Science.gov

Sample records for airborne fungal pathogen

  1. Fungal pathogens of Proteaceae.

    PubMed

    Crous, P W; Summerell, B A; Swart, L; Denman, S; Taylor, J E; Bezuidenhout, C M; Palm, M E; Marincowitz, S; Groenewald, J Z

    2011-12-01

    Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU genes. In some cases additional genes such as TEF 1-α and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa).

  2. Map kinases in fungal pathogens.

    PubMed

    Xu, J R

    2000-12-01

    MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens. PMID:11273677

  3. Innate Defense against Fungal Pathogens.

    PubMed

    Drummond, Rebecca A; Gaffen, Sarah L; Hise, Amy G; Brown, Gordon D

    2014-11-10

    Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.

  4. Human fungal pathogens: Why should we learn?

    PubMed

    Kim, Jeong-Yoon

    2016-03-01

    Human fungal pathogens that cause invasive infections are hidden killers, taking lives of one and a half million people every year. However, research progress in this field has not been rapid enough to effectively prevent or treat life-threatening fungal diseases. To update recent research progress and promote more active research in the field of human fungal pathogens, eleven review articles concerning the virulence mechanisms and host interactions of four major human fungal pathogens-Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and Histoplasma capsulatum-are presented in this special issue. PMID:26920875

  5. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  6. Divergent and Convergent Evolution of Fungal Pathogenicity

    PubMed Central

    Shang, Yanfang; Xiao, Guohua; Zheng, Peng; Cen, Kai; Zhan, Shuai; Wang, Chengshu

    2016-01-01

    Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are largely unknown. In this study, we sequenced the genomes of seven ascomycete insect pathogens and performed the genome-wide analyses of 33 species of filamentous ascomycete pathogenic fungi that infect insects (12 species), plants (12), and humans (9). Our results revealed that the genomes of plant pathogens encode more proteins and protein families than the insect and human pathogens. Unexpectedly, more common orthologous protein groups are shared between the insect and plant pathogens than between the two animal group pathogens. We also found that the pathogenicity of host-adapted fungi evolved multiple times, and that both divergent and convergent evolutions occurred during pathogen–host cospeciation thus resulting in protein families with similar features in each fungal group. However, the role of phylogenetic relatedness on the evolution of protein families and therefore pathotype formation could not be ruled out due to the effect of common ancestry. The evolutionary correlation analyses led to the identification of different protein families that correlated with alternate pathotypes. Particularly, the effector-like proteins identified in plant and animal pathogens were strongly linked to fungal host adaptation, suggesting the existence of similar gene-for-gene relationships in fungus–animal interactions that has not been established before. These results well advance our understanding of the evolution of fungal pathogenicity and the factors that contribute to fungal pathotype formation. PMID:27071652

  7. Scolecobasidium humicola, a fungal pathogen of fish

    USGS Publications Warehouse

    Ross, A.J.; Yasutake, W.T.

    1973-01-01

    Scolecobasidium humicola, a previously undescribed fungal pathogen of fish was isolated from coho salmon (Oncorhynchus kisutch). In natural infections the kidney was the organ most affected. The disease was difficult to transmit experimentally and appeared to be only weakly contagious.

  8. Microbial Pathogens in the Fungal Kingdom

    PubMed Central

    Heitman, Joseph

    2011-01-01

    The fungal kingdom is vast, spanning ~1.5 to as many as 5 million species diverse as unicellular yeasts, filamentous fungi, mushrooms, lichens, and both plant and animal pathogens. The fungi are closely aligned with animals in one of the six to eight supergroups of eukaryotes, the opisthokonts. The animal and fungal kingdoms last shared a common ancestor ~1 billion years ago, more recently than other groups of eukaryotes. As a consequence of their close evolutionary history and shared cellular machinery with metazoans, fungi are exceptional models for mammalian biology, but prove more difficult to treat in infected animals. The last common ancestor to the fungal/metazoan lineages is thought to have been unicellular, aquatic, and motile with a posterior flagellum, and certain extant species closely resemble this hypothesized ancestor. Species within the fungal kingdom were traditionally assigned to four phyla, including the basal fungi (Chytridiomycota, Zygomycota) and the more recently derived monophyletic lineage, the dikarya (Ascomycota, Basidiomycota). The fungal tree of life project has revealed that the basal lineages are polyphyletic, and thus there are as many as eight to ten fungal phyla. Fungi that infect vertebrates are found in all of the major lineages, and virulence arose multiple times independently. A sobering recent development involves the species Batrachochytrium dendrobatidis from the basal fungal phylum, the Chytridiomycota, which has emerged to cause global amphibian declines and extinctions. Genomics is revolutionizing our view of the fungal kingdom, and genome sequences for zygomycete pathogens (Rhizopus, Mucor), skin-associated fungi (dermatophytes, Malassezia), and the Candida pathogenic species clade promise to provide insights into the origins of virulence. Here we survey the diversity of fungal pathogens and illustrate key principles revealed by genomics involving sexual reproduction and sex determination, loss of conserved pathways in

  9. Hyphal chemotropism in fungal pathogenicity.

    PubMed

    Turrà, David; Nordzieke, Daniela; Vitale, Stefania; El Ghalid, Mennat; Di Pietro, Antonio

    2016-09-01

    The ability to grow as filamentous hyphae defines the lifestyle of fungi. Hyphae are exposed to a variety of chemical stimuli such as nutrients or signal molecules from mating partners and host organisms. How fungi sense and process this chemical information to steer hyphal growth is poorly understood. Saccharomyces cerevisiae and Neurospora crassa have served as genetic models for the identification of cellular components functioning in chemotropism. A recent study in the pathogen Fusarium oxysporum revealed distinct MAPK pathways governing hyphal growth towards nutrient sources and sex pheromones or plant signals, suggesting an unanticipated complexity of chemosensing during fungus-host interactions. PMID:27150623

  10. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  11. Determination of the carbon content of airborne fungal spores.

    PubMed

    Bauer, Heidi; Kasper-Giebl, Anne; Zibuschka, Franziska; Hitzenberger, Regina; Kraus, Gunther F; Puxbaum, Hans

    2002-01-01

    Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere. Furthermore, we apply a new (carbon/individual) factor to quantify the amount of fungal-spores-derived organic carbon in aerosol collected at a mountain site in Austria. Spores of representatives of Cladosporium sp., Aspergillus sp., Penicillium sp., and Alternaria sp., the four predominant airborne genera, were analyzed for their carbon content using two different analytical procedures. The result was an average carbon content of 13 pg C/spore (RSD, 46%), or expressed as a carbon-per-volume ratio, 0.38 pg C/microm3 (RSD, 30%). These values are comparable to conversion factors for bacteria and some representatives of the zooplankton. Because biopolymers are suspected of interfering with elemental carbon determination by thermal methods, the amount of "fungal carbon" that might be erroneously mistaken for soot carbon was determined using the "two-step combustion" method of Cachier et al. and termed as "apparent elemental carbon" (AEC). This fraction amounted to up to 46% of the initial fungal carbon content. Although the aerosol samples were collected in March under wintry conditions, the organic carbon from fungal spores amounted to 2.9-5.4% of organic carbon in the "coarse mode" size fraction.

  12. Molecular diagnostics for fungal plant pathogens.

    PubMed

    McCartney, H Alastair; Foster, Simon J; Fraaije, Bart A; Ward, Elaine

    2003-02-01

    Accurate identification of fungal phytopathogens is essential for virtually all aspects of plant pathology, from fundamental research on the biology of pathogens to the control of the diseases they cause. Although molecular methods, such as polymerase chain reaction (PCR), are routinely used in the diagnosis of human diseases, they are not yet widely used to detect and identify plant pathogens. Here we review some of the diagnostic tools currently used for fungal plant pathogens and describe some novel applications. Technological advances in PCR-based methods, such as real-time PCR, allow fast, accurate detection and quantification of plant pathogens and are now being applied to practical problems. Molecular methods have been used to detect several pathogens simultaneously in wheat, and to study the development of fungicide resistance in wheat pathogens. Information resulting from such work could be used to improve disease control by allowing more rational decisions to be made about the choice and use of fungicides and resistant cultivars. Molecular methods have also been applied to the study of variation in plant pathogen populations, for example detection of different mating types or virulence types. PCR-based methods can provide new tools to monitor the exposure of a crop to pathogen inoculum that are more reliable and faster than conventional methods. This information can be used to improve disease control decision making. The development and application of molecular diagnostic methods in the future is discussed and we expect that new developments will increase the adoption of these new technologies for the diagnosis and study of plant disease.

  13. Dynamics of airborne fungal populations in a large office building

    NASA Technical Reports Server (NTRS)

    Burge, H. A.; Pierson, D. L.; Groves, T. O.; Strawn, K. F.; Mishra, S. K.

    2000-01-01

    The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings.

  14. Airborne mesophilic fungal spores in various residential environments

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.

    In the present work viable fungal spore counts and flora of indoor air were compared in various residences. Total viable spore counts were lowest in the urban/suburban residences and highest in the rural residences. Moisture problems in the urban environment did not increase total viable spore count, but affected composition of fungal flora. In the rural environment, spore counts were much higher in the old houses than in the new ones. Penicillium was the most prevalent fungus in the air of all the residences studied. Airborne Aspergillus, Cladosporium spores and yeast cells were more common in the damp residences and the old rural houses than in the other residences.

  15. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  16. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  17. Identifying Airborne Pathogens in Time to Respond

    SciTech Connect

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  18. New insight into a complex plant-fungal pathogen interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coevolution of plants and microbes has shaped plant mechanisms that detect and repel pathogens. A newly identified plant gene confers partial resistance to a fungal pathogen not by preventing initial infection, but by limiting its spread through the plant. ...

  19. Fungicide resistance assays for fungal plant pathogens.

    PubMed

    Secor, Gary A; Rivera, Viviana V

    2012-01-01

    Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides.

