very wet, with about 50 percent more precipitation than average; 1994 was a very dry year, with only about half the average precipitation. The study showed that on an annual basis, at least in 1994, Bowen-ratio evapotranspiration closely matched lysimeter evapotranspiration. In 1993, Bowen-ratio and lysimeter evapotranspiration comparisons were variable. Evapotranspiration estimated with the Bowen-ratio method averaged 5 percent more than evapotranspiration measured by lysimeters at the grass lysimeter site from October 1993 to November 1994, and 3 percent less than lysimeters at the sage lysimeter site from November 1993 to October 1994. From March 24 to April 5, 1994, at the grass lysimeter site, the Bowen-ratio method estimated 11 percent less, the Bowen-ratio method utilizing the fixed sensor system about 7 percent more, and the eddy-correlation method about 28 percent less evapotranspiration than the

  9. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    NASA Astrophysics Data System (ADS)

    Holtappels, Moritz; Glud, Ronnie N.; Donis, Daphne; Liu, Bo; Hume, Andrew; WenzhöFer, Frank; Kuypers, Marcel M. M.

    2013-03-01

    correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2 concentrations was examined using the theory of shear flow dispersion. A theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5-10 μM O2 h-1 result in transient EC-fluxes of 6-12 mmol O2 m-2 d-1, which is comparable to the O2 uptake of shelf sediments. Second, the case of transient velocities was examined with a 2D k-ɛ turbulence model demonstrating that the vertical flux can be biased by 30-100% for several hours during changing current velocities from 2 to 10 cm s-1. Results are compared to field measurements and possible ways to analyze and correct EC-flux estimates are discussed.

  10. Exploring Eddy-Covariance Measurements Using a Spatial Approach: The Eddy Matrix

    NASA Astrophysics Data System (ADS)

    Engelmann, Christian; Bernhofer, Christian

    2016-10-01

    Taylor's frozen turbulence hypothesis states that "standard" eddy-covariance measurements of fluxes at a fixed location can replace a spatial ensemble of instantaneous values at multiple locations. For testing this hypothesis, a unique turbulence measurement set-up was used for two measurement campaigns over desert (Namibia) and grassland (Germany) in 2012. This "Eddy Matrix" combined nine ultrasonic anemometer-thermometers and 17 thermocouples in a 10 m × 10 m regular grid with 2.5-m grid distance. The instantaneous buoyancy flux derived from the spatial eddy covariance of the Eddy Matrix was highly variable in time (from -0.3 to 1 m K s^{-1}). However, the 10-min average reflected 83 % of the reference eddy-covariance flux with a good correlation. By introducing a combined eddy-covariance method (the spatial eddy covariance plus the additional flux of the temporal eddy covariance of the spatial mean values), the mean flux increases by 9 % relative to the eddy-covariance reference. Considering the typical underestimation of fluxes by the standard eddy-covariance method, this is seen as an improvement. Within the limits of the Eddy Matrix, Taylor's hypothesis is supported by the results.

  11. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  12. Random-forcing model of the mesoscale oceanic eddies

    NASA Astrophysics Data System (ADS)

    Berloff, Pavel S.

    2005-04-01

    The role of mesoscale oceanic eddies in driving large-scale currents is studied in an eddy-resolving midlatitude double-gyre ocean model. The reference solution is decomposed into large-scale and eddy components in a way which is dynamically consistent with a non-eddy-resolving ocean model. That is, the non-eddy-resolving solution driven by this eddy-forcing history, calculated on the basis of this decomposition, correctly approximates the original flow. The main effect of the eddy forcing on the large-scale flow is to enhance the eastward-jet extension of the subtropical western boundary current. This is an anti-diffusive process, which cannot be represented in terms of turbulent diffusion. It is shown that the eddy-forcing history can be approximated as a space-time correlated, random-forcing process in such a way that the non-eddy-resolving solution correctly approximates the reference solution. Thus, the random-forcing model can potentially replace the diffusion model, which is commonly used to parameterize eddy effects on the large-scale currents. The eddy-forcing statistics are treated as spatially inhomogeneous but stationary, and the dynamical roles of space-time correlations and spatial inhomogeneities are systematically explored. The integral correlation time, oscillations of the space correlations, and inhomogeneity of the variance are found to be particularly important for the flow response.

  13. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Water Vapor in ACE-Asia and Their Comparisons to Correlative Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Livingston, J.; Russell, P.; Hegg, D.; Wang, J.; Kahn, R.; Hsu, C.; Masonis, S.; Murayama, T.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS-14) flew successfully on all 19 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at six and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and columnar water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. In this paper, we plan to present examples of the following, preliminary findings that are based in part on our airborne sunphotometer measurements: (1) The wavelength dependence of sunphotometer-derived AOD and extinction indicates that supermicron dust was often a major component of the aerosol, frequently extending to high altitudes. The percentage of full-column AOD (525 nm) that Jay above 3 km was typically 34+/-13%. In contrast, the analogous percentage of columnar water vapor was only 10+/-4%; (2) Initial comparison studies between AOD data obtained by AATS-6 and AATS-14 during coordinated low-level flight legs show agreement well within the instruments' error bars; (3) Aerosol extinction has been derived from airborne in situ measurements of scattering (nephelometers) and absorption (particle soot/ absorption photometer, PSAP) or calculated from particle size distribution measurements (mobility analyzers and aerodynamic particle sizers). Comparison with corresponding extinction values derived from the Ames airborne sunphotometer measurements shows good agreement for the vertical distribution

  14. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  15. Southern Ocean eddy phenomenology

    NASA Astrophysics Data System (ADS)

    Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R.

    2015-11-01

    Mesoscale eddies are ubiquitous features in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and salinity measurements from profiling floats. Over the period 1997-2010, we identified over a million mesoscale eddy instances and were able to track about 105 of them over 1 month or more. The Antarctic Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent, likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies. Areas of dominance of one polarity are generally congruent with the same polarity being longer-lived, bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of both trapping in the eddy core and stirring.

  16. Ocean eddies generated by seamounts in the north pacific.

    PubMed

    Royer, T C

    1978-03-10

    Small-scale (diameters of about 37 kilometers) fluctuations in dynamic topography north of Hawaii along 158 degrees W are well correlated with upstream seamounts. The fluctuations are subsurface but are manifested as baroclinic eddies at the sea surface. These eddies are confirmed by direct observations and supported by theoretical considerations. The eddies cause small-scale variability in the currents and hydrographic structures in this area, and they should be considered in any sampling programs of the region.

  17. Validating surface energy balance fluxes derived from airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Chavez Eguez, Jose Luis

    Remote sensing-derived energy balance components were compared against measured eddy covariance energy balance terms using heat flux source area models to validate the airborne multispectral remote sensing procedure in the estimation of instantaneous and daily evapotranspiration rates. A procedure was developed to generate raster layers of the footprint weights for weighting/integrating the different components of the energy balance model and obtain meaningful comparisons to similar energy balance terms measured at eddy covariance and/or Bowen ratio stations. Soil heat flux and surface aerodynamic temperature models were studied in an effort to improve the remote sensing estimation of distributed evapotranspiration rates. Aerial and ground data were acquired over a riparian corridor (Salt Cedar, Tamarix grove), soybean and cornfields (rainfed crops) in different ecosystems. The results confirmed that net radiation is well estimated with the remote sensing technique showing an estimation error of only -4.8 +/- 20.7 W m-2, (-0.5 +/- 3.6%). Linear and exponential soil heat flux models were found to correlate strongly to leaf area index and net radiation. The surface aerodynamic temperature term in the sensible heat flux equation was parameterized using surface radiometric temperature, air temperature, wind speed, and leaf area index. It is suggested that the surface aerodynamic temperature model be tested for a wide range of vegetation types, atmospheric stability conditions, surface heterogeneity, and ecosystems to assess the model limitations. The flux source area footprint model "FSAM" integrated heat flux pixels that compared better to measured values and it is recommended as a standard procedure to compare airborne remote sensing-derived heat fluxes against measured fluxes by eddy covariance systems; when compared to the "FASOWG" footprint model and simple arithmetic averages. Finally, the method that uses alfalfa reference daily evapotranspiration in

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Eddies along western boundaries

    NASA Astrophysics Data System (ADS)

    Arruda, Wilton Zumpichiatti

    The Ulleung eddy owes its existence to beta and nonlinearities . A nonlinear theory for the Ulleung Warm Eddy (UWE) in the Japan/East Sea is proposed. Using the nonlinear reduced gravity (shallow water) equations, it is shown analytically and numerically that the eddy is established in order to balance the northward momentum flux exerted by the separating western boundary current (WBC). In this scenario the presence of beta produces a southward (eddy) force balancing the northward momentum flux of the separating East Korea Warm Current. In contrast to the familiar idea attributing the formation of eddies to instabilities (i.e., the breakdown of a known steady solution), the UWE is an integral part of the steady stable solution. On an f-plane no eddy is produced. To balance the northward momentum force imparted by the nonlinear WBC the f-plane system moves offshore producing a southward Coriolis force. We also found that the observed UWE scale agrees with the analytical and numerical estimates. The Mindanao and Halmahera eddies are due to the bending of their parent currents, nonlinearities and beta. Starting with the simple case of a northward (southward) WBC flowing along a concave solid boundary with a sharp corner on an beta-plane, it is shown that an anticyclonic (cyclonic) eddy is established to balance the upstream momentum flux. (On an f-plane no eddy is established because a pressure force which balances the WBC momentum flux is generated.) With the aid of the above analysis we then examine the collision of two opposing WBCs on a beta-plane. It is shown that this problem can be conceptually reduced to the above problem of two WBCs turning in a solid corner on a beta-plane where the streamline separating the two colliding currents acts like a "zonal wall." We show that an eddy is established (to balance the momentum flux of the respective WBC) on each side of the dividing streamline. Based on the collision problem, an explanation for the Mindanao and

  20. Surface Deformation Associated With a Historical Diking Event in Afar From Correlation of Space and Air-Borne Optical Images

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.

    2011-12-01

    We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.

  1. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  2. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  3. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  4. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Kaser, Lisa; Karl, Thomas; Graus, Martin; Peischl, Jeff; Campos, Teresa L.; Shertz, Steve; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Flocke, Frank M.; Ryerson, Thomas B.; Guenther, Alex B.; Gouw, Joost A.

    2015-06-01

    Emissions of methane (CH4) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June-July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH4 and benzene from both C-130 flights with high-resolution data (10 Hz) and WP-3D flights with low-resolution data (1 Hz). Correlation (R = 0.65) between CH4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10 µg m-2 s-1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.

  5. Interview with Eddie Reisch

    ERIC Educational Resources Information Center

    Owen, Hazel

    2013-01-01

    Eddie Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…

  6. Don Eddy; "Jewelry."

    ERIC Educational Resources Information Center

    Schaefer, Claire

    1989-01-01

    Presents a lesson that introduces students in grades K-three to sources of design inspiration in contemporary urban settings. Using Don Eddy's painting of a jewelry store window display, asks students to describe and analyze the interplay of shape, pattern, and color. Suggests studio activities, including an activity in which students build a…

  7. Eddies off Tasmania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color satellite image shows a large phytoplankton bloom, several hundred square kilometers in size, in the Indian Ocean off the west coast of Tasmania. In this scene, the rich concentration of microscopic marine plants gives the water a lighter, more turquoise appearance which helps to highlight the current patterns there. Notice the eddies, or vortices in the water, that can be seen in several places. It is possible that these eddies were formed by converging ocean currents flowing around Tasmania, or by fresh river runoff from the island, or both. Often, eddies in the sea serve as a means for stirring the water, thus providing nutrients that help support phytoplankton blooms, which in turn provide nutrition for other organisms. Effectively, these eddies help feed the sea (click to read an article on this topic). This image was acquired November 7, 2000, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the Orbview-2 satellite. Tasmania is located off Australia's southeastern coast. Image courtesy SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-11-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  9. Eddy parameterization challenge suite I: Eady spindown

    NASA Astrophysics Data System (ADS)

    Bachman, S.; Fox-Kemper, B.

    2013-04-01

    The first set of results in a suite of eddy-resolving Boussinesq, hydrostatic simulations is presented. Each set member consists of an initially linear stratification and shear as in the Eady problem, but this profile occupies only a limited region of a channel and is allowed to spin-down via baroclinic instability. The diagnostic focus is on the spatial structure and scaling of the eddy transport tensor, which is the array of coefficients in a linear flux-gradient relationship. The advective (antisymmetric) and diffusive (symmetric) components of the tensor are diagnosed using passive tracers, and the resulting diagnosed tensor reproduces the horizontal transport of the active tracer (buoyancy) to within ± 7% and the vertical transport to within ± 12%. The derived scalings are shown to be close in form to the standard Gent-McWilliams (antisymmetric) and Redi diffusivity (symmetric) tensors with a magnitude that varies in space (concentrated in the horizontal and vertical near the center of the frontal shear) and time as the eddies energize. The Gent-McWilliams eddy coefficient is equal to the Redi isopycnal diffusivity to within ± 6%, even as these coefficients vary with depth. The scaling for the magnitude of simulation parameters is determined empirically to within ± 28%. To achieve this accuracy, the eddy velocities are diagnosed directly and used in the tensor scalings, rather than assuming a correlation between eddy velocity and the mean flow velocity where ± 97% is the best accuracy achievable. Plans for the next set of models in the challenge suite are described.

  10. Emergent eddy saturation from an energy constrained eddy parameterisation

    NASA Astrophysics Data System (ADS)

    Mak, J.; Marshall, D. P.; Maddison, J. R.; Bachman, S. D.

    2017-04-01

    The large-scale features of the global ocean circulation and the sensitivity of these features with respect to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such feature, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circumpolar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing the Gent-McWilliams parameterisation with a constant Gent-McWilliams eddy transfer coefficient seem unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally symmetric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised eddy energy budget, the Gent-McWilliams eddy transfer coefficient of the form described in Marshall et al. (2012) [A framework for parameterizing eddy potential vorticity fluxes, J. Phys. Oceanogr., vol. 42, 539-557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent property.

  11. Investigations of eddy coherence in jet flows

    NASA Technical Reports Server (NTRS)

    Yule, A. J.

    1980-01-01

    In turbulent shear flow the term coherent structures refers to eddies which are both spatially coherent, i.e., large eddies, aand also temporally coherent, i.e., they retain their identities for times which are long compared with their time scales in fixed point measurements. In transitional flows, the existence of such structures is evident from flow visualizations. In many other flows, such structures are not so evident. The reasons for the existence of these two classes of flows are discussed and attention is focused upon the more difficult flows, where coherent structures are not so evident. Techniques by which the existence (or nonexistence) of such structures in these flows can be established from point measurements, are also discussed. A major problem is shown to be the need to discriminate between real losses in eddy coherence and apparent losses in coherence introduced by phase scrambling effects which 'smear' multipoint correlations. The analysis of multiprobe time dependent data in cold and reacting round turbulent jets is described and it is shown how evidence of strong eddy coherence can be extracted from data.

  12. Nonperiodic eddy pulsations

    USGS Publications Warehouse

    Rubin, David M.; McDonald, Richard R.

    1995-01-01

    Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.

  13. Eddies spatial variability at Makassar Strait – Flores Sea

    NASA Astrophysics Data System (ADS)

    Nuzula, F.; Syamsudin, M. L.; Yuliadi, L. P. S.; Purba, N. P.; Martono

    2017-01-01

    This study was aimed to get the distribution of eddies spatially and temporally from Makassar Waters (MW) to Flores Sea (FS), as well as its relations with the upwelling, the downwelling, and chlorophyll-a concentration. The study area extends from 115º–125º E to 2.5º–8º S. The datasets were consisted of monthly geostrophic currents, sea surface heights, sea surface temperatures, and chlorophyll-a from 2008 – 2012. The results showed that eddies which found at Makassar Strait (MS) has the highest diameter and speed of 255.3 km and 21.4 cm/s respectively, while at the southern MW has 266.4 km and 15.6 cm/s, and at FS has 182.04 km and 11.4 cm/s. From a total of 51 eddies found, the majority of eddies type was anticyclonic. At MS and FS, eddies formed along the year, whereas at southern MW were found missing in West Season. Moreover, the chlorophyll-a concentration was consistently higher at the eddies area. Even though, the correlation among eddies and the upwelling downwelling phenomena was not significantly as shown by sea surface temperatures value.

  14. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  15. JORNEX: An airborne campaign to quantify rangeland vegetation change and plant community-atmospheric interactions

    SciTech Connect

    Ritchie, J.C.; Rango, A.; Kustas, W.P.

    1996-11-01

    The Jornada Experimental Range in New Mexico provides a unique opportunity to integrate hydrologic-atmospheric fluxes and surface states, vegetation types, cover, and distribution, and vegetation response to changes in hydrologic states and atmospheric driving forces. The Jornada Range is the site of a long-term ecological research program to investigate the processes leading to desertification. In concert with ongoing ground measurements, remotely sensed data are being collected from ground, airborne, and satellite platforms during JORNEX (the JORNada Experiment) to provide spatial and temporal distribution of vegetation state using laser altimeter and multispectral aircraft and satellite data and surface energy balance estimates from a combination of parameters and state variables derived from remotely sensed data. These measurements will be used as inputs to models to quantify the hydrologic budget and the plant response to changes in components in the water and energy balance. Intensive three day study periods for ground and airborne campaigns have been made in May 1995 (dry season) and September 1995 (wet season), February 1996 (Winter) and are planned for wet and dry seasons of 1996. An airborne platform is being used to collect thermal, multispectral, 3-band video, and laser altimetry profile data. Bowen ratio-energy balance stations were established in shrub and grass communities in May 1995 and are collecting data continuously. Additional energy flux measurements were made using eddy correlation techniques during the September 1995 campaign. Ground-based measurements during the intensive campaigns include thermal and multispectral measurements made using yoke-based platforms and hand-held instruments, LAI, and other vegetation data. Ground and aircraft measurements are acquired during Landsat overpasses so the effect of scale on measurements can be studied. This paper discusses preliminary results from the 1995 airborne campaign. 24 refs., 13 figs., 1 tab.

  16. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  17. Eddy current enhancement for EMATs

    NASA Astrophysics Data System (ADS)

    Palmer, S. B.; Jian, X.; Dixon, S.

    2007-04-01

    When an electromagnetic acoustic transducer (EMAT) is used to generate ultrasound in an electrically conducting sample, eddy currents are generated in the sample's skin depth as the first stage in transduction. The resultant acoustic wave amplitude is proportional to the amplitude of this eddy current, and so anything that we can do to increase the eddy current will lead to the generation of larger amplitude ultrasonic waves. In eddy current testing, wire coils are often wound onto a ferrite core to increase the generated eddy current, with the effect that inductance of the coil increases greatly. When we are dealing with an EMAT, any increase in the coil inductance is usually unacceptable as it leads to a reduction in the amplitude of a given frequency of eddy current from a limited voltage source. This is particularly relevant where current arises from capacitor discharge, as is typically used in EMAT driver current circuitry. We present a method for electromagnetic acoustic transduction where ferrite is used to increase eddy current amplitude, without significantly increasing coil inductance or changing the frequency content of the eddy current or the generated acoustic wave.

  18. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  19. Obituary: John Allen Eddy (1931-2009)

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2011-12-01

    , "This Mercury is Hot! Red Shift, Black Body, and a Perfect Radiator." Ironically, within a few years he was laid off from his HAO position as a result of budget cuts at its parent organization, the National Center for Atmospheric Research (NCAR). In an interview a quarter of a century later Eddy remarked, "I found out how hard it is for a person with a Ph.D. to get another job at that time, and often wished I didn't have one, for I was often told, true or not, that I was overqualified for the few jobs that turned up." Eddy found a temporary job writing a book for NASA as part of a series on the Skylab spacecraft; the book, The New Sun, was published in 1979. Again, working on his own time, he revived an earlier finding, namely, that between 1645 and 1715 the sun was almost devoid of spots, and he greatly extended the previous work of Gustav Spörer and Walter Maunder by showing during that period a dearth of aurorae and atmospheric carbon-14, a diminution of the solar corona during eclipses, and probably a correlation with cooling of the earth. For onomatopoiec reasons, the rhythm of the m's, Eddy chose the title "the Maunder Minimum" for the phenomenon, and for his unusually long cover story in the 18 June 1976 issue of Science. The paper was well received, and for a while Eddy was an invited speaker fifty times a year. In 1977, Eddy scored yet again, with his third cover story in Science, a jointly authored paper on solar rotation in the early 17th century. In 1977-78 Eddy had a fellowship at the Harvard-Smithsonian Center for Astrophysics in Cambridge, and during that time Ken Brecher and I had a series of conversations with Jack in which we worked out a proposal for a historical astronomy division within the AAS; since I had just been an AAS Councilor, I negotiated with the Society for its actualization, and Eddy became the first HAD president, in 1981-83. He introduced the logo, Dürer's ancient astronomer, and at the end of his term, the plaque with the motto "Ich

  20. Modeling mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale

  1. Eddies Enhance Biological Production in the Weddell-Scotia Confluence of the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Kahru, M.; Mitchell, B. G.; Gille, S. T.; Hewes, C. D.; Holm,-Hansen, O.

    2007-01-01

    Satellite data show that oceanic eddies generated in the Southern Antarctic Circumpolar Current Front (SACCF) are associated with increased phytoplankton biomass. Cyclonic eddies with high chlorophyll a concentration (Chl-a) retain phytoplankton within the eddy cores and increase the light available for photosynthesis in the upper mixed layer by limiting vertical mixing and lifting of the isopycnal surfaces. Anticyclonic eddies have low Chl-a in the core but increased Chl-a in the periphery. Cross-frontal mixing mediated by eddies transports nutrients (e.g., Fe and Si) to the north and contributes to the increased Chl-a in the frontal zone. Interannual variations in the cyclonic eddy activity are positively correlated with variations in Chl-a during the spring bloom in regions of the Antarctic Circumpolar Current around South Georgia.

  2. Subsurface circulation and mesoscale variability in the Algerian subbasin from altimeter-derived eddy trajectories

    NASA Astrophysics Data System (ADS)

    Escudier, Romain; Mourre, Baptiste; Juza, Mélanie; Tintoré, Joaquín.

    2016-08-01

    Algerian eddies are the strongest and largest propagating mesoscale structures in the Western Mediterranean Sea. They have a large influence on the mean circulation, water masses and biological processes. Over 20 years of satellite altimeter data have been analyzed to characterize the propagation of these eddies using automatic detection methods and cross-correlation analysis. We found that, on average, Algerian eddy trajectories form two subbasin scale anticlockwise gyres that coincide with the two Algerian gyres which were described in the literature as the barotropic circulation in the area. This result suggests that altimetry sea surface observations can provide information on subsurface currents and their variability through the study of the propagation of deep mesoscale eddies in semienclosed seas. The analysis of eddy sea level anomalies along the mean pathways reveals three preferred areas of formation. Eddies are usually formed at a specific time of the year in these areas, with a strong interannual variability over the last 20 years.

  3. Large-Eddy Simulation on turbulent flow and plume dispersion over a 2-dimensional hill

    NASA Astrophysics Data System (ADS)

    Nakayama, H.; Nagai, H.

    2010-05-01

    The dispersion analysis of airborne contaminants including radioactive substances from industrial or nuclear facilities is an important issue for air quality maintenance and safety assessment. In Japan, many nuclear power plants are located at complex coastal terrains. In these cases, terrain effects on the turbulent flow and plume dispersion should be investigated. In this study, we perform Large-Eddy Simulation (LES) of turbulent flow and plume dispersion over a 2-dimensional hill flow and investigate the characteristics of mean and fluctuating concentrations.

  4. Eddy heat and salt transports in the South China Sea and their seasonal modulations

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Gan, Jianping; Xie, Qiang; Chu, Xiaoqing; Wang, Dongxiao; Hou, Yijun

    2012-05-01

    This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin-scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin-scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2-layer reduced-gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.

  5. Applied large eddy simulation.

    PubMed

    Tucker, Paul G; Lardeau, Sylvain

    2009-07-28

    Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity.

  6. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  7. Endotoxins in baled cottons and airborne dusts in textile mills in the People's Republic of China.

    PubMed Central

    Olenchock, S A; Christiani, D C; Mull, J C; Ye, T T; Lu, P L

    1983-01-01

    Bulk cotton samples and airborne vertical elutriated cotton dusts were obtained from textile mills in Shanghai, People's Republic of China. Analysis of endotoxin contents revealed that baled cottons which were grown in different countries varied in endotoxin contamination. The two textile mills, which operated at similar overall airborne dust levels, differed markedly in the levels of airborne endotoxins. The data suggest that the biological activity or "toxicity" of airborne cotton dusts may not be correlated directly with gravimetric dust levels. PMID:6639029

  8. Role of eddy pumping in enhancing primary production in the ocean

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kolber, Zbigniew; Ziemann, David; Bienfang, Paul K.

    1991-01-01

    Eddy pumping is considered to explain the disparity between geochemical estimates and biological measurements of exported production. Episodic nutrient injections from the ocean into the photic zone can be generated by eddy pumping, which biological measurements cannot sample accurately. The enhancement of production is studied with respect to a cyclonic eddy in the subtropical Pacific. A pump-and-probe fluorimeter generates continuous vertical profiles of primary productivity from which the contributions of photochemical and nonphotochemical processes to fluorescence are derived. A significant correlation is observed between the fluorescence measurements and radiocarbon measurements. The results indicate that eddy pumping has an important effect on phytoplankton production and that this production is near the maximum relative specific growth rates. Based on the production enhancement observed in this case, eddy pumping increases total primary production by only 20 percent and does not account for all enhancement.

  9. Dynamic Model of Mesoscale Eddies

    NASA Astrophysics Data System (ADS)

    Dubovikov, Mikhail S.

    2003-04-01

    Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV

  10. The eddy-mean flow interaction and the intrusion of western boundary current into the South China Sea type basin in an idealized model

    NASA Astrophysics Data System (ADS)

    Zhong, Linhao

    2016-04-01

    In this paper, an ideal model on the role of mesoscale eddies in the Kuroshio intruding into the South China Sea (SCS) is developed, which represents the northwestern Pacific and the SCS by two rectangle basins connected by a gap. In the case of only considering intrinsic ocean variability, a time-dependent western boundary current (WBC) driven by steady wind is modeled under both eddy-resolving and non-eddy-resolving resolutions. Almost all simulated WBC intrudes into the adjacent sea in the form of loop current with multiple-state transitions and eddy-shedding process, which has aperiodic variations on intraseasonal or interannual scales, determined by the eddy-induced WBC variation. For the parameters considered in this paper, the WBC intrusion exhibits a 30~90-day cycle in the presence of the subgrid-scale eddy forcing (SSEF), but a 300~500-day cycle in the absence of SSEF. Moreover, the roles of the resolved (grid-scale) and unresolved (subgrid-scale) eddies in the WBC intrusion are studied. It is found that the unresolved eddy-flow interaction strongly regulates the WBC intrusion through the PV forcing induced by shear flows and baroclinic processes. But the resolved eddy forcing, which is dominated by the eddy-eddy interaction solely through baroclinic processes, shows weak correlation to the WBC intrusion. The associated eddy-induced PV exchange between the two basins is mainly accomplished by isopycnal-thickness eddy fluxes, particularly by the cross-front PV fluxes due to the unresolved eddy. And the unresolved eddy-flow interaction, as well as resolved and unresolved eddy-eddy interactions, mainly governs the PV transport for the WBC intrusion.

  11. Expert system for analyzing eddy current measurements

    DOEpatents

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  12. Expert system for analyzing eddy current measurements

    SciTech Connect

    Levy, A.J.; Oppenlander, J.E.; Brudnoy, D.M.; Englund, J.M.; Loomis, K.C.

    1994-08-16

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner. 21 figs.

  13. Eddy-Resolving Global Ocean Prediction

    DTIC Science & Technology

    2009-07-01

    key observing system for mapping ocean eddies and current meanders, but sea surface temperature, temperature and salinity profiles, and atmospheric...for mapping ocean eddies and current meanders, but sea surface temperature, temperature and salinity profiles, and atmospheric forcing arc also...fronts, eddies, Rossby waves, and the associated temperature, salinity, currents, and sea surface height (SSH). Only since the turn of the century

  14. Analysis of Auroral Data from Nasa's 1968 and 1969 Airborne Auroral Expedition

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a methodical compilation, reduction, and correlated analysis of spectrophotometric data obtained by various scientific groups during NASA's 1968 and 1969 Airborne Auroral Expedition are presented.

  15. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  16. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  17. Heat Transport and Long-Term Change in the Southern Ocean: Assessing the Role of Eddies

    NASA Astrophysics Data System (ADS)

    Gille, S. T.; Zajaczkovski, U.; Mazloff, M. R.

    2015-12-01

    Long-term change in the Southern Ocean can be difficult to evaluate because of both the paucity of historic observations and the magnitude of eddy variability. The low stratification of the Southern Ocean means that eddies detected by altimetry at the ocean surface extend through the top 2 km of the ocean. Sea surface height anomalies are more strongly correlated with sub-surface variability at depths between about 600 and 1400 dbars than they are with variability in the upper 200 dbars. Altimetric variability can thus be used to remove eddy-related anomalies from individual Argo profiles, resulting in a smoother estimate of mean temperature and salinity. This "eddy-free" mean field serves as a benchmark against which to assess decadal-scale changes in the Southern Ocean, and we use historic hydrographic data to evaluate temperature and salinity changes through the second half of the 20th century. We also evaluate the behavior of Southern Ocean eddies themselves: Although in most parts of the ocean closed oceanic eddies appear to result in thermally indirect heat transport, eddies that are carried eastward by the ACC tend to propagate in the opposite direction, resulting in thermally direct, poleward heat transport across the ACC. Evidence suggests that this cell is maintained by the effective eastward propagation of eddies relative to the mean flow at deep levels.