  20. Primordial enemies: fungal pathogens in thrips societies.

    PubMed

    Turnbull, Christine; Wilson, Peter D; Hoggard, Stephen; Gillings, Michael; Palmer, Chris; Smith, Shannon; Beattie, Doug; Hussey, Sam; Stow, Adam; Beattie, Andrew

    2012-01-01

    Microbial pathogens are ancient selective agents that have driven many aspects of multicellular evolution, including genetic, behavioural, chemical and immune defence systems. It appears that fungi specialised to attack insects were already present in the environments in which social insects first evolved and we hypothesise that if the early stages of social evolution required antifungal defences, then covariance between levels of sociality and antifungal defences might be evident in extant lineages, the defences becoming stronger with group size and increasing social organisation. Thus, we compared the activity of cuticular antifungal compounds in thrips species (Insecta: Thysanoptera) representing a gradient of increasing group size and sociality: solitary, communal, social and eusocial, against the entomopathogen Cordyceps bassiana. Solitary and communal species showed little or no activity. In contrast, the social and eusocial species killed this fungus, suggesting that the evolution of sociality has been accompanied by sharp increases in the effectiveness of antifungal compounds. The antiquity of fungal entomopathogens, demonstrated by fossil finds, coupled with the unequivocal response of thrips colonies to them shown here, suggests two new insights into the evolution of thrips sociality: First, traits that enabled nascent colonies to defend themselves against microbial pathogens should be added to those considered essential for social evolution. Second, limits to the strength of antimicrobials, through resource constraints or self-antibiosis, may have been overcome by increase in the numbers of individuals secreting them, thus driving increases in colony size. If this is the case for social thrips, then we may ask: did antimicrobial traits and microbes such as fungal entomopathogens play an integral part in the evolution of insect sociality in general? PMID:23185420

  1. Thirty-four identifiable airborne fungal spores in Havana, Cuba.

    PubMed

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Fernandez-Gonzalez, Maria; Rojas-Flores, Teresa I

    2015-01-01

    The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 - October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores) and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 - 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores) and the lowest in December (7,314 spores). Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores) was higher compared with that observed during the rainy season (17,460 spores).

  2. Copper at the Fungal Pathogen-Host Axis*

    PubMed Central

    García-Santamarina, Sarela; Thiele, Dennis J.

    2015-01-01

    Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development. PMID:26055724

  3. Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures.

    PubMed

    Crawford, Judith A; Rosenbaum, Paula F; Anagnost, Susan E; Hunt, Andrew; Abraham, Jerrold L

    2015-06-01

    Indoor fungal exposure can compromise respiratory health. Low-income urban areas are of concern because of high asthma and allergy rates and housing disrepair. Understanding the conditions that affect indoor fungal exposures is important for assessing health risks and for developing mitigation strategies. We examined the types and concentrations of airborne fungi inside and outside of homes in low-income areas of Syracuse, NY as well as the effect of snow cover on fungal levels. At 103 homes, air samples for viable fungi were collected, occupants were interviewed and homes were inspected for visible mold, musty odors, water problems and other factors. Multivariable logistic regression was used to relate high fungal levels to home conditions. Predominant indoor fungi included Cladosporium, Penicillium, Aspergillus, Alternaria and hyaline unknowns. Basidiomycetes and an uncommon genus Acrodontium were also found frequently due to analysis methods developed for this project. With snow cover, outdoor total fungal levels were depressed and indoor concentrations were three times higher than outdoor on average with a maximum of 29 times higher. Visible mold was related to elevated levels of Penicillium (OR 4.11 95% CI 1.37-14.0) and bacteria (OR 3.79 95% CI 1.41-11.2). Musty, moldy odors were associated with elevated concentrations of total fungi (OR 3.48 95% CI 1.13-11.6) and basidiomycetes. Cockroaches, an indicator of moisture, were associated with elevated levels of Penicillium (OR 3.66 95% CI 1.16-13.1) and Aspergillus (OR 4.36 95% CI 1.60-13.4). Increasing relative humidity was associated with higher concentrations of Penicillium, yeasts and basidiomycetes. Visible mold, musty odors, indoor humidity and cockroaches are modifiable factors that were important determinants of indoor fungal exposures. Indoor air investigators should interpret indoor:outdoor fungal ratios cautiously when snow cover is present.

  4. Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures.

    PubMed

    Crawford, Judith A; Rosenbaum, Paula F; Anagnost, Susan E; Hunt, Andrew; Abraham, Jerrold L

    2015-06-01

    Indoor fungal exposure can compromise respiratory health. Low-income urban areas are of concern because of high asthma and allergy rates and housing disrepair. Understanding the conditions that affect indoor fungal exposures is important for assessing health risks and for developing mitigation strategies. We examined the types and concentrations of airborne fungi inside and outside of homes in low-income areas of Syracuse, NY as well as the effect of snow cover on fungal levels. At 103 homes, air samples for viable fungi were collected, occupants were interviewed and homes were inspected for visible mold, musty odors, water problems and other factors. Multivariable logistic regression was used to relate high fungal levels to home conditions. Predominant indoor fungi included Cladosporium, Penicillium, Aspergillus, Alternaria and hyaline unknowns. Basidiomycetes and an uncommon genus Acrodontium were also found frequently due to analysis methods developed for this project. With snow cover, outdoor total fungal levels were depressed and indoor concentrations were three times higher than outdoor on average with a maximum of 29 times higher. Visible mold was related to elevated levels of Penicillium (OR 4.11 95% CI 1.37-14.0) and bacteria (OR 3.79 95% CI 1.41-11.2). Musty, moldy odors were associated with elevated concentrations of total fungi (OR 3.48 95% CI 1.13-11.6) and basidiomycetes. Cockroaches, an indicator of moisture, were associated with elevated levels of Penicillium (OR 3.66 95% CI 1.16-13.1) and Aspergillus (OR 4.36 95% CI 1.60-13.4). Increasing relative humidity was associated with higher concentrations of Penicillium, yeasts and basidiomycetes. Visible mold, musty odors, indoor humidity and cockroaches are modifiable factors that were important determinants of indoor fungal exposures. Indoor air investigators should interpret indoor:outdoor fungal ratios cautiously when snow cover is present. PMID:25725196

  5. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  6. Genetic comparison of two related fungal pathogens of Theobroma cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao (cacao) is the source of cocoa and cocoa butter, which are used in the manufacturing of chocolate. Cacao production in South America is limited mainly by two fungal pathogens, Moniliophthora roreri and Moniliophthora perniciosa. These pathogens cause frost pod rot (FPR) and Witches’ ...

  7. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  8. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables.

    PubMed

    Filali Ben Sidel, Farah; Bouziane, Hassan; Del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years (C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R (2) satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R (2) varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  9. Fungal model systems and the elucidation of pathogenicity determinants

    PubMed Central

    Perez-Nadales, Elena; Almeida Nogueira, Maria Filomena; Baldin, Clara; Castanheira, Sónia; El Ghalid, Mennat; Grund, Elisabeth; Lengeler, Klaus; Marchegiani, Elisabetta; Mehrotra, Pankaj Vinod; Moretti, Marino; Naik, Vikram; Oses-Ruiz, Miriam; Oskarsson, Therese; Schäfer, Katja; Wasserstrom, Lisa; Brakhage, Axel A.; Gow, Neil A.R.; Kahmann, Regine; Lebrun, Marc-Henri; Perez-Martin, José; Di Pietro, Antonio; Talbot, Nicholas J.; Toquin, Valerie; Walther, Andrea; Wendland, Jürgen

    2014-01-01

    Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity. PMID:25011008

  10. The cryptic sexual strategies of human fungal pathogens.

    PubMed

    Ene, Iuliana V; Bennett, Richard J

    2014-04-01

    Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.

  11. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air

    NASA Astrophysics Data System (ADS)

    O'Gorman, Céline M.; Fuller, Hubert T.

    2008-06-01

    Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.

  12. Population genomics of fungal and oomycete pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...

  13. Symbiont-Mediated Protection against Fungal Pathogens in Pea Aphids: a Role for Pathogen Specificity?

    PubMed Central

    Spragg, Chelsea J.; Altincicek, Boran; Gerardo, Nicole M.

    2013-01-01

    Here we show that a bacterial endosymbiont, Regiella insecticola, protects pea aphids (Acyrthosiphon pisum) from the aphid-specific fungal entomopathogen Zoophthora occidentalis but not from the generalist insect fungal pathogen Beauveria bassiana. This finding highlights the complex influence of fungi on the dynamics of this economically important agricultural pest. PMID:23354709

  14. Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens

    NASA Astrophysics Data System (ADS)

    Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

    2004-08-01

    Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

  15. Thermally Dimorphic Human Fungal Pathogens--Polyphyletic Pathogens with a Convergent Pathogenicity Trait.

    PubMed

    Sil, Anita; Andrianopoulos, Alex

    2015-08-01

    Fungi are adept at changing their cell shape and developmental program in response to signals in their surroundings. Here we focus on a group of evolutionarily related fungal pathogens of humans known as the thermally dimorphic fungi. These organisms grow in a hyphal form in the environment but shift their morphology drastically within a mammalian host. Temperature is one of the main host signals that initiates their conversion to the "host" form and is sufficient in the laboratory to trigger establishment of this host-adapted developmental program. Here we discuss the major human pathogens in this group, which are Blastomyces dermatiditis, Coccidioides immitis/posadasii, Histoplasma capsulatum, Paracoccidioides brasiliensis/lutzii, Sporothrix schenckii, and Talaromyces marneffei (formerly known as Penicillium marneffei). The majority of these organisms are primary pathogens, with the ability to cause disease in healthy humans who encounter them in endemic areas. PMID:25384771

  16. Intervention study of airborne fungal spora in homes with portable HEPA filtration units.

    PubMed

    Cheong, C D; Neumeister-Kemp, H G; Dingle, P W; Hardy, G St J

    2004-11-01

    The concentrations and composition of airborne fungal spores in homes fitted with portable HEPA filtration units were examined to provide information to evaluate the importance of varying levels of fungal spores in residential environments in Perth, Australia. A novel method for simulating activity/impaction on carpeted environments was also investigated. Reductions in fungal (35%) and particulate (38%) levels were achieved in the air filter homes. Penicillium, Cladosporium and yeasts were the most common and widespread fungi recovered indoors and outdoors. Fungal range decreased over the study period but this could be due to an overall reduced dissemination of spores (less spores in the air). PMID:15536499

  17. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  18. Phylogeography of the fungal pathogen Histoplasma capsulatum.

    PubMed

    Kasuga, Takao; White, Thomas J; Koenig, Gina; McEwen, Juan; Restrepo, Angela; Castañeda, Elizabetha; Da Silva Lacaz, Carlos; Heins-Vaccari, Elisabeth M; De Freitas, Roseli S; Zancopé-Oliveira, Rosely M; Qin, Zhenyu; Negroni, Ricardo; Carter, Deidre A; Mikami, Yuzuru; Tamura, Miki; Taylor, María Lucía; Miller, Georgina F; Poonwan, Natteewan; Taylor, John W

    2003-12-01

    Until recently, Histoplasma capsulatum was believed to harbour three varieties, var. capsulatum (chiefly a New World human pathogen), var. duboisii (an African human pathogen) and var. farciminosum (an Old World horse pathogen), which varied in clinical manifestations and geographical distribution. We analysed the phylogenetic relationships of 137 individuals representing the three varieties from six continents using DNA sequence variation in four independent protein-coding genes. At least eight clades were idengified: (i) North American class 1 clade; (ii) North American class 2 clade; (iii) Latin American group A clade; (iv) Latin American group B clade; (v) Australian clade; (vi) Netherlands (Indonesian?) clade; (vii) Eurasian clade and (viii) African clade. Seven of eight clades represented genetically isolated groups that may be recognized as phylogenetic species. The sole exception was the Eurasian clade which originated from within the Latin American group A clade. The phylogenetic relationships among the clades made a star phylogeny. Histoplasma capsulatum var. capsulatum individuals were found in all eight clades. The African clade included all of the H. capsulatum var. duboisii individuals as well as individuals of the other two varieties. The 13 individuals of var. farciminosum were distributed among three phylogenetic species. These findings suggest that the three varieties of Histoplasma are phylogenetically meaningless. Instead we have to recognize the existence of genetically distinct geographical populations or phylogenetic species. Combining DNA substitution rates of protein-coding genes with the phylogeny suggests that the radiation of Histoplasma started between 3 and 13 million years ago in Latin America. PMID:14629354

  19. Pulmonary defense mechanisms against opportunistic fungal pathogens.

    PubMed

    Waldorf, A R

    1989-01-01

    Though of critical importance, nonimmune host defense mechanisms against aspergillosis and mucormycosis are not completely understood. Prevention of these infections presumably requires control of either spore germination and/or hyphal growth by the host. The data suggest that the host provides an important barrier to infection by control of spore or conidia germination, the critical step involving conversion of the fungus to its tissue-invasive form. The mechanisms of host defense against A. fumigatus are not strictly dependent on inhibition of conidia germination. Rather, pulmonary defense against Aspergillus appears to depend to a greater degree on early killing of fungal conidia by alveolar macrophages. In contrast, prevention of mucormycosis appears to require inhibition of fungal spore germination by the bronchoalveolar macrophage, thereby preventing conversion of the fungus to its hyphal form, although resident bronchoalveolar macrophages are unable to kill R. oryzae spores. Thus, host pulmonary defenses to Rhizopus and Aspergillus vary, even in normal animals. The tissue-invasive hyphal forms of the fungi which cause aspergillosis and mucormycosis are too large to be ingested by phagocytic cells. Although macrophages and monocytes can damage hyphae, the bulk of this role appears to fall upon the neutrophil. However, antihyphal mechanisms of neutrophils may not necessarily be identical for all types of hyphae. Moreover, interactions of several potential oxidative and nonoxidative antihyphal mechanisms may define the host's ability to limit fungal infections. In individuals where concentrations of oxidative or nonoxidative substances are limiting or suboptimal, interactions of mechanisms may be required for antihyphal activity, and studies of these interactions are important to gain better knowledge of the defense mechanisms against opportunistic mycoses in the intact host. In summary, at least two distinct lines of defense against Aspergillus and Rhizopus

  20. Candida parapsilosis, an Emerging Fungal Pathogen

    PubMed Central

    Trofa, David; Gácser, Attila; Nosanchuk, Joshua D.

    2008-01-01

    Summary: Candida parapsilosis is an emerging major human pathogen that has dramatically increased in significance and prevalence over the past 2 decades, such that C. parapsilosis is now one of the leading causes of invasive candidal disease. Individuals at the highest risk for severe infection include neonates and patients in intensive care units. C. parapsilosis infections are especially associated with hyperalimentation solutions, prosthetic devices, and indwelling catheters, as well as the nosocomial spread of disease through the hands of health care workers. Factors involved in disease pathogenesis include the secretion of hydrolytic enzymes, adhesion to prosthetics, and biofilm formation. New molecular genetic tools are providing additional and much-needed information regarding C. parapsilosis virulence. The emerging information will provide a deeper understanding of C. parapsilosis pathogenesis and facilitate the development of new therapeutic approaches for treating C. parapsilosis infections. PMID:18854483

  1. Effects of Ionizing Radiation on Postharvest Fungal Pathogens.

    PubMed

    Jeong, Rae-Dong; Shin, Eun-Jung; Chu, Eun-Hee; Park, Hae-Jun

    2015-06-01

    Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation. PMID:26060436

  2. Effects of Ionizing Radiation on Postharvest Fungal Pathogens

    PubMed Central

    Jeong, Rae-Dong; Shin, Eun-Jung; Chu, Eun-Hee; Park, Hae-Jun

    2015-01-01

    Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3–4 kGy for B. cinerea and 1–2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation. PMID:26060436

  3. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens

    PubMed Central

    2011-01-01

    Background The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients. Description We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics

  4. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals

    PubMed Central

    Byrnes, Edmond J.; Bartlett, Karen H.; Perfect, John R.; Heitman, Joseph

    2012-01-01

    Infectious fungi are among a broad group of microbial pathogens that has and continues to emerge concomitantly due to the global AIDS pandemic as well as an overall increase of patients with compromised immune systems. In addition, many pathogens have been emerging and reemerging, causing disease in both individuals who have an identifiable immune defect and those who do not. The fungal pathogen Cryptococcus gattii can infect individuals with and without an identifiable immune defect, with a broad geographic range including both endemic areas and emerging outbreak regions. Infections in patients and animals can be severe and often fatal if untreated. We review the molecular epidemiology, population structure, clinical manifestations, and ecological niche of this emerging pathogen. PMID:21684347

  5. Fungal endophytes limit pathogen damage in a tropical tree

    PubMed Central

    Arnold, A. Elizabeth; Mejía, Luis Carlos; Kyllo, Damond; Rojas, Enith I.; Maynard, Zuleyka; Robbins, Nancy; Herre, Edward Allen

    2003-01-01

    Every plant species examined to date harbors endophytic fungi within its asymptomatic aerial tissues, such that endophytes represent a ubiquitous, yet cryptic, component of terrestrial plant communities. Fungal endophytes associated with leaves of woody angiosperms are especially diverse; yet, fundamental aspects of their interactions with hosts are unknown. In contrast to the relatively species-poor endophytes that are vertically transmitted and act as defensive mutualists of some temperate grasses, the diverse, horizontally transmitted endophytes of woody angiosperms are thought to contribute little to host defense. Here, we document high diversity, spatial structure, and host affinity among foliar endophytes associated with a tropical tree (Theobroma cacao, Malvaceae) across lowland Panama. We then show that inoculation of endophyte-free leaves with endophytes isolated frequently from naturally infected, asymptomatic hosts significantly decreases both leaf necrosis and leaf mortality when T. cacao seedlings are challenged with a major pathogen (Phytophthora sp.). In contrast to reports of fungal inoculation inducing systemic defense, we found that protection was primarily localized to endophyte-infected tissues. Further, endophyte-mediated protection was greater in mature leaves, which bear less intrinsic defense against fungal pathogens than do young leaves. In vitro studies suggest that host affinity is mediated by leaf chemistry, and that protection may be mediated by direct interactions of endophytes with foliar pathogens. Together, these data demonstrate the capacity of diverse, horizontally transmitted endophytes of woody angiosperms to play an important but previously unappreciated role in host defense. PMID:14671327

  6. Selection for resistance to a fungal pathogen in Drosophila melanogaster.

    PubMed

    Kraaijeveld, A R; Godfray, H C J

    2008-04-01

    An artificial selection experiment designed to explore the evolution of resistance to a fungal pathogen, Beauveria bassiana, in Drosophila melanogaster is reported here. The experiment was designed to test whether there is sufficient additive genetic variation in this trait for increased resistance to evolve, and, if so, whether there are correlated responses that might represent a cost to defence. After 15 generations of selection, flies from selected lines did not have higher overall fitness after infection compared with control lines. The response to selection for resistance against this pathogen is thus much weaker than against other species, in particular, parasitoids. There was, however, evidence for increased late-life fecundity in selected lines, which may indicate evolved tolerance of fungal infection. This increase was accompanied by reduced early-life fitness, which may reflect the well-known trade-off between early and late reproduction. In the absence of fungal infection, selected flies had lower fitness than control flies, and the possibility that this is also a trade-off with increased tolerance is explored.

  7. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    PubMed

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  8. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  9. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-04-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  10. Viruses accumulate in aging infection centers of a fungal forest pathogen

    PubMed Central

    Vainio, Eeva J; Müller, Michael M; Korhonen, Kari; Piri, Tuula; Hantula, Jarkko

    2015-01-01

    Fungal viruses (mycoviruses) with RNA genomes are believed to lack extracellular infective particles. These viruses are transmitted laterally among fungal strains through mycelial anastomoses or vertically via their infected spores, but little is known regarding their prevalence and patterns of dispersal under natural conditions. Here, we examined, in detail, the spatial and temporal changes in a mycovirus community and its host fungus Heterobasidion parviporum, the most devastating fungal pathogen of conifers in the Boreal forest region. During the 7-year sampling period, viruses accumulated in clonal host individuals as a result of indigenous viruses spreading within and between clones as well as novel strains arriving via airborne spores. Viral community changes produced pockets of heterogeneity within large H. parviporum clones. The appearance of novel viral infections in aging clones indicated that transient cell-to-cell contacts between Heterobasidion strains are likely to occur more frequently than what was inferred from genotypic analyses. Intraspecific variation was low among the three partitivirus species at the study site, whereas the unassigned viral species HetRV6 was highly polymorphic. The accumulation of point mutations during persistent infections resulted in viral diversification, that is, the presence of nearly identical viral sequence variants within single clones. Our results also suggest that co-infections by distantly related viral species are more stable than those between conspecific strains, and mutual exclusion may play a role in determining mycoviral communities. PMID:25126757

  11. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  12. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  13. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    PubMed Central

    Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; León-Narváez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  14. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    PubMed

    Desjardins, Christopher A; Champion, Mia D; Holder, Jason W; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I; Henn, Matthew R; Kodira, Chinnappa D; León-Narváez, Henry; Longo, Larissa V G; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L; Morais, Flavia V; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M; Sykes, Sean M; Teixeira, Marcus Melo; Vallejo, Milene C; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H; Haas, Brian J; McEwen, Juan G; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W; Cuomo, Christina A

    2011-10-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  15. Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey.