  18. Quantifying mesoscale eddies in the Lofoten Basin

    NASA Astrophysics Data System (ADS)

    Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.

    2016-07-01

    The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.

  19. Mesoscale Eddy - Internal Wave Coupling:

    NASA Astrophysics Data System (ADS)

    Polzin, K. L.

    2012-12-01

    The issue of internal wave--mesoscale eddy interactions is revisited. Direct estimates of energy transfer from the Local Dynamics Experiment of the PolyMode field program (Polzin, 2010 JPO) return viscosity estimates of ν h \\cong 50 m2 s-1 and ν v + (f2)/(N^2) Kh \\cong 2.5×10-3 m2 s-1. These estimates indicate that mesoscale eddy-internal wave interactions may play an O(1) role in the mesoscale eddy energy budget as dissipation and the internal wave budget as a source. Radiation balance equation formulations for this coupling (Müller 1976, JFM) are examined. In these formulations permanent transfer of energy and internal wave pseudomomentum for mesoscale eddy potential vorticity is enabled by nonlinearity in the wavefield. Revision of radiation balance equation formulations to account for non-local effects returns predictions of ν h \\cong 50-100 m2 s-1 and ν v + (f2)/(N^2) Kh \\cong -1×10-3 to 4×10-3 m2 s-1. The prediction for the effective vertical viscosity is sensitive to how internal wave energy is distributed in the spectral domain with negative values appropriate to the Garrett and Munk spectrum and positive values appropriate to the background spectrum in the LDE area. Geographic scalings in terms of latitude, stratification and mesoscale eddy variability will be described. The process described here is best interpreted as an amplifier of a pre-existing or externally forced finite amplitude wavefield rather than the spontaneous imbalance of a linear field. Energy, pseudomomentum and vorticity can be transfered from the slow manifold (geostrophically balanced motions) to the fast manifold (internal gravity waves) via linear wave propagation in asymmetric background flows, but that transfer is reversible. The permanent transfer is accomplished by nonlinearity on the fast manifold.

  20. Community differentiation and population enrichment of Sargasso Sea bacterioplankton in the euphotic zone of a mesoscale mode-water eddy.

    PubMed

    Nelson, Craig E; Carlson, Craig A; Ewart, Courtney S; Halewood, Elisa R

    2014-03-01

    Eddies are mesoscale oceanographic features (∼ 200 km diameter) that can cause transient blooms of phytoplankton by shifting density isoclines in relation to light and nutrient resources. To better understand how bacterioplankton respond to eddies, we examined depth-resolved distributions of bacterial populations across an anticyclonic mode-water eddy in the Sargasso Sea. Previous work on this eddy has documented elevated phytoplankton productivity and diatom abundance within the eddy centre with coincident bacterial productivity and biomass maxima. We illustrate bacterial community shifts within the eddy centre, differentiating populations uplifted along isopycnals from those enriched or depleted at horizons of enhanced bacterial and primary productivity. Phylotypes belonging to the Roseobacter, OCS116 and marine Actinobacteria clades were enriched in the eddy core and were highly correlated with pigment-based indicators of diatom abundance, supporting developing hypotheses that members of these clades associate with phytoplankton blooms. Typical mesopelagic clades (SAR202, SAR324, SAR406 and SAR11 IIb) were uplifted within the eddy centre, increasing bacterial diversity in the lower euphotic zone. Typical surface oligotrophic clades (SAR116, OM75, Prochlorococcus and SAR11 Ia) were relatively depleted in the eddy centre. The biogeochemical context of a bloom-inducing eddy provides insight into the ecology of the diverse uncultured bacterioplankton dominating the oligotrophic oceans.

  1. A new climatological oceanic eddy census

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Pascual, Ananda; Pujol, Isabel; Faugère, Yannice; Delepoulle, Antoine; Briol, Frederic

    2015-04-01

    We present a new climatological oceanic eddy census dataset based on gridded sea level anomalies from satellite altimeter observations that is due for release by Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO). The identification and automated tracking of oceanic eddies is carried out using the py-eddy-tracker of Mason et al. (2014). Daily outputs of eddy properties (including position, radius, amplitude and nonlinearity) covering the period 1993-2013 over the global domain are presented and discussed. Validation and comparison is made with the published global eddy track database of Chelton et al. (2011).

  2. Transient eddies in the MACDA Mars reanalysis

    NASA Astrophysics Data System (ADS)

    Mooring, Todd A.; Wilson, R. John

    2015-10-01

    We present a survey of the transient eddy activity in the Mars Analysis Correction Data Assimilation (MACDA) reanalysis. The spatial structure and propagation characteristics of the eddies are emphasized. Band-pass-filtered variance and covariance fields are found to be zonally modulated, indicating a longitude dependence of the typical amplitudes of Martian transient eddies. Considerable repeatability of the eddy field spatial structures is found across Mars years, including a roughly wave number 3 pattern of low-level eddy meridional temperature transport (v'T'¯) in the northern hemisphere that is evident before and after winter solstice and a possible tendency for northern hemisphere eddy kinetic energy maxima to be located above low-lying areas. Southern hemisphere eddy fields tend to feature two local maxima, one roughly south of Tharsis and the other associated with Hellas. Eddies are weakened near winter solstice in both hemispheres and were generally weakened in the northern hemisphere during the 2001 (Mars year 25) global dust storm, albeit with little change in spatial patterns. Because the transient eddies propagate in space, we also used a teleconnection map-based technique to estimate their phase velocities. Eddy propagation at the surface is found to follow topography, a phenomenon less evident at higher altitude. Possible physical mechanisms underlying the documented eddy phenomena are discussed.

  3. Observed eddy dissipation in the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Braby, Laura; Backeberg, Björn C.; Ansorge, Isabelle; Roberts, Michael J.; Krug, Marjolaine; Reason, Chris J. C.

    2016-08-01

    Analyzing eddy characteristics from a global data set of automatically tracked eddies for the Agulhas Current in combination with surface drifters as well as geostrophic currents from satellite altimeters, it is shown that eddies from the Mozambique Channel and south of Madagascar dissipate as they approach the Agulhas Current. By tracking the offshore position of the current core and its velocity at 30°S in relation to eddies, it is demonstrated that eddy dissipation occurs through a transfer of momentum, where anticyclones consistently induce positive velocity anomalies, and cyclones reduce the velocities and cause offshore meanders. Composite analyses of the anticyclonic (cyclonic) eddy-current interaction events demonstrate that the positive (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current.

  4. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  5. Loop Current Eddy formation and baroclinic instability

    NASA Astrophysics Data System (ADS)

    Donohue, K. A.; Watts, D. R.; Hamilton, P.; Leben, R.; Kennelly, M.

    2016-12-01

    The formation of three Loop Current Eddies, Ekman, Franklin, and Hadal, during the period April 2009 through November 2011 was observed by an array of moored current meters and bottom mounted pressure equipped inverted echo sounders. The array design, areal extent nominally 89° W to 85° W, 25° N to 27° N with 30-50 km mesoscale resolution, permits quantitative mapping of the regional circulation at all depths. During Loop Current Eddy detachment and formation events, a marked increase in deep eddy kinetic energy occurs coincident with the growth of a large-scale meander along the northern and eastern parts of the Loop Current. Deep eddies develop in a pattern where the deep fields were offset and leading upper meanders consistent with developing baroclinic instability. The interaction between the upper and deep fields is quantified by evaluating the mean eddy potential energy budget. Largest down-gradient heat fluxes are found along the eastern side of the Loop Current. Where strong, the horizontal down-gradient eddy heat flux (baroclinic conversion rate) nearly balances the vertical down-gradient eddy heat flux indicating that eddies extract available potential energy from the mean field and convert eddy potential energy to eddy kinetic energy.

  6. Quantitative void fraction measurement with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    SciTech Connect

    Kumar, M.; Tordjeman, Ph.; Bergez, W.; Cavaro, M.; Paumel, K.; Jeannot, J.P.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  7. Quantitative void fraction detection with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    SciTech Connect

    Kumar, M.; Tordjeman, Ph.; Bergez, W.; Cavaro, M.; Paumel, K.; Jeannot, J. P.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  8. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  9. Influence of anticyclonic eddies on the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM cruise)

    NASA Astrophysics Data System (ADS)

    Moutin, T.; Prieur, L.

    2012-10-01

    We studied a longitudinal transect in the Mediterranean Sea (MS) and along this transect, the influence of anticyclonic eddies at three long duration (LD) stations. The deep chlorophyll maximum depth, the euphotic layer depth and the top of the nitracline depth are clearly correlated outside of the eddies, and deepen from the oligotrophic western to the ultraoligotrophic eastern MS. We provide evidence that the locations of the three LD stations studied were near the axis of the eddies. Their diameters were close to 100 km and the studied areas were less than 10 km from the centre of the eddies. The positions of the LD stations are marked by an increase in the flux function and a decrease in apparent oxygen utilization (AOU) and in excess density σ), as expected for anticyclonic eddies. Integrated mean primary production measured in situ inside the three studied eddies confirms the previous conclusion that integrated primary production (IPP) about 150 mgC m-2 d-1 may appear as a lower limit for IPP during strong oligotrophic conditions. The mesoscale activity is strong enough to locally modify the very well-documented western-to-eastern gradient of trophic conditions in the MS. We proposed a new calculation for mixed layer depths (MLDs) enabling the determination of MLD to take into consideration processes occurring with time scales ranging from a few hours to several days, and also the winter MLD. Studying the main physical, chemical and dynamical characteristics of the three eddies enables us to consider that the vorticity barrier prevents any strong mixing and advection of outer water inside the eddy and explains why the depth range of eddies starts from the surface. As a first approximation, the anticyclonic eddies could be considered as closed systems dating back to the previous winter, making possible to draw first-order budgets. The daily new N-input in the photic zone is virtually identical to the N-export measured at 230 m by drifting traps. This means

  10. SAR Analysis of the Terra Nova Bay Ice Eddy of Summer 2015

    NASA Astrophysics Data System (ADS)

    Moctezuma Flores, Miguel; Parmiggiani, Flavio; Fragiacomo, Corrado; Guerrieri, Lorenzo

    2016-08-01

    In the framework of a study of new-ice formation in Antarctica, SAR image acquisitions were planned over Terra Nova Bay (TNB). Thanks to the ESA Third Party Mission program, Cosmo-SkyMed and Radarsat-2 images were obtained for the period 20 February20 March, 2015; in addition, available Sentinel-1 images over TNB for the same period were retrieved from the ESA Scientific Data Hub. The first inspection of the images revealed the presence of a prominent eddy of surface ice, presumably induced by the wind blowing from the continent. Our first goal was to investigate the correlation between eddy area and wind field. Wind data were obtained from the AWS 'Eneide' located near the Italian Antarctic Base "Mario Zucchelli Station" at TNB.For measuring the eddy area, we developed a specific processing scheme which consists of the following stages: 1. Non-linear filtering; 2. Segmentation, based on the Markov Random Field theory, which uses a contextual approach applied to both the original and the filtered image; 3. Extraction of the eddy parameters, area and perimeter, by means of an active contour detection algorithm which works in an iterative way.The correlation between eddy area and wind field was analysed by means of the Running Correlation Coefficient function Rcc which can reveal the consistency between the two variables. Rcc attained high values in the period 20 February 12 March; after March 15, a powerful katabatic wind completely disrupted the surface ice eddy and displayed a well-defined polynya.

  11. Formation of the Haida-1998 oceanic eddy

    NASA Astrophysics Data System (ADS)

    Crawford, W. R.; Cherniawsky, J. Y.; Foreman, M. G. G.; Gower, J. F. R.

    2002-07-01

    Two large, mesoscale, anticyclonic eddies formed along the west coast of the Queen Charlotte Islands of western Canada in early 1998. Altimetry measurements from TOPEX/Poseidon and ERS-2 satellites suggest that these eddies first appeared near Cape St. James at the southern tip of the islands. The eddies merged in June to form ``Haida-1998,'' the highest eddy ever observed in the region. Currents near Cape St. James in winter follow complicated patterns attributed to tidal rectification and pressure-driven outflow from Hecate Strait. The adjustment of these flows to the bathymetric features likely contributes to the formation of Haida Eddies. Eddies that first appear farther north along the west coast of the Queen Charlotte Islands are set up by other processes, such as baroclinic instability.

  12. A deformation-based parametrization of ocean mesoscale eddy reynolds stresses

    NASA Astrophysics Data System (ADS)

    Anstey, James A.; Zanna, Laure

    2017-04-01

    Ocean mesoscale eddies strongly affect the strength and variability of large-scale ocean jets such as the Gulf Stream and Kuroshio Extension. Their spatial scales are too small to be fully resolved in many current climate models and hence their effects on the large-scale circulation need to be parametrized. Here we propose a parametrization of mesoscale eddy momentum fluxes based on large-scale flow deformation. The parametrization is argued to be suitable for use in eddy-permitting ocean general circulation models, and is motivated by an analogy between turbulence in Newtonian fluids (such as water) and laminar flow in non-Newtonian fluids. A primitive-equations model in an idealised double-gyre configuration at eddy-resolving horizontal resolution is used to diagnose the relationship between the proposed closure and the eddy fluxes resolved by the model. Favourable correlations suggest the closure could provide an appropriate deterministic parametrization of mesoscale eddies. The relationship between the closure and different representations of the Reynolds stress tensor is also described. The parametrized forcing possesses the key quasi-geostrophic turbulence properties of energy conservation and enstrophy dissipation, and allows for upgradient fluxes leading to the sharpening of vorticity gradients. The implementation of the closure for eddy-permitting ocean models requires only velocity derivatives and a single parameter that scales with model resolution.

  13. Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California

    NASA Astrophysics Data System (ADS)

    Coria-Monter, Erik; Monreal-Gómez, María. Adela; Salas-de-León, David Alberto; Aldeco-Ramírez, Javier; Merino-Ibarra, Martín.

    2014-09-01

    The differential distribution of diatoms and dinoflagellates in the Bay of La Paz, Gulf of California, Mexico, was analyzed in summer of 2009, when a cyclonic eddy confined in the bay dominated the circulation. An uplift of the nutricline in the eddy drove high concentrations of nutrients to the euphotic layer. A differential phytoplankton distribution was observed to be associated with the eddy: there was an abundance of dinoflagellates close to the center of the cyclonic eddy, whereas diatoms were more abundant at the periphery. A significant inverse correlation (R = -0.62, p < 0.002) was found between the temperature at 25 m depth and the dinoflagellates abundance. Based on the temporal evolution of chlorophyll measured by MODIS satellite images, and a conceptual model proposed for the lifecycle of eddies, the cyclonic eddy may have been an old decaying structure. The effect of the cyclonic eddy on the phytoplankton distribution in this small semienclosed region was apparently similar to that found in larger eddies in the open ocean, but this is the first time such a differential distribution has been found associated to a confined eddy.

  14. Magnetic characterization of airborne particulates

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Yu, Y.

    2010-12-01

    Burning fossil fuels from vehicles, domestics, industries and power plants in the large urban or industrial areas emit significant quantity of anthropogenic particulates which become a potential threat to human health. Here, we present temporal variability of particulate pollution associated with compositional differences, using magnetic measurements and electron microscopic observations. Six different grain-sizes of airborne particulates have been collected by filtering from 10 precipitation events in Seoul, Korea from February 2009 to June 2009. Magnetic concentration proxies show relatively better (R2 >0.6) and poorer correlations (R2 <0.3) with the masses of samples filtered by >0.45 μm and <0.45 μm sizes, respectively, suggesting the usefulness of magnetic characterization for the >0.45 μm particulates. Temporally, magnetic concentrations are higher in the cold season than the warm season. In particular, a significant increase of magnetic concentration is observed in 3 μm and 1 μm filters after the Chinese wind-blown dust events, indicating additional influx of fine-grained anthropogenic particulates into Seoul. Microscopic observations identify that increase of magnetic concentration is highly linked with the frequent occurrence of combustion derived particulates (i.e., carbon and/or sulfur mixed particles) than natural alumino-silicates. Overall, the present study demonstrates that magnetic measurements efficiently reflect the concentration of particulates produced from fossil-fuel combustion among the airborne particles from various sources.

  15. Observations of Three Dimensional Surfzone Eddies

    NASA Astrophysics Data System (ADS)

    Arnold, J. L.; Henderson, S. M.; Solovitz, S.

    2012-12-01

    We present measurements of the vertical structure of surfzone eddies (frequencies 0.0005-0.01 Hz). From 16 Oct to 07 Nov 2011, an array of 12 Acoustic Doppler Profilers (ADPs) measured velocity profiles in 0-6 m water depth on a natural beach near Duck, North Carolina. We will analyze and describe vertical variations in eddy velocity. Vertical variability of eddy magnitude will be presented, as well as coherence and phase between near-surface and near-bed velocities. We aim to shed light on the causes and consequences of vertical eddy variability, which has recently been recognized in observations, but is not yet well understood.

  16. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  17. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  18. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  19. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  20. Hydrographic Description and Habitat use of Eddies by Northern Elephant Seals in the North East Pacific

    NASA Astrophysics Data System (ADS)

    Costa, D. P.; Simmons, S.; Robinson, P.; Tremblay, Y.; Hassrick, J.; Walli, A.

    2006-12-01

    Northern elephant seals range widely over the North East Pacific Ocean. As part of the Tagging of Pacific Pelagics program we have followed the migratory patterns and habitat utilization of these animals. Habitat utilization has been defined by a combination of satellite remote sensing and animal bourn sensors. Previous work has shown that elephant seals forage around frontal systems and regions of high thermal gradients. Here we examine the foraging behavior of 4 elephant seals that were found to forage within eddies that formed along the coast of Southeastern Alaska (Haida & Sitka) and the Alaska Peninsula. Animal movements were observed using ARGOS locations and were correlated with eddies that were defined by satellite derived sea surface height anomaly data. All animals carried time depth and temperature sensors, while one animal carried a CTD instrument. We used these in situ data to examine the thermal profile of these eddies and the variation in the animals diving behavior as it migrated through the eddy.

  1. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  2. Toward the large-eddy simulations of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Hussaini, M. Y.; Speziale, C. G.; Zang, T. A.

    1987-01-01

    New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model (in terms of Favre-filtered fields) is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The three dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96 to the third power grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. Future applications of these compressible subgrid-scale models to the large-eddy simulation of supersonic aerodynamic flows are discussed briefly.

  3. Mesoscale Ocean Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2015-11-01

    The highest resolution global climate models (GCMs) can now resolve the largest scales of mesoscale dynamics in the ocean. This has the potential to increase the fidelity of GCMs. However, the effects of the smallest, unresolved, scales of mesoscale dynamics must still be parametrized. One such family of parametrizations are mesoscale ocean large eddy simulations (MOLES), but the effects of including MOLES in a GCM are not well understood. In this presentation, several MOLES schemes are implemented in a mesoscale-resolving GCM (CESM), and the resulting flow is compared with that produced by more traditional sub-grid parametrizations. Large eddy simulation (LES) is used to simulate flows where the largest scales of turbulent motion are resolved, but the smallest scales are not resolved. LES has traditionally been used to study 3D turbulence, but recently it has also been applied to idealized 2D and quasi-geostrophic (QG) turbulence. The MOLES presented here are based on 2D and QG LES schemes.

  4. Modelling the generation of Haida Eddies

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, E.; Foreman, M. G. G.; Crawford, W. R.

    2005-04-01

    A numerical model forced with average annual cycles of climatological winds, surface heat flux, and temperature and salinity along the open boundaries is used to demonstrate that Haida Eddies are typically generated each winter off Cape St. James, at the southern tip of the Queen Charlotte Islands of western Canada. Annual cycles of sea-surface elevation measured at coastal tide gauges and TOPEX/POSEIDON crossover locations are reproduced with reasonable accuracy. Model sensitivity studies show that Haida Eddies are baroclinic in nature and are generated by the merging of several smaller eddies that have been formed to the west of Cape St. James. The generation mechanism does not require the existence of instability processes and is associated with the mean advection of warmer and fresher water masses around the cape from Hecate Strait and from the southeast. These advected water masses generate plumes of buoyant flow, which intensify and sustain small patches of anticyclonic circulation immediately to the northwest of the cape. When the flow is stronger, several of these smaller eddies can merge to generate a larger eddy, the Haida Eddy. Similar to observations, a typical generation-shedding cycle for larger Haida Eddies in the model is 3-4 months. Consistent with previous in situ water property measurements, these experiments show that the eddies are generally comprised of mixed-layer water from Hecate Strait, Queen Charlotte Sound, and the continental shelves off northern Vancouver Island. Their vertical extent during the mature stage is roughly 1000 m.

  5. Observed deep energetic eddies by seamount wake.

    PubMed

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-30

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  6. Mesoscale Eddies in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.

    2011-12-01

    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  7. Diapycnal mixing by meso-scale eddies

    NASA Astrophysics Data System (ADS)

    Eden, Carsten; Greatbatch, Richard J.

    The mean available potential energy released by baroclinic instability into the meso-scale eddy field has to be dissipated in some way and Tandon and Garrett [Tandon, A., Garrett, C., 1996. On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr. 26 (3), 406-416] suggested that this dissipation could ultimately involve irreversible mixing of buoyancy by molecular processes at the small-scale end of the turbulence cascade. We revisit this idea and argue that the presence of dissipation within the thermocline automatically requires that a component of the eddy flux associated with meso-scale eddies must be associated with irreversible mixing of buoyancy within the thermocline. We offer a parameterisation of the implied diapycnal diffusivity based on (i) the dissipation rate for eddy kinetic energy given by the meso-scale eddy closure of Eden and Greatbatch [Eden, C., Greatbatch, R.J., 2008. Towards a meso-scale eddy closure. Ocean Modell. 20, 223-239.] and (ii) a fixed mixing efficiency. The implied eddy-induced diapycnal diffusivity ( κ) is implemented in a coarse resolution model of the North Atlantic. In contrast to the vertical diffusivity given by a standard vertical mixing scheme, large lateral inhomogeneities can be found for κ in the interior of the ocean. In general, κ is large, i.e. up to o(10) cm 2/s, near the western boundaries and almost vanishing in the interior of the ocean.

  8. Temporal evolution of Townsend's attached eddies

    NASA Astrophysics Data System (ADS)

    Lozano-Duran, Adrian; Jimenez, Javier

    2013-11-01

    The temporal evolution of the eddies responsible for the momentum transfer in a turbulent channel are studied using time-resolved DNS data at Reτ = 4000 . The eddies are identified as connected regions of intense tangential Reynolds stress, and tracked in time. Once their evolutions are properly organized, they provide the necessary information to characterize eddies from birth to death. Eddies are born at all distances from the wall, although with higher probability near it, where the shear is strongest. Most of them stay small and do not last for long times. However, there is a family of eddies that become large enough to get attached to the wall while they reach into the logarithmic layer. They can be considered the best candidates for Townsend's attached eddies found until now. They are geometrically self-similar, with sizes and lifetimes proportional to their distance from the wall. Eddies associated with ejections move away from the wall with dy / dt =uτ , and their base attaches very fast at the beginning of their lives. Conversely, sweeps move towards the wall at -uτ , and attach later. In both cases, they remain attached for 2 / 3 of their lives. In the streamwise direction, eddies are advected and sheared by the local mean velocity. Funded by ERC, CICYT and Spanish Ministry of Science.

  9. Observed deep energetic eddies by seamount wake

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-11-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

  10. Observed deep energetic eddies by seamount wake

    PubMed Central

    Chen, Gengxin; Wang, Dongxiao; Dong, Changming; Zu, Tingting; Xue, Huijie; Shu, Yeqiang; Chu, Xiaoqing; Qi, Yiquan; Chen, Hui

    2015-01-01

    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport. PMID:26617343

  11. Wind changes above warm Agulhas Current eddies

    NASA Astrophysics Data System (ADS)

    Rouault, M.; Verley, P.; Backeberg, B.

    2016-04-01

    Sea surface temperature (SST) estimated from the Advanced Microwave Scanning Radiometer E onboard the Aqua satellite and altimetry-derived sea level anomalies are used south of the Agulhas Current to identify warm-core mesoscale eddies presenting a distinct SST perturbation greater than to 1 °C to the surrounding ocean. The analysis of twice daily instantaneous charts of equivalent stability-neutral wind speed estimates from the SeaWinds scatterometer onboard the QuikScat satellite collocated with SST for six identified eddies shows stronger wind speed above the warm eddies than the surrounding water in all wind directions, if averaged over the lifespan of the eddies, as was found in previous studies. However, only half of the cases showed higher wind speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase in surface wind speed and the SST perturbation, but we do find a linear relationship between the decrease in wind speed from the centre to the border of the eddy downstream and the SST perturbation. SST perturbations range from 1 to 6 °C for a mean eddy SST of 15.9 °C and mean SST perturbation of 2.65 °C. The diameter of the eddies range from 100 to 250 km. Mean background wind speed is about 12 m s-1 (mostly southwesterly to northwesterly) and ranging mainly from 4 to 16 m s-1. The mean wind increase is about 15 %, which corresponds to 1.8 m s-1. A wind speed increase of 4 to 7 m s-1 above warm eddies is not uncommon. Cases where the wind did not increase above the eddies or did not decrease downstream had higher wind speeds and occurred during a cold front associated with intense cyclonic low-pressure systems, suggesting certain synoptic conditions need to be met to allow for the development of wind speed anomalies over warm-core ocean eddies. In many cases

  12. Intense submesoscale upwelling in anticyclonic eddies

    NASA Astrophysics Data System (ADS)

    Brannigan, L.

    2016-04-01

    Observations from around the global ocean show that enhanced biological activity can be found in anticyclonic eddies. This may mean that upwelling of nutrient-rich water occurs within the eddy, but such upwelling is not captured by models that resolve mesoscale processes. High-resolution simulations presented here show intense submesoscale upwelling from the thermocline to the mixed layer in anticyclonic eddies. The properties of the upwelling are consistent with a process known as symmetric instability. A simple limiting nutrient experiment shows that this upwelling can drive much higher biological activity in anticyclonic eddies when there is a high nutrient concentration in the thermocline. An estimate for the magnitude of upwelling associated with symmetric instability in anticyclonic eddies in the Sargasso Sea shows that it may be of comparable magnitude to other processes, though further work is required to understand the full implications for basin-scale nutrient budgets.

  13. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  14. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  15. Eddy Generation by a Steady Poleward Outflow

    NASA Astrophysics Data System (ADS)

    Durland, T. S.; Pedlosky, J.; Spall, M. A.

    2008-12-01

    The energetic eddy field coincident with the South Equatorial Current (SEC) in the eastern Indian Ocean has been variously attributed to baroclinic instability of the SEC, barotropic instability of the SEC and shedding of eddies by the branch of the Indonesian Throughflow (ITF) entering the basin through Timor Passage. We present an additional mechanism by demonstrating that in an idealized numerical model, a steady poleward outflow (meant to simulate the Lombok Strait branch of the ITF) can generate an eddy field with spatial and temporal patterns that bear a remarkable resemblance to observations of sea surface height varibility in the region. A simple conceptual model will be presented which links the nonlinear, eddy-generating dynamics to linear dynamics, thus making possible the prediction of eddy amplitudes and periodicity for a wide range of outflow latitudes and volume fluxes.

  16. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  17. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  18. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  19. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  20. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  1. Conformable eddy current array delivery

    NASA Astrophysics Data System (ADS)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes

    2016-02-01

    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  2. Rotating concave eddy current probe

    DOEpatents

    Roach, Dennis P.; Walkington, Phil; Rackow, Kirk A.; Hohman, Ed

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  3. Louisiana/Texas shelf physical oceanography program: Eddy circulation study. Annual report: Year 2. Final report, 1 May 1993-30 April 1994

    SciTech Connect

    1995-05-01

    Report describes data collection and data quality control efforts during second field year of the program. This program uses airborne expendable temperature and current probes and ARGOS-tracked drifting buoys to monitor Loop Current eddies and smaller cyclonic and anticyclonic eddies in water deeper than 200m in the north western Gulf of Mexico. Seven aerial surveys were conducted during year 2 in the study region. Representative data products for each survey are presented. Tables documenting the performance of expendable probes and drifting buoys are included.

  4. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  5. High-temperature eddy current probe sensor for monitoring TMC consolidation

    NASA Astrophysics Data System (ADS)

    Rowland, Roderick

    1996-11-01

    Eddy current sensors provide non-contact monitoring of advanced materials during industrial manufacturing. Inducing an alternating electromagnetic field which surrounds and penetrates the material being measured, the eddy current sensor performs highly accurate monitoring of the process. An eddy current sensor is capable of measuring the electrical conductivity and magnetic permeability of a material which can then be correlated to changes in shape and density as well as other properties critical to meet final product design requirements. The proliferation of eddy current technology in the non-destructive evaluation field has been limited to temperatures that are well below those encountered during consolidation of powdered metal and metal matrix composite materials. The drive for net shape forming and cost effective manufacturing, especially with advanced materials, has led to the recent development of a high temperature eddy current monitoring system. The system has been successfully demonstrated at industrial hot isostatic pressing sites. This paper describes the latest high temperature eddy current probe sensor design and how the sensor can be used to monitor and control consolidation of titanium matrix composites.

  6. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  7. Toward the large-eddy simulation of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Hussaini, M. Y.; Speziale, C. G.; Zang, T. A.