    PubMed

    Kalyoncu, Fatih

    2010-06-01

    In this study, the effect of relative humidity, temperature, and wind on airborne fungal allergens in the 11 different districts of Manisa City was investigated from January 2004 to December 2005. The aim of this study was to conduct a survey to get to know the relation between wind, temperature, and relative humidity and population of allergenic fungal spores in the atmosphere. A total of 792 samples were observed by using the Merck MAS100 air sampler and 12,988 fungal colonies were counted. Fourteen fungal genera could be determined; Cladosporium that was generally found as the predominant genus followed by Penicillium, Aspergillus, and Alternaria. During the entire study, seasonal variation was found to be related to atmospheric conditions especially. The optimal conditions of meteorological factors for the fungi growth resulted in the increased number of mycoflora, qualitatively and quantitatively.

  16. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  17. Oxidative stress responses in the human fungal pathogen, Candida albicans.

    PubMed

    Dantas, Alessandra da Silva; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  18. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  19. Structural basis of haem-iron acquisition by fungal pathogens.

    PubMed

    Nasser, Lena; Weissman, Ziva; Pinsky, Mariel; Amartely, Hadar; Dvir, Hay; Kornitzer, Daniel

    2016-01-01

    Pathogenic microorganisms must cope with extremely low free-iron concentrations in the host's tissues. Some fungal pathogens rely on secreted haemophores that belong to the Common in Fungal Extracellular Membrane (CFEM) protein family, to extract haem from haemoglobin and to transfer it to the cell's interior, where it can serve as a source of iron. Here we report the first three-dimensional structure of a CFEM protein, the haemophore Csa2 secreted by Candida albicans. The CFEM domain adopts a novel helical-basket fold that consists of six α-helices, and is uniquely stabilized by four disulfide bonds formed by its eight signature cysteines. The planar haem molecule is bound between a flat hydrophobic platform located on top of the helical basket and a peripheral N-terminal 'handle' extension. Exceptionally, an aspartic residue serves as the CFEM axial ligand, and so confers coordination of Fe(3+) haem, but not of Fe(2+) haem. Histidine substitution mutants of this conserved Asp acquired Fe(2+) haem binding and retained the capacity to extract haem from haemoglobin. However, His-substituted CFEM proteins were not functional in vivo and showed disturbed haem exchange in vitro, which suggests a role for the oxidation-state-specific Asp coordination in haem acquisition by CFEM proteins. PMID:27617569

  20. Characterization of airborne fungal levels after mold remediation.

    PubMed

    Kleinheinz, G T; Langolf, B M; Englebert, E

    2006-01-01

    The overall objective of this project was to evaluate levels of airborne fungi present after a mold remediation project and determine the effectiveness of this remediation using airborne mold levels to determine the success of these projects. Andersen N6 (viable) and Air-O-Cell (non-viable) sampling techniques were utilized. Both test methodologies demonstrated that levels of mold in the successfully remediated portions of buildings were significantly different (p<0.05) from the levels found in non-complaint and outdoor samples from the same building, respectively. Conversely, levels in unsuccessful remediation projects were not significantly different (p>0.05) to non-complaint and outdoor samples. Both techniques showed high variability in the overall mold levels found between sites; however, the ratios of specific mold groups in each area tested, within the same site, were remarkably similar. The use of either viable or non-viable mold sampling techniques after mold remediation is essential for determining the success of such projects. This project demonstrates the relationship between mold levels and the success of a mold remediation projects, and will assist in the interpretation of data collected at the conclusion of a mold remediation project.

  1. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    PubMed

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 microm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (d(ae)) of 2-8 microm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D(50) of 1 microm (called PM(1) dust). PM(1) was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample 'total dust'. The PM(1) particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-beta-D-glucosaminidase (NAGase), and (1 --> 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other

  2. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens.

    PubMed

    Brooker, N L; Kuzimichev, Y; Laas, J; Pavlis, R

    2007-01-01

    Development of new and safer pesticides that are target-specific is backed by a strong Federal, public and commercial mandate. In order to generate a new generation of pesticides that are more ecologically friendly and safe, natural products are being evaluated for pesticidal activities. Many plant-derived chemicals have proven pesticidal properties, including compounds like sesamol (3,4-Methylenedioxyphenol), a lipid from sesame oil and coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Both of these plant-derived compounds have been shown to inhibit a range of fungi and bacteria and it is believed that these cyclic compounds behave as natural pesticidal defense molecules for plants. These compounds represent a starting point for the exploration of new derivative compounds possessing a range of antifungal activity and for use as seed protectants. Within this study, six derivatives of coumarin that resembled sesamol's structure were screened for their antifungal activity against a range of soil-bome plant pathogenic fungi. Fungi in this in vitro screen included Macrophomina phaseolina (causal agent of charcoal rot) and Pythium spp. (causal agent of seedling blight), two phylogenetically diverse and economically important plant pathogens. Preliminary studies indicate that many of these novel coumarin derivatives work very effectively in vitro to inhibit fungal growth and several coumarin derivatives have higher antifungal activity and stability as compared to either the original coumarin or sesamol compounds alone. Interestingly, several of these highly active coumarin derivatives are halogenated compounds with solubility in water, and they are relatively easy and inexpensive to synthesize. These halogenated coumarin derivatives remained active for extended periods of time displaying 100% inhibition of fungal growth for greater than 3 weeks in vitro. In addition to the in vitro fungal inhibition assays, preliminary

  3. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    PubMed

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations.

  4. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens.

    PubMed

    Crawford, Aaron; Wilson, Duncan

    2015-11-01

    The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi.

  5. Global distribution of two fungal pathogens threatening endangered sea turtles.

    PubMed

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide. PMID:24465748

  6. Global distribution of two fungal pathogens threatening endangered sea turtles.

    PubMed

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  7. Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles

    PubMed Central

    Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide. PMID:24465748

  8. The capsule of the fungal pathogen Cryptococcus neoformans.

    PubMed

    Zaragoza, Oscar; Rodrigues, Marcio L; De Jesus, Magdia; Frases, Susana; Dadachova, Ekaterina; Casadevall, Arturo

    2009-01-01

    The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MPs). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual molecular weight might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in C. neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review, we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis and particularly, its role as a virulence factor.

  9. The capsule of the fungal pathogen Cryptococcus neoformans

    PubMed Central

    Zaragoza, Oscar; Rodrigues, Marcio L.; De Jesus, Magdia; Frases, Susana; Dadachova, Ekaterina; Casadevall, Arturo

    2009-01-01

    The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades, and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MP). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual Mw might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in Cryptococcus neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis, and particularly, its role as a virulence factor. PMID:19426855

  10. Gene loss in the fungal canola pathogen Leptosphaeria maculans.

    PubMed

    Golicz, Agnieszka A; Martinez, Paula A; Zander, Manuel; Patel, Dhwani A; Van De Wouw, Angela P; Visendi, Paul; Fitzgerald, Timothy L; Edwards, David; Batley, Jacqueline

    2015-03-01

    Recent comparisons of the increasing number of genome sequences have revealed that variation in gene content is considerably more prevalent than previously thought. This variation is likely to have a pronounced effect on phenotypic diversity and represents a crucial target for the assessment of genomic diversity. Leptosphaeria maculans, a causative agent of phoma stem canker, is the most devastating fungal pathogen of Brassica napus (oilseed rape/canola). A number of L. maculans genes are known to be present in some isolates but lost in the others. We analyse gene content variation within three L. maculans isolates using a hybrid mapping and genome assembly approach and identify genes which are present in one of the isolates but missing in the others. In total, 57 genes are shown to be missing in at least one isolate. The genes encode proteins involved in a range of processes including oxidative processes, DNA maintenance, cell signalling and sexual reproduction. The results demonstrate the effectiveness of the method and provide new insight into genomic diversity in L. maculans. PMID:25421464

  11. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  12. Leaf Litter Inhibits Growth of an Amphibian Fungal Pathogen.

    PubMed

    Stoler, Aaron B; Berven, Keith A; Raffel, Thomas R

    2016-06-01

    Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs. PMID:26935822

  13. Airborne Fungal and Bacterial Components in PM1 Dust from Biofuel Plants

    PubMed Central

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-01-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 μm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (dae) of 2–8 μm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D50 of 1 μm (called PM1 dust). PM1 was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample ‘total dust’. The PM1 particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-β-D-glucosaminidase (NAGase), and (1 → 3)-β-D-glucans. In the 29 PM1 samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 → 3)-β-D-glucans, which are mainly associated with fungi, were present in all PM1 samples. Thermophilic actinomycetes were present in 23 of the 29 PM1 samples [average = 739 colony-forming units (CFU) m−3]. Cultivable and ‘total bacteria’ were found in average concentrations of, respectively, 249 CFU m−3 and 1.8 × 105 m−3. DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5–1.5 μm and only few particles >1.5 μm. The number of cultivable fungi and β-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 μm, with DNA/RNA-containing particles >1.5 μm, and with other fungal components in PM1

  14. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture

    PubMed Central

    Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.

    2013-01-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399

  15. Sensitivity of the brown dog tick, Rhipicephalus sanguineus to fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The brown dog tick, Rhipicephalus sanguineus, remains a primary ectoparasite concern in many dog kennels, shelters and residential homes. Challenges such as effective pesticide delivery and pesticide resistance confound control efforts. Use of biological control approaches such as fungal pathogen...