    1990-01-01

    New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96(exp 3) grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence (conducted on a coarse 32(exp 3) grid) is shown to yield results that are in excellent agreement with the fine grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly.

  8. A western boundary current eddy characterisation study

    NASA Astrophysics Data System (ADS)

    Ribbe, Joachim; Brieva, Daniel

    2016-12-01

    The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.

  9. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  10. a Macroscopic Analysis of Eddy Currents in Nonferrous Metals

    NASA Astrophysics Data System (ADS)

    Holder, Morris Eugene

    1992-01-01

    The original purpose of this research was to determine if the signals produced by the eddy currents induced into nonferrous metals as they pass through a static magnetic field could be used to distinguish between these metals. First, it was shown that for samples of the same size and shape, the maximum negative response produced by a Hall-effect sensor varied directly with the conductivity of the sample material. This was true for all shapes tested including rectangles, disks, rings, and cylinders. Samples of aluminum, brass, copper, lead, and zinc were easily distinguished from each other using the maximum negative response measured. The largest dimension of any sample tested was 4 inches, but algorithms could be developed for larger samples according to the statistics. The correlation coefficients for all sets of data collected in a randomized factorial design experiment were greater than 0.96. An algorithm was developed which correctly predicted the form of the response of the sensing apparatus to the passing of a thin copper ring through the static magnetic field. This involved writing an expression for the magnetic field produced by the eddy currents in the ring as the ring dropped from above, through, and beyond the static magnetic field. The inductive character of the nonferrous metals was incorporated into the model by introducing convolution. The currents produced by the induced emf were convolved with the residual decaying eddy currents to produce the net current. The model was responsive to the time constant associated with the conductivity, size, and shape of the samples. With convolution included, the simulated response produced by the model developed herein agreed well with the actual response measured. A new expression for the distribution of eddy currents in a nonferrous ring as it passes through a static magnetic field was developed to support the experimental findings. The new current distribution expression has the form of a fourth

  11. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  12. Eddy Current Testing, RQA/M1-5330.17.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…

  13. Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity

    DTIC Science & Technology

    2015-01-01

    1 Ekman Spiral in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity ...in Horizontally Inhomogeneous Ocean with Varying Eddy Viscosity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...generated by surface wind stress with constant eddy viscosity in homogeneous ocean. In real oceans, the eddy viscosity varies due to turbulent mixing

  14. Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.

    2014-12-01

    Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.

  15. Production and destruction of eddy kinetic energy in forced submesoscale eddy-resolving simulations

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sonaljit; Ramachandran, Sanjiv; Tandon, Amit; Mahadevan, Amala

    2016-09-01

    We study the production and dissipation of the eddy kinetic energy (EKE) in a submesoscale eddy field forced with downfront winds using the Process Study Ocean Model (PSOM) with a horizontal grid resolution of 0.5 km. We simulate an idealized 100 m deep mixed-layer front initially in geostrophic balance with a jet in a domain that permits eddies within a range of O(1 km-100 km). The vertical eddy viscosities and the dissipation are parameterized using four different subgrid vertical mixing parameterizations: the k - ɛ , the KPP, and two different constant eddy viscosity and diffusivity profiles with a magnitude of O(10-2m2s-1) in the mixed layer. Our study shows that strong vertical eddy viscosities near the surface reduce the parameterized dissipation, whereas strong vertical eddy diffusivities reduce the lateral buoyancy gradients and consequently the rate of restratification by mixed-layer instabilities (MLI). Our simulations show that near the surface, the spatial variability of the dissipation along the periphery of the eddies depends on the relative alignment of the ageostrophic and geostrophic shear. Analysis of the resolved EKE budgets in the frontal region from the simulations show important similarities between the vertical structure of the EKE budget produced by the k - ɛ and KPP parameterizations, and earlier LES studies. Such an agreement is absent in the simulations using constant eddy-viscosity parameterizations.

  16. Linkages between controlled floods, eddy sandbar dynamics, and riparian vegetation along the Colorado River in Marble Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Hazel, J. E., Jr.; Schmeeckle, M. W.

    2015-12-01

    Controlled floods are released from Glen Canyon Dam to build and maintain eddy sandbars along the Colorado River in Grand Canyon National Park. Long-term monitoring shows that the topographic response to controlled floods varies considerably between eddies, likely reflecting different geometric configurations and flow hydraulics. Differences in eddy sandbar response also reflect the degree of vegetation establishment since the 1980s when reservoir spills more than double the magnitude of controlled floods cleared most sandbars of vegetation. Here we explore the geomorphology of sandbar responses in the context of controlled floods, debris fan-eddy geometry, and riparian vegetation establishment. In Marble Canyon, the proportion of eddy area stabilized by vegetation is negatively correlated with water surface slope and the rate of stage change with discharge. Less vegetated sites are more dynamic; they tend to build open sandbars during controlled floods and show greater topographic variability in the eddy compared to the main channel. In contrast, deposition of open sandbars is limited where vegetation establishment has decreased channel width, altering the pattern of eddy recirculation and sediment redistribution. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of vegetated bar surfaces increases with successive floods. Changes in sand storage in the main channel are greater than storage change in the eddy at these lower gradient sites, and controlled floods tend to evacuate sand that has accumulated on the bed. The degree to which vegetation has stabilized sandbar surfaces may thus provide a proxy for different hydraulic conditions and a better canyon-wide assessment of controlled flood response. Our results apply primarily to large eddies in Marble Canyon, and ongoing flow modeling and vegetation composition mapping will allow further assessment of eddy sandbar-riparian vegetation interactions

  17. Process Specification for Eddy Current Inspection

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2011-01-01

    This process specification establishes the minimum requirements for eddy current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.

  18. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  19. Turbulence control on an airborne laser platform

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, Mohamed

    1987-01-01

    An active flow control device to generate large-scale, periodic structures in a turbulent shear flow is developed. Together with adaptive optics, the device may be used on airborne laser platforms to reduce or eliminate optical distortion caused by the turbulence in the aircraft's boundary layer. A cyclic jet issuing from a spanwise slot is used to collect the turbulent boundary layer for a finite time and then release all of the flow instantaneously in one large eddy that convects downstream. Flow visualization and hot-film probe measurements are used together with pattern recognition algorithms to demonstrate the viability of the flow control method. A flat plate towed in a water channel is used as a test bed. The instantaneous velocity signal is used to compute important statistical quantities of the random velocity field, such as the mean, the root-mean-square, the spectral distribution, and the probability density function. When optimized for a given boundary layer, it is shown that the cyclic jet will produce periodic structures that are similar to the random, naturally occurring ones. These structures seem to trigger the onset of bursting events near the wall of the plate. Thus, the present device generates periodic structures in both the outer and inner regions of a turbulent boundary layer.

  20. Winds, Eddies and Flow through Straits

    DTIC Science & Technology

    2010-01-01

    driven origin of the Philippine dipole eddies. By contrast, in other volcanic island regions of the world (including the Hawaiian, Cabo Verde, and... volcanic island regions of the world. By contrast in the Hawaiian, Cabo Verde and Canary Islands, the driving mechanism in the eddy dynamics is...J. Aristegui, and F. Herrera (2000), Lee region of Gran Canaria , J. Geophys. Res., 105(C7), 17173-17193. Chang, C.-P., Z. Wang, and H. Hendon

  1. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.

  2. Anomalous chlorofluorocarbon uptake by mesoscale eddies in the Drake Passage region

    NASA Astrophysics Data System (ADS)

    Song, Hajoon; Marshall, John; Gaube, Peter; McGillicuddy, Dennis J.

    2015-02-01

    The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.

  3. Short-term fluctuations in the eddy heat flux and baroclinic stability of the atmosphere

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Ghan, S. J.; Spiegel, D.; Rambaldi, S.

    1982-01-01

    National Meteorological Center data from midlatitudes for three Januaries is used in calculating time series of the zonal mean meridional eddy heat flux and the zonal mean baroclinic stability, as measured by the difference between the zonal wind shear and the critical value of the shear in two-level models. Time-lagged correlations between the two series reveal a highly significant negative correlation for short time lags, peaking at approximately -0.4 when the stability parameter lags one half day behind the eddy flux. They also reveal that strongly unstable conditions are not followed by significant increases in the eddy flux. These results are seen as indicating that the synoptic variations of the zonal mean eddy flux are not closely related to the degree of baroclinic instability of the zonal mean flow. The autocorrelation of the eddy flux is then compared with those expected for autoregressive processes. A Bayesian information criterion suggests that the behavior is represented best by a damped oscillation, with a damping time of 0.8 day and a period of five days.

  4. Large eddy simulation of the flow in a transpired channel

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Moin, Parviz; Ferziger, Joel

    1989-01-01

    The flow in a transpired channel has been computed by large eddy simulation. The numerical results compare very well with experimental data. Blowing decreases the wall shear stress and enhances turbulent fluctuations, while suction has the opposite effect. The wall layer thickness normalized by the local wall shear velocity and kinematic viscosity increases on the blowing side of the channel and decreases on the suction side. Suction causes more rapid decay of the spectra, larger mean streak spacing and higher two-point correlations. On the blowing side, the wall layer structures lie at a steeper angle to the wall, whereas on the suction side this angle is shallower.

  5. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  6. Mesoscale eddies transport deep-sea sediments.

    PubMed

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Wang, Wenguang; Li, Jianru; Xu, Jingping

    2014-08-04

    Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesoscale eddies in the northern South China Sea via a full-water column mooring system located at 2100 m water depth. Two southwestward propagating, deep-reaching anticyclonic eddies passed by the study site during January to March 2012 and November 2012 to January 2013, respectively. Our multiple moored instruments recorded simultaneous or lagging enhancement of suspended sediment concentration with full-water column velocity and temperature anomalies. We interpret these suspended sediments to have been trapped and transported from the southwest of Taiwan by the mesoscale eddies. The net near-bottom southwestward sediment transport by the two events is estimated up to one million tons. Our study highlights the significance of surface-generated mesoscale eddies on the deepwater sedimentary dynamic process.

  7. Eddies off the Queen Charlotte Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of eddies visible in the Pacific Ocean in this pseudo-color scene. The eddies are formed by strong outflow currents from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the eddies. (For more details, read Tracking Eddies that Feed the Sea.) To the west of the eddies in the water, another type of eddy-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  9. Bayesian flaw characterization from eddy current measurements with grain noise

    NASA Astrophysics Data System (ADS)

    McMahan, Jerry A.; Aldrin, John C.; Shell, Eric; Oneida, Erin

    2017-02-01

    The Bayesian approach to inference from measurement data has the potential to provide highly reliable characterizations of flaw geometry by quantifying the confidence in the estimate results. The accuracy of these confidence estimates depends on the accuracy of the model for the measurement error. Eddy current measurements of electrically anisotropic metals, such as titanium, exhibit a phenomenon called grain noise in which the measurement error is spatially correlated even with no flaw present. We show that the most commonly used statistical model for the measurement error, which fails to account for this correlation, results in overconfidence in the flaw geometry estimates from eddy current data, thereby reducing the effectiveness of the Bayesian approach. We then describe a method of modeling the grain noise as a Gaussian process (GP) using spectral mixture kernels, a type of non-parametric model for the covariance kernel of a GP This provides a broadly applicable, data-driven way of modeling correlation in measurement error. Our results show that incorporation of this noise model results in a more reliable estimate of the flaw and better agreement with the available validation data.

  10. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output

    NASA Astrophysics Data System (ADS)

    Lin, Xiayan; Dong, Changming; Chen, Dake; Liu, Yu; Yang, Jingsong; Zou, Bin; Guan, Yuping

    2015-05-01

    Last decade has witnessed extensive studies on mesoscale oceanic eddies in the Southern China Sea (SCS), however most of these studies are focused on the surface eddies, and three-dimensional features of eddies are not well known except some individual eddies. We apply a three-dimensional eddy detection scheme to a 9-year (2000-2008) eddy-resolving numerical solution to acquire three-dimensional eddy data set in the SCS. The model solution is validated with observational data in terms of both seasonal and intra-seasonal scales. The statistical characteristics of eddies at the sea surface, such as eddy number, lifetime and radius, from the model are comparable with those derived from the satellite altimetry data. The vertical profiles of the physical features of eddies are exposed from the statistical analysis of the three-dimensional eddy data set. For examples, more cyclonic eddies (CEs) are generated than anticyclonic eddies (AEs) in the depth above about 350 m and an opposite trend is presented below 350 m. The lifetimes of CEs and AEs are statistically equal and no significant variation at different vertical levels. Eddies in the central SCS have the largest size than in other areas and their sizes decrease with the increase in water depth. The relative vorticity amplitude of eddies decreases with the increase in the depth. There are three different types of eddies: bowl-shaped with the largest size at the surface, lens-shaped with the largest size in the middle and cone-shaped with the largest size at the bottom. Most of eddies are bowl-shaped eddies. The three types of eddies have different effects on the temperature and salinity profiles. Eddy genesis mechanisms are discussed and categorized into three types in the SCS: surface wind curl input, current interaction with the bottom topography and Kuroshio intrusion.

  11. Large Eddy Simulations in Astrophysics

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfram

    2015-12-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid-scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid-scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamic procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid-scale turbulence energy model allows for a particularly elegant and physically well-motivated way of preserving momentum and energy conservation in adaptive mesh refinement (AMR) simulations. Moreover, the notion of shear-improved models for in-homogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.

  12. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  13. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  14. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing

    PubMed Central

    Hardman-Mountford, Nick J.; Greenwood, Jim; Richardson, Anthony J.; Feng, Ming; Matear, Richard J.

    2016-01-01

    Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle. PMID:27386549

  15. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing.

    PubMed

    Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J

    2016-05-01

    Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.

  16. Work done by atmospheric winds on mesoscale ocean eddies

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Zhai, Xiaoming; Shang, Xiao-Dong

    2016-12-01

    Mesoscale eddies are ubiquitous in the ocean and dominate the ocean's kinetic energy. However, physical processes influencing ocean eddy energy remain poorly understood. Mesoscale ocean eddy-wind interaction potentially provides an energy flux into or out of the eddy field, but its effect on ocean eddies has not yet been determined. Here we examine work done by atmospheric winds on more than 1,200,000 mesoscale eddies identified from satellite altimetry data and show that atmospheric winds significantly damp mesoscale ocean eddies, particularly in the energetic western boundary current regions and the Southern Ocean. Furthermore, the large-scale wind stress curl is found to on average systematically inject kinetic energy into anticyclonic (cyclonic) eddies in the subtropical (subpolar) gyres while mechanically damps anticyclonic (cyclonic) eddies in the subpolar (subtropical) gyres.

  17. A daily global mesoscale ocean eddy dataset from satellite altimetry.

    PubMed

    Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.

  18. A numerical simulation of the Catalina Eddy

    SciTech Connect

    Ueyoshi, Kyozo; Roads, J.O.; Alpert, J.

    1991-12-31

    A shallow cyclonic eddy termed the Catalina Eddy has occasionally been observed during summer in the bight of southern California. The Catalina Eddy occurs within {approximately}100 km from the coastal mountains with a depth typically extending up to the marine inversion level of several hundred meters above sea level and a diameter on the order of 100--200 km. The Catalina Eddy is produced by the interaction between the synoptic-scale northerly flow and the formidable topography along the southern California coast. A favorable synoptic situation that enhances the increased low-level climatological northerly flow along the central California coastline is the presence of the prominent east-west pressure gradient between the subtropical East Pacific high and the inland thermal low over California. Increased northerlies impinging on the San Rafael mountains north of Santa Barbara result in enhanced mesoscale lee troughing in the bight and establishment of a narrow ridge alongshore, leading to establishment of cyclonic vorticity in the bight. This paper describes numerical simulations and predictions of a Catalina Eddy event with a high-resolution multi-level limited area model. The model is initialized and forced at the lateral boundaries by the National Meteorological Center`s (NMC) 2.5{degree} {times} 2.5{degree} global objective analysis and also by NMC`s medium range forecast model (MRF) 1--10 day forecasts. In the authors previous effort to simulate mesoscale disturbances such as the Catalina Eddy the integrations were performed up to 1 model-day utilizing the NMC analysis as fixed lateral boundary conditions. In this paper they describe the results of continuous 5- to 7-day simulations of the Catalina Eddy event of 26--30 June 1988 by utilizing time-dependent lateral boundary conditions obtained from NMC`s global objective analysis as well as NMC`s MRF forecasts.

  19. Temporal Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Thomas, B. C.

    2004-01-01

    In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.

  20. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  1. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  2. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  3. Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow

    NASA Astrophysics Data System (ADS)

    Ren, Hong-Li; Jin, Fei-Fei; Kug, Jong-Seong; Gao, Li

    2011-06-01

    Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.

  4. Transformed Eddy-PV Flux and Positive Synoptic Eddy Feedback onto Low-Frequency Flow

    NASA Astrophysics Data System (ADS)

    Ren, H.; Jin, F.; Kug, J.; Gao, L.

    2010-12-01

    Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.

  5. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  6. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  7. Populations and determinants of airborne fungi in large office buildings.

    PubMed Central

    Chao, H Jasmine; Schwartz, Joel; Milton, Donald K; Burge, Harriet A

    2002-01-01

    Bioaerosol concentrations in office environments and their roles in causing building-related symptoms have drawn much attention in recent years. Most bioaerosol studies have been cross-sectional. We conducted a longitudinal study to examine the characteristics of airborne fungal populations and correlations with other environmental parameters in office environments. We investigated four office buildings in Boston, Massachusetts, during 1 year beginning May 1997, recruiting 21 offices with open workstations. We conducted intensive bioaerosol sampling every 6 weeks resulting in 10 sets of measurement events at each workstation, and recorded relative humidity, temperature, and CO2 concentrations continuously. We used principal component analysis (PCA) to identify groups of culturable fungal taxa that covaried in air. Four major groupings (PCA factors) were derived where the fungal taxa in the same groupings shared similar ecological requirements. Total airborne fungal concentrations varied significantly by season (highest in summer, lowest in winter) and were positively correlated with relative humidity and negatively related to CO2 concentrations. The first and second PCA factors had similar correlations with environmental variables compared with total fungi. The results of this study provide essential information on the variability within airborne fungal populations in office environments over time. These data also provide background against which cross-sectional data can be compared to facilitate interpretation. More studies are needed to correlate airborne fungi and occupants' health, controlling for seasonal effects and other important environmental factors. PMID:12153758

  8. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  9. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.

  10. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  11. Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emilio

    2016-06-01

    The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that propagate along the coast or at distances between 100 and 200 km from the coast. Enhancements in the processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite sea surface salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticity.

  12. Eddy-Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ju; Andres, Magdalena; Jan, Sen; Mensah, Vigan; Sanford, Thomas B.; Lien, Ren-Chieh; Lee, Craig M.

    2015-10-01

    The influence and fate of westward propagating eddies that impinge on the Kuroshio were observed with pressure sensor-equipped inverted echo sounders (PIESs) deployed east of Taiwan and northeast of Luzon. Zero lag correlations between PIES-measured acoustic travel times and satellite-measured sea surface height anomalies (SSHa), which are normally negative, have lower magnitude toward the west, suggesting the eddy-influence is weakened across the Kuroshio. The observational data reveal that impinging eddies lead to seesaw-like SSHa and pycnocline depth changes across the Kuroshio east of Taiwan, whereas analogous responses are not found in the Kuroshio northeast of Luzon. Anticyclones intensify sea surface and pycnocline slopes across the Kuroshio, while cyclones weaken these slopes, particularly east of Taiwan. During the 6 month period of overlap between the two PIES arrays, only one anticyclone affected the pycnocline depth first at the array northeast of Luzon and 21 days later in the downstream Kuroshio east of Taiwan.

  13. A robust increase in the eddy length scale in the simulation of future climates

    NASA Astrophysics Data System (ADS)

    Kidston, J.; Dean, S. M.; Renwick, J. A.; Vallis, G. K.

    2010-02-01

    Output from the Coupled Model Intercomparison Phase 3 are analysed. It is shown that for the ‘A2’ business as usual scenario, every model exhibits an increase in the eddy length scale in the future compared with the simulation of 20th Century climate. The increase in length scale is on the order of 5% by the end of the 21st century, and the Southern Hemisphere exhibits a larger increase than the Northern Hemisphere. The inter-model variability in the increase in the eddy length scale is correlated with the variability in the increase in dry static stability at 700 hPa. Inspection of the NCEP/NCAR reanalysis data indicates that the eddy length scale in the Southern Hemisphere may have increased in recent decades.

  14. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  15. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  16. Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features

    NASA Astrophysics Data System (ADS)

    Jaimes, Benjamin; Shay, Lynn K.; Brewster, Jodi K.

    2016-12-01

    Air-sea interactions during the intensification of tropical storm Isaac (2012) into a hurricane, over warm oceanic mesoscale eddy features, are investigated using airborne oceanographic and atmospheric profilers. Understanding these complex interactions is critical to correctly evaluating and predicting storm effects on marine and coastal facilities in the Gulf of Mexico, wind-driven mixing and transport of suspended matter throughout the water column, and oceanic feedbacks on storm intensity. Isaac strengthened as it moved over a Loop Current warm-core eddy (WCE) where sea surface warming (positive feedback mechanism) of ∼0.5 °C was measured over a 12-h interval. Enhanced bulk enthalpy fluxes were estimated during this intensification stage due to an increase in moisture disequilibrium between the ocean and atmosphere. These results support the hypothesis that enhanced buoyant forcing from the ocean is an important intensification mechanism in tropical cyclones over warm oceanic mesoscale eddy features. Larger values in equivalent potential temperature (θE = 365   ∘K) were measured inside the hurricane boundary layer (HBL) over the WCE, where the vertical shear in horizontal currents (δV) remained stable and the ensuing cooling vertical mixing was negligible; smaller values in θE (355   ∘K) were measured over an oceanic frontal cyclone, where vertical mixing and upper-ocean cooling were more intense due to instability development in δV . Thus, correctly representing oceanic mesoscale eddy features in coupled numerical models is important to accurately reproduce oceanic responses to tropical cyclone forcing, as well as the contrasting thermodynamic forcing of the HBL that often causes storm intensity fluctuations over these warm oceanic regimes.

  17. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.; Singh, Balwinder

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing this sensitivity by representing the unresolved eddies by their marginally resolved counterparts.

  18. Constraining isoprene emission factors using airborne flux measurements during CABERNET

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Jiang, X.; Avise, J. C.; Scott, K.; Jonsson, H.; Guenther, A. B.; Goldstein, A. H.

    2012-12-01

    An aircraft flux study was conducted to assess biogenic volatile organic compound (BVOC) emissions from California ecosystems targeting oak woodlands and isoprene for most transects. The direct eddy covariance approach featured high speed proton transfer reaction mass spectrometry onboard a CIRPAS (Center for Interdisciplinary Remotely-Piloted Aircraft Studies) Twin Otter aircraft during June 2011 as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) project. Isoprene fluxes were calculated using wavelet analysis and scaled to surface fluxes using a divergence term obtained by measuring fluxes at multiple altitudes over homogenous oak terrain. By normalization of fluxes to standard temperature and photosynthetically active radiation levels using standard BVOC modeling equations, the resulting emission factors could be directly compared with those used by MEGAN (Model of Emissions of Gases and Aerosols from Nature) and BEIGIS (Biogenic Emission Inventory Geographic Information System) models which are the most commonly used BVOC emission models for California. As expected, oak woodlands were found to be the dominant source of isoprene in all areas surrounding and in the Central Valley of California. The airborne fluxes averaged to 2 km spatial resolution matched remarkably well with current oak woodland distributions driving the models and hence the correspondence of modeled and aircraft derived emission factors was also good, although quantitative differences were encountered depending on the region and driving variables used. Fluxes measured from aircraft proved to be useful for the improvement of the accuracy of modeled predictions for isoprene and other important ozone and aerosol precursor compounds. These are the first regional isoprene flux measurements using direct eddy covariance on aircraft.

  19. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  20. Eddy analysis in the Eastern China Sea using altimetry data

    NASA Astrophysics Data System (ADS)

    Qin, Dandi; Wang, Jianhong; Liu, Yu; Dong, Changming

    2015-12-01

    Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies' lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean.

  1. Solitonlike solutions in loop current eddies

    NASA Technical Reports Server (NTRS)

    Nakamoto, Shoichiro

    1989-01-01

    The application of the nonlinear quasi-geostrophic equations to an isolated eddy in the western continental slope region in the Gulf of Mexico is examined for a two-layer ocean model with bottom topography. In the linear limit, solutions are topographic nondispersive waves. Form-preserving solutions, or solitons, have been found. The solution is shown to be a limiting form for a nonlinear dispersive system propagating northward along the topographic waveguide in the western continental slope region in the Gulf of Mexico. Using satellite-tracked drifter data, a linear relationship is found between the amplitude of the deduced stream function of the eddy and its observed translational velocity over the continental slope, which supports the hypothesis that some mesoscale eddies interacting with the continental slope behave as solitons.

  2. Deep Eddies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Furey, H. H.; Bower, A. S.; Perez-Brunius, P.; Hamilton, P.

    2014-12-01

    A major Lagrangian program is currently underway to map the deep (1500-2500 m) circulation of the entire Gulf of Mexico. Beginning in 2011, more than 120 acoustically tracked RAFOS floats have been released in the eastern, central and western Gulf, many in pairs and triplets. Most floats are programmed to drift for two years, obtaining position fixes and temperature/pressure measurements three times daily. More than 80 floats have completed their missions, and results from the trajectories will be described with a focus on mesoscale eddying behavior. In particular, the first-ever observations of deep energetic anticyclonic eddies (possibly lenses) forming at and separating from a northeastward-flowing boundary current west of Campeche Bank will be discussed. The existence of these eddies has major implications for exchange between the continental slope and interior Gulf. The project is being supported by the U.S. Bureau of Ocean Energy Management (BOEM).

  3. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  4. Tracking the PRIME eddy using satellite altimetry

    NASA Astrophysics Data System (ADS)

    Wade, Ian P.; Heywood, Karen J.

    The PRIME cruise to the North Atlantic during June/July 1996 surveyed and sampled an extremely vigorous and deep-reaching eddy with a significant barotropic component. Although it exhibited anticyclonic flow and featured a warm core at depth, it had been capped at some point during its lifetime, so appeared as a cold feature in the upper 500 m. Satellite-derived sea-surface temperatures (SST) showed it to have moved little during the few weeks prior to the cruise. In this paper we discuss the origin of the PRIME eddy including where and when it is likely to have formed. Consistently large amounts of cloud cover restrict the use of SST imagery to track such features. Altimetry provides a better method to trace this eddy back in time and space since microwave radiation is not significantly affected by cloud cover. Sea-level anomaly (SLA) data from the TOPEX/POSEIDON and European Remote Sensing (ERS) satellites were used. Results show that the eddy remained almost stationary in the Iceland Basin since first being detected in late 1995 and that it almost certainly formed locally, probably as a result of an instability in the current flow around the northwest of the Hatton Bank. Comparisons between satellite SLAs and hydrographic estimates of sea-surface elevation confirm that the eddy had a substantial barotropic flow. Both the altimeter data and the sea-surface height derived from the acoustic Doppler current profiler agree that the PRIME eddy had a sea-surface elevation of about 20 cm and that its diameter was about 120 km.

  5. Tuna and swordfish catch in the U.S. northwest Atlantic longline fishery in relation to mesoscale eddies.

    PubMed

    Hsu, Ango C; Boustany, Andre M; Roberts, Jason J; Chang, Jui-Han; Halpin, Patrick N

    2015-11-01

    To analyze the effects of mesoscale eddies, sea surface temperature (SST), and gear configuration on the catch of Atlantic bluefin (Thunnus thynnus), yellowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) and swordfish (Xiphias gladius) in the U.S. northwest Atlantic longline fishery, we constructed multivariate statistical models relating these variables to the catch of the four species in 62 121 longline hauls made between 1993 and 2005. During the same 13-year period, 103 anticyclonic eddies and 269 cyclonic eddies were detected by our algorithm in the region 30-55°N, 30-80°W. Our results show that tuna and swordfish catches were associated with different eddy structures. Bluefin tuna catch was highest in anticyclonic eddies whereas yellowfin and bigeye tuna catches were highest in cyclonic eddies. Swordfish catch was found preferentially in regions outside of eddies. Our study confirms that the common practice of targeting tuna with day sets and swordfish with night sets is effective. In addition, bluefin tuna and swordfish catches responded to most of the variables we tested in the opposite directions. Bluefin tuna catch was negatively correlated with longitude and the number of light sticks used whereas swordfish catch was positively correlated with these two variables. We argue that overfishing of bluefin tuna can be alleviated and that swordfish can be targeted more efficiently by avoiding fishing in anticyclonic eddies and in near-shore waters and using more light sticks and fishing at night in our study area, although further studies are needed to propose a solid oceanography-based management plan for catch selection.

  6. Development of magnetic eddy current testing techniques

    NASA Astrophysics Data System (ADS)

    Tada, Toyokazu; Suetsugu, Hidehiko

    2017-02-01

    IRIS (Internal Rotary Inspection System) has become a major maintenance inspection technique for the heat exchanger and reactor tubes. It is known that IRIS has a high precision of evaluation thickness, however there are a few disadvantages, such as slow inspection speed. Therefore, we have developed a magnetic eddy current flaw testing technique which combines a magnetic array forming a strong magnetic field, 4 coil structures for controlling the generation area of the eddy currents, and a desorption yoke structure to control the magnetizing force. In this presentation, details of this technique and practical application will be elaborated.