  16. Factors Affecting Vegetable Growers’ Exposure to Fungal Bioaerosols and Airborne Dust

    PubMed Central

    Hansen, Vinni M.; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-01-01

    We have quantified vegetable growers’ exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers’ exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers’ exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m−3) compared to exposures reported from other occupational environments. In conclusion, vegetable growers’ exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop. PMID:22003240

  17. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  18. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  19. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  20. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    PubMed

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-01

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. PMID:27590695

  1. Indigenous arbuscular mycorrhizal fungal assemblages protect grassland host plants from pathogens.

    PubMed

    Wehner, Jeannine; Antunes, Pedro M; Powell, Jeff R; Caruso, Tancredi; Rillig, Matthias C

    2011-01-01

    Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants.We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific. PMID:22110635

  2. The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens.

    PubMed

    Stukenbrock, Eva H

    2016-02-01

    Hybridization in fungi has recently been recognized as a major force in the generation of new fungal plant pathogens. These include the grass pathogen Zymoseptoria pseudotritici and the powdery mildew pathogen Blumeria graminis triticale of triticale. Hybridization also plays an important role in the transfer of genetic material between species. This process is termed introgressive hybridization and involves extensive backcrossing between hybrid and the parental species. Introgressive hybridization has contributed substantially to the successful spread of plant pathogens such as Ophiostoma ulmi and O. novo-ulmi, the causal agents of Dutch elm disease, and other tree pathogens such as the rust pathogen Melampsora. Hybridization occurs more readily between species that have previously not coexisted, so-called allopatric species. Reproductive barriers between allopatric species are likely to be more permissive allowing interspecific mating to occur. The bringing together of allopatric species of plant pathogens by global agricultural trade consequently increases the potential for hybridization between pathogen species. In light of global environmental changes, agricultural development, and the facilitated long-distance spread of fungal plant pathogens, hybridization should be considered an important mechanism whereby new pathogens may emerge. Recent studies have gained insight into the genetics and biology of fungal hybrids. Here I summarize current knowledge about hybrid speciation and introgressive hybridization. I propose that future studies will benefit greatly from the availability of large genome data sets and that genome data provide a powerful resource in combination with experimental approaches for analyses of hybrid species. PMID:26824768

  3. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  4. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    PubMed Central

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  5. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    PubMed

    Gozlan, Rodolphe E; Marshall, Wyth L; Lilje, Osu; Jessop, Casey N; Gleason, Frank H; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  6. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    PubMed Central

    Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442

  7. Novel insights into host-fungal pathogen interactions derived from live-cell imaging.

    PubMed

    Bain, Judith; Gow, Neil A R; Erwig, Lars-Peter

    2015-03-01

    The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, "There's plenty of room at the bottom", the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host. PMID:25398200

  8. Novel insights into host-fungal pathogen interactions derived from live-cell imaging.

    PubMed

    Bain, Judith; Gow, Neil A R; Erwig, Lars-Peter

    2015-03-01

    The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, "There's plenty of room at the bottom", the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host.

  9. Bat white-nose syndrome: An emerging fungal pathogen?

    USGS Publications Warehouse

    Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B. M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; Okoniewski, J.C.; Rudd, R.J.; Stone, W.B.

    2009-01-01

    White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychro-philic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.

  10. Bat white-nose syndrome: an emerging fungal pathogen?

    PubMed

    Blehert, David S; Hicks, Alan C; Behr, Melissa; Meteyer, Carol U; Berlowski-Zier, Brenda M; Buckles, Elizabeth L; Coleman, Jeremy T H; Darling, Scott R; Gargas, Andrea; Niver, Robyn; Okoniewski, Joseph C; Rudd, Robert J; Stone, Ward B

    2009-01-01

    White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychrophilic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS. PMID:18974316

  11. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti.

    PubMed

    Cho, Hyun Ji; Hong, Seong Won; Kim, Hyun-Ju; Kwak, Youn-Sig

    2016-02-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B. cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti. PMID:26889115

  12. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani.

    PubMed

    Brogue, K; Chet, I; Holliday, M; Cressman, R; Biddle, P; Knowlton, S; Mauvais, C J; Broglie, R

    1991-11-22

    The production of enzymes capable of degrading the cell walls of invading phytopathogenic fungi is an important component of the defense response of plants. The timing of this natural host defense mechanism was modified to produce fungal-resistant plants. Transgenic tobacco seedlings constitutively expressing a bean chitinase gene under control of the cauliflower mosaic virus 35S promoter showed an increased ability to survive in soil infested with the fungal pathogen Rhizoctonia solani and delayed development of disease symptoms.

  13. Determination of fungal pathogens of common weed species in the vicinity of Tokat, Turkey.

    PubMed

    Kadioğlu, I; Karamanli, N; Yanar, Y

    2010-01-01

    This study was carried out to determine the fungal pathogens on Chenopodium album L., Cirsium arvense (L.) Scop., Convolvulus arvensis L., Cynodon dactylon (L.) Pers., Delphinium consolida L., Portulaca oleracea L., Rumex crispus L., Solanum nigrum L., Sorghum halepense (L.) Pers. and Xanthium strumarium L. which were common weed species of agricultural areas. Surveys were conducted in May-June and August-September in 2004-2005 growing seasons. During the surveys density and frequency of the above mentioned weed species were also determined and number of infected plants was counted in each sampling area. Infected weed samples were collected from each sampling point and brought to the laboratory in polyethylene bags and the pathogens were identified at genus or species level. As a result of two year surveys, ten fungal pathogens were determined on eight weed species. The most important fungal pathogens determined on common weed species were as follow; Peronospora farinosa (Fr.) Fr. on C. album, and Septoria convolvuli DC., Erysiphe convolvuli DC., and Puccinia punctiformis (Strauss) Roehrl. on C. arvensis. These fungal diseases were observed mainly on the weeds located at the borders of fields. Infection rates of these pathogens reached up to 21.2% in some of the survey areas. Further studies should be conducted to evaluate the efficacy of these pathogen under in vitro and in vivo conditions.

  14. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  15. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24286763

  16. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  17. Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge.

    PubMed Central

    Pillai, S D; Widmer, K W; Dowd, S E; Ricke, S C

    1996-01-01

    Glass impingers (AGI-30) were used at a commercial sludge application site to determine the levels of airborne bacteria and pathogen indicators. Even though heterotrophic bacteria averaged 10(5) CFU/m3, none of the sites showed the presence of Salmonella spp. or indicators such as fecal coliforms or coliphages. Indicators such as H2S producers and pathogenic clostridia were present in locations having significant physical agitation of the sludge material. PCR-based ribotyping using the 16S-23S interspacer region is a promising method to identify the genetic relatedness and origins of airborne clostridia. PMID:8572708

  18. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    SciTech Connect

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  19. Phoma herbarum, a fungal plant saprophyte, as a fish pathogen

    USGS Publications Warehouse

    Ross, A.J.; Yasutake, W.T.; Leek, Steve

    1975-01-01

    Phoma herbarum, a fungal plant saprophyte, was isolated from diseased hatchery-reared coho salmon (Oncorhynchus kisutch), chinook salmon (O. tshawytscha), and rainbow trout (Salmo gairdneri). The disease was observed at 10 national fish hatcheries in Washington and Oregon, but the low incidence of experimental infections indicate that it is only weakly contagious. Histopathological examination suggests that the air bladder is one of the primary organs infected. The visceral organs are also affected in both natural and experimental infections.

  20. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct.

    PubMed

    van Esse, H Peter; Fradin, Emilie F; de Groot, Philip J; de Wit, Pierre J G M; Thomma, Bart P H J

    2009-03-01

    Plant activation of host defense against pathogenic microbes requires significant host transcriptional reprogramming. In this study, we compared transcriptional changes in tomato during compatible and incompatible interactions with the foliar fungal pathogen Cladosporium fulvum and the vascular fungal pathogen Verticillium dahliae. Although both pathogens colonize different host tissues, they display distinct commonalities in their infection strategy; both pathogens penetrate natural openings and grow strictly extracellular. Furthermore, resistance against both pathogens is conveyed by the same class of resistance proteins, the receptor-like proteins. For each individual pathogen, the expression profile of the compatible and incompatible interaction largely overlaps. However, when comparing between the two pathogens, the C. fulvum-induced transcriptional changes show little overlap with those induced by V. dahliae. Moreover, within the subset of genes that are regulated by both pathogens, many genes show inverse regulation. With pathway reconstruction, networks of tomato genes implicated in photorespiration, hypoxia, and glycoxylate metabolism were identified that are repressed upon infection with C. fulvum and induced by V. dahliae. Similarly, auxin signaling is differentially affected by the two pathogens. Thus, differentially regulated pathways were identified with novel strategies that allowed the use of state-of-the-art tools, even though tomato is not a genetic model organism.

  1. Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii.

    PubMed

    Warpeha, Katherine M; Park, Yoon-Dong; Williamson, Peter R

    2013-05-01

    The fungus Cryptococcus contributes a large global burden of infectious death in both HIV-infected and healthy individuals. As Cryptococcus is an opportunistic pathogen, much of the evolutionary pressure shaping virulence occurs in environments in contact with plants and soil. The present studies investigated inoculation of intact seeds of the common weed Arabidopsis thaliana with fungal cells over a 21-day period. C. gattii was the more virulent plant pathogen, resulting in disrupted germination as well as increased stem lodging, fungal burden, and plant tissue colocalization. C. neoformans was a less virulent plant pathogen but exhibited prolonged tissue residence within the cuticle and vascular spaces. Arabidopsis mutants of the PRN1 gene, which is involved in abiotic and biotic signaling affecting phenylalanine-derived flavonoids, showed altered susceptibility to cryptoccocal infections, suggesting roles for this pathway in cryptococcal defense. The fungal virulence factor laccase was also implicated in plant pathogenesis, as a cryptococcal lac1Δ strain was less virulent than wild-type fungi and was unable to colonize seedlings. In conclusion, these studies expand knowledge concerning the ecological niche of Cryptococcus by demonstrating the pathogenic capacity of the anamorphic form of cryptococcal cells against healthy seedlings under physiologically relevant conditions. In addition, an important role of laccase in plant as well as human virulence may suggest mechanisms for laccase retention and optimization during evolution of this fungal pathogen. PMID:23435895

  2. Role of Phospholipases in Fungal Fitness, Pathogenicity, and Drug Development – Lessons from Cryptococcus Neoformans

    PubMed Central

    Djordjevic, Julianne Teresa

    2010-01-01

    Many pathogenic microbes, including many fungi, produce phospholipases which facilitate survival of the pathogen in vivo, invasion and dissemination throughout the host, expression of virulence traits and evasion of host immune defense mechanisms. These phospholipases are either secreted or produced intracellularly and act by physically disrupting host membranes, and/or by affecting fungal cell signaling and production of immunomodulatory effectors. Many of the secreted phospholipases acquire a glycosylphosphatidylinositol sorting motif to facilitate membrane and/or cell wall association and secretion. This review focuses primarily on the role of two members of the phospholipase enzyme family, phospholipase B (Plb) and phosphatidylinositol (PI)-specific phospholipase C (PI-C/Plc), in fungal pathogenesis and in particular, what has been learnt about their function from studies performed in the model pathogenic yeast, Cryptococcus neoformans. These studies have revealed how Plb has adapted to become an important part of the virulence repertoire of pathogenic fungi and how its secretion is regulated. They have also provided valuable insight into how the intracellular enzyme, Plc1, contributes to fungal fitness and pathogenicity – via a putative role in signal transduction pathways that regulate the production of stress-protecting pigments, polysaccharide capsule, cell wall integrity, and adaptation to growth at host temperature. Finally, this review will address the role fungal phospholipases have played in the development of a new class of antifungal drugs, which mimic their phospholipid substrates. PMID:21687772

  3. Impact of the UPR on the virulence of the plant fungal pathogen A. brassicicola

    PubMed Central

    Guillemette, Thomas; Calmes, Benoit; Simoneau, Philippe

    2014-01-01

    The fungal genus Alternaria contains many destructive plant pathogens, including Alternaria brassicicola, which causes black spot disease on a wide range of Brassicaceae plants and which is routinely used as a model necrotrophic pathogen in studies with Arabidopsis thaliana. During host infection, many fungal proteins that are critical for disease progression are processed in the endoplasmic reticulum (ER)/Golgi system and secreted in planta. The unfolded protein response (UPR) is an essential part of ER protein quality control that ensures efficient maturation of secreted and membrane-bound proteins in eukaryotes. This review highlights the importance of the UPR signaling pathway with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle. Understanding the pathogenicity mechanisms that fungi uses during infection is crucial for the development of new antifungal therapies. Therefore the UPR pathway has emerged as a promising drug target for plant disease control. PMID:24189567

  4. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  5. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae.