  7. Parameterisation of Eddies in Coarse Resolution Models

    DTIC Science & Technology

    2001-01-19

    quasi-Stokes ve - varying, e.g. on seasonal scales . (Should seasonal varia- locities in parameterizations. J. Phys. Oceanogr., 31, tion be included within...length scale in Fig. 1 is proportional to eddy amplitude. For linear theory, it appears as a delta- 7 function boundary layer. When the eddies have...finite amplitude, the vertical length scale over which the two -1.5 densities differ noticeably is of order z/ ’ a IVH /-2 - 0 1 2 which is the typical

  8. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 310 μm).

  9. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  10. Visualization and analysis of eddies in a global ocean simulation

    SciTech Connect

    Williams, Sean J; Hecht, Matthew W; Petersen, Mark; Strelitz, Richard; Maltrud, Mathew E; Ahrens, James P; Hlawitschka, Mario; Hamann, Bernd

    2010-10-15

    Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

  11. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  12. Modelling the risk of airborne infectious disease using exhaled air.

    PubMed

    Issarow, Chacha M; Mulder, Nicola; Wood, Robin

    2015-05-07

    In this paper we develop and demonstrate a flexible mathematical model that predicts the risk of airborne infectious diseases, such as tuberculosis under steady state and non-steady state conditions by monitoring exhaled air by infectors in a confined space. In the development of this model, we used the rebreathed air accumulation rate concept to directly determine the average volume fraction of exhaled air in a given space. From a biological point of view, exhaled air by infectors contains airborne infectious particles that cause airborne infectious diseases such as tuberculosis in confined spaces. Since not all infectious particles can reach the target infection site, we took into account that the infectious particles that commence the infection are determined by respiratory deposition fraction, which is the probability of each infectious particle reaching the target infection site of the respiratory tracts and causing infection. Furthermore, we compute the quantity of carbon dioxide as a marker of exhaled air, which can be inhaled in the room with high likelihood of causing airborne infectious disease given the presence of infectors. We demonstrated mathematically and schematically the correlation between TB transmission probability and airborne infectious particle generation rate, ventilation rate, average volume fraction of exhaled air, TB prevalence and duration of exposure to infectors in a confined space.

  13. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  14. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  15. Gulf Stream eddies - Recent observations in the western Sargasso Sea.

    NASA Technical Reports Server (NTRS)

    Richardson, P. L.; Knauss, J. A.; Strong, A. E.

    1973-01-01

    A cyclonic Gulf Stream eddy was observed in the western Sargasso Sea by satellite infrared measurements and later confirmed by ship measurements. Fourteen months of observations indicate that the eddy moved southwestward at an average rate of 1 mile per day. The evidence suggests that the eddy was absorbed by the Gulf Stream off Florida.

  16. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  17. Scale-Similar Models for Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Sarghini, F.

    1999-01-01

    Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.

  18. Eddy processes in the general circulation of the Jovian atmospheres

    NASA Technical Reports Server (NTRS)

    Leovy, Conway

    1986-01-01

    Two fundamentally different views of the general circulation of Jovian atmospheres have emerged. According to one view, the observed jet streams at the cloud tops are controlled by the vorticity transfers of small scale eddies generated by planetary wave instabilities within a shallow atmospheric layer. According to the alternate point of view, the zonal jets are surface manifestations of deep interior convection organized into cylindrical motion with axes parallel to the planetary rotation axis. Both approaches may be considered in the context of the very different roles assumed by the potential vorticity. A possible reconciliation of the two kinds of dynamical systems is considered in which the interior motion is overlaid with a statically stable cappling layer driven by turbulent energy injection from below. A simple model for the eddy driving of quasi-geostrophic dynamics in the capping layer is presented which is consistent with the tentative evidence for up-gradient momentum flux on Jupiter and IRIS observations of thermal contrast correlations with cyclonic and anticyclonic shear zones. Certain synoptic-scale cloud features in Jupiter's atmosphere are interpreted as breaking waves, which may also influence the lateral mixing of tracers such as the ortho-para hydrogen ratio.

  19. Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander

    2016-04-01

    Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude

  20. Large-Eddy Simulation and Multigrid Methods

    SciTech Connect

    Falgout,R D; Naegle,S; Wittum,G

    2001-06-18

    A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.

  1. The turbulent cascade of individual eddies

    NASA Astrophysics Data System (ADS)

    Huertas-Cerdeira, Cecilia; Lozano-Durán, Adrián; Jiménez, Javier

    2014-11-01

    The merging and splitting processes of Reynolds-stress carrying structures in the inertial range of scales are studied through their time-resolved evolution in channels at Reλ = 100 - 200 . Mergers and splits coexist during the whole life of the structures, and are responsible for a substantial part of their growth and decay. Each interaction involves two or more eddies and results in little overall volume loss or gain. Most of them involve a small eddy that merges with, or splits from, a significantly larger one. Accordingly, if merge and split indexes are respectively defined as the maximum number of times that a structure has merged from its birth or will split until its death, the mean eddy volume grows linearly with both indexes, suggesting an accretion process rather than a hierarchical fragmentation. However, a non-negligible number of interactions involve eddies of similar scale, with a second probability peak of the volume of the smaller parent or child at 0.3 times that of the resulting or preceding structure. Funded by the Multiflow project of the ERC.

  2. Algerian Eddies lifetime can near 3 years

    NASA Astrophysics Data System (ADS)

    Puillat, I.; Taupier-Letage, I.; Millot, C.

    2002-01-01

    The Algerian Current (AC) is unstable and generates mesoscale meanders and eddies. Only anticyclonic eddies can develop and reach diameters over 200 km with vertical extents down to the bottom (˜3000 m). Algerian Eddies (AEs) first propagate eastward along the Algerian slope at few kilometers per day. In the vicinity of the Channel of Sardinia, a few AEs detach from the Algerian slope and propagate along the Sardinian one. It was hypothesized that AEs then followed a counter-clockwise circuit in the eastern part of the basin. Maximum recorded lifetimes were known to exceed 9 months. Within the framework of the 1-year Eddies and Leddies Interdisciplinary Study off Algeria (ELISA) experiment (1997-1998), we exhaustively tracked two AEs, using mainly an ˜3-year time series of NOAA/AVHRR satellite images. We show that AEs lifetimes can near 3 years, exceeding 33 months at least. We also confirm the long-lived AEs preferential circuit in the eastern part of the Algerian Basin, and specify that it may include several loops (at least three).

  3. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  4. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  5. Airborne lidar measurements of ozone during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Kooi, Susan A.

    1991-01-01

    The NASA/NOAA Airborne Arctic Stratospheric Expedition (AASE) was conducted during the winter to study the conditions leading to possible ozone (O3) destruction in the wintertime Arctic stratosphere. As part of this experiment, the NASA-Langley airborne differential absorption lidar (DIAL) system was configured for operation on the NASA-Ames DS-8 aircraft to make measurements of O3 profiles from about 1 km above the aircraft to altitudes of 22 to 26 km. The airborne DIAL system remotely sensed O3 above the DC-8 by transmitting two laser beams at 10 Hz using wavelengths of 301.5 and 311 nm. Large scale distributions of O3 were obtained on 15 long range flights into the polar vortex during the AASE. Selected data samples are presented of O3 observed during these flights, general trends observed in O3 distributions, and correlations between these measurements and meteorological and chemical parameters. The O3 distribution observed on the first flight of the DC-8 into the polar vortex on Jan. 6 reflected the result of diabatic cooling of the air inside the vortex during the winter compared to the warmer air outside the vortex. On a potential temperature surface, the O3 mixing ratio generally increases when going from outside to inside the vortex.

  6. Observation of Sub-Mesoscale Eddies over Baltic Sea Using TerraSAR-X and Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Tavri, Aikaterini; Singha, Singha; Lehner, Susanne; Topouzelis, Konstantinos

    2016-08-01

    currents circulation altered. On the Northern part of the basin, during winter season, sub-mesoscale eddies due to ice interaction were detected close to density and temperature front regions. These formations presented high backscatter coefficient values and smoother texture than the other sub- mesoscale eddies categories. Their diameter varied from 2 to 7 km. Most of the detected sub-mesoscale eddies were smaller or equal to baroclinic Rossby radius of deformation, which was varying from 1.5 to 7.2 km annually. The detected oceanic spirals were both cyclonically and anti-cyclonically rotated at the same abundance. In conjunction with acquisition date of the SAR images, sea surface temperature (SST) and chlorophyll (chl-a) concentration images from MODIS were collected for each date of detected oceanic eddies. In addition, wind speed data and current model data for surface circulation with sufficient spatial resolution were analysed in order to detect changes and correlations in the regions of the spiral formation detection. This approach was quite challenging due to different spatial resolutions of the datasets. From each dataset, plots and maps were generated, showing the overall conditions in the basin, as well as in the region were eddies detected. The majority of the sub-mesoscale eddies were located in regions of sharp shear changes or surface temperature fronts. From the combined information layers, strong correlation was concluded for eddies presenting low backscatter signatures with high temperatures and chlorophyll concentration. In contrast, the other two categories of eddies were generated in regions with low temperature and strong wind and current velocities, formed away from the coastline. As overall, the number of detected eddies was significantly lower than in studies focused on previews years. The detected categories of sub-mesoscale eddies were related to separable physical conditions and the presents results could help in their identification on SAR

  7. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  8. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  9. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  10. Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model

    NASA Astrophysics Data System (ADS)

    Berloff, Pavel

    2015-03-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced cumulative eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of the footprint strongly depend on the underlying large-scale and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  11. Projected changes to Tasman Sea eddies in a future climate

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.; O'Kane, Terence J.; Holbrook, Neil J.

    2015-11-01

    The Tasman Sea is a hot spot of ocean warming, that is linked to the increased poleward influence of the East Australian Current (EAC) over recent decades. Specifically, the EAC produces mesoscale eddies which have significant impacts on the physical, chemical, and biological properties of the Tasman Sea. To effectively consider and explain potential eddy changes in the next 50 years, we use high-resolution dynamically downscaled climate change simulations to characterize the projected future marine climate and mesoscale eddies in the Tasman Sea through the 2060s. We assess changes in the marine climate and the eddy field using bulk statistics and by detecting and tracking individual eddies. We find that the eddy kinetic energy is projected to increase along southeast Australia. In addition, we find that eddies in the projected future climate are composed of a higher proportion of anticyclonic eddies in this region and that these eddies are longer lived and more stable. This amounts to nearly a doubling of eddy-related southward temperature transport in the upper 200 m of the Tasman Sea. These changes are concurrent with increases in baroclinic and barotropic instabilities focused around the EAC separation point. This poleward transport and increase in eddy activity would be expected to also increase the frequency of sudden warming events, including ocean temperature extremes, with potential impacts on marine fisheries, aquaculture, and biodiversity off Tasmania's east coast, through direct warming or competition/predation from invasive migrating species.

  12. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  13. Do East Australian Current anticyclonic eddies leave the Tasman Sea?

    NASA Astrophysics Data System (ADS)

    Pilo, Gabriela S.; Oke, Peter R.; Rykova, Tatiana; Coleman, Richard; Ridgway, Ken

    2015-12-01

    Using satellite altimetry and high-resolution model output we analyze the pathway of large, long-lived anticyclonic eddies that originate near the East Australian Current (EAC) separation point. We show that 25-30% of these eddies propagate southward, around Tasmania, leave the Tasman Sea, and decay in the Great Australian Bight. This pathway has not been previously documented owing to poor satellite sampling off eastern Tasmania. As eddies propagate southward, they often "stall" for several months at near-constant latitude. Along the pathway eddies become increasingly barotropic. Eddy intensity is primarily influenced by merging with other eddies and a gradual decay otherwise. Surface temperature anomaly associated with anticyclonic eddies changes as they propagate, while surface salinity anomaly tends to remain relatively unchanged as they propagate.

  14. Biogeochemical properties of eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  15. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  18. Mangrove species mapping in Kuala Sepetang Mangrove Forest, Perak using high resolution airborne data

    NASA Astrophysics Data System (ADS)

    Beh, B. C.; MatJafri, M. Z.; Lim, H. S.

    2015-10-01

    Mangrove vegetation is widely employed and studied as it is a unique ecosystem which is able to provide plenty of goods and applications to our country. In this paper, high resolution airborne image data obtained the flight mission on Kuala Sepetang Mangrove Forest Reserve, Perak, Malaysia will be used for mangrove species mapping. Supervised classification using the retrieved surface reflectance will be performed to classify the airborne data using Geomatica 2013 software package. The ground truth data will be used to validate the classification accuracy. High correlation of R2=0.873 was achieved in this study indicate that high resolution airborne data is reliable and suitable used for mangrove species mapping.

  19. Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    1986-01-01

    The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.

  20. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  1. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  2. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  3. Oceanic mass transport by mesoscale eddies.

    PubMed

    Zhang, Zhengguang; Wang, Wei; Qiu, Bo

    2014-07-18

    Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation.

  4. Eddy current signal comparison for tube identification

    SciTech Connect

    Glass, S. W. E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R. E-mail: Ratko.Vojvodic@areva.com

    2015-03-31

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  5. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  6. Eddy current signal comparison for tube identification

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Vojvodic, R.

    2015-03-01

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  7. Large Eddy Simulation of Turbulent Combustion

    DTIC Science & Technology

    2006-03-15

    Application to an HCCI Engine . Proceedings of the 4th Joint Meeting of the U.S. Sections of the Combustion Institute, 2005. [34] K. Fieweger...LARGE EDDY SIMULATION OF TURBULENT COMBUSTION Principle Investigator: Heinz Pitsch Flow Physics and Computation Department of Mechanical Engineering ...burners and engines found in modern, industrially relevant equipment. In the course of this transition of LES from a scientifically interesting method

  8. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa; Santos, Jorge dos; Rosado, Luis

    2010-02-22

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  9. HYCOM High-resolution Eddying Simulations

    DTIC Science & Technology

    2014-07-01

    number of vertical profiles of temperature and salinity in place of XBT temperature profiles. The reanalysis was completed in February 2014. As noted...10.1016/j.ocemod.2011.02.011. Metzger, E. J., and Coauthors, 2014a: US Navy operational global ocean and Arctic ice prediction systems. Oceanography...has collaborated on developing and demonstrating the performance and application of eddy-resolving, real-time global and basin-scale ocean prediction

  10. Mesoscale eddies and T richodesmium spp. distributions in the southwestern North Atlantic

    PubMed Central

    McGillicuddy, Dennis J.; Flierl, Glenn R.; Davis, Cabell S.; Dyhrman, Sonya T.; Waterbury, John B.

    2015-01-01

    Abstract Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic. PMID:26937328

  11. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  12. Interface Exchange as an Indicator for Eddy Heat Transport

    SciTech Connect

    Petersen, Mark R.; Williams, Sean J.; Hecht, Matthew W.; Maltrud, Mathew E.; Hamann, Bernd; Patchett, John M.; Ahrens, James P.

    2012-06-12

    The ocean contains many large-scale, long-lived vortices, called mesoscale eddies, that are believed to have a role in the transport and redistribution of salt, heat, and nutrients throughout the ocean. Determining this role, however, has proven to be a challenge, since the mechanics of eddies are only partly understood; a standard definition for these ocean eddies does not exist and, therefore, scientifically meaningful, robust methods for eddy extraction, characterization, tracking and visualization remain a challenge. In order to shed light on the nature and potential roles of eddies, we have combined our previous research on eddy identification and tracking, and have used those approaches as the basis for analysis-driven computational experiments on the nature of eddies. Based on the resulting visualizations of eddy behavior, we have devised a new metric to characterize the transfer of water into and out of eddies across their boundary, and have developed visualization methods for this new metric to provide clues about the role eddies play in the global ocean and, potentially, climate change.

  13. Eddy current inspection tool. [Patent application

    DOEpatents

    Petrini, R.R.; Van Lue, D.F.

    1980-10-29

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, oil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of a fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator for generating audible signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.

  14. Large Eddy Simulation of Transitional Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sayadi, Taraneh; Moin, Parviz

    2009-11-01

    A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.

  15. Airborne Arctic Stratospheric Expedition 2: Air Parcel Trajectories

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An overview of Airborne Arctic Stratospheric Expedition 2 is given. Effects of Pinatubo aerosol on stratospheric ozone at mid-latitudes, in situ measurements of ClO and ClO/HCl ratio, balloon-borne measurements of ClO, NO, and O3 in a volcanic cloud, and new observations of the NO(y)/N2O correlation in the lower stratosphere are discussed. Among other topics addressed are the following: in situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8, in situ measurements of changes in stratospheric aerosol and the N2O-aerosol relationship inside and outside of the polar vortex, measurements of halogenated organic compounds near the tropical tropopause, and airborne brightness measurements of the polar winter troposphere.

  16. Evaluation of three portable samplers for monitoring airborne fungi

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Airborne fungi were monitored at five sample sites with the Burkard portable, the RCS Plus, and the SAS Super 90 air samplers; the Andersen 2-stage impactor was used for comparison. All samplers were calibrated before being used simultaneously to collect 100-liter samples at each site. The Andersen and Burkard samplers retrieved equivalent volumes of airborne fungi; the SAS Super 90 and RCS Plus measurements did not differ from each other but were significantly lower than those obtained with the Andersen or Burkard samplers. Total fungal counts correlated linearly with Cladosporium and Penicillium counts. Alternaria species, although present at all sites, did not correlate with total count or with amounts of any other fungal genera. Sampler and location significantly influenced fungal counts, but no interactions between samplers and locations were found.

  17. Interaction Between Eddies and Mean Flow in Jupiter's Atmosphere: Analysis of Cassini Imaging Data

    NASA Technical Reports Server (NTRS)

    Salyk, Colette; Ingersoll, Andrew P.; Lorre, Jean; Vasavada, Ashwin; DelGenio, Anthony D.

    2006-01-01

    Beebe et al. [Beebe, R.F., et al., 1980. Geophys. Res. Lett. 17, 1-4] and Ingersoll et al. [Ingersoll, A.P., et al., 1981. J. Geophys. Res. 86, 8733-8743] used images from Voyagers 1 and 2 to analyze the interaction between zonal winds and eddies in Jupiter's atmosphere. They reported a high positive correlation between Jupiter's eddy momentum flux, pu'v', and the variation of zonal velocity with latitude, du/dy. This correlation implied a surprisingly high rate of conversion of energy from eddies to zonal flow: approx. 1.5-3.0 W/sq m, a value more than 10% of Jupiter s thermal flux emission. However, Sromovsky et al. [Sromovsky, L.A., et al., 1982. J. Atmos. Sci. 39,1413-1432] argued that possible biases in the analysis could have caused an artificially high correlation. In addition, significant differences in the derived eddy flux between datasets put into question the robustness of any one result. We return to this long-standing puzzle using images of Jupiter from the Cassini flyby of December 2000. Our method is similar to previous analyses, but utilizes an automatic feature tracker instead of the human eye. The number of velocity vectors used in this analysis is over 200,000, compared to the 14,000 vectors used by Ingersoll et al. We also find a positive correlation between u'v' and du/dy and derive a global average power per unit mass, u'v' du/dy, ranging from (7.1-12.3) x 10(exp -5)W/kg. Utilizing Ingersoll et al.'s estimate of the mass per unit area involved in the transport, this would imply a rate of energy conversion of approx.0.7-1.2 W/sq m. We discuss the implications of this result and employ several tests to demonstrate its robustness.

  18. Interaction between eddies and mean flow in Jupiter's atmosphere: Analysis of Cassini imaging data

    NASA Astrophysics Data System (ADS)

    Salyk, Colette; Ingersoll, Andrew P.; Lorre, Jean; Vasavada, Ashwin; Del Genio, Anthony D.

    2006-12-01

    Beebe et al. [Beebe, R.F., et al., 1980. Geophys. Res. Lett. 17, 1-4] and Ingersoll et al. [Ingersoll, A.P., et al., 1981. J. Geophys. Res. 86, 8733-8743] used images from Voyagers 1 and 2 to analyze the interaction between zonal winds and eddies in Jupiter's atmosphere. They reported a high positive correlation between Jupiter's eddy momentum flux, ρuv¯, and the variation of zonal velocity with latitude, du¯/dy. This correlation implied a surprisingly high rate of conversion of energy from eddies to zonal flow: ˜1.5-3.0 Wm, a value more than 10% of Jupiter's thermal flux emission. However, Sromovsky et al. [Sromovsky, L.A., et al., 1982. J. Atmos. Sci. 39, 1413-1432] argued that possible biases in the analysis could have caused an artificially high correlation. In addition, significant differences in the derived eddy flux between datasets put into question the robustness of any one result. We return to this long-standing puzzle using images of Jupiter from the Cassini flyby of December 2000. Our method is similar to previous analyses, but utilizes an automatic feature tracker instead of the human eye. The number of velocity vectors used in this analysis is over 200,000, compared to the 14,000 vectors used by Ingersoll et al. We also find a positive correlation between uv¯ and du¯/dy and derive a global average power per unit mass, uv¯du¯/dy, ranging from (7.1-12.3)×10 Wkg. Utilizing Ingersoll et al.'s estimate of the mass per unit area involved in the transport, this would imply a rate of energy conversion of ˜0.7-1.2 Wm. We discuss the implications of this result and employ several tests to demonstrate its robustness.

  19. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  20. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  1. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  2. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  3. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  4. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  5. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  6. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  7. A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous forest

    NASA Astrophysics Data System (ADS)

    Hogg, Edward H.; Black, T. Andrew; den Hartog, Gerry; Neumann, Harold H.; Zimmermann, Reiner; Hurdle, Patrick A.; Blanken, Peter D.; Nesic, Zoran; Yang, Paul C.; Staebler, Ralf M.; McDonald, Kyle C.; Oren, Ram

    1997-12-01

    Water flux to the atmosphere was measured from a mature stand of aspen (Populus tremuloides Michx.) in Saskatchewan, Canada, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Diurnal and seasonal changes in transpiration were monitored using two sap flow techniques and were compared against the difference between eddy correlation measurements of water vapor flux made above and below the aspen canopy. The three methods showed similar diurnal and seasonal trends in water flux, although sap flow lagged the eddy correlation measurements by about 1 hour diurnally due to changes in water storage within the trees. During the growing season, all methods showed a linear increase in midday transpiration with above-canopy vapor pressure deficit (VPD) up to ˜1 kPa, beyond which transpiration was relatively constant (VPD 1-2.5 kPa). A similar relationship was obtained when total daily transpiration was plotted against mean daytime VPD. The results are consistent with other observations that stomatal conductance of the aspen canopy decreases at high VPD. The complementary benefits of simultaneous monitoring of canopy transpiration by both eddy correlation and sap flow measurements are discussed.

  8. Airborne Hyperspectral Remote Sensing

    DTIC Science & Technology

    2016-06-07

    conducted studies of the sediments, seagrass and corals . The objective is to correlate the hyperspectral imagery with the detailed in-situ measurements...seagrass and coral reefs (Mazel, 1998). In addition to the basic science there is a directed effort in remote sensing for seafloor imaging and...area includes different bottom types – coral , sand, seagrass – sometimes within the same local area, at a variety of depths. Most of the region is quite

  9. Application of large eddy interaction model to a mixing layer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.

    1989-01-01

    The large eddy interaction model (LEIM) is a statistical model of turbulence based on the interaction of selected eddies with the mean flow and all of the eddies in a turbulent shear flow. It can be utilized as the starting point for obtaining physical structures in the flow. The possible application of the LEIM to a mixing layer formed between two parallel, incompressible flows with a small temperature difference is developed by invoking a detailed similarity between the spectra of velocity and temperature.

  10. Stationary spiraling eddies in presence of polar amplification of global warming as a governing factor of ecology of Greenland seals White Sea population: results of verification study

    NASA Astrophysics Data System (ADS)

    Melentyev, K.; Chernook, V.; Melentyev, V.

    2003-04-01

    Ice-associated forms of marine mammals are representatives of a high level of fodder chains in the ocean and taxation of population number for different group, as assessment of ecology and animal welfare are the important tasks for marine biology, ecology, fishery and other application uses. Many problems create a global warming and antropogenical impact on marine and coastal ecosystem. In order to investigate ice covered Arctic Ocean and charting the number of seals were performed annual inspections onboard research aircraft PINRO "Arktika". Multi-spectral airborne and satellite observations were fulfilled regularly from Barents and White Sea to the Bering and Okhotsk Sea (1996-2002). A contemporary status of different group of sea mammals was evaluated, where number of adults and pups were checked separately. In situ observations were provided with using helicopter and icebreaker for gathering a water samples and ice cores (with following biochemical and toxicological analysis). A prevailing part of life cycle of Greenland seals (harp seal) is strongly depended from winter hydrology (water masses, stable currents, meandering fronts, stationary eddies) and closely connected with type of ice (pack, fast ice) and other parameters of ice (age, origin, salinity, ice edge.). First-year ice floes which has a specific properties and distinctive features are used by harp seals for pupping, lactation, molting, pairing and resting. Ringed seals, inversely, use for corresponding purposes only fast-ice. Different aspects of ecology, and migration features of harp seals were analyzed in frame of verification study. It was revealed a scale of influence of winter severity and wind regime, but stationary eddies in the White Sea is most effective governing factor (novelty). Following relationship " eddies - ecology of Greenland seal White Sea population " will be discussed: A) regularities of eddies formation and their spatial arrangement, temporal (seasonal and annual

  11. A daily global mesoscale ocean eddy dataset from satellite altimetry

    PubMed Central

    Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744

  12. Mesoscale eddies in the Gulf of Alaska: Observations and implications

    NASA Astrophysics Data System (ADS)

    Rovegno, Peter

    Mesoscale eddies in the Gulf of Alaska are thought to contribute to the shelf-slope exchange of nutrients and plankton, enhancing biological production. We report on a study of two anticyclonic mesoscale eddies in this region observed through in situ sampling during August and September 2007. Both eddies exhibited in their cores theta-S profiles with warmer, fresher water relative to the properties of the ambient basin water between 150 and 300 m depth. Hydrographic properties and satellite altimetry data were analyzed to identify likely formation regions for each feature. One eddy, sampled near Yakutat, Alaska, originated in the Sitka formation region (221-223° E); the second eddy, sampled south of Kodiak Island, originated near the Kenai Peninsula, southeast of the Kennedy and Stevenson entrances to Cook Inlet—an area not previously studied as a formation region. Subsequent analysis of 16 years of satellite altimeter data (from 1992 to 2008) with an algorithm designed to identify and track eddies revealed approximately 6 Kenai eddies that have formed in this region. Although this number constitutes only 3.2% of the 188 eddies identified by the algorithm during this period, it represents 15.4% of the 39 eddies that formed in or propagated westward into the Alaskan Stream.

  13. Tidal generation of large sub-mesoscale eddy dipoles

    NASA Astrophysics Data System (ADS)

    Callendar, W.; Klymak, J. M.; Foreman, M. G. G.

    2011-04-01

    Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwai (Queen Charlotte Islands) are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagation direction appears to be more southerly than typical Haida Eddies, though the model contains no mean wind-driven flows. These eddies are smaller than Haida Eddies, but given their tidal origin, may represent a more consistent source of coastal water that is injected into to the interior of the subpolar gyre.

  14. Tidal generation of large sub-mesoscale eddy dipoles

    NASA Astrophysics Data System (ADS)

    Callendar, W.; Klymak, J. M.; Foreman, M. G. G.

    2011-08-01

    Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwaii (Queen Charlotte Islands) are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagation direction appears to be more southerly than typical Haida Eddies, though the model contains no mean wind-driven flows. These eddies are smaller than Haida Eddies, but given their tidal origin, may represent a more consistent source of coastal water that is injected into the interior of the subpolar gyre.

  15. Eddy Current System for Material Inspection and Flaw Visualization

    NASA Technical Reports Server (NTRS)

    Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.

    2007-01-01

    Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.

  16. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical

  17. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and

  18. Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Marmorino, George O.; Holt, Benjamin; Molemaker, M. Jeroen; Digiacomo, Paul M.; Sletten, Mark A.

    2010-05-01

    Repeat sampling on hourly time scales using an airborne synthetic aperture radar (SAR) is used to investigate the occurrence and evolving characteristics of spiral-shaped slick patterns, commonly presumed to be indicators of submesoscale ocean eddies, in the area around Santa Catalina Island, California (˜33.4°N, 118.4°W). Simultaneous SAR imagery and boat survey data are examined over two ˜5 h long periods spaced 3 days apart in April 2003. The SAR imagery reveals several spiral-like patterns, roughly 5 km in diameter, occurring downstream of the western end of Catalina. We believe that the most likely formation mechanism for these patterns is current-wake instability related to the flow of the Southern California Countercurrent along the north shore of Catalina. In one case, there is an observed cold-core eddy and vortex sheet attached to the tip of the island, similar to island-wake simulations done by Dong and McWilliams (2007). In another case, the SAR imagery shows a series of slick patterns that, at least initially, resemble spiral eddies, but the data show no clear evidence of actual ocean eddies being present either at depth or through a rotating surface expression. A speculation is that such features signify island-wake eddies that are relatively weak and dissipate quickly. An unexpected finding was how quickly a spiral slick pattern could deteriorate, suggesting a time scale for the surface feature of the order of only several hours. An implication of this result is that care is needed when interpreting a single satellite SAR imagery for evidence of active submesoscale eddies. Recommendations are made for future field studies.

  19. An Angular Momentum Eddy Detection Algorithm (AMEDA) applied to coastal eddies

    NASA Astrophysics Data System (ADS)

    Le Vu, Briac; Stegner, Alexandre; Arsouze, Thomas

    2016-04-01

    We present a new automated eddy detection and tracking algorithm based on the computation of the LNAM (Local and Normalized Angular Momentum). This method is an improvement of the previous method by Mkhinini et al. (2014) with the aim to be applied to multiple datasets (satellite data, numerical models, laboratory experiments) using as few objective criteria as possible. First, we show the performance of the algorithm for three different source of data: a Mediterranean 1/8° AVISO geostrophic velocities fields based on the Absolute Dynamical Topography (ADT), a ROMS idealized simulation and a high resolution velocity field derived from PIV measurements in a rotating tank experiment. All the velocity fields describe the dynamical evolution of mesoscale eddies generated by the instability of coastal currents. Then, we compare the results of the AMEDA algorithm applied to regional 1/8° AVISO Mediterranean data set with in situ measurements (drifter, ARGO, ADCP…). This quantitative comparisons with few specific test cases enables us to estimate the accuracy of the method to quantify the eddies features: trajectory, size and intensity. We also use the AMEDA algorithm to identify the main formation areas of long-lived eddies in the Mediterranean Sea during the last 15 years.

  20. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at

  1. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    NASA Astrophysics Data System (ADS)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-01

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site

  2. Eddy diffusivity in the ocean surface

    NASA Astrophysics Data System (ADS)

    Redondo, Jose M.; Castilla, Robert; Platonov, Alexei

    2010-05-01

    In order to measure eddy diffusivity in the ocean using a scaling that includes the thickness of the surf zone as well as the depth and the wave period[1,2]. Measurements in the Mediterranean are almost two orders of magnitude smaller than in the Pacific coast. On a larger scale, and further away from the coast the relevant eddy diffusivities are much larger, because large eddies often scale on the Rossby deformation radius, LR. Direct measurements of the diffusion and the horizontal velocity field were performed at several sites in the coastal areas of Spain. The diffusion coeficients were calculated by evaluation from video images of the area of milk and fluoresceine blobs released at different positions and with different wave heights, wind speeds and tidal induced currents[1-3]. There are instances with either low hipo-diffusivity or high hyper-diffusivity and local measurements in both cases indicate that spectra deviate strongly from an equilibrium spectrum. A generalized Richardson law [3,4] deduced from Kinematic Simulation (KS) numerical models may be applied also to coastal diffusion[5]. The eddy viscosity values show a complex behaviour that depends on wind friction, wave induced Reynolds number and flow topology. The results of more than 100 experiments show that there is a dependence of the maximum diffusivity on a Reynolds number derived from the wave height[1]. The increase of diffusivity with wave height only occurs for large enough wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows also a marked anisotropy and spectral dependence [4,6]. [1] M. Diez, M. O. Bezerra, C. Mosso, R. Castilla and J. M. Redondo,Experimental measurements and diffusion in harbor and coastal zones. Il Nuovo Cimento Vol. 31 C, N. 5-6 Settembre-Dicembre (2008), 843. [2] Carrillo A., Sanchez M. A., Platonov A. and Redondo J. M., Phys. Chem. Earth B, 26. 4 (2001) 305. [3] Redondo J. M., Sanchez M. A. and Castilla R

  3. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  4. Large eddy simulation in the ocean

    NASA Astrophysics Data System (ADS)

    Scotti, Alberto

    2010-12-01

    Large eddy simulation (LES) is a relative newcomer to oceanography. In this review, both applications of traditional LES to oceanic flows and new oceanic LES still in an early stage of development are discussed. The survey covers LES applied to boundary layer flows, traditionally an area where LES has provided considerable insight into the physics of the flow, as well as more innovative applications, where new SGS closure schemes need to be developed. The merging of LES with large-scale models is also briefly reviewed.

  5. Variable-Force Eddy-Current Damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1986-01-01

    Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.

  6. A transport equation for eddy viscosity

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Yang, Z.

    1992-01-01

    A transport equation for eddy viscosity is proposed for wall bounded turbulent flows. The proposed model reduces to a quasi-homogeneous form far from surfaces. Near to a surface, the nonhomogeneous effect of the wall is modeled by an elliptic relaxation model. All the model terms are expressed in local variables and are coordinate independent; the model is intended to be used in complex flows. Turbulent channel flow and turbulent boundary layer flows with/without pressure gradient are calculated using the present model. Comparisons between model calculations and direct numerical simulation or experimental data show good agreement.

  7. Compact, intrathermocline eddies in the Sargasso Sea

    SciTech Connect

    Dugan, J.P.; Mied, R.P.; Mignerey, P.C.; Schuetz, A.F.

    1982-01-20

    We report observations of isolated lenses of constant-temperature water embedded in the permanent thermocline in the Sargasso Sea. These features are observed to have vertical extents of < or approx. =220 m horizontal dimensions of < or approx. =65 km, and residence depths near 700 m. A dynamic model is constructed which permits balance among the pressure gradient. Coriolis, and cyclostrophic forces and maintains the lens against gravitational collapse. A results that anticyclonic rim velocities approaches 20 cm s/sup -1/ are permitted and that these eddies have finite radii of the order of 50 km, at which their thicknesses fall to zero.

  8. Eddy current measurement of tube element spacing

    DOEpatents

    Latham, Wayne Meredith; Hancock, Jimmy Wade; Grut, Jayne Marie

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  9. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Peterson, P.; McGillicuddy, D. J., Jr.; Maritorena, S.; Nelson, N. B.

    2011-07-01

    We investigate the bio-optical footprints made by mesoscale eddies in the Sargasso Sea and the processes that create them through an eddy-centric approach. Many (>10,000) eddies are identified and followed in time using satellite altimetry observations and the spatial ocean color patterns surrounding each eddy are assessed. We find through a sequence of statistical hypothesis tests that not one but several mechanisms (i.e., eddy pumping, eddy advection and eddy-Ekman pumping) are responsible for the spatial-temporal ocean color patterns following individual eddies. Both eddy pumping and the eddy-Ekman pumping mechanisms alter subsurface nutrient distributions thereby driving biogeochemical cycles, while the eddy advection mechanism to first order stirs existing horizontal gradients in bio-optical properties. This work illustrates both the promise and some of the limitations of satellite observations for assessing the biogeochemical impacts of mesoscale eddies.

  10. Mesoscale Eddy - Internal Wave Coupling and Closure of the Thermocline Circulation

    NASA Astrophysics Data System (ADS)

    Polzin, K. L.

    2006-12-01

    The standard dynamical paradigm for oceanic dynamics is to consider the stratified interior as an ideal fluid and place all dissipative processes in either the bottom boundary layer or associate them with eddy/mixed layer interactions. This conceptual framework is consistent with an absence of mean interior potential vorticity gradients. On the other hand, background potential vorticity gradients are clearly documented in hydrographic data, e.g. [1]. Moreover, current meter data [2] also document the presence of downgradient eddy fluxes of potential vorticity. Thus we arrive at an essential conundrum: what is the frictional or diabatic process that permits the material modification of potential vorticity within the stratified oceanic interior associated with the downgradient fluxes? It is clear that diabatic processes are far too weak. A case will be made here that a coupling between mesoscale eddies and the internal wavefield acts as a frictional process. The case to be presented will focus on the interpretation of observations. These include current meter array data obtained as part of the POLYMODE Local Dynamics Experiment (LDE). [3] found correlations between internal wave momentum fluxes (stresses) and eddy rate of strain estimates that they interpreted in terms of a horizontal viscosity ν_h=200-400 m2 s-1. A revised estimate of this horizontal viscosity (ν_h=50 m2 s-1) and a vertical viscosity (ν_v=3×10-3 m2 s-1) estimate will be presented. Viscosity coefficients of this magnitude indicate that transfers of energy, momentum and potential vorticity between internal waves and mesoscale eddies are a significant part of the eddy energy^{[4]} and eddy enstrophy (potential vorticity squared) budgets. Finally, an attempt will be made to relate such coupling coefficients to recent satellite altimetry based estimates of mesoscale eddy kinetic energy cascades^{[5]} (see also Scott et al., this session), which, according to a preliminary numerical study (Arbic et al

  11. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  12. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  13. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  14. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    PubMed

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, DT. But some studies have suggested a possible relationship between DT and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate DT for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between DT and ACH, providing a surrogate parameter for estimating DT in real-life settings. For the first time, a mathematical expression for the relationship between DT and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of DT obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  15. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  16. Developing large eddy simulation for turbomachinery applications.

    PubMed

    Eastwood, Simon J; Tucker, Paul G; Xia, Hao; Klostermeier, Christian

    2009-07-28

    For jets, large eddy resolving simulations are compared for a range of numerical schemes with no subgrid scale (SGS) model and for a range of SGS models with the same scheme. There is little variation in results for the different SGS models, and it is shown that, for schemes which tend towards having dissipative elements, the SGS model can be abandoned, giving what can be termed numerical large eddy simulation (NLES). More complex geometries are investigated, including coaxial and chevron nozzle jets. A near-wall Reynolds-averaged Navier-Stokes (RANS) model is used to cover over streak-like structures that cannot be resolved. Compressor and turbine flows are also successfully computed using a similar NLES-RANS strategy. Upstream of the compressor leading edge, the RANS layer is helpful in preventing premature separation. Capturing the correct flow over the turbine is particularly challenging, but nonetheless the RANS layer is helpful. In relation to the SGS model, for the flows considered, evidence suggests issues such as inflow conditions, problem definition and transition are more influential.

  17. Magnetoresistive flux focusing eddy current flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  18. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  19. Eddy Current Assessment of Duplex Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Krzywosz, K. J.

    2004-02-01

    EPRI is involved in a multi-year program with the Department of Energy to test, evaluate, and develop a field-deployable eddy current NDE system for life assessment of blade coatings for advanced gas turbines. The coatings evaluated from these advanced GE engines include CoCrAlY (GT 29) and NiCoCrAlY (GT 33) bond coats followed by top aluminide overlay coatings. These duplex metallic coatings commonly referred to as GT 29+ and GT 33+ coatings, respectively. In general, during cycling and continuous operation at higher operating temperature, coatings fail due to spallation of protective oxide layers, leading to consumption of protective coating by oxidation and to eventual failure of blades. To extend service life of these critical rotating components, an inspection-based condition assessment program has been initiated to help establish more optimum inspection intervals that are not dependent on time-in-service maintenance approach. This paper summarizes the latest results obtained to date using the state-of-the-art frequency-scanning eddy current tester with a built-in three-layer inversion analysis algorithm. Significant progress has been made in assessing and discriminating the duplex metallic coatings as normal, degraded, and/or cracked. In addition, quantitative assessment was conducted by estimating various coating and substrate conductivity values.

  20. Eddy generation in the Mediterranean undercurrent

    NASA Astrophysics Data System (ADS)

    Serra, Nuno; Ambar, Isabel

    In the framework of the European Union MAST III project Canary Islands Gibraltar Azores Observations, 24 RAFOS floats were deployed in the Mediterranean Water (MW) undercurrent off south Portugal between September 1997 and September 1998. A preliminary analysis of this Lagrangian approach, complemented with XBT and current-meter data, show some of the major aspects of the flow associated with the undercurrent as well as associated eddy activity. Floats that stayed in the undercurrent featured a downstream deceleration and a steering by bottom topography. Three meddy formations at Cape St. Vincent could be isolated from the float data. The dynamical coupling of meddies and cyclones was observed for a considerable period of time. The generation of two dipolar structures in the Portimão Canyon region also was observed with the float data. A major bathymetric relief—Gorringe Bank—was not only an important constraint to the eddy trajectories and of the flow at the MW levels but also a site for meddy formation.

  1. 76 FR 59394 - Big Eddy-Knight Transmission Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Bonneville Power Administration Big Eddy-Knight Transmission Project AGENCY: Bonneville Power Administration...: This notice announces the availability of the ROD to implement the Big Eddy-Knight Transmission Project in Wasco County, Oregon and Klickitat County, Washington. Construction of the Big...

  2. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  3. Mesoscale eddies are oases for higher trophic marine life.

    PubMed

    Godø, Olav R; Samuelsen, Annette; Macaulay, Gavin J; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  4. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  5. Revolving Eddy-Current Probe Detects Cracks Near Rivets

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John

    1995-01-01

    Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).

  6. Remote field eddy current inspection of support plate fretting wear

    SciTech Connect

    Shatat, A.; Atherton, D.L.

    1997-03-01

    This article demonstrates how the remote field eddy current technique might be extended to measure support plate fretting wear in heat exchanger tubes. A finite element analysis was used to examine the plate`s effect on the eddy current signal. Experimental data lend support to a suggested multifrequency method for sizing fretting grooves.

  7. Water mass structure and transport in the Tourbillon eddy

    NASA Astrophysics Data System (ADS)

    Harvey, John; Glynn, Simon

    1985-06-01

    CTD data collected during the Tourbillon Experiment have been used to identify the water masses present in a mesoscale eddy in the eastern North Atlantic, and their transports during the 50-day period of the Experiment. The core of the eddy was found to comprise North Atlantic Central Water within the temperature range 10 to 11°C, and evidence of downward movement of this water between 150 and 700 db and upward movement between 750 and 820 db is presented. Mediterranean Water (MW) was drawn around the eddy in a tongue which broke into separate patches during the Experiment. There is evidence of this MW having a dynamical role in the eddy: whilst it was present as a continuous tongue it did not progress around the eddy as fast as other water. There is also an indication of upward movement of this MW. The distribution of Labrador Sea Water showed some positive relationship to the location of the eddy centre, whilst low concentrations were noted beneath the MW tongue. Both θ-S analysis and charts of the planetary component of potential vorticity are used in an attempt to identify the source region of the eddy; it is concluded that the eddy had not moved far (perhaps 200 km) from its place of origin, and that the homogeneous water in its core may have been formed by deep winter convection somewhere between north and west of the area where the Experiment was conducted.

  8. Significant sink of ocean-eddy energy near western boundaries

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaoming; Johnson, Helen L.; Marshall, David P.

    2010-09-01

    Ocean eddies generated through instability of the mean flow are a vital component of the energy budget of the global ocean. In equilibrium, the sources and sinks of eddy energy have to be balanced. However, where and how eddy energy is removed remains uncertain. Ocean eddies are observed to propagate westwards at speeds similar to the phase speeds of classical Rossby waves, but what happens to the eddies when they encounter the western boundary is unclear. Here we use a simple reduced-gravity model along with satellite altimetry data to show that the western boundary acts as a `graveyard' for the westward-propagating ocean eddies. We estimate a convergence of eddy energy near the western boundary of approximately 0.1-0.3TW, poleward of 10° in latitude. This energy is most probably scattered into high-wavenumber vertical modes, resulting in energy dissipation and diapycnal mixing. If confirmed, this eddy-energy sink will have important implications for the ocean circulation.

  9. Eddy Currents: Levitation, Metal Detectors, and Induction Heating

    ERIC Educational Resources Information Center

    Wouch, G.; Lord, A. E., Jr.

    1978-01-01

    A simple and accessible calculation is given of the effects of eddy currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of eddy current effects in upper undergraduate physics courses. (BB)

  10. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  11. The Energetics of Transient Eddies in the Martian Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.

    2016-10-01

    The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in eddy activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout the northern hemisphere eddy period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.

  12. Biogeochemical Properties of Eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-04-01

    The California Current System (CCS) is a coastal upwelling system characterized by intense mesoscale activity. This mesoscale activity plays a critical role in modulating biological production and exporting coastal biogeochemical materials offshore. To characterize and quantify the ability of mesoscale eddies to affect local and regional planktonic ecosystems in the CCS, we analyzed a 10-year-long physical-biological model simulation - with 5km horizontal resolution - using eddy detection and tracking to isolate the dynamics in cyclonic and anticyclonic eddies. At any given time, ~8% of the model domain was covered by eddies, and this small area belies ~50% of the cross-shelf biological transport. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms, and maintain locally elevated production, Anticyclones, on the other hand, have a limited impact on local production.

  13. Nonlinear inertial oscillations of a multilayer eddy: An analytical solution

    NASA Astrophysics Data System (ADS)

    Dotsenko, S. F.; Rubino, A.

    2008-06-01

    Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.

  14. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  15. Correcting eddy-covariance flux underestimates over a grassland.

    SciTech Connect

    Twine, T. E.; Kustas, W. P.; Norman, J. M.; Cook, D. R.; Houser, P. R.; Meyers, T. P.; Prueger, J. H.; Starks, P. J.; Wesely, M. L.; Environmental Research; Univ. of Wisconsin at Madison; DOE; National Aeronautics and Space Administration; National Oceanic and Atmospheric Administrationoratory

    2000-06-08

    Independent measurements of the major energy balance flux components are not often consistent with the principle of conservation of energy. This is referred to as a lack of closure of the surface energy balance. Most results in the literature have shown the sum of sensible and latent heat fluxes measured by eddy covariance to be less than the difference between net radiation and soil heat fluxes. This under-measurement of sensible and latent heat fluxes by eddy-covariance instruments has occurred in numerous field experiments and among many different manufacturers of instruments. Four eddy-covariance systems consisting of the same models of instruments were set up side-by-side during the Southern Great Plains 1997 Hydrology Experiment and all systems under-measured fluxes by similar amounts. One of these eddy-covariance systems was collocated with three other types of eddy-covariance systems at different sites; all of these systems under-measured the sensible and latent-heat fluxes. The net radiometers and soil heat flux plates used in conjunction with the eddy-covariance systems were calibrated independently and measurements of net radiation and soil heat flux showed little scatter for various sites. The 10% absolute uncertainty in available energy measurements was considerably smaller than the systematic closure problem in the surface energy budget, which varied from 10 to 30%. When available-energy measurement errors are known and modest, eddy-covariance measurements of sensible and latent heat fluxes should be adjusted for closure. Although the preferred method of energy balance closure is to maintain the Bowen-ratio, the method for obtaining closure appears to be less important than assuring that eddy-covariance measurements are consistent with conservation of energy. Based on numerous measurements over a sorghum canopy, carbon dioxide fluxes, which are measured by eddy covariance, are underestimated by the same factor as eddy covariance evaporation

  16. On the interactions between planetary geostrophy and mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Grooms, Ian; Julien, Keith; Fox-Kemper, Baylor

    2011-04-01

    Multiscale asymptotics are used to derive three systems of equations connecting the planetary geostrophic (PG) equations for gyre-scale flow to a quasigeostrophic (QG) equation set for mesoscale eddies. Pedlosky (1984), following similar analysis, found eddy buoyancy fluxes to have only a small effect on the large-scale flow; however, numerical simulations disagree. While the impact of eddies is relatively small in most regions, in keeping with Pedlosky's result, eddies have a significant effect on the mean flow in the vicinity of strong, narrow currents. First, the multiple-scales analysis of Pedlosky is reviewed and amplified. Novel results of this analysis include new multiple-scales models connecting large-scale PG equations to sets of QG eddy equations. However, only introducing anisotropic scaling of the large-scale coordinates allows us to derive a model with strong two-way coupling between the QG eddies and the PG mean flow. This finding reconciles the analysis with simulations, viz. that strong two-way coupling is observed in the vicinity of anisotropic features of the mean flow like boundary currents and jets. The relevant coupling terms are shown to be eddy buoyancy fluxes. Using the Gent-McWilliams parameterization to approximate these fluxes allows solution of the PG equations with closed tracer fluxes in a closed domain, which is not possible without mesoscale eddy (or other small-scale) effects. The boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed, which is the same result found by Fox-Kemper and Ferrari (2009) in a reduced gravity layer.

  17. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    DTIC Science & Technology

    2013-09-30

    Eddies, and Topographic Generation, Including Submesoscale Nests Alexander F. Shchepetkin (PI) James C. McWilliams and Maarten J. Molemaker (co-PIs... submesoscale phenomena; analysis and understanding the underlying physical processes; improving parameterizations of unresolved processes...mesoscale and submesoscale eddies generated by instability and bottom topography effects. This is accompanied by development of modeling codes

  18. The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there

    PubMed Central

    Larsson, Johan; Wang, Qiqi

    2014-01-01

    In this paper, we try to look into the future to envision how large eddy and detached eddy simulations will be used in the engineering design process about 20–30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed. PMID:25024421

  19. The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there.

    PubMed

    Larsson, Johan; Wang, Qiqi

    2014-08-13

    In this paper, we try to look into the future to envision how large eddy and detached eddy simulations will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.

  20. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    PubMed

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed.

  1. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  2. Endotoxin exposure assessment in wood-processing industry: airborne versus settled dust levels.

    PubMed

    Pipinić, Ivana Sabolić; Varnai, Veda Marija; Lucić, Ruzica Beljo; Cavlović, Ankica; Prester, Ljerka; Orct, Tatjana; Macan, Jelena

    2010-06-01

    Wood processing is usually performed in environments with large amounts of endotoxin-rich bioaerosols that are associated with a variety of health effects. The aim of this preliminary study was to assess the relation between endotoxin levels in settled and airborne dust in wood-processing industry. Ten pairs of airborne and settled dust samples were collected in a sawmill and parquet manufacture of two wood-processing plants in Croatia. Endotoxin was assayed with a chromogenic end-point LAL (Limulus amebocyte lysate) method. The results showed that endotoxin levels in airborne respirable dust were above the proposed occupational exposure limit of 125 EU m(-3) and could be considered hazardous for the respiratory system. In settled dust they ranged between 229.7 EU mg(-1) and 604.3 EU mg(-1) and in airborne dust between 166.8 EU mg(-1) and 671.6 EU m(-3), but there was no significant correlation between them (Spearman's rho=0.358, P=0.310). This study points to sawmill settled dust as endotoxin reservoir and suggests that it may add to already high exposure to airborne endotoxins associated with wood processing. Investigations of the relation between settled and airborne endotoxin levels should be continued to better understand the sources and sites of endotoxin contamination in wood-processing industry.

  3. Fluxes of total reactive atmospheric nitrogen using eddy covariance above arable land

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Marx, O.; Kutsch, W. L.; Ammann, C.; Wolff, V.; Freibauer, A.

    2011-12-01

    A novel measurement technique (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used to determine the biosphere-atmosphere exchange of the sum of all airborne reactive nitrogen (Nr) compounds. While concentration and flux measurements of Nr species from agriculture are still challenging from a metrological point of view and well-established measurement techniques (e.g., chemiluminescence detector (CLD), molybdenum converter, denuder/impinger with ion chromatography analysis) are usually limited to single compounds or provide concentration values and flux rates in poor time resolution and require labour and cost-intensive lab analyses, we present results from a campaign where the TRANC in combination with a fast-response analyzer (CLD) was used in an eddy-covariance (EC) setup to quantify total Nr. The basic measurement concept of the TRANC is the full conversion of all Nr compounds in the sample air to nitrogen monoxide (NO) within two reaction steps. Initially, reduced N compounds are being oxidized, whereas oxidized N compounds are thermally converted to compounds of lower oxidation states. Particulate N is being sublimated and oxidized or reduced afterwards. In a second reaction step, remaining higher N oxides in the sample air or those originated in the first reaction step are catalytically converted to NO. Carbon monoxide is used as reduction gas. The 10-months field campaign was conducted at an agricultural site planted with winter wheat in Thuringia, Germany. Total Nr concentrations were usually in the range of 5 to 30 ppb showing distinctive diurnal patterns with relatively low values from midday to late afternoon and highest values at night. Amplitudes were observed to be higher during the period of growth when no fertilizer was added. After fertilization events, total Nr concentrations were as high as 200 ppb for a short period of time. Different diurnal flux patterns depending on season and time passed since the last fertilization could be

  4. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  5. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  6. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  7. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  8. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  9. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  10. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  11. Eddy current losses in ferromagnetic laminations

    SciTech Connect

    Serpico, C.; Visone, C.; Mayergoyz, I. D.; Basso, V.; Miano, G.

    2000-05-01

    It is demonstrated through the comparison of analytical, numerical, and experimental results that the existence of excess eddy current losses can be explained by the peculiar nature of the nonlinear diffusion of electromagnetic fields in magnetically nonlinear laminations. The essence of this peculiar nature is that nonlinear diffusion occurs as inward progress of almost rectangular profiles of magnetic flux density of variable height. Approximating actual profiles of magnetic flux density by rectangular ones, the problem of nonlinear diffusion can be treated analytically by using a simple model. The accuracy and the limit of applicability of the rectangular profile model are discussed by comparing its predictions with finite elements numerical solutions of nonlinear diffusion equation as well as with experimental results. (c) 2000 American Institute of Physics.

  12. Statistical Ensemble of Large Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.

  13. Autonomic Closure for Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    King, Ryan; Hamlington, Peter; Dahm, Werner J. A.

    2015-11-01

    A new autonomic subgrid-scale closure has been developed for large eddy simulation (LES). The approach poses a supervised learning problem that captures nonlinear, nonlocal, and nonequilibrium turbulence effects without specifying a predefined turbulence model. By solving a regularized optimization problem on test filter scale quantities, the autonomic approach identifies a nonparametric function that represents the best local relation between subgrid stresses and resolved state variables. The optimized function is then applied at the grid scale to determine unknown LES subgrid stresses by invoking scale similarity in the inertial range. A priori tests of the autonomic approach on homogeneous isotropic turbulence show that the new approach is amenable to powerful optimization and machine learning methods and is successful for a wide range of filter scales in the inertial range. In these a priori tests, the autonomic closure substantially improves upon the dynamic Smagorinsky model in capturing the instantaneous, statistical, and energy transfer properties of the subgrid stress field.

  14. Large-eddy simulation of propeller noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Mahesh, Krishnan

    2016-11-01

    We will discuss our ongoing work towards developing the capability to predict far field sound from the large-eddy simulation of propellers. A porous surface Ffowcs-Williams and Hawkings (FW-H) acoustic analogy, with a dynamic endcapping method (Nitzkorski and Mahesh, 2014) is developed for unstructured grids in a rotating frame of reference. The FW-H surface is generated automatically using Delaunay triangulation and is representative of the underlying volume mesh. The approach is validated for tonal trailing edge sound from a NACA 0012 airfoil. LES of flow around a propeller at design advance ratio is compared to experiment and good agreement is obtained. Results for the emitted far field sound will be discussed. This work is supported by ONR.

  15. Large eddy simulation of cavitating flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  16. Material condition assessment with eddy current sensors

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)

    2010-01-01

    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.

  17. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  18. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  19. Large Eddy Simulation of turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Moin, P.; Mansour, N. N.; Reynolds, W. C.; Ferziger, J. H.

    1979-01-01

    The conceptual foundation underlying Large Eddy Simulation (LES) is summarized, and the numerical methods developed for simulation of the time-developing turbulent mixing layer and turbulent plane Poiseuille flow are discussed. Computational results show that the average Reynolds stress profile nearly attains the equilibrium shape which balances the downstream mean pressure gradient in the regions away from the walls. In the vicinity of the walls, viscous stresses are shown to be significant; together with the Reynolds stresses, these stresses balance the mean pressure gradient. It is stressed that the subgrid scale contribution to the total Reynolds stress is significant only in the vicinity of the walls. The continued development of LES is urged.

  20. Trends in Southern Ocean Eddy Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-04-01

    A recent study by Hogg et al. (JGR, 2015) has demonstrated a 20-year trend in eddy kinetic energy (EKE) computed from satellite altimetry data. However, this estimate is based on an averaging over large spatial areas. In this study, we use the same methods to examine regional EKE trends throughout the Southern Ocean, from 1993-2015. We do find significant positive trends in several areas of the Southern Ocean, mainly in regions with high mean EKE associated with interactions between jets and bathymetry. At the same time, however, there are also regions with significant negative trends. Overall, EKE in the majority of the Southern Ocean has not changed. These results suggest that the estimates of Hogg et al. may have been biased by these regional extremes, and that more work is needed to quantify climatic changes in EKE.

  1. Large eddy simulations in 2030 and beyond

    PubMed Central

    Piomelli, U

    2014-01-01

    Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier–Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise. PMID:25024415

  2. Large eddy simulations in 2030 and beyond.

    PubMed

    Piomelli, U

    2014-08-13

    Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier-Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise.

  3. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.

  4. An eddy closure for potential vorticity

    SciTech Connect

    Ringler, Todd D

    2009-01-01

    The Gent-McWilliams (GM) parameterization is extended to include a direct influence in the momentum equation. The extension is carried out in two stages; an analysis of the inviscid system is followed by an analysis of the viscous system. In the inviscid analysis the momentum equation is modified such that potential vorticity is conserved along particle trajectories following a transport velocity that includes the Bolus velocity in a manner exactly analogous to the continuity and tracer equations. In addition (and in contrast to traditional GM closures), the new formulation of the inviscid momentum equation results in a conservative exchange between potential and kinetic forms of energy. The inviscid form of the eddy closure conserves total energy to within an error proportional to the time derivative of the Bolus velocity. The hypothesis that the viscous term in the momentum equation should give rise to potential vorticity being diffused along isopycnals in a manner analogous to other tracers is examined in detail. While the form of the momentum closure that follows from a strict adherence to this hypothesis is not immediately interpretable within the constructs of traditional momentum closures, three approximations to this hypothesis results in a form of dissipation that is consistent with traditional Laplacian diffusion. The first two approximations are that relative vorticity, not potential vorticity, is diffused along isopyncals and that the flow is in approximate geostrophic balance. An additional approximation to the Jacobian term is required when the dissipation coefficient varies in space. More importantly, the critique of this hypothesis results in the conclusion that the viscosity parameter in the momentum equation should be identical to the tradition GM closure parameter {Kappa}. Overall, we deem the viscous form of the eddy closure for potential vorticity as a viable closure for use in ocean circulation models.