    PubMed

    Mir, Albely Afifa; Park, Sook-Young; Abu Sadat, Md; Kim, Seongbeom; Choi, Jaeyoung; Jeon, Junhyun; Lee, Yong-Hwan

    2015-07-02

    Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus.

  6. Genome Sequencing and Comparative Genomics Analysis Revealed Pathogenic Potential in Penicillium capsulatum as a Novel Fungal Pathogen Belonging to Eurotiales

    PubMed Central

    Yang, Ying; Chen, Min; Li, Zongwei; Al-Hatmi, Abdullah M. S.; de Hoog, Sybren; Pan, Weihua; Ye, Qiang; Bo, Xiaochen; Li, Zhen; Wang, Shengqi; Wang, Junzhi; Chen, Huipeng; Liao, Wanqing

    2016-01-01

    Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen. PMID:27761131

  7. No Evidence for Immune Priming in Ants Exposed to a Fungal Pathogen

    PubMed Central

    Reber, Anabelle; Chapuisat, Michel

    2012-01-01

    There is accumulating evidence that invertebrates can acquire long-term protection against pathogens through immune priming. However, the range of pathogens eliciting immune priming and the specificity of the response remain unclear. Here, we tested if the exposure to a natural fungal pathogen elicited immune priming in ants. We found no evidence for immune priming in Formica selysi workers exposed to Beauveria bassiana. The initial exposure of ants to the fungus did not alter their resistance in a subsequent challenge with the same fungus. There was no sign of priming when using homologous and heterologous combinations of fungal strains for exposure and subsequent challenges at two time intervals. Hence, within the range of conditions tested, the immune response of this social insect to the fungal pathogen appears to lack memory and strain-specificity. These results show that immune priming is not ubiquitous across pathogens, hosts and conditions, possibly because of immune evasion by the pathogen or efficient social defences by the host. PMID:22523588

  8. Focal accumulation of defences at sites of fungal pathogen attack

    PubMed Central

    Underwood, William; Somerville, Shauna C.

    2008-01-01

    Plants resist attack by haustorium-forming biotrophic and hemi-biotrophic fungi through fortification of the cell wall to prevent penetration through the wall and the subsequent establishment of haustorial feeding structures by the fungus. While the existence of cell wall-based defences has been known for many years, only recently have the molecular components contributing to such defences been identified. Forward genetic screens identified Arabidopsis mutants impaired in penetration resistance to powdery mildew fungi that were normally halted at the cell wall. Several loci contributing to penetration resistance have been identified and a common feature is the striking focal accumulation of proteins associated with penetration resistance at sites of interaction with fungal appressoria and penetration pegs. The focal accumulation of defence-related proteins and the deposition of cell wall reinforcements at sites of attempted fungal penetration represent an example of cell polarization and raise many questions of relevance, not only to plant pathology but also to general cell biology. PMID:18703493

  9. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens

    PubMed Central

    Alkan, Noam; Fortes, Ana M.

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204

  10. Applications of molecular markers and DNA sequences in identifying fungal pathogens of cool season grain legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular techniques have now been widely applied in many disciplines of biological sciences including fungal identification in microbial ecology and plant pathology. In plant pathology, it is now common to use molecular techniques to identify and study plant pathogens of many agronomic and horticul...

  11. Molecular characterization and pathogenicity of fungal isolates for use against the small hive beetle (Aethina tumida)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analysis of DNA sequences from fungal pathogens obtained from cadavers of the small hive beetle (SHB) collected from several apiaries in Florida revealed a mixture of saprobes and two potential primary entomopathogens, Metarhizium anisopliae and Beauveria bassiana. Spray tower bioassays indicate...

  12. Biological control of Spreading Dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and field experiments showed that conidia of the fungal pathogen, Phoma commelinicola exhibited bioherbicidal activity on spreading dayflower (Commelina diffusa) seedlings when applied at concentrations of 106 to 109 conidia ml-1. Greenhouse tests determined an optimal temperature for co...

  13. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  14. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.

    PubMed

    Lai, Zhibing; Wang, Fei; Zheng, Zuyu; Fan, Baofang; Chen, Zhixiang

    2011-06-01

    Autophagy is a pathway for degradation of cytoplasmic components. In plants, autophagy plays an important role in nutrient recycling during nitrogen or carbon starvation, and in responses to abiotic stress. Autophagy also regulates age- and immunity-related programmed cell death, which is important in plant defense against biotrophic pathogens. Here we show that autophagy plays a critical role in plant resistance to necrotrophic pathogens. ATG18a, a critical autophagy protein in Arabidopsis, interacts with WRKY33, a transcription factor that is required for resistance to necrotrophic pathogens. Expression of autophagy genes and formation of autophagosomes are induced in Arabidopsis by the necrotrophic fungal pathogen Botrytis cinerea. Induction of ATG18a and autophagy by B. cinerea was compromised in the wrky33 mutant, which is highly susceptible to necrotrophic pathogens. Arabidopsis mutants defective in autophagy exhibit enhanced susceptibility to the necrotrophic fungal pathogens B. cinerea and Alternaria brassicicola based on increased pathogen growth in the mutants. The hypersusceptibility of the autophagy mutants was associated with reduced expression of the jasmonate-regulated PFD1.2 gene, accelerated development of senescence-like chlorotic symptoms, and increased protein degradation in infected plant tissues. These results strongly suggest that autophagy cooperates with jasmonate- and WRKY33-mediated signaling pathways in the regulation of plant defense responses to necrotrophic pathogens.

  15. A Fungal Symbiont of Plant-Roots Modulates Mycotoxin Gene Expression in the Pathogen Fusarium sambucinum

    PubMed Central

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-01-01

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens. PMID:21455305

  16. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro

    2014-01-01

    Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  17. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  18. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    PubMed

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-01-01

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  19. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers.

    PubMed

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan; Ro, Hyeon-Su

    2013-12-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949

  20. Maternal Exposure of a Beetle to Pathogens Protects Offspring against Fungal Disease

    PubMed Central

    Fisher, Joanna J.; Hajek, Ann E.

    2015-01-01

    Maternal exposure to an immune challenge can convey enhanced immunity to invertebrate offspring in the next generation. We investigated whether maternal exposure of the Asian longhorned beetle, Anoplophora glabripennis, to two species of the fungus Metarhizium or the bacterium Serratia marcescens elicited transgenerational immune priming (TGIP). We tested specificity of this protection and whether occurrence of TGIP was dependent on maternal exposure to living versus dead pathogens. Our results show that TGIP occurred and protected offspring against Metarhizium brunneum. Maternal exposure to S. marcescens provided non-specific protection to offspring against a fungal pathogen, but TGIP in response to Metarhizium only occurred when offspring were exposed to the same fungal species that was used to prime mothers. Moreover, TGIP in response to M. brunneum occurred only after maternal exposure to living rather than dead fungus. Our findings suggest that occurrence of TGIP could be both specific and dependent on whether the pathogen was alive. PMID:25938586

  1. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens.

    PubMed

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  2. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens.

    PubMed

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  3. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens

    PubMed Central

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  4. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens.

    PubMed

    Güell, Imma; Micaló, Lluís; Cano, Laura; Badosa, Esther; Ferre, Rafael; Montesinos, Emilio; Bardají, Eduard; Feliu, Lidia; Planas, Marta

    2012-01-01

    We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents. PMID:22198367

  5. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  6. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host

    PubMed Central

    Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno

    2012-01-01

    Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656

  7. Imaging O2 changes induced in tomato roots by fungal pathogen

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Turco, E.; Rodeghiero, M.; Bellin, A.

    2014-12-01

    In the last decade, planar optodes have demonstrated to be a useful non-invasive tool to monitor real time oxygen concentrations in a wide range of applications. However, only limited investigations have been carried out to explore the use of optodes in plant respiration studies. In particular, their use to study plant-pathogen interactions has been not deeply investigated. Here, we present for the first time an in vitro experimental setup capable to depict the dynamical effects of the fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol) on tomato roots by the use of a recently developed optical non-invasive optode oxygen sensor (Visisens, Presens, Germany). Fol is a soil-borne pathogen and the causal agent of wilt in tomato plants, a destructive worldwide disease. The interaction Fol-tomato is widely accepted as a model system in plant pathology. In this work, oxygen concentrations are monitored continuously in time and considered a proxy for root respiration and metabolic activity. The experimental procedure reveals three different dynamic stages: 1) a uniform oxygen consumption in tomato roots earlier before pathogen colonization, 2) a progressive decrease in the oxygen concentration indicating a high metabolic activity as soon as the roots were surrounded and colonized by the fungal mycelium, and 3) absence of root respiration, as a consequence of root death. Our results suggest the ability of the fungal mycelium to move preferentially towards and along the root as a consequence of the recognition event.