  5. Turbulence Spectra and Eddy Diffusivity over Forests.

    NASA Astrophysics Data System (ADS)

    Lee, Xuhui

    1996-08-01

    The main objectives of this observational study are to examine the stability dependence of velocity and air temperature spectra and to employ the spectral quantities to establish relations for eddy diffusivity over forests. The datasets chosen for the analysis were collected above the Browns River forest and the Camp Borden forest over a wide range of stability conditions.Under neutral and unstable conditions the nondimensional dissipation rate of turbulent kinetic energy (TKE) over the forests is lower than that from its Monin-Obukhov similarity (MOS) function for the smooth-wall surface layer. The agreement is somewhat better under stable conditions but a large scatter is evident. When the frequency is made nondimensional by the height of the stand (h) and the longitudinal velocity at this height (uh, the Kaimal spectral model for neutral air describes the observations very well. The eddy diffusivity formulation K = c 4w/ provides a promising alternative to the MOS approach, where w is the standard deviation of the vertical velocity and TKE dissipation rate. Current datasets yield a constant of 0.43 for c for sensible heat in neutral and stable air, a value very close to that for the smooth-wall surface layer. It is postulated that c is a conservative parameter for sensible heat in the unstable air, its value probably falling between 0.41 and 0.54. In the absence of data, it is possible to estimate K from measurements of the local mean wind u and air stability. As a special case, it is shown that K = 0.27(uh/uh)w under neutral stability. This relation is then used to establish a profile model for wind speed and scalar concentration in the roughness sublayer. The analysis points out that uh and h are important scaling parameters in attempts to formulate quantitative relations for turbulence over tall vegetation.

  6. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  7. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  8. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  9. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  10. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  11. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  12. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  13. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  14. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  15. Dynamics of Eddies in the Southeastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hanifah, F.; Ningsih, N. S.; Sofian, I.

    2016-08-01

    A holistic study was done on eddies in the Southeastern Tropical Indian Ocean (SETIO) using the HYbrid Coordinate Ocean Model (HYCOM) for 64 years (from 1950 to 2013). The results from the model were verified against the current and the Sea Surface Height Anomaly (SSHA) from Ocean Surface Current Analyses - Real time (OSCAR) and Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO) respectively. The verification showed that the model simulates the condition in the area of study relatively well. We discovered that the local wind was not the only factor that contributed to the formation of eddies in the area. The difference in South Java Current (SJC) flow compared to the Indonesian Throughflow (ITF) and South Equatorial Current (SEC) flow as well as the difference in the relative velocity between the currents in the area led us to suspect that shear velocity may be responsible for the formation of eddies. The results from our model corroborated our prediction about shear velocity. Therefore, we attempted to explain the appearance of eddies in the SETIO based on the concept of shear velocity. By observing and documenting the occurrences of eddies in the area, we found that there are 8 cyclonic and 7 anticyclonic eddies in the SETIO. The distribution and frequency of the appearance of eddies varies, depending on the season.

  16. Oceanic eddy formation and propagation southwest of Taiwan

    NASA Astrophysics Data System (ADS)

    Nan, Feng; Xue, Huijie; Xiu, Peng; Chai, Fei; Shi, Maochong; Guo, Peifang

    2011-12-01

    Oceanic eddies are active and energetic southwest of Taiwan. The formation and propagation of eddies in this area were investigated using 17 year satellite altimeter data. Cyclonic eddies (CEs) and anticyclonic eddies (ACEs) often coexisted, but there were more CEs than ACEs generated during the period from October 1992 to October 2009. ACEs were stronger and, in general, lived longer than CEs. ACEs occurred more often in winter than in other seasons, while CEs were more frequent in summer. Compared with the direct local wind forcing, the Kuroshio path variability appears to be a dominant factor for eddy formation in this area. A conceptual model of an eddy-Kuroshio interaction is proposed. In summer, there exists an outflow northwest of Luzon Island, and the Kuroshio likely leaps across the Luzon Strait. To the north of the outflow and left of the Kuroshio axis, CEs are often formed, which in turn induce ACEs to the west of CEs. In winter, under the influence of northeasterly monsoon, the Kuroshio Current Loop (KCL) appears southwest of Taiwan more frequently than in other seasons, and ACEs are frequently shed from the KCL. Most of the ACEs propagate westward, and, as a result, CEs are often spun up to the east of the ACEs. The surface South China Sea outflow in summer and the KCL in winter are, however, likely related to the monsoons. Therefore, the indirect effects of monsoon winds are also evident in the seasonal variations of eddy occurrence.

  17. Biological consequences of a recurrent eddy off Point Conception, California

    NASA Technical Reports Server (NTRS)

    Haury, Loren R.; Simpson, James J.; Pelaez, Jose; Wisenhahn, David; Koblinsky, Chester J.

    1986-01-01

    The biological effects on three different time scales (100-day mesoscale, annual, and several-year) of a mesoscale anticyclonic eddy consistently found in shipboard surveys and satellite-sensed data several hundred kilometers southwest of Point Conception, CA, are described. A detailed shipboard study of the eddy in January 1981 found a complex system of fronts in surface chlorophyll at the northern edge of the eddy; microplankton and zooplankton distributions were strongly affected by entrainment processes at the surface and, apparently, at depth. Concurrent satellite coastal zone color scanner ocean color images show agreement with the general surface characteristics of the eddy chlorophyll field but do not reflect features deeper than about 25 m, including the contribution of the deep chlorophyll maximum to the integrated chlorophyll values. Satellite data for the period October 1980 through October 1981 and shipboard data from California Cooperative Oceanic Fisheries Investigations (CalCOFI) for December 1980 to July 1981 show the continued presence of the eddy in the sea surface temperature and color field and in the distributions of surface chlorophyll and zooplankton displacement volume. A review of the CalCOFI survey results from 1949 to the present time demonstrates the recurrent nature of the eddy system on a year-to-year basis. The eddy system appears to have a significant effect on the distribution of both oceanic and nearshore organisms. Offshore transport of coastal species occurs in the form of large entrained plumes or filaments.

  18. Conjugate spectrum filters for eddy current signal processing

    SciTech Connect

    Stepinski, T.; Maszi, N. . Dept. of Technology.)

    1993-07-01

    The paper addresses the problem of detection and classification of material defects during eddy current inspection. Digital signal processing algorithms for detection and characterization of flaws are considered and a new type of filter for classification of eddy current data is proposed. In the first part of the paper the signal processing blocks used in modern eddy current instruments are presented and analyzed in terms of information transmission. The processing usually consists of two steps: detection by means of amplitude-phase detectors and filtering of the detector output signals by means of analog signal filters. Distortion introduced by the signal filters is considered and illustrated using real eddy current responses. The nature of the distortion is explained and the way to avoid it is indicated. A novel method for processing the eddy current responses is presented in the second part of the paper. The method employs two-dimensional conjugate spectrum filters (CSFs) that are sensitive both to the phase angle and the shape of the eddy current responses. First the theoretical background of the CSF is presented and then two different ways of application, matched filters and orthogonal conjugate spectrum filters, are considered. The matched CSFs can be used for attenuation of all signals with the phase angle different from the selected prototype. The orthogonal filters are able to suppress completely a specific interference, e.g. the response of supporting plate when testing heat exchanger tubes. The performance of the CSFs is illustrated by means of real and simulated eddy current signals.

  19. Modelling cyclonic eddies in the Delagoa Bight region

    NASA Astrophysics Data System (ADS)

    Cossa, O.; Pous, S.; Penven, P.; Capet, X.; Reason, C. J. C.

    2016-05-01

    The objective of this study is to document and shed light on the circulation around the Delagoa Bight region in the southern Mozambique Channel using a realistic modelling approach. A simulation including mesoscale forcings at the boundaries of our regional configuration succeeds in reproducing the general circulation in the region as well as the existence of a semi-permanent cyclonic eddy, whose existence is attested by in situ measurements in the Bight. Characterised by a persistent local minimum in SSH located around 26°S-34°E, this cyclonic eddy termed herein the Delagoa Bight lee eddy occurs about 25% of the time with no clear seasonal preference. Poleward moving cyclones, mostly generated further north, occur another 25% of the time in the Bight area. A tracking method applied to eddies generated in Delagoa Bight using model outputs as well as AVISO data confirms the model realism and provides additional statistics. The diameter of the eddy core varies between 61 and 147 km and the average life time exceeds 20 days. Additional model analyses reveal the systematic presence of negative vorticity in the Bight that can organise and form a Delagoa Bight lee eddy depending on the intensity of an intermittent southward flow along the shore and the spatial distribution of surrounding mesoscale features. In addition, the model solution shows other cyclonic eddies generated near Inhambane and eventually travelling through the Bight. Their generation and pathways appears to be linked with large Mozambique Channel rings.

  20. Evidence of abyssal eddies in the Brazil Basin

    NASA Astrophysics Data System (ADS)

    Weatherly, Georges; Arhan, Michel; Mercier, Herle; Smethie, William

    2002-04-01

    We report evidence of two deep cyclonic and two deep anticyclonic submesoscale eddies from World Oceanographic Circulation Experiment hydrographic casts made in the Brazil Basin. We infer that three of these were likely formed in or near the Deep Western Boundary Current (DWBC) of North Atlantic Deep Water (NADW), and thus had traveled eastward after formation. These eddies appear to be a new way for transporting NADW away from the DWBC to the ocean interior. One of the apparent cyclonic eddies appeared to be laterally in contact with one of the anticyclonic eddies. About 10 days later an attempt was made to resample the apparent eddies that had been in contact. These observations, although limited, are interpreted to indicate that they survived the encounter, that the cyclonic eddy had now moved to be beneath the anticyclonic one with each being somewhat thinner, and that they produced a new anticyclonic eddy by partially merging. Deep float observations [Hogg and Owens, 1999] partially support the second inference.

  1. Eddy current correction in volume-localized MR spectroscopy

    NASA Technical Reports Server (NTRS)

    Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.

    1994-01-01

    The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.

  2. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  3. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    SciTech Connect

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  4. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  5. Carbon Dynamics within Cyclonic Eddies: Insights from a Biomarker Study

    PubMed Central

    Alonso-González, Iván J.; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle. PMID:24386098

  6. Carbon dynamics within cyclonic eddies: insights from a biomarker study.

    PubMed

    Alonso-González, Iván J; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2-4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.

  7. Eddy energy sources and flux in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  8. Large-Eddy Simulation of the Evolving Stable Boundary Layer Over Flat Terrain

    SciTech Connect

    Townsend, R

    2002-01-02

    The stable boundary layer (SBL) in the atmosphere is of considerable interest because it is often the worse case scenario for air pollution studies and health effect assessments associated with the accidental release of toxic material. Traditional modeling approaches used in such studies do not simulate the non-steady character of the velocity field, and hence often overpredict concentrations while underpredicting spatial coverage of potentially harmful concentrations of airborne material. The challenge for LES is to be able to resolve the rather small energy-containing eddies of the SBL while still maintaining an adequate domain size. This requires that the subgrid-scale (SGS) parameterization of turbulence incorporate an adequate representation of turbulent energy transfer. Recent studies have shown that both upscale and downscale energy transfer can occur simultaneously, but that overall the net transfer is downscale. Including the upscale transfer of turbulent energy (energy backscatter) is particularly important near the ground and under stably-stratified conditions. The goal of this research is to improve the ability to realistically simulate the SBL. The large-eddy simulation (LES) approach with its subgrid-scale (SGS) turbulence model does a better job of capturing the temporally and spatially varying features of the SBL than do Reynolds-averaging models. The scientific objectives of this research are: (1) to characterize features of the evolving SBL structure for a range of meteorological conditions (wind speed and surface cooling), (2) to simulate realistically the transfer of energy between resolved and subgrid scales, and (3) to apply results to improve simulation of dispersion in the SBL.

  9. Eddy Covariance flux measurements with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Mauder, M.; Beyrich, F.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2012-03-01

    The objective of this study is to assess the feasibility and quality of Eddy-Covariance flux measurements from a weight-shift microlight aircraft (WSMA). Firstly we investigate the precision of the wind measurement (σu,v≤ 0.09 m s-1, σw = 0.04 m s-1), the lynchpin of flux calculations from aircraft. From here the smallest resolvable changes in friction velocity (0.02 m s-1,and sensible- (5 W m-2) and latent (3 W m-2) heat flux are estimated. Secondly a seven-day flight campaign was performed near Lindenberg (Germany). Here we compare measurements of wind, temperature, humidity and respective fluxes between a tall tower and the WSMA. The maximum likelihood functional relationship (MLFR) between tower and WSMA measurements considers the random error in the data, and shows very good agreement of the scalar averages. The MLFRs for standard deviations (SDs, 2-34%) and fluxes (17-21%) indicate higher estimates of the airborne measurements compared to the tower. Considering the 99.5% confidence intervals the observed differences are not significant, with exception of the temperature SD. The comparison with a large-aperture scintillometer reveals lower sensible heat flux estimates at both, tower (-40--25%) and WSMA (-25-0%). We relate the observed differences to (i) inconsistencies in the temperature and wind measurement at the tower and (ii) the measurement platforms differing abilities to capture contributions from non-propagating eddies. These findings encourage the use of WSMA as a low price and highly versatile flux measurement platform.

  10. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi

    2012-02-01

    Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.

  11. Oceanic eddy detection and lifetime forecast using machine learning methods

    NASA Astrophysics Data System (ADS)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  12. Eddy-Current Inspection Of Tab Seals On Beverage Cans

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1994-01-01

    Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.

  13. Extratropical Cyclone-Scale Eddies Simulated from a Climate Model.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi.

    1995-01-01

    Three major issues related to the long-term variation of the activity of extratropical cyclone-scale eddies were investigated by using a version of NCAR CCM1 with coupled mixed-layer ocean model and ECMWF observational analyses: (1) The evaluation of CCM1 simulated physical quantities that characterize the extratropical cyclone-scale eddies and the mean flow baroclinicity; (2) The effect of oceanic heat transport on the eddy activity; (3) The possible changes in eddy activity under a greenhouse warming condition. Objective criteria were formulated to identify cyclone/anticyclone occurrence in GCMs. Variables that are important to describe cyclone-scale eddies, such as surface cyclone/anticyclone frequency distribution and the band-pass filtered root mean square value of 500 mb geopotential height, as well as basic variables such as temperature and wind were used to validate model simulations. Based on the model validation, variables were selected and used to study eddy activity under different climate conditions. A 25-year simulation with reduced oceanic heat transport in the ocean mixed-layer was performed to investigate the effect of oceanic heat transport on the atmospheric eddies. In addition, two one-hundred-year equilibrium simulations were analyzed to study the eddy activity under a greenhouse warming scenario. Model-to-observation comparison indicated that most quantities related to extratropical cyclone-scale eddies were sufficiently alike between CCM1 simulation and ECMWF observations, although discrepancies were found in a few variables. Model simulated eddy activity was found to be sensitive to the change of heat transport in the ocean mixed-layer. The reduction of oceanic heat transport resulted in excessive heat storage in the tropical ocean leading to an increase in meridional temperature gradient with subsequent enhanced eddy activity in the atmosphere. On the other hand, analyses of model simulations strongly suggested that eddy activity will

  14. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  15. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  16. Unphysical scalar excursions in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Matheou, Georgios; Dimotakis, Paul

    2016-11-01

    The range of physically realizable values of passive scalar fields in any flow is bounded by their boundary values. The current investigation focuses on the local conservation of passive scalar concentration fields in turbulent flows and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a turbulent shear flow and examines methods for error diagnosis. Typically, scalar-excursion errors are diagnosed as violations of global boundedness, i.e., detecting scalar-concentration values outside boundary/initial condition bounds. To quantify errors in mixed-fluid regions, a local scalar excursion error metric is defined with respect to the local non-diffusive limit. Analysis of such errors shows that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. Local scalar excursion errors are found not to be correlated with the local scalar-gradient magnitude. This work is supported by AFOSR, DOE, and Caltech.

  17. On the Computation of Sound by Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Streett, Craig L.; Sarkar, Sutanu

    1997-01-01

    The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.

  18. Large eddy simulations of a turbulent thermal plume

    NASA Astrophysics Data System (ADS)

    Yan, Zhenghua H.

    2007-04-01

    Large eddy simulations of a three-dimensional turbulent thermal plume in an open environment have been carried out using a self-developed parallel computational fluid dynamics code SMAFS (smoke movement and flame spread) to study the thermal plume’s dynamics including its puffing, self-preserving and air entrainment. In the simulation, the sub-grid stress was modeled using both the standard Smagorinsky and the buoyancy modified Smagorinsky models, which were compared. The sub-grid scale (SGS) scalar flux in the filtered enthalpy transport equation was modeled based on a simple gradient transport hypothesis with constant SGS Prandtl number. The effect of the Smagorinsky model constant and the SGS Prandtl number were examined. The computation results were compared with experimental measurements, thermal plume theory and empirical correlations, showing good agreement. It is found that both the buoyancy modification and the SGS turbulent Prandtl number have little influence on simulation. However, the SGS model constant C s has a significant effect on the prediction of plume spreading, although it does not affect much the prediction of puffing.

  19. Analysis of errors occurring in large eddy simulation.

    PubMed

    Geurts, Bernard J

    2009-07-28

    We analyse the effect of second- and fourth-order accurate central finite-volume discretizations on the outcome of large eddy simulations of homogeneous, isotropic, decaying turbulence at an initial Taylor-Reynolds number Re(lambda)=100. We determine the implicit filter that is induced by the spatial discretization and show that a higher order discretization also induces a higher order filter, i.e. a low-pass filter that keeps a wider range of flow scales virtually unchanged. The effectiveness of the implicit filtering is correlated with the optimal refinement strategy as observed in an error-landscape analysis based on Smagorinsky's subfilter model. As a point of reference, a finite-volume method that is second-order accurate for both the convective and the viscous fluxes in the Navier-Stokes equations is used. We observe that changing to a fourth-order accurate convective discretization leads to a higher value of the Smagorinsky coefficient C(S) required to achieve minimal total error at given resolution. Conversely, changing only the viscous flux discretization to fourth-order accuracy implies that optimal simulation results are obtained at lower values of C(S). Finally, a fully fourth-order discretization yields an optimal C(S) that is slightly lower than the reference fully second-order method.

  20. Effect of microclimate on particulate matter, airborne bacteria, and odorous compounds in swine nursery houses.

    PubMed

    Yao, H Q; Choi, H L; Lee, J H; Suresh, A; Zhu, K

    2010-11-01

    Nursery pigs are vulnerable to environmental risks associated with the microclimate and aerial contaminants. This study was carried out to assess the effect of microclimate (i.e., temperature, relative humidity, and air speed) on the quantity of particulate matter (PM), airborne bacteria, and odorants in nursery houses. Data were collected from 15 farms in different locations throughout South Korea during 4 seasons; daily sampling times were from 1000 to 1100 h in the morning. A nonparametric correlation analysis revealed correlations between microclimate variables and airborne contaminants in different seasons. Over the entire year, negative correlations were observed between temperature, air speed, and some odorous compounds (P < 0.05). Furthermore, negative correlations were observed between temperature, air speed, and relatively large airborne particulates, such as PM(10) (PM mean aerodynamic diameter ≤10 μm), PM(7) (PM mean aerodynamic diameter ≤7 μm), and total suspended particles (P < 0.05). A possible reason for these negative correlations is that increased ventilation at an increased room temperature could transfer most airborne particulates that are carried with odorous compounds out of the nursery houses. On the other hand, because of the sensitivity of coliform bacteria to temperature, positive correlations were observed between temperature and total coliform and Escherichia coli counts (P < 0.01). Because it is a challenging task to control the quantity of aerial contaminants in nursery houses, the relationships between the microclimate and airborne contaminants established in this study could be used to reduce those contaminants by controlling microclimate variables. The correlations established in the current study could also be helpful in establishing guidelines for good management practices in nursery houses.

  1. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.

    2015-12-01

    hydrologic droughts, with correlations to water-year streamflow that are highest at the 9- to 12-month aggregation periods, and during the summer. EDDI shows significant promise as a leading indicator of drought, thereby providing a valuable planning window for growers and water resource managers.

  2. Eddy Surface properties and propagation at Southern Hemisphere western boundary current systems

    NASA Astrophysics Data System (ADS)

    Pilo, G. S.; Mata, M. M.; Azevedo, J. L. L.

    2015-02-01

    Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC) systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.

  3. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  4. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    USGS Publications Warehouse

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  5. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  6. Diversity and seasonal dynamics of airborne archaea

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Almeida, S. M.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-11-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

  7. Diversity and seasonal dynamics of airborne Archaea

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Marta Almeida, S.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-05-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, accounting for up to ∼10% of the prokaryotes. Compared to Bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of Archaea in the atmosphere. By DNA analysis targeting the 16S rRNA and amoA genes in samples of air particulate matter collected over one year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne Archaea. The detected Archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase of bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role for the dispersal of Archaea, including ammonia-oxidizing Thaumarchaeota and methanogens. Also, anthropogenic activities might influence the atmospheric abundance and diversity of Archaea.

  8. Airborne infrared spectrophotometry of Mira variables

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Erickson, E. F.; Witteborn, F. C.

    1978-01-01

    Airborne spectrophotometric observations of R Cas near minimum and maximum light, R Leo near minimum, and NML Tau near maximum are reported which were obtained over the wavelength range from 1.2 to 4 microns with 1.5% resolution. The spectral energy distributions of the three stars at the indicated times are presented, and it is shown that the H2O bands at 1.4, 1.9, and 2.7 microns are clearly evident in all the spectra, while the absorption bands of CO at about 1.6 and 2.3 microns are probably present although they are masked by the strong water vapor features. The results indicate that water vapor is the dominant opacity source in the atmospheres of Mira variables, that R Leo and NML Tau may be fitted well over the entire spectrum by respective single temperatures of 2250 and 1800 K, and that R Cas near both minimum and maximum cannot be adequately described by one temperature over the entire wavelength range investigated. The shapes and depths of the absorption bands are determined together with the apparent angular diameter of each star and the equivalent widths of the H2O + CO absorption bands. It is concluded that water vapor absorption is more strongly correlated with color temperature than with spectral type for R Cas and R Leo.

  9. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  10. Does the wind systematically energize or damp ocean eddies?

    NASA Astrophysics Data System (ADS)

    Wilson, Chris

    2016-12-01

    Globally, mesoscale ocean eddies are a key component of the climate system, involved in transport and mixing of heat, carbon, and momentum. However, they represent one of the major challenges of climate modeling, as the details of their nonlinear dynamics affect all scales. Recent progress analyzing satellite observations of the surface ocean and atmosphere has uncovered energetic interactions between the atmospheric wind stress and ocean eddies that may change our understanding of key processes affecting even large-scale climate. Wind stress acts systematically on ocean eddies and may explain observed asymmetry in the distribution of eddies and details of their lifecycle of growth and decay. These findings provide powerful guidance for climate model development.

  11. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  12. Solvable model in renormalization group analysis for effective eddy viscosity.

    PubMed

    Chang, Chien C; Lin, Bin-Shei; Wang, Chi-Tzung

    2003-04-01

    This study presents a solvable model in renormalization group analysis for the effective eddy viscosity. It is found fruitful to take a simple hypothesis that large-scale eddies are statistically independent of those of smaller scales. A limiting operation of renormalization group analysis yields an inhomogeneous ordinary differential equation for the invariant effective eddy viscosity. The closed-form solution of the equation facilitates derivations of an expression of the Kolmogorov constant C(K) and of the Smagorinsky model for large-eddy simulation of turbulent flow. The Smagorinsky constant C(S) is proportional to C(3/4)(K). In particular, we shall illustrate that the value of C(K) ranges from 1.35 to 2.06, which is in close agreement with the generally accepted experimental values (1.2 approximately 2.2).

  13. Compounds in airborne particulates - Salts and hydrocarbons. [at Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Antoine, A. C.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1977-01-01

    Concentrations of 10 polycyclic aromatic hydrocarbons (PAH), the aliphatics as a group, sulfate, nitrate, fluoride, acidity, and carbon in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1-year period during 1971 and 1972. Analytical methods used included gas chromatography, colorimetry, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, and the analytical methods are evaluated. The data are discussed relative to other studies and source origins. High concentrations downwind of coke ovens for 3,4 benzopyrene are discussed. Hydrocarbon correlation studies indicated no significant relations among compounds studied.

  14. Comment on "Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms".

    PubMed

    Mahadevan, Amala; Thomas, Leif N; Tandon, Amit

    2008-04-25

    McGillicuddy et al. (Reports, 18 May 2007, p. 1021) proposed that eddy/wind interactions enhance the vertical nutrient flux in mode-water eddies, thus feeding large mid-ocean plankton blooms. We argue that the supply of nutrients to ocean eddies is most likely affected by submesoscale processes that act along the periphery of eddies and can induce vertical velocities several times larger than those due to eddy/wind interactions.

  15. Detecting defects in marine structures by using eddy current infrared thermography.

    PubMed

    Swiderski, W

    2016-12-01

    Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.

  16. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  17. Large eddy simulations of laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Cadieux, Francois

    The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous

  18. Subsurface Eddy Detection Using Satellite and Acoustic Data

    NASA Astrophysics Data System (ADS)

    Aleynik, D. L.; Chepurin, Yu. A.; Goncharov, V. V.

    The CTD survey in the framework of THETIS-II multi disciplinary experiment de- tected an intrathermocline eddy of cold and fresh water in the Western Mediterranean (July 1994). In horizontal plane the eddy was close to the ellipse with axes of 25 and 40 nm, 0.7C difference than background temperature and 0.4 psu in salinity. Such quasi-permanent eddy could be formed by interaction of winter convection in waters of northern brunch of the cyclonic circulation in Algeria-Provancal basin and North- Western winds from the Perinea Mountains, that shifted upper water layers. Acoustic signals from the 6 transceivers were recorded at 16 points within and around the eddy. Our acoustic measurements carried out with a single hydrophone deployed from a drifting research vessel. Special 3D-inversion procedure correctly locate this inhomo- geneity and allow us to estimate difference of sound speed inside and outside the eddy. Satellite data analysis of sea surface temperature fields (SST extracted from AVHRR - 9 km data) also give us the pattern of lower temperature at the location of the real eddy. We found that nighttime SST fields is more legible than daytime data for the eddy detection. Moreover, the sea surface height anomalies, averaged for 10-days and interpolated at 0.25 degrees grid, show that the surface depression (10 -50 mm) which was associated with the eddy presented both in quasi-synchronous sets of observations and longtime sets. This investigation was supported by RFBR grant N 00-05-64486.

  19. Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments

    SciTech Connect

    DeLucia, J.; Bell, M.; Wong, K.L.

    1985-07-01

    A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.

  20. Crack detection on HC-130H aircraft using low frequency eddy current

    SciTech Connect

    Moore, D.G.; Mihelic, J.E.; Barnes, J.D.

    1998-02-01

    An eddy current inspection method was developed at the Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect subsurface fatigue cracks in the wheel well fairing on the US Coast Guard (USCG) HC-130H aircraft caused by fatigue. The inspection procedure locates cracks as small as 10.2 millimeters in length at 2.54 mm below the skin surface at raised fastener sites. The test procedure developed baseline three USCG aircraft. Inspection results on the three aircraft reveals good correlation with results made during subsequent structural disassembly.

  1. Impact of eddy currents on the dispersion relation of surface spin waves in thin conducting magnetic films

    NASA Astrophysics Data System (ADS)

    Maksymov, I. S.; Kostylev, M.

    2013-12-01

    We propose a rigorous solution to a long-standing problem of the impact of eddy currents on the dispersion relation of surface spin waves propagating in thin conducting magnetic films. Our results confirm the prediction of the Almeida-Mill's exchange-free theory that the inclusion of the eddy-current contribution results in a deviation of the dispersion curve for the fundamental mode from the Damon-Eshbach law and a substantial linewidth broadening in a large wave vector range. We show that the decrease in the spin-wave frequency is due to an increase in the in-plane component of the dynamic magnetic field within the conducting film. The decrease in the frequency is accompanied by a drastic change in the asymmetry of the modal profiles for the waves. This effect is not observable in magneto-insulating films and therefore it is unambiguously attributed to eddy currents that appear in conducting films only. We also show that the wave vector range in which eddy currents affect the dispersion curve is strongly correlated with the value of the film conductivity. This result holds for conducting films with the thickness 10-100 nm, which are considered promising for future magnonic and spintronic applications.

  2. Assessment of large-eddy simulation in capturing preferential concentration of heavy particles in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Jin, Guodong; Zhang, Jian; He, Guo-Wei; Wang, Lian-Ping

    2010-12-01

    Particle-laden turbulent flow is a typical non-equilibrium process characterized by particle relaxation time τp and the characteristic timescale of the flows τf, in which the turbulent mixing of heavy particles is related to different scales of fluid motions. The preferential concentration (PC) of heavy particles could be strongly affected by fluid motion at dissipation-range scales, which presents a major challenge to the large-eddy simulation (LES) approach. The errors in simulated PC by LES are due to both filtering and the subgrid scale (SGS) eddy viscosity model. The former leads to the removal of the SGS motion and the latter usually results in a more spatiotemporally correlated vorticity field. The dependence of these two factors on the flow Reynolds number is assessed using a priori and a posteriori tests, respectively. The results suggest that filtering is the dominant factor for the under-prediction of the PC for Stokes numbers less than 1, while the SGS eddy viscosity model is the dominant factor for the over-prediction of the PC for Stokes numbers between 1 and 10. The effects of the SGS eddy viscosity model on the PC decrease as the Reynolds number and Stokes number increase. LES can well predict the PC for particle Stokes numbers larger than 10. An SGS model for particles with small and intermediate Stokes numbers is needed to account for the effects of the removed SGS turbulent motion on the PC.