  8. Sporothrix schenckii complex biology: environment and fungal pathogenicity.

    PubMed

    Téllez, M D; Batista-Duharte, A; Portuondo, D; Quinello, C; Bonne-Hernández, R; Carlos, I Z

    2014-11-01

    Sporothrix schenckii is a complex of various species of fungus found in soils, plants, decaying vegetables and other outdoor environments. It is the aetiological agent of sporotrichosis in humans and several animals. Humans and animals can acquire the disease through traumatic inoculation of the fungus into subcutaneous tissue. Despite the importance of sporotrichosis, it being currently regarded as an emergent disease in several countries, the factors driving its increasing medical importance are still largely unknown. There have only been a few studies addressing the influence of the environment on the virulence of these pathogens. However, recent studies have demonstrated that adverse conditions in its natural habitats can trigger the expression of different virulence factors that confer survival advantages both in animal hosts and in the environment. In this review, we provide updates on the important advances in the understanding of the biology of Spor. schenckii and the modification of its virulence linked to demonstrated or putative environmental factors.

  9. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens.

    PubMed

    Girard, Ian J; Mcloughlin, Austein G; de Kievit, Teresa R; Fernando, Dilantha W G; Belmonte, Mark F

    2016-01-01

    With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA. PMID:27303409

  10. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens

    PubMed Central

    Girard, Ian J.; Mcloughlin, Austein G.; de Kievit, Teresa R.; Fernando, Dilantha W. G.; Belmonte, Mark F.

    2016-01-01

    With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant–pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA. PMID:27303409

  11. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens.

    PubMed

    Girard, Ian J; Mcloughlin, Austein G; de Kievit, Teresa R; Fernando, Dilantha W G; Belmonte, Mark F

    2016-01-01

    With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  12. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.

    PubMed

    Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S

    2016-03-01

    Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. PMID:26922990

  13. Identification of fungal pathogens in Formalin-fixed, Paraffin-embedded tissue samples by molecular methods.

    PubMed

    Rickerts, Volker

    2016-02-01

    The etiology of invasive fungal infections (IFI) is incompletely understood due to diagnostic limitations including insensitivity of cultures and failure of histopathology to discriminate between different species. This diagnostic gap precludes the optimal use of antifungals, leading to adverse patient outcomes. The identification of fungal pathogens from Formalin-fixed, Paraffin-embedded tissue (FFPE) blocks by molecular methods is emerging as an alternative approach to study the etiology of IFI. PCR assays, including species specific- and broadrange fungal tests are used with FFPE samples from patients with proven IFI. Fungal species identification is achieved in 15-90% of the samples. This heterogeneity may be explained by the samples studied. However, comparison of different studies is impaired, as controls ruling out false positive-, false negative test results or PCR inhibition are frequently not reported. Studies using in situ hybridization also vary in the clinical samples included and the targeted fungi. In addition, target sequences, the probe chemistry and the detection of hybridization signals also account for the differences in diagnostic sensitivity. Using both approaches in parallel yields additive insights, potentially leading to a superior identification of fungal etiology and awareness of the limitations of both molecular diagnostic approaches.

  14. Fungal pathogens of Miconia calvescens (Melastomataceae) from Brazil, with reference to classical biological control.

    PubMed

    Seixas, Claudine D S; Barreto, Robert W; Killgore, Eloise

    2007-01-01

    A survey of fungal pathogens of Miconia calvescens was carried out in Brazil aimed at finding potential classical biocontrol agents for management of this invasive alien weed in Hawaii. Coccodiella miconiae, Glomerella cingulata (= Colletotrichum gloeosporioides f. sp. miconiae) and the new species Guignardia miconiae and Korunomyces prostratus were found associated with foliar diseases and are described herein. Two previously undescribed spore stages of Coccodiella miconiae also were obtained allowing a complete description of this species. Pseudocercospora tamonae associated with leaf spots of other species of Miconia also was collected and also was proven to be pathogenic to M. calvescens. PMID:17663128

  15. Molecular identification of fungal pathogens in nodular skin lesions of cats.

    PubMed

    Bernhardt, Anne; von Bomhard, Wolf; Antweiler, Elisabeth; Tintelnot, Kathrin

    2015-02-01

    In a retrospective study, we investigated 52 formalin-fixed, paraffin-embedded (FFPE) samples from cats with histologically confirmed cutaneous and subcutaneous mycoses to determine if the pathogens could be identified by molecular methods. Aim of the study was to obtain a deep understanding of the spectrum of infectious agents, which, as we hypothesized, was not available by histopathology alone. Detection of feline and fungal DNA was achieved in 92.3% and 94.2% of the samples, respectively. Most of the subcutaneous infections in cats were caused by Alternaria spp. (63.5%), followed by Cryptococcus neoformans (7.7%), Histoplasma capsulatum (5.8%), Sporothrix spp. (3.8%), Aspergillus vitricola, Aureobasidium pullulans, Exophiala attenuata, Fusarium oxysporum, Lecythophora cateniformis, Microsporum canis, and Phialophora sp. (1.9% each). The results from molecular identification indicate that correct identifications of the fungal pathogens by histology alone were rarely possible. The spectrum of fungal pathogens identified after DNA extraction from FFPE samples was much broader than that expected by classical histopathology. This was especially noted in alternariosis in that the micromorphological pattern in tissue was misleading and could be confused with that of cryptococcosis. Due to different susceptibilities to antifungal agents, it is important to arrive at a definitive diagnosis, which might be possible by examination of the fungus recovered in culture and/or molecular methods, in addition to the histopathologic techniques. PMID:25550386

  16. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.

    PubMed

    Zheng, Zuyu; Qamar, Synan Abu; Chen, Zhixiang; Mengiste, Tesfaye

    2006-11-01

    Plant WRKY transcription factors are key regulatory components of plant responses to microbial infection. In addition to regulating the expression of defense-related genes, WRKY transcription factors have also been shown to regulate cross-talk between jasmonate- and salicylate-regulated disease response pathways. The two pathways mediate resistance against different types of microbial pathogens, and there are numerous reports of antagonistic interactions between them. Here we show that mutations of the Arabidopsis WRKY33 gene encoding a WRKY transcription factor cause enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the jasmonate-regulated plant defensin PDF1.2 gene. Ectopic over-expression of WRKY33, on the other hand, increases resistance to the two necrotrophic fungal pathogens. The wrky33 mutants do not show altered responses to a virulent strain of the bacterial pathogen Pseudomonas syringae, although the ectopic expression of WRKY33 results in enhanced susceptibility to this pathogen. The susceptibility of WRKY33-over-expressing plants to P. syringae is associated with reduced expression of the salicylate-regulated PR-1 gene. The WRKY33 transcript is induced in response to pathogen infection, or treatment with salicylate or the paraquat herbicide that generates activated oxygen species in exposed cells. WRKY33 is localized to the nucleus of plant cells and recognizes DNA molecules containing the TTGACC W-box sequence. Together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic pathogens.

  17. Douglas-fir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens.

    PubMed

    Axelrood, P E; Clarke, A M; Radley, R; Zemcov, S J

    1996-07-01

    A microbial culture collection composed of 1820 bacterial strains, including 298 actinomycete strains, was established from the roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings harvested from conifer nurseries and forest sites. Two hundred and thirty-four strains inhibited the growth of Fusarium, Cylindrocarpon, and (or) Pythium spp. in in vitro assays. A significantly greater proportion of bacterial strains from actinomycete genera exhibited antifungal properties compared with bacterial strains from nonactinomycete genera. Eighty-nine percent of identified inhibitory strains were Streptomyces, Streptoverticillium, Bacillus, Pseudomonas, or Burkholderia species. The actinomycete species were isolated almost exclusively from forest seedlings. Recovery of inhibitory strains representing 29 microbial species was enhanced using a variety of methods to isolate microorganisms from the roots of seedlings from nursery and forest sites. Bacterial strains (including actinomycete strains) with antifungal activity were tested for in vitro growth inhibition of six clinical human bacterial pathogens (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Forty-eight percent of the tested strains inhibited one or more human pathogens, Inhibitory activity towards fungal and bacterial pathogens was strain specific, not species specific, and many inhibitory strains exhibited broad-spectrum activity. Strains with antifungal activity against several conifer root pathogens were also more likely to inhibit multiple species of clinical bacterial pathogens.

  18. Herbivore and Fungal Pathogen Exclusion Affects the Seed Production of Four Common Grassland Species

    PubMed Central

    Dickson, Timothy L.; Mitchell, Charles E.

    2010-01-01

    Insect herbivores and fungal pathogens can independently affect plant fitness, and may have interactive effects. However, few studies have experimentally quantified the joint effects of insects and fungal pathogens on seed production in non-agricultural populations. We examined the factorial effects of insect herbivore exclusion (via insecticide) and fungal pathogen exclusion (via fungicide) on the population-level seed production of four common graminoid species (Andropogon gerardii, Schizachyrium scoparium, Poa pratensis, and Carex siccata) over two growing seasons in Minnesota, USA. We detected no interactive effects of herbivores and pathogens on seed production. However, the seed production of all four species was affected by either insecticide or fungicide in at least one year of the study. Insecticide consistently doubled the seed production of the historically most common species in the North American tallgrass prairie, A. gerardii (big bluestem). This is the first report of insect removal increasing seed production in this species. Insecticide increased A. gerardii number of seeds per seed head in one year, and mass per seed in both years, suggesting that consumption of flowers and seed embryos contributed to the effect on seed production. One of the primary insect species consuming A. gerardii flowers and seed embryos was likely the Cecidomyiid midge, Contarinia wattsi. Effects on all other plant species varied among years. Herbivores and pathogens likely reduce the dispersal and colonization ability of plants when they reduce seed output. Therefore, impacts on seed production of competitive dominant species may help to explain their relatively poor colonization abilities. Reduced seed output by dominant graminoids may thereby promote coexistence with subdominant species through competition-colonization tradeoffs. PMID:20711408

  19. Modelling soil borne fungal pathogens of arable crops under climate change

    NASA Astrophysics Data System (ADS)

    Manici, L. M.; Bregaglio, S.; Fumagalli, D.; Donatelli, M.

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  20. Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens

    PubMed Central

    Rahnamaeian, Mohammad; Langen, Gregor; Imani, Jafargholi; Khalifa, Walaa; Altincicek, Boran; von Wettstein, Diter; Kogel, Karl-Heinz; Vilcinskas, Andreas

    2009-01-01

    The potential of metchnikowin, a 26-amino acid residue proline-rich antimicrobial peptide synthesized in the fat body of Drosophila melanogaster was explored to engineer disease resistance in barley against devastating fungal plant pathogens. The synthetic peptide caused strong in vitro growth inhibition (IC50 value ∼1 μM) of the pathogenic fungus Fusarium graminearum. Transgenic barley expressing the metchnikowin gene in its 52-amino acid pre-pro-peptide form under the control of the inducible mannopine synthase (mas) gene promoter from the Ti plasmid of Agrobacterium tumefaciens displayed enhanced resistance to powdery mildew as well as Fusarium head blight and root rot. In response to these pathogens, metchnikowin accumulated in plant apoplastic space, specifying that the insect signal peptide is functional in monocotyledons. In vitro and in vivo tests revealed that the peptide is markedly effective against fungal pathogens of the phylum Ascomycota but, clearly, less active against Basidiomycota fungi. Importantly, germination of the mutualistic basidiomycete mycorrhizal fungus Piriformospora indica was affected only at concentrations beyond 50 μM. These results suggest that antifungal peptides from insects are a valuable source for crop plant improvements and their differential activities toward different phyla of fungi denote a capacity for insect peptides to be used as selective measures on specific plant diseases. PMID:19734262

  1. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians

    PubMed Central

    Briggs, Cheryl J.; Knapp, Roland A.; Vredenburg, Vance T.

    2010-01-01

    Chytridiomycosis, the disease caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to amphibian population declines and extinctions worldwide. The impact of this pathogen, however, varies markedly among amphibian species and populations. Following invasion into some areas of California's Sierra Nevada, Bd leads to rapid declines and local extinctions of frog populations (Rana muscosa, R. sierrae). In other areas, infected populations of the same frog species have declined but persisted at low host densities for many years. We present results of a 5-year study showing that infected adult frogs in persistent populations have low fungal loads, are surviving between years, and frequently lose and regain the infection. Here we put forward the hypothesis that fungal load dynamics can explain the different population-level outcomes of Bd observed in different areas of the Sierra Nevada and possibly throughout the world. We develop a model that incorporates the biological details of the Bd-host interaction. Importantly, model results suggest that host persistence versus extinction does not require differences in host susceptibility, pathogen virulence, or environmental conditions, and may be just epidemic and endemic population dynamics of the same host–pathogen system. The different disease outcomes seen in natural populations may result solely from density-dependent host–pathogen dynamics. The model also shows that persistence of Bd is enhanced by the long-lived tadpole stage that characterize these two frog species, and by nonhost Bd reservoirs. PMID:20457916

  2. Airborne Transmission of Highly Pathogenic H7N1 Influenza Virus in Ferrets

    PubMed Central

    Finch, Courtney; Shao, Hongxia; Angel, Matthew; Chen, Hongjun; Capua, Ilaria; Cattoli, Giovanni; Monne, Isabella

    2014-01-01

    ABSTRACT Avian H7 influenza viruses are recognized as potential pandemic viruses, as personnel often become infected during poultry outbreaks. H7 infections in humans typically cause mild conjunctivitis; however, the H7N9 outbreak in the spring of 2013 has resulted in severe respiratory disease. To date, no H7 viruses have acquired the ability for sustained transmission among humans. Airborne transmission is considered a requirement for the emergence of pandemic influenza, and advanced knowledge of the molecular changes or signature required for transmission would allow early identification of pandemic vaccine seed stocks, screening and stockpiling of antiviral compounds, and eradication efforts focused on flocks harboring threatening viruses. Thus, we sought to determine if a highly pathogenic influenza A H7N1 (A/H7N1) virus with no history of human infection could become capable of airborne transmission among ferrets. We show that after 10 serial passages, A/H7N1 developed the ability to be transmitted to cohoused and airborne contact ferrets. Four amino acid mutations (PB2 T81I, NP V284M, and M1 R95K and Q211K) in the internal genes and a minimal amino acid mutation (K/R313R) in the stalk region of the hemagglutinin protein were associated with airborne transmission. Furthermore, transmission was not associated with loss of virulence. These findings highlight the importance of the internal genes in host adaptation and suggest that natural isolates carrying these mutations be further evaluated. Our results demonstrate that a highly pathogenic avian H7 virus can become capable of airborne transmission in a mammalian host, and they support ongoing surveillance and pandemic H7 vaccine development. IMPORTANCE The major findings of this report are that a highly pathogenic strain of H7N1 avian influenza virus can be adapted to become capable of airborne transmission in mammals without mutations altering receptor specificity. Changes in receptor specificity have been

  3. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    PubMed

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity. PMID:24130895

  4. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    PubMed

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  5. Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera.

    PubMed

    Alamouti, Sepideh M; Wang, Vincent; Diguistini, Scott; Six, Diana L; Bohlmann, Jörg; Hamelin, Richard C; Feau, Nicolas; Breuil, Colette

    2011-06-01

    Grosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D. ponderosae are expanding in large epidemics in western North America. Using the fungal genome sequence and gene annotations, we assessed whether fungal isolates from the two beetles inhabiting different species of pine in epidemic regions of western Canada and the USA, as well as in localized populations outside of the current epidemic, represent different genetic lineages. We characterized nucleotide variations in 67 genomic regions and selected 15 for the phylogenetic analysis. Using concordance of gene genealogies and distinct ecological characteristics, we identified two sibling phylogenetic species: Gc and Gs. Where the closely related Pinus ponderosa and P. jeffreyi are infested by localized populations of their respective beetles, Gc is present. In contrast, Gs is an exclusive associate of D. ponderosae mainly present on its primary host-tree P. contorta; however, in the current epidemic areas, it is also found in other pine species. These results suggest that the host-tree species and the beetle population dynamics may be important factors associated with the genetic divergence and diversity of fungal partners in the beetle-tree ecosystems. Gc represents the original G. clavigera holotype, and Gs should be described as a new species. PMID:21557782

  6. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility.

    PubMed

    da Silva, Marcelo B; Marques, Alexandre F; Nosanchuk, Josh D; Casadevall, Arturo; Travassos, Luiz R; Taborda, Carlos P

    2006-01-01

    The fungal pathogen Paracoccidioides brasiliensis produces a melanin-like pigment in the presence of l-DOPA in vitro. We investigated whether melanization affected yeast uptake by alveolar and peritoneal macrophages, the intracellular resistance of fungal cells and their susceptibility to antifungal drugs. The interactions of melanized and nonmelanized P. brasiliensis with murine primary macrophages and J774.16 and MH-S macrophage-like cell lines were investigated. Melanized yeast cells were poorly phagocytosed by the cells even in the presence of complement. Melanization caused significant interference with the binding of cell wall components to lectin receptors on macrophages. Melanized cells were also more resistant than nonmelanized cells to the antifungal activity of murine macrophages. No difference in the susceptibilities of melanized and nonmelanized P. brasiliensis to antifungal drugs was observed using the minimum inhibitory concentration (MIC) method. However killing assays showed that melanization significantly reduced fungal susceptibility to amphotericin B and also protected against ketoconazole, fluconazole, itraconazole and sulfamethoxazole. The present results indicate that fungal melanin protects P. brasiliensis from phagocytosis and increases its resistance to antifungal drugs.

  7. Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera.

    PubMed

    Alamouti, Sepideh M; Wang, Vincent; Diguistini, Scott; Six, Diana L; Bohlmann, Jörg; Hamelin, Richard C; Feau, Nicolas; Breuil, Colette

    2011-06-01

    Grosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D. ponderosae are expanding in large epidemics in western North America. Using the fungal genome sequence and gene annotations, we assessed whether fungal isolates from the two beetles inhabiting different species of pine in epidemic regions of western Canada and the USA, as well as in localized populations outside of the current epidemic, represent different genetic lineages. We characterized nucleotide variations in 67 genomic regions and selected 15 for the phylogenetic analysis. Using concordance of gene genealogies and distinct ecological characteristics, we identified two sibling phylogenetic species: Gc and Gs. Where the closely related Pinus ponderosa and P. jeffreyi are infested by localized populations of their respective beetles, Gc is present. In contrast, Gs is an exclusive associate of D. ponderosae mainly present on its primary host-tree P. contorta; however, in the current epidemic areas, it is also found in other pine species. These results suggest that the host-tree species and the beetle population dynamics may be important factors associated with the genetic divergence and diversity of fungal partners in the beetle-tree ecosystems. Gc represents the original G. clavigera holotype, and Gs should be described as a new species.

  8. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    SciTech Connect

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  9. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals.

    PubMed

    Turrà, David; El Ghalid, Mennat; Rossi, Federico; Di Pietro, Antonio

    2015-11-26

    For more than a century, fungal pathogens and symbionts have been known to orient hyphal growth towards chemical stimuli from the host plant. However, the nature of the plant signals as well as the mechanisms underlying the chemotropic response have remained elusive. Here we show that directed growth of the soil-inhabiting plant pathogen Fusarium oxysporum towards the roots of the host tomato (Solanum lycopersicum) is triggered by the catalytic activity of secreted class III peroxidases, a family of haem-containing enzymes present in all land plants. The chemotropic response requires conserved elements of the fungal cell integrity mitogen-activated protein kinase (MAPK) cascade and the seven-pass transmembrane protein Ste2, a functional homologue of the Saccharomyces cerevisiae sex pheromone α receptor. We further show that directed hyphal growth of F. oxysporum towards nutrient sources such as sugars and amino acids is governed by a functionally distinct MAPK cascade. These results reveal a potentially conserved chemotropic mechanism in root-colonizing fungi, and suggest a new function for the fungal pheromone-sensing machinery in locating plant hosts in a complex environment such as the soil. PMID:26503056

  10. Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis.

    PubMed

    Chan, Giek Far; Puad, Mohamad Safwan Ahmad; Chin, Chai Fung; Rashid, Noor Aini Abdul

    2011-09-01

    Despite the great importance of Aureobasidium pullulans in biotechnology, the fungus had emerged as an opportunistic human pathogen, especially among immunocompromised patients. Clinical detection of this rare human fungal pathogen presently relies on morphology diagnosis which may be misleading. Thus, a sensitive and accurate quantitative molecular assay for A. pullulans remains lacking. In this study, we presented the microscopy observations of A. pullulans that reveals the phenotypic plasticity of the fungus. A. pullulans-specific primers and molecular beacon probes were designed based on the fungal 18S ribosomal RNA (rRNA) gene. Comparison of two probes with varied quencher chemistry, namely BHQ-1 and Tamra, revealed high amplification efficiency of 104% and 108%, respectively. The optimized quantitative real-time PCR