  3. Quantifying Sources and Sinks of Reactive Gases in the Lower Atmosphere Using Airborne Flux Observations

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; Jacob, D. J.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, T.; Misztal, P. K.; Nguyen, T. B.; Peischl, J.; Pollack, I.; Ryerson, T.; St. Clair, J. M.; Teng, A.; Travis, K. R.; Ullmann, K.; Wennberg, P.O.; Wisthaler, A.

    2015-01-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  4. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    SciTech Connect

    Wolfe, Glenn; Hanisco, T. F.; Atkinson, H. L.; Bui, Thaopaul; Crounse, J. D.; Dean-Day, J.; Goldstein, Allen H.; Guenther, Alex B.; Hall, S. R.; Huey, L. G.; Jacob, D.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, Tomas; Misztal, Pawel K.; Nguyen, Tran B.; Peischl, Jeff; Pollack, Ilana; Ryerson, T. B.; St Clair, J. M.; Teng, A. P.; Travis, Katherine; Ullmann, K.; Wennberg, P. O.; Wisthaler, Armin

    2015-10-16

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  5. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  6. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  7. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  8. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  9. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  10. Sonic eddy model of the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Dintilhac, Paul; Williams, Owen

    2016-11-01

    A model of the compressible turbulent boundary layer is proposed. It is based on the notion that turbulent transport by an eddy requires that information of nonsteady events propagates across the diameter of that eddy during one rotation period. The finite acoustic signaling speed then controls the turbulent fluxes. As a consequence, the fluxes are limited by the largest eddies that satisfies this requirement. Therefore "sonic eddies" with a rotational Mach number of about unity would determine the skin friction, which is predicted to vary inversely with Mach number. This sonic eddy model contrasts with conventional models that are based on the energy equation and variations in the density. The effect of density variations is known to be weak in free shear flows, and the sonic eddy model assumes the same for the boundary layer. In general, Mach number plays two simultaneous roles in compressible flow, one related to signaling and the other related to the energy equation. The predictions of the model are compared with experimental data and DNS results from the literature.

  11. Elemental sulfur in Eddy County, New Mexico

    USGS Publications Warehouse

    Hinds, Jim S.; Cunningham, Richard R.

    1970-01-01

    Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.

  12. Large-eddy simulations with wall models

    NASA Technical Reports Server (NTRS)

    Cabot, W.

    1995-01-01

    The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.

  13. Turbulence topologies predicted using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Chen; Bergstrom, Donald J.; Yin, Jing; Yee, Eugene

    In this paper, turbulence topologies related to the invariants of the resolved velocity gradient and strain rate tensors are studied based on large eddy simulation. The numerical results presented in the paper were obtained using two dynamic models, namely, the conventional dynamic model of Lilly and a recently developed dynamic nonlinear subgrid scale (SGS) model. In contrast to most of the previous research investigations which have mainly focused on isotropic turbulence, the present study examines the influence of near-wall anisotropy on the flow topologies. The SGS effect on the so-called SGS dissipation of the discriminant is examined and it is shown that the SGS stress contributes to the deviation of the flow topology of real turbulence from that of the ideal restricted Euler flow. The turbulence kinetic energy (TKE) transfer between the resolved and subgrid scales of motion is studied, and the forward and backward scatters of TKE are quantified in the invariant phase plane. Some interesting phenomenological results have also been obtained, including a wing-shaped contour pattern for the density of the resolved enstrophy generation and the near-wall dissipation shift of the peak location (mode) in the joint probability density function of the invariants of the resolved strain rate tensor. The newly observed turbulence phenomenologies are believed to be important and an effort has been made to explain them on an analytical basis.

  14. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  15. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.

  16. Impact of eddy-wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Anderson, Laurence A.; McGillicuddy, Dennis J.; Maltrud, Mathew E.; Lima, Ivan D.; Doney, Scott C.

    2011-09-01

    Two eddy-resolving (0.1°) physical-biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and "thinnies" relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity.

  17. Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation

    NASA Astrophysics Data System (ADS)

    Fischer, Gerhard; Karstensen, Johannes; Romero, Oscar; Baumann, Karl-Heinz; Donner, Barbara; Hefter, Jens; Mollenhauer, Gesine; Iversen, Morten; Fiedler, Björn; Monteiro, Ivanice; Körtzinger, Arne

    2016-06-01

    Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m-2 d-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ˜ 15 and 13.3 mg m-2 d-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The δ15N record showed a decrease from 5.21 to 3.11 ‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased

  18. Spatial Representativeness of Flux Tower Sites: A Comparison Between Tower and Aircraft Eddy-Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Caulton, D.; Shepson, P. B.; Munger, J. W.; Hollinger, D. Y.; Saatchi, S. S.; Moghaddam, M.; Stirm, B. H.

    2013-12-01

    Development and testing of regional and global scale ecosystem models rely on analysis of data from flux towers that have footprint scales (~1 km2) that are much smaller and contain relatively homogeneous land use types. This approach tends to assume that the patchwork approach appropriately represents regions that are, especially on larger scale, much more heterogeneous in terms of land cover, soil moisture, topography and climatology, etc. While aircraft platforms provide snapshot views of NEE, they have access to essentially any environment and can access difficult and heterogeneous environments. We used an instrumented aircraft platform equipped with a 50 Hz wind probe and GPS/INS and a 10 Hz Picarro CO2/H2O analyzer to measure eddy covariance fluxes over larger spatial scales (~20 km2) over and near Howland Forest, ME, Harvard Forest, MA and Duke Forest, NC, as part of the Airborne Observatory of Subcanopy and Subsurface (AirMOSS) mission campaigns. Flux measurements were conducted for varying land cover types in these forests in July, 2012 and June-August, 2013. Measured fluxes will be compared with tower fluxes from each of the three sites to investigate the quality of the aircraft data, and the ability to assess local-regional scale variability and the spatial representativeness of these towers, with respect to the larger scale fluxes. In addition, soil moisture data from a NASA G-III aircraft will be used to investigate spatial representativeness and the soil moisture dependence of the fluxes.

  19. Large-eddy simulation of turbulent flow using the finite element method

    SciTech Connect

    McCallen, Rose Clara

    1995-02-15

    The equations of motion describing turbulent flows (in both the low and high Reynolds-number regimes) are well established. However, present day computers cannot meet the enormous computational requirement for numerically solving the governing equations for common engineering flows in the high Reynolds number turbulent regime. The characteristics that make turbulent, high Reynolds number flows difficult to simulate is the extreme range of time and space scales of motion. Most current engineering calculations are performed using semi-empirical equations, developed in terms of the flow mean (average) properties. These turbulence "models" (semi-empirical/analytical approximations) do not explicitly account for the eddy structures and thus, the temporal and spatial flow fluctuations are not resolved. In these averaging approaches, it is necessary to approximate all the turbulent structures using semi-empirical relations, and as a result, the turbulence models must be tailored for specific flow conditions and geometries with parameters obtained (usually) from physical experiments. The motivation for this research is the development of a finite element turbulence modeling approach which will ultimately be used to predict the wind flow around buildings. Accurate turbulence models of building flow are needed to predict the dispersion of airborne pollutants. The building flow turbulence models used today are not capable of predicting the three-dimensional separating and reattaching flows without the manipulation of many empirical parameters. These empirical parameters must be set by experimental data and they may vary unpredictably with building geometry, building orientation, and upstream flow conditions.

  20. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  1. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  2. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  3. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  4. Toolsets for Airborne Data Web Application

    Atmospheric Science Data Center

    2014-09-17

    ... relevant issues. Features Include Select data based on mission, date and/or scientific parameter Output original data ... Details:  Toolsets for Airborne Data (TAD) Web Application Category:  Instrument Specific Search, ...

  5. Transition to Turbulence in Rectangular Channels with Eddy Promoters: Implications to Heat Transfer Augmentation.

    NASA Astrophysics Data System (ADS)

    Kapat, Jayanta Sankar

    1991-02-01

    The work deals with experimental investigation of laminar-to-turbulent transition in a rectangular channel of aspect ratio 0.116 in the presence of periodic eddy promoters. The study is motivated by the role of transition in heat transfer enhancement schemes that employ flow destabilization strategies: specifically, for this type of augmentation systems, the most efficient performance (minimum pumping power per unit of heat removal) occurs in the transition region. Seven different geometries are tested: plain channel and six different arrangements of cylindrical eddy promoters. Placement of the eddy promoters in the channel, depending on the pattern, can significantly reduce Reynolds number values at transition: the critical Reynolds number (based on the average velocity and the channel height) ranges from 1500 (for a plain channel) to about 400 (for the most unstable configuration deployed). For all the cases tested, demarcation of transition can be correlated with the following expression, Re_tau = sqrt{ {| tau_{w,avoverrho }}} {H/2overnu} = 40 ~ 60,where | tau_{w,av} is the spatially averaged value of mean wall shear stress and H is the channel height. The above correlation extends to other geometries. The approximate invariance of Re_ tau at transition allows evaluation of heat transfer at transition point by using only the critical Reynolds number (Recrit). Based on Colburn analogy, Nu at transition for fluids with Pr > 0.6 can be calculated as Nu~ {10,000over Recrit} Pr^{1/3}.(Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  6. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  7. A year-round study on functional relationships of airborne fungi with meteorological factors

    NASA Astrophysics Data System (ADS)

    Li, De-Wei; Kendrick, Bryce

    1995-06-01

    Air sampling was conducted in Waterloo, Canada throughout 1992. Functional relationships between aeromycota and meteorological factors were analysed. The meteorological factors were, in descending order of importance: mean temperature, minimum temperature, maximum temperature, mean wind speed, relative humidity (RH), rain, maximum wind speed and snow. The most important airborne fungal propagules in descending order were: total fungal spores, unidentified Ascomycetes, Cladosporium, Coprinus, unidentified Basidiomycetes, Alternaria and unidentified fungi. Most airborne fungal taxa had highly significant relationship with temperature, but Aspergillus/Penicillium, hyphal fragments and Epicoccum did not. Epicoccum and hyphal fragments were positively associated with wind speed. In comparison with other airborne fungal taxa, Leptosphaeria and unidentified Ascomycetes were more closely correlated with rain and RH during the growing season.

  8. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  9. Concentration and size distribution of total airborne microbes in hazy and foggy weather.

    PubMed

    Dong, Lijie; Qi, Jianhua; Shao, Congcong; Zhong, Xi; Gao, Dongmei; Cao, Wanwan; Gao, Jiawei; Bai, Ran; Long, Gaoyuan; Chu, Congcong

    2016-01-15

    Atmospheric bioaerosol particles were collected using a bioaerosol sampler from Oct. 2013 to Aug. 2014 in the coastal region of Qingdao. The total microbes were measured using an epifluorescence microscope after staining with DAPI (4',6-diamidino-2-phenylindole). The concentration of total airborne microbes showed seasonal variation, with the highest value in winter and the lowest in summer. The mean concentration of total microbes was 6.55 × 10(5)Cells/m(3) on non-hazy days. The total microbe concentration increased to 7.09 × 10(5) and 9.00 × 10(5)Cells/m(3) on hazy and foggy days, respectively. The particle sizes of the total microbes presented a bimodal distribution on sunny days, with one peak at 1.1-2.1 μm and another at 4.7-7.0 μm. The size distribution of total microbes showed an increase in the fine fraction on hazy days and an increase in the coarse fraction on foggy days. However, the size distribution became unimodal during a heating period. Spearman correlation analysis showed that temperature and O3 had a significant negative correlation with the airborne microbe concentration, while PM2.5, SO2, NO2, CO and the air quality index (AQI) had significant positive correlations with the airborne microbe concentration during hazy days. The increased number of airborne microbes will affect the air quality on hazy days.

  10. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae.

    PubMed

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2017-01-01

    In this study, we explore the dynamical role of mesoscale eddies on fish larvae migration using the example of Subtropical Counter Current eddies and the migration of Japanese eel larvae in the western North Pacific Ocean. An idealized experiment is conducted to isolate the effects of eddies, and use a three-dimensional particle-tracking method to simulate virtual eel larvae (v-larvae) migration, including both horizontal and vertical swimming behaviors. The impact of eddies strongly depends on the swimming speed of v-larvae relative to the eddy speed. Eddies accelerate the movement of v-larvae that swim slower than the propagation speed of the eddy, whereas faster-swimming v-larvae are dragged by eddies. A modified stream function that incorporates biological swimming ability explains the non-uniform trapping of v-larvae in mesoscale eddies. A high swimming speed and/or a small eddy rotation speed results in a weak trapping capacity. Simulations of v-larvae migration in realistic cases of eddy fields indicate that the abundance of eddies significantly affects the duration of larval migration, with the effects being largely dependent on the larvae swimming speed. We noted a negative relationship between the observed annual eel recruitment index in Taiwan and the eddy index subtropical countercurrent (STCC) region, which suggests a potentially important role of mesoscale eddies in eel larvae migration.

  11. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects

    NASA Astrophysics Data System (ADS)

    Hallberg, Robert

    2013-12-01

    Mesoscale eddies play a substantial role in the dynamics of the ocean, but the dominant length-scale of these eddies varies greatly with latitude, stratification and ocean depth. Global numerical ocean models with spatial resolutions ranging from 1° down to just a few kilometers include both regions where the dominant eddy scales are well resolved and regions where the model's resolution is too coarse for the eddies to form, and hence eddy effects need to be parameterized. However, common parameterizations of eddy effects via a Laplacian diffusion of the height of isopycnal surfaces (a Gent-McWilliams diffusivity) are much more effective at suppressing resolved eddies than in replicating their effects. A variant of the Phillips model of baroclinic instability illustrates how eddy effects might be represented in ocean models. The ratio of the first baroclinic deformation radius to the horizontal grid spacing indicates where an ocean model could explicitly simulate eddy effects; a function of this ratio can be used to specify where eddy effects are parameterized and where they are explicitly modeled. One viable approach is to abruptly disable all the eddy parameterizations once the deformation radius is adequately resolved; at the discontinuity where the parameterization is disabled, isopycnal heights are locally flattened on the one side while eddies grow rapidly off of the enhanced slopes on the other side, such that the total parameterized and eddy fluxes vary continuously at the discontinuity in the diffusivity. This approach should work well with various specifications for the magnitude of the eddy diffusivities.

  12. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae

    PubMed Central

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2017-01-01

    In this study, we explore the dynamical role of mesoscale eddies on fish larvae migration using the example of Subtropical Counter Current eddies and the migration of Japanese eel larvae in the western North Pacific Ocean. An idealized experiment is conducted to isolate the effects of eddies, and use a three-dimensional particle-tracking method to simulate virtual eel larvae (v-larvae) migration, including both horizontal and vertical swimming behaviors. The impact of eddies strongly depends on the swimming speed of v-larvae relative to the eddy speed. Eddies accelerate the movement of v-larvae that swim slower than the propagation speed of the eddy, whereas faster-swimming v-larvae are dragged by eddies. A modified stream function that incorporates biological swimming ability explains the non-uniform trapping of v-larvae in mesoscale eddies. A high swimming speed and/or a small eddy rotation speed results in a weak trapping capacity. Simulations of v-larvae migration in realistic cases of eddy fields indicate that the abundance of eddies significantly affects the duration of larval migration, with the effects being largely dependent on the larvae swimming speed. We noted a negative relationship between the observed annual eel recruitment index in Taiwan and the eddy index subtropical countercurrent (STCC) region, which suggests a potentially important role of mesoscale eddies in eel larvae migration. PMID:28253293

  13. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  14. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  15. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  16. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  17. Coastal (Sub)Mesoscale Eddies in the Gulf of Lion

    NASA Astrophysics Data System (ADS)

    Hu, Z. Y.; Doglioli, A. M.; Petrenko, A. A.; Marsaleix, P.; Dekeyser, I.

    2009-04-01

    The LAgrangian Transport EXperiment (LATEX) project (2008-2011) has been initiated in order to study the role of (sub)mesoscale structures on shelf-offshore exchanges in the Gulf of Lion. The strategy will combine use of data from an inert tracer release (SF6), Lagrangian drifters, satellites and Eulerian moorings with numerical modeling. In this work, we present a shelf-scale model of high resolution (1-km) nested in a regional-scale model (3-km). We use an upwind-type advection-diffusion scheme, in which the numerical diffusion term is adjusted by an attenuation coefficient. Sensitivity tests have been carried out, varying the model spatial resolution and the attenuation coefficient to reproduce the (sub)mesoscale structures. A wavelet technique is applied on model outputs to identify eddies and to define their area, position and tracking duration. Comparisons between the modeled eddies and those observed by satellite have allowed us to choose the best model configuration. With this setup, single and combined effects of wind forcing, bathymetry and mesoscale circulation are investigated to propose a generation process of these simulated eddies. Then, simulations are run for long period to obtain annual variability and statistics of the coastal eddies. These coastal (sub)mesoscale eddies potentially interact with the distal plume of the Rhône river and the Northern Current. Numerical modeling sets the foundation to understand the eddies' dynamics and helps us set up the sampling strategy of the cruises. The in situ measurements combined with the modeling results will allow us to evaluate the eddies' potential impact on the coastal-offshore transfer of matter and energy.

  18. Formation of Ice Eddies in Mountain Valleys of East Antarctica

    NASA Astrophysics Data System (ADS)

    Meyer, C. R.; Creyts, T. T.; Rice, J. R.

    2014-12-01

    Observations show complex structures deep in ice sheets. Folds and accretion ice have been reported for both Greenland and Antarctica. Mismatched stratigraphy in the nearby GRIP and GISP2 cores in Greenland as well as overturning in the NEEM ice core suggest variable behavior within the ice sheet. Furthermore, ice penetrating radar data taken across both ice sheets shows folding at scales up to half the ice thickness. Because individual strata can be traced through the folds, it is clear that ice flow dynamics play an important role. Here we consider the possible formation of recirculation eddies in subglacial mountain valleys. Modeling the ice as a creeping homogeneous power-law shear-thinning viscous fluid, recirculation eddies are shown to form in valleys when the angle of the wall is steep enough that fluid inside the valley cannot return to the main flow. This is analogous to Moffatt eddies for a Newtonian viscous fluid. Using a no-slip boundary condition at the valley wall, ice can recirculate in these valleys indefinitely. We examine eddies in the basal ice using theory and simulations based on topography of the Gamburtsev Subglacial Mountains in central East Antarctica. The Gamburtsevs are a large mountain range (~750km×250km) with steep relief typical of an alpine glacier system. Analytic results point to a necessary critical angle, and for a power-law shear-thinning fluid such as ice, these eddies occur at lower angles than in a Newtonian viscous fluid. We further develop metrics for determining valleys that are likely to contain eddies based on flow velocity and the total relief of the valley. Our simulations show that in some valleys eddies of order one hundred meters form. We then compare our simulations to radar observations to show potential for near-bed stratigraphic disturbances.

  19. The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases.

    PubMed

    Bowling, D R; Turnipseed, A A; Delany, A C; Baldocchi, D D; Greenberg, J P; Monson, R K

    1998-09-01

    The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and these are unavailable for many ecologically relevant compounds. In contrast, the use of REA allows flux measurement with sensors that have much slower response time, such as gas chromatography and mass spectrometry. In this review, relevant micrometeorological details underlying REA are presented, and critical analytical and system design details are discussed, with the goal of introducing the technique and its potential applications to ecologists. The validity of REA for measuring fluxes of isoprene, a photochemically reactive hydrocarbon emitted by several plant species, was tested with measurements over an oak-hickory forest in the Walker Branch Watershed in eastern Tennessee. Concurrent eddy covariance measurements of isoprene flux were made using a newly available chemiluminesence instrument. Excellent agreement was obtained between the two techniques (r (2) = 0.974, n = 62), providing the first direct comparison between REA and eddy covariance for measuring the flux rate of a reactive compound. The influence of a bias in vertical wind velocity on the accuracy of REA was examined. This bias has been thought to be a source of significant error in the past. Measurements of normalized bias ([Formula: see text]) alone would lead us to think that a large potential error exists at this site. However, with our isoprene data and through simulations of REA with fast-response H2O and CO2 data, we conclude that accurate REA flux measurements can be made even in the presence of a bias in w.

  20. Recurrence Analysis of Eddy Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Flach, Milan; Foken, Thomas; Hauhs, Michael

    2015-04-01

    The eddy covariance (EC) method is one key method to quantify fluxes in biogeochemical cycles in general, and carbon and energy transport across the vegetation-atmosphere boundary layer in particular. EC data from the worldwide net of flux towers (Fluxnet) have also been used to validate biogeochemical models. The high resolution data are usually obtained at 20 Hz sampling rate but are affected by missing values and other restrictions. In this contribution, we investigate the nonlinear dynamics of EC fluxes using Recurrence Analysis (RA). High resolution data from the site DE-Bay (Waldstein-Weidenbrunnen) and fluxes calculated at half-hourly resolution from eight locations (part of the La Thuile dataset) provide a set of very long time series to analyze. After careful quality assessment and Fluxnet standard gapfilling pretreatment, we calculate properties and indicators of the recurrent structure based both on Recurrence Plots as well as Recurrence Networks. Time series of RA measures obtained from windows moving along the time axis are presented. Their interpretation is guided by three different questions: (1) Is RA able to discern periods where the (atmospheric) conditions are particularly suitable to obtain reliable EC fluxes? (2) Is RA capable to detect dynamical transitions (different behavior) beyond those obvious from visual inspection? (3) Does RA contribute to an understanding of the nonlinear synchronization between EC fluxes and atmospheric parameters, which is crucial for both improving carbon flux models as well for reliable interpolation of gaps? (4) Is RA able to recommend an optimal time resolution for measuring EC data and for analyzing EC fluxes? (5) Is it possible to detect non-trivial periodicities with a global RA? We will demonstrate that the answers to all five questions is affirmative, and that RA provides insights into EC dynamics not easily obtained otherwise.

  1. Large Eddy Simulation of Powered Fontan Hemodynamics

    PubMed Central

    Delorme, Y.; Anupindi, K.; Kerlo, A.E.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S.

    2012-01-01

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2–3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3–5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a “biventricular Fontan” circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo™) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085

  2. Large eddy simulation of powered Fontan hemodynamics.

    PubMed

    Delorme, Y; Anupindi, K; Kerlo, A E; Shetty, D; Rodefeld, M; Chen, J; Frankel, S

    2013-01-18

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2-3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3-5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a "biventricular Fontan" circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo(TM)) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data.

  3. Scalar excursions in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Matheou, Georgios; Dimotakis, Paul E.

    2016-12-01

    The range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods for diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size

  4. Impact of eddies on surface chlorophyll in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Dufois, François; Hardman-Mountford, Nick J.; Greenwood, Jim; Richardson, Anthony J.; Feng, Ming; Herbette, Steven; Matear, Richard

    2014-11-01

    A unique feature of the subtropical South Indian Ocean is the existence of anticyclonic eddies that have higher chlorophyll concentrations than cyclonic eddies. Off Western Australia, this anomalous behavior is related to the seeding of anticyclonic eddies with shelf water enriched in phytoplankton biomass and nutrients. Further off-shore, two mechanisms have been suggested to explain the eddy/chlorophyll relationship: (i) eddies originating from the Australian coast maintain their chlorophyll anomaly while propagating westward; and (ii) eddy-induced Ekman upwelling (downwelling) enhances (dampens) nutrient supply in anticyclonic (cyclonic) eddies. Here we describe the relationship between eddies and surface chlorophyll within the South Indian Ocean, and discuss possible mechanisms to explain the anomalous behavior in light of new analyses performed using satellite chlorophyll data. We show that anticyclonic eddies exhibit higher surface chlorophyll concentration than cyclonic eddies across the entire South Indian Ocean basin (from 20 to 28°S), particularly in winter. Using Self Organizing Maps we analyze the chlorophyll patterns within anticyclonic eddies and cyclonic eddies and highlight their complexity. Our analysis suggests that multiple mechanisms may underlie the observed eddy/chlorophyll relationship. Based on Argo float data, we postulate the relationship may be partly related to seasonal adjustment of the mixed layer depth within eddies. Deeper mixing in anticyclonic eddies is expected to enhance nutrient supply to the mixed layer, while shallower mixing in cyclonic eddies is expected to reduce it. This could explain why the observed winter surface chlorophyll bloom is stronger in anticyclonic eddies than in cyclonic eddies.

  5. Airborne spores of Basidiomycetes in Mérida (SW Spain).

    PubMed

    Hernández Trejo, Fernando; Muñoz Rodríguez, Adolfo F; Tormo Molina, Rafael; Silva Palacios, Inmaculada

    2013-01-01

    The aim of this work was to detect the presence of Basidiomycetes spores (basidiospores, teliospores, uredospores and aeciospores) in Mérida (SW Spain) and assess the influence of weather parameters. Air was sampled continuously with a volumetric seven-day Burkard spore trap for two years. Fungi spores were identified and counted at x1,000 microscope resolution. Daily and weekly meteorological data and airborne spore concentration were analysed. Twenty-three spores types were identified, including basidiospores (Amanita, Agrocybe, Cortinarius, Coprinus -2 types-, Boletus, Bovista, Calvatia, Entoloma, Ganoderma, Inocybe, Russula, Scleroderma, Telephora), teliospores (Phragmidium, Tilletia, Ustillago -4 types-), uredospores, and aeciospores (2 types), all of these types of spores included different taxa. Average concentration was of 616 spores/m(3), with maximum concentration in autumn (October), and a second concentration in spring (May-June); however, some spore types were more frequent in summer (Bovista, Ganoderma) or even in winter (Entoloma, Calvatia). The Amanita type was the most frequent (white-hyaline basidiospores); the second were teliospores of Ustilago, the third spore type was basidiospores of Coprinus (blackish basidiospores) and Agrocybe type (smoothed light to dark coloured basidiospores). Basidiospore concentration was positively correlated with temperature and negatively with relative humidity in most cases, and Ustilago teliospores concentration was positively correlated with wind speed. Differences in monthly rain were probably the origin between years. Airborne spores of Basidiomycetes may be separated into more than 20 types, and their seasonal concentration depended on meteorology as well as whether they were saprotrophic or parasitic.

  6. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  7. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    successfully retrieved out of the 19 possible cases. Profiles from rising occultations were retrieved with comparable quality to setting occultations. The only missed occultations were due to missing or poor quality ancillary navigation data from the global tracking network and the aircraft turns. We demonstrate that the OL tracking receiver performs much better than the conventional receivers, consistently tracking as low as 0.5 to 3.4 km. Based on this success rate and the improved global network coverage since 2008 providing navigation data bits, the airborne RO system on a straight flight path today would achieve 3 occultations per hour of flight time. The refractivity profiles retrieved with a geometric optics method show a bias with respect to the European Center for Medium Range Weather Forecasting (ECMWF) analysis profiles. The data were compared with a co-located spaceborne RO profile, and although the airborne data shows a larger bias with respect to ECMWF profiles, there is a correlation of the vertical variations observed with both datasets. The standard deviation of the difference with the ECMWF profile refractivity is less than 1 % in terms of refractivity. The comparison of the retrieved refractivity and a co-located radiosonde station profile shows a bias as well, with a standard deviation of 2.3 % from 5-12 km altitude. Future efforts should be directed at resolving the source of the bias, in which case the data will be quite useful for assimilation. The differences are within the range of the observation errors typically assigned to RO data below 10 km during assimilation. Signal tracking and retrieval in the lower troposphere continues to be a major challenge for spaceborne RO, and has limited the impact of all RO data in NWP in the lower troposphere. Full bandwidth signals from airborne measurements could provide a testbed for improving the quality of future spaceborne RO measurements. The airborne RO technique could potentially be implemented on commercial

  8. Coastal Kelvin waves and dynamics of Gulf of Aden eddies

    NASA Astrophysics Data System (ADS)

    Valsala, Vinu K.; Rao, Rokkam R.

    2016-10-01

    The Gulf of Aden (GA) is a small semi-enclosed oceanic region between the Red Sea and the western Arabian Sea. The GA is characterised with westward propagating cyclonic and anti-cyclonic eddies throughout the year. The genesis and propagation of these eddies into the GA have been the focus of several studies which concluded that oceanic instabilities (both barotropic and baroclinic) as well as the Rossby waves from the Arabian Sea are the responsible mechanisms for the presence and maintenance of these eddies. Using a high-resolution ( 11 km) reduced gravity hydrodynamic layered model with controlled lateral boundary conditions at the three sides of the GA here we show yet another factor, the coastally propagating Kelvin waves along the coastal Arabia (coasts of Oman and Yemen), is also critically important in setting up a favourable condition for the oceanic instabilities and sustenance of meso-scale eddies in the GA. These Kelvin waves at both seasonal and intra-seasonal time scales are found play an important role in the timing and amplitudes of eddies observed in the GA.

  9. Characteristic eddy decomposition of turbulence in a channel

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Moser, Robert D.

    1991-01-01

    The proper orthogonal decomposition technique (Lumley's decomposition) is applied to the turbulent flow in a channel to extract coherent structures by decomposing the velocity field into characteristic eddies with random coefficients. In the homogeneous spatial directions, a generaliztion of the shot-noise expansion is used to determine the characteristic eddies. In this expansion, the Fourier coefficients of the characteristic eddy cannot be obtained from the second-order statistics. Three different techniques are used to determine the phases of these coefficients. They are based on: (1) the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Results from these three techniques are found to be similar in most respects. The implications of these techniques and the shot-noise expansion are discussed. The dominant eddy is found to contribute as much as 76 percent to the turbulent kinetic energy. In both 2D and 3D, the characteristic eddies consist of an ejection region straddled by streamwise vortices that leave the wall in the very short streamwise distance of about 100 wall units.

  10. Recent freshening of the East Australian Current and its eddies

    NASA Astrophysics Data System (ADS)

    Rykova, Tatiana; Oke, Peter R.

    2015-11-01

    The East Australian Current (EAC) has a relatively weak mean flow and an energetic eddy field that dominates the circulation. The properties of the mean flow have been studied in detail, but the changes in the eddy field have received little attention. We analyze Argo temperature and salinity profiles for 2005-2012 to construct a picture of the time-mean and time-varying properties of EAC eddies. We find that eddies and the surrounding waters of the western Tasman Sea are freshening at a rate of 0.017-0.025 practical salinity unit/yr over the top 100 m, with no significant temperature change. Consistent with the observations, fields from an eddy-resolving ocean model show freshening, with no temperature trend. Moreover, the model results indicate that observed changes are significant in the context of the variability over the last 20 years and may be part of a multiyear (perhaps decadal) cycle. We attribute the freshening of the region to increased precipitation off Eastern Australia.

  11. The Death of Two Eddies, Against the Shelf

    NASA Astrophysics Data System (ADS)

    Zavala-Trujillo, B.; Badan, A.; Rivas, D.; Ochoa, J.; Sheinbaum, J.; Candela, J.

    2007-05-01

    A set of five moorings deployed in front of the coast of Tamaulipas, western Gulf of Mexico, provided fourteen months (from August 2004 to November 2005) of surface to bottom observations of currents and temperature that document the processes associated with the collision and dissipation of two warm mesoscale eddies with the continental slope. Two Loop Current eddies (Titanic and Ulysses) were identified reaching the study area during the observation period. On September 2004, the two southernmost 2000-m moorings show that temperature and salinity increases throughout the entire water column, related to eddy Titanic; similarily; on April 2005, eddy Ulysses caused a strong increase of temperature in the 3500-m mooring. The velocity field suggests three different régimes: a coastal region, the continental slope currents, and the abyssal circulation. Over the slope, three different layers can be identified: a surface layer (above 500 m depth), influenced by eddies and transients, a deep layer (under de 1900 m) with a persistent southerly current and a transition layer (from 500 to 1900 m) that separates them. The variance ellipses at ~ 700 m at the 3500-m mooring have no a predominant orientation of the mayor axis. At the northernmost 2000-m mooring, the axis of maximum variation is oriented with the bathymetry, but at the southernmost 2000-m mooring it is perpendicular to the coast. The spectral characteristics of the measurements are also discussed.

  12. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  13. Effects of Drake Passage on a strongly eddying global ocean

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan P.; Heydt, Anna S.; Le Bars, Dewi; Dijkstra, Henk A.

    2016-05-01

    The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid resolutions at which the impact of mesoscale eddies has to be parameterized. We present results of a state-of-the-art eddy-resolving global ocean model with a closed Drake Passage and compare with results of the same model at noneddying resolution. An analysis of the pathways of heat by decomposing the meridional heat transport into eddy, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface warming around Antarctica due to equatorward expansion of the subpolar gyres, (ii) the collapse of the overturning circulation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, and (iii) significant equatorward eddy heat transport near Antarctica. However, quantitative details significantly depend on the chosen resolution. The warming around Antarctica is substantially larger for the noneddying configuration (˜5.5°C) than for the eddying configuration (˜2.5°C). This is a consequence of the subpolar mean flow which partitions differently into gyres and circumpolar current at different resolutions. We conclude that for a deciphering of the different mechanisms active in Eocene-Oligocene climate change detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes actually at work.

  14. Observed features of the Halmahera and Mindanao Eddies

    NASA Astrophysics Data System (ADS)

    Kashino, Yuji; Atmadipoera, Agus; Kuroda, Yoshifumi; Lukijanto

    2013-12-01

    The structure and variability of the Halmahera and Mindanao Eddies (HE and ME), which are thought to be quasi-stationary eddies, are described based on onboard and time-series observations in the gateway region of the Indonesian Throughflow (ITF). The HE was found to have a clear anticyclonic eddy structure during all cruises. It tilted northward and/or westward with increasing depth. The HE mixes waters from the northern and southern hemispheres and transfers this mixed water to the eastern route of the ITF. The HE shifted northwestward in the boreal summer and the cold phase of ENSO (El Niño and Southern Oscillation) and southeastward in the boreal winter and the warm phase of ENSO. In contrast, the ME, with its cyclonic eddy structure, was observed only once and seems not to be a quasi-stationary eddy. It appears in the mean field and is confined above the thermocline. The stationary northward undercurrent, the Mindanao Undercurrent, was also not found at 7°N east of Mindanao, but the northern tip of the HE was found at this latitude.

  15. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  16. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  17. Airborne Measurements of CO2 Exchange above a Heterogeneous Northern-latitude Forest

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Caulton, D.; Shepson, P. B.; Stirm, B. H.; Metzger, S.; Musinsky, J.; Munger, J. W.

    2014-12-01

    Northern latitude forests represent an important global sink for carbon dioxide (CO2). Estimating the landscape-scale exchange of CO2 is complicated by the heterogeneity of forested areas. Airborne eddy-covariance measurements can complement continuous tower-based measurements for determining the magnitude and spatial variability of carbon uptake in forested areas, and to assess means for scaling-up. While aircraft provide accessibility, the resulting flux measurements represent a narrow time slice, and average over a comparatively large source area. The goal of this study is to improve our ability to attribute aircraft flux data to finer spatial scales. We hypothesize that this can be achieved by (i) improving the spatial scale of the sampling method, (ii) examining inter-day variability, and (iii) relating airborne eddy-covariance flux estimates to remote sensing determinations of the land cover. For this purpose identical flight experiments were conducted on May 29 and June 1, 2014 over a 240 km2 region encompassing the Harvard University EMS eddy flux tower at Harvard Forest, MA, using the Purdue University ALAR aircraft. In the early afternoon of each day, 19 flight legs, 20 km in length, were flown over the heterogeneous forest canopy. The two replicate experiments allow assessment of inter-day variability in CO2 exchange under similar meteorological conditions. Furthermore, the experiments were coordinated with high-resolution (≤1 m) and medium-resolution (≤100 m) remote sensing retrievals of forest canopy structure and composition (NEON AOP) and soil moisture (NASA AirMOSS), respectively. This unprecedented hierarchy of observations enables evaluation of the ability of different data processing approaches to calculate finer scale CO2 exchange with the surface. Analyses of the flights conducted on May 29 and June 1 show a transect-averaged (± 1σ) CO2 uptake of 13 ± 3 µmol m-2s-1 and 11 ± 2 µmol m-2s-1, respectively. In complement to the aircraft

  18. Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Karstensen, J.; Romero, O.; Baumann, K.-H.; Donner, B.; Hefter, J.; Mollenhauer, G.; Iversen, M.; Fiedler, B.; Monteiro, I.; Körtzinger, A.

    2015-11-01

    Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks were observed in February-March 2010 when the eddy approached CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated to that of organic carbon in particular in the deep trap samples, suggesting a close coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/mesopelagic signatures to the bathypelagic traps. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some production under nutrient (nitrate) limitation in the upper few tens of meters above the zone of suboxia might have occurred in the beginning of 2010. The δ15N record showed a decrease from January to March 2010 while the organic carbon and N fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive but nutrient depletion and/or a high availability of dust as ballast mineral for organic-rich aggregates might have contributed to the elevated fluxes during the eddy passage. Remineralization of sinking organic-rich particles could have contributed to the formation of a suboxic zone at shallow depth. Although the eddy has been formed in the African coastal area in summer 2009, no indication of coastal flux signatures were found in the sediment traps, suggesting an

  19. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chen, Yuh-ling Lee; Chen, Houng-Yung; Jan, Sen; Lin, Yen-Huei; Kuo, Tien-Hsia; Hung, Jia-Jang

    2015-12-01

    Our investigations in the northern South China Sea (SCS) have revealed warm-core anticyclonic eddies that had a depressed pycnocline and a high biological productivity and phytoplankton abundance. With an elliptical shape of 420-430 km in major axis and 240-260 km in minor axis, these eddies were formed in the winter as the Kuroshio Current intruded through the Luzon Strait into the SCS under the prevailing northeast monsoon. They were characterized by a deep mixed layer up to 140-180 m, in which nitrate was relatively abundant. Although chlorophyll a concentration per volume of seawater was not always higher inside than outside the eddies, water-column (0-200 m) integrated chlorophyll a concentration and abundances of Synechococcus, coccolithophores, and diatoms were higher inside than outside the eddies. Primary productivity and nitrate-uptake new production inside the eddies were higher than or equal to those outside the eddies. Unlike the mode-water anticyclonic eddy that is biologically productive with a domed shallow seasonal pycnocline, the eddies we investigated had high surface temperatures and depressed pycnoclines in the upper water column. Possible explanations for these biological aspects were that the eddies were at their decaying stage, the eddies re-incorporated intermittently with an intruding Kuroshio branch, or the passage of the prevalent high amplitude internal tides introduced nutrients to the eddies. Frequent occurrences of eddies in oceanic regimes, especially cold eddies, are associated with high biological activity. Some warm eddies, such as these investigated in the present study, also have high biological activities, indicating that more rigorous in situ studies relating to eddy biological activity are needed in ocean regimes such as the SCS, where a half of the eddies are warm eddies.

  20. Event Detection and Visualization of Ocean Eddies based on SSH and Velocity Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Daisuke; Araki, Fumiaki; Inoue, Yumi; Sasaki, Hideharu

    2016-04-01

    Numerical studies of ocean eddies have been progressed using high-resolution ocean general circulation models. In order to understand ocean eddies from simulation results with large amount of information volume, it is necessary to visualize not only distribution of eddies of each time step, but also events or phenomena of eddies. However, previous methods cannot precisely detect eddies, especially, during the events such as eddies' amalgamation, bifurcation. In the present study, we propose a new approach of eddy's detection, tracking and event visualization based on sea surface height (SSH) and velocity field. The proposed method detects eddies region as well as streams and currents region, and classifies detected eddies into several types. By tracking the time-varying change of classified eddies, it is possible to detect not only eddies event such as amalgamation and bifurcation but also the interaction between eddy and ocean current. As a result of visualizing detected eddies and events, we succeeded in creating the movie which enables us to intuitively understand the region of interest.

  1. Plankton dynamics in a cyclonic eddy in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Rivière, Pascal; Capet, Xavier; Grima, Nicolas; Blanke, Bruno

    2015-08-01

    The California Current System is an eastern boundary upwelling system (EBUS) with high biological production along the coast. Oligotrophic offshore waters create cross-shore gradients of biological and physical properties, which are affected by intense mesoscale eddy activity. The influence of eddies on ecosystem dynamics in EBUS is still in debate. To elucidate the mechanisms that influence the dynamics of ecosystems trapped in eddies, and the relative contribution of horizontal and vertical advection in determining local production, we analyze a particular cyclonic eddy using Lagrangian particle-tracking analyses of numerical Eulerian. The eddy formed in a coastal upwelling system; coastal waters trapped in the eddy enabled it to leave the upwelling region with high concentrations of plankton and nutrients. The ecosystem was initially driven mainly by recycling of biological material. As the eddy moved offshore, production in its core was enhanced compared to eddy exterior waters through Ekman pumping of nitrate from below the euphotic zone; this Ekman pumping was particularly effective due to the shallow nitracline in the eddy compared to eddy exterior waters. Both eddy trapping and Ekman pumping helped to isolate and maintain the ecosystem productivity in the eddy core. This study shows the importance of cyclonic eddies for biological production in EBUS: they contribute both to the redistribution of the coastal upwelling ecosystem and are local regions of enhanced new production. Together, these processes impact cross-shore gradients of important biological properties.

  2. Estimation of the Net Ecosystem CO2 Exchange of Chaparral Using Eddy Covariance, remote sensing and Biome-BGC

    NASA Astrophysics Data System (ADS)

    Luo, H.; Oechel, W. C.; Sims, D.; Heinsch, F.; Kimball, J.

    2003-12-01

    The chaparral ecosystem ranges from California to Arizona, USA, and into Nuevo Leon and Tamaulipas, eastern Mexico. Tower-based eddy covariance and measurements above the canopy of a young stand (10 years old) and an old stand (>100 years old) have been conducted at Sky Oaks Biological Field Station, San Diego, USA, for 5 years to quantify the seasonal and annual variation in the net ecosystem CO2 exchange (NEE) of the chaparral ecosystem. Both stands are a C sink on an annual basis. Surprisingly, and contrary to the hypothesis by Odum, the old, mature, "scenscent" stand was as large of a C sink as the young stand. The stands tended to be net sinks during the wet seasons, and net sources during the dry seasons. Seasonal changes in carbon flux reflected changes of light use efficiency and were well correlated with two remote sensing indices of leaf pigment composition (NDVI and PRI). This implied the possibility of using remote sensing to estimate ecosystem CO2 balance. Two practical tram systems with optical sensors were set within the footprint of each eddy covariance tower in the young stand and old stand at Sky Oaks. This comparison between data from the eddy tower and spectral reflectance from remote sensing presented a good correlation between CO2 flux and NDVI corrected to a constant solar angle, which indicated that remote sensing is a very promising tool for the estimation of carbon fluxes in a chaparral ecosystem. To develop methods for scaling eddy flux measurements to the surrounding region, Biome-BGC model and MODIS results were introduced into the analysis. The eddy covariance data illustrated sink NEE patterns during wet seasons and source patterns during dry seasons, while the data simulated from Biome-BGC presented a net sink pattern throughout the whole year. The GPP simulated from Biome-BGC was lower than the estimate from MODIS, and their GPP yearly patterns were also different. Peak GPP from Biome-BGC was around June, while MODIS showed the peak

  3. A normal stress subgrid-scale eddy viscosity model in large eddy simulation

    NASA Technical Reports Server (NTRS)

    Horiuti, K.; Mansour, N. N.; Kim, John J.

    1993-01-01

    The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.

  4. Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames

    SciTech Connect

    Sen, Baris Ali; Menon, Suresh

    2010-01-15

    A large eddy simulation (LES) sub-grid model is developed based on the artificial neural network (ANN) approach to calculate the species instantaneous reaction rates for multi-step, multi-species chemical kinetics mechanisms. The proposed methodology depends on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence (but not the actual geometrical problem) of interest, and later using them to replace the stiff ODE solver (direct integration (DI)) to calculate the reaction rates in the sub-grid. The thermo-chemical database is tabulated with respect to the thermodynamic state vector without any reduction in the number of state variables. The thermo-chemistry is evolved by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. The proposed methodology is tested in LES and in stand-alone LEM studies of three distinct test cases with different reduced mechanisms and conditions. LES of premixed flame-turbulence-vortex interaction provides direct comparison of the proposed ANN method against DI and ANNs trained on thermo-chemical database created using another type of tabulation method. It is shown that the ANN trained on the LEM database can capture the correct flame physics with accuracy comparable to DI, which cannot be achieved by ANN trained on a laminar premix flame database. A priori evaluation of the ANN generality within and outside its training domain is carried out using stand-alone LEM simulations as well. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless. (author)

  5. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  6. Eddies reduce denitrification and compress habitats in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Smith, Shafer; Lévy, Marina; Pauluis, Olivier

    2016-09-01

    The combination of high biological production and weak oceanic ventilation in regions, such as the northern Indian Ocean and the eastern Pacific and Atlantic, cause large-scale oxygen minimum zones (OMZs) that profoundly affect marine habitats and alter key biogeochemical cycles. Here we investigate the effects of eddies on the Arabian Sea OMZ—the world's thickest—using a suite of regional model simulations with increasing horizontal resolution. We find that isopycnal eddy transport of oxygen to the OMZ region limits the extent of suboxia so reducing denitrification, increasing the supply of nitrate to the surface, and thereby enhancing biological production. That same enhanced production generates more organic matter in the water column, amplifying oxygen consumption below the euphotic zone, thus increasing the extent of hypoxia. Eddy-driven ventilation likely plays a similar role in other low-oxygen regions and thus may be crucial in shaping marine habitats and modulating the large-scale marine nitrogen cycle.

  7. Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint

    SciTech Connect

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

    2012-01-01

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.

  8. Investigation on a new inducer of pulsed eddy current thermography

    NASA Astrophysics Data System (ADS)

    He, Min; Zhang, Laibin; Zheng, Wenpei; Feng, Yijing

    2016-09-01

    In this paper, a new inducer of pulsed eddy current thermography (PECT) is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR) camera's view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  9. Experimental modelling of eddy currents and deflection for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-11-01

    During plasma disruptions in a tokamak fusion reactor, eddy currents are induced in the limiters and other conducting structures surrounding the plasma. Interactions between these currents with the toroidal field causes deflection and stress in the structural components. The structural motion in the strong magnetic field induces additional eddy current opposing the initial eddy current and modifying subsequent structural dynamics. Therefore, the motion and current are coupled and must be solved simultaneously. The coupling between current and deflection in cantilevered beams was investigated experimentally. The beams provide a simple model for the limiter blade of a tokamak fusion reactor. Several test pieces and various magnetic field conditions were employed to study the extend of the coupling effect from weak to strong coupling. Experimental results are compared with analytical predictions.

  10. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  11. Molecular and eddy diffusion in the atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Steiner, G.; Bauer, S. J.

    1990-08-01

    A one-dimensional isothermal transport model is developed for the prevailing minor gases in the upper atmosphere of Titan. Solving the equation governing vertical transport in the presence of both molecular and eddy diffusion for CH4 and (C2H6 + C2H4 + C2H2) with a common height-dependent eddy diffusion coefficient for a spherical geometry, and utilizing nominal values for the derived abundances of methane and the C2-hydrocarbons as boundary conditions, the homopause is found at an altitude of 660 km. The eddy-diffusion coefficient has a value of approximately 1 x 10 to the 6th sq cm/sec at the homopause. The column-integrated destruction rate of CH4 is balanced by a methane flux of 5.3 x 10 to the 9th/sq cm sec referenced to the planetary surface.

  12. Recent modifications, enhancements, and measurements with an airborne lidar system

    NASA Astrophysics Data System (ADS)

    DeCoursey, Robert J.; Osborn, Mary T.; Winker, David M.; Woods, David C.

    1996-06-01

    The NASA Langley Research Center's 14-inch airborne aerosol lidar system, which is routinely flown on several NASA aircraft including the DC-8 and the P-3, has been upgraded with several modifications to enhance its measurement capabilities. A new 900 mJ, 10 pps Nd:YAG laser was added with the capability of producing 5 watts of power at 1064 nm, 2.5 watts at 532 nm and 1.5 watts at 355 nm. The existing detector package has been modified to accommodate the three wavelengths and to permit cross-polarization measurements at 532 nm. New software was developed for on- line data visualization and analysis, and computer- controlled laser alignment is being incorporated. The system is now capable of producing real-time color modulated backscatter plots. Other additions include a Pentium/90 processor, GPS (Global Positioning System) and ARINC (Aeronautical Radio Inc.) receivers for acquiring accurate aircraft position data. In 1992 and 1993 this system was flown on several airborne missions to map and characterize the stratospheric aerosol cloud produced by the 1991 eruption of the Mount Pinatubo volcano. Efforts to map the global distribution of Pinatubo were made on both daytime as well as nighttime flights from Moffett Field in California to the South Pacific, to Central and South America, to Australia and to Alaska. In September 1994, the system (aboard NASA's P-3) made correlative measurements along shuttle orbit ground tracks in support of the Lidar In-space Technology Experiment flown on the Space Shuttle. In this paper the system upgrades will be discussed and selected data obtained during these recent airborne campaigns will be presented.

  13. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  14. The Effect of Mesoscale Eddies On Oceanic Stratification

    NASA Astrophysics Data System (ADS)

    Vallis, G. K.; Henning, C. C.

    Understanding the structure of the subtropical thermocline is an important, indeed classical, problem in dynamical oceanography. Many models have fallen into two camps -- diffusive theories, following Robinson and Stommel, and advective theo- ries, following Welander. More recently it has been shown that, at least in the absence of mesoscale eddies, the subtropical thermocline consists of an advective upper part (a 'ventilated thermocline'), with a diffusive base -- that is, the lower part of the main thermocline is an internal boundary layer. The thermocline in the Southern Ocean is a rather different beast, because the lack of meridional boundaries means that the gyre circulation is largely absent and such classical theories do not directly apply. Further- more, it has been suggested that the dynamics of the Southern Ocean might greatly influence the thermocline worldwide. However, these theories are not complete. Among the most egregious omissions is that of the potential effect of mesoscale eddies, and here we explore that problem. We integrate to equilibrium a wind- and buoyancy-driven eddy-resolving primitive- equations ocean model, both in an idealized basin and in a circumpolar channel. We find that mesoscale eddies do have a significant quantitative affect on the structure of the thermocline. In the subtropics, the signature of the two-thermocline model (an advective upper thermocline and a diffusive base) remains, even in the presence of vigorous eddying activity, whereas in the circumpolar channel the eddies appear to be a dominant process determining the stratification. We discuss the dynamics and thermodynamics of these flows, and present some simple theoretical ideas to partially explain some of our results.

  15. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  16. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  17. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    PubMed Central

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-01-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses. PMID:27892507

  18. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    NASA Astrophysics Data System (ADS)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  19. Micromorphology and chemistry of airborne particles in Brussels during agriculture working periods in surrounding region.

    PubMed

    Vanderstraeten, P; Lénelle, Y; Meurrens, A; Carati, D; Brenig, L; Offer, Z Y; Zaady, E

    2008-11-01

    The main objective of our research was to compare the airborne particle micromorphology and chemistry in the Brussels environment during agriculture working periods in the surrounding farming region. We used specific methods and instrumentation that are adapted to the climate peculiarities of the Brussels region, the period of investigations (12 months) and the proposed objectives. For the agricultural works we defined the following six periods: before sowing, sowing, after sowing, before harvest, harvest and after harvest. The results indicate a possible temporal correlation between agricultural work periods and airborne particle concentration, micromorphology and chemistry in the Brabant-Brussels region. For wheat and corn plant-growth periods, the average particle size, defined as the area obtained by a planar projection of the particulate, showed important variations in time. For sugar beet and endive, the average area size variations are less important. The roughness and sphericity parameters for the growth periods of the four different plants also showed significant differences. Many of the larger particulates (> 10 microm) are aggregates of even finer particles coated with many still finer ones. The airborne particle chemistry averages (atomic percentage At%), showed that three constituents (Si, S and Fe) dominate all the samples (except for particles 3-10 microm in size, which contain a relatively large percentage of Al). Applying similar investigation methods to study the correlations between airborne particle dynamics in urban zones and the agriculture working periods in their surrounding regions could be of interest to better understand the complexity of the PM problematic.

  20. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons.

    PubMed

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-28

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  1. Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team

    2015-11-01

    We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.

  2. Near-Wall Modeling for Large Eddy Simulation of Convective Heat Transfer in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Park, Hyun Wook; Moon, Kiyoung; Oztekin, Ezgi; McDermott, Randall; Lee, Changhoon; Choi, Jung-Il

    2012-11-01

    Necessity of the near-wall treatments for the large eddy simulation (LES) without resolving viscous layer is well known for providing a smooth transition from molecular to turbulent transport near wall region. We propose a simple but efficient approach based on modeling of wall shear stress and heat flux that enable accurate predictions of Nusselt number correlations for equilibrium boundary layers. The wall shear stress is directly modeled with Werner and Wengle (1991)'s power law model and wall heat flux is modeled with analogous wall laws between velocity and temperature with Kader (1981)'s empirical correlation. We perform the wall-modeled LES of turbulent convective heat transfer in a channel for various Prandtl numbers. The results show good agreement with the available experimental and numerical data. Supported by WCU (R31-10049) and EDISON (2012-0006663) program of NRF.

  3. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  4. Airborne Gravimetry and Downward Continuation (Invited)

    NASA Astrophysics Data System (ADS)

    Jekeli, C.; Yang, H.; Kwon, J.

    2009-12-01

    Measuring the Earth’s gravity field using airborne instrumentation is fully operational and has been widely practiced for nearly three decades since its official debut in the early 1980s (S. Hammer: “Airborne Gravity is Here!”) coinciding with the precision kinematic positioning capability of GPS. Airborne gravimetry is undertaken for both efficient geophysical exploration purposes, as well as the determination of the regional geoid to aid in the modernization of height systems. Especially for the latter application, downward continuation of the data and combination with existing terrestrial gravimetry pose theoretical as well as practical challenges, which, on the other hand, create multiple processing possibilities. Downward continuation may be approached in various ways from the viewpoint of potential theory and the boundary-value problem to using gradients either estimated locally or computed from existing models. Logistical constraints imposed by the airborne survey, instrumental noise, and the intrinsic numerical instability of downward continuation all conspire to impact the final product in terms of achievable resolution and accuracy. In this paper, we review the theory of airborne gravimetry and the methodology of downward continuation, and provide a numerical comparison of possible schemes and their impact on geoid determination.

  5. Large Eddy Simulation of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wu, Ting; Cotton, William R.

    1999-01-01

    The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-Eddy Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-eddy simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent

  6. Convergence of finite element approximations of large eddy motion.

    SciTech Connect

    Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh

    2002-11-01

    This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}

  7. Characteristic-eddy decomposition of turbulence in a channel

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Moser, Robert D.

    1989-01-01

    Lumley's proper orthogonal decomposition technique is applied to the turbulent flow in a channel. Coherent structures are extracted by decomposing the velocity field into characteristic eddies with random coefficients. A generalization of the shot-noise expansion is used to determine the characteristic eddies in homogeneous spatial directions. Three different techniques are used to determine the phases of the Fourier coefficients in the expansion: (1) one based on the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Similar results are found from each of these techniques.

  8. Role of mesoscale eddies on exchanges between coastal regions

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.

    2012-04-01

    The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and eddies. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. Eddies in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan eddies are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different eddies, one in the GoL and the other in the Catalan shelf. These eddies exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On

  9. Large Eddy Simulations and Turbulence Modeling for Film Cooling

    NASA Technical Reports Server (NTRS)

    Acharya, Sumanta

    1999-01-01

    The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.

  10. Summer Generation of the Southern Gulf of California Eddy Train

    DTIC Science & Technology

    2008-06-24

    Zamudio , Patrick J. Hogan, E. Joseph Metzger 5e. TASK NUMBER 5f. WORK UNIT NUMBER 73-8677-07-5 7. PERFORMING ORGANIZATION NAME(S) AND.ADDRESS(ES) 8...2007JC004467, 2008 A= Summer generation of the Southern Gulf of California eddy train Luis Zamudio ,l Patrick Hogan, 2 and E. Joseph Metzger2 Received 26 July...along the coast. Citation: Zamudio , L., P. Hogan, and E. J. Metzger (2008), Summer generation of the Southern Gulf of California eddy train, J. Geophys

  11. Eddy current NDE performance demonstrations using simulation tools

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code_Carmel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  12. Surface Circulation Associated with the Mindanao and Halmahera Eddies

    DTIC Science & Technology

    1989-06-01

    Halmahera EdJy is located at 3°:’\\, l33°E anJ is associated with the conrergcnce of the SEC anJ the :"ECC. This is a stuJy of the physical...the cyclonic circulation completed by Buoy 53. Although the Halmahera eddy does not appear on this figure, the amicydonic recurYing pauern across...bcl!n an investigation into the circulation associated with the :vtindanao and Halmahera eddies in June and July, 19:::iS. The driCtcr data, as sununa

  13. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems

    NASA Astrophysics Data System (ADS)

    Pilo, G. S.; Mata, M. M.; Azevedo, J. L. L.

    2015-08-01

    Oceanic eddies exist throughout the world oceans, but are more energetic when associated with western boundary currents (WBC) systems. In these regions, eddies play an important role in mixing and energy exchange. Therefore, it is important to quantify and qualify eddies associated with these systems. This is particularly true for the Southern Hemisphere WBC system where only few eddy censuses have been performed to date. In these systems, important aspects of the local eddy population are still unknown, like their spatial distribution and propagation patterns. Moreover, the understanding of these patterns helps to establish monitoring programs and to gain insight in how eddies would affect local mixing. Here, we use a global eddy data set to qualify eddies based on their surface characteristics in the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) systems. The analyses reveal that eddy propagation within each system is highly forced by the local mean flow and bathymetry. Large values of eddy amplitude and temporal variability are associated with the BC and EAC retroflections, while small values occur in the centre of the Argentine Basin and in the Tasman Sea. In the AC system, eddy polarity dictates the propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC system eddies from both polarities cross south of Tasmania but only the anticyclonic ones reach the Great Australian Bight. For all three WBC systems, both cyclonic and anticyclonic eddies present a geographical segregation according to radius size and amplitude. Regions of high eddy kinetic energy are associated with the eddies' mean amplitudes, and not with their densities.

  14. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  15. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  16. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  17. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  18. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  19. Verification and Calibration of an Eddy-Resolving Model of the Gulf of Mexico

    DTIC Science & Technology

    1991-05-01

    Techniques for verifying and calibrating an eddy-resolving ocean circulation model have been applied to a model of the Gulf of Mexico (GOM). Various...eddy. Although the model can simulate the movement and translation velocities of actual Gulf of Mexico eddies, it does not reproduce the interior flow

  20. Nondestructive Testing Eddy Current Basic Principles RQA/M1-5330.12 (V-I).

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U.S. space program, home study material is presented in this volume concerning familiarization and orientation on basic eddy current principles. The subject is presented under the following headings: Basic Eddy Current Concepts, Eddy Current Generation and Distribution,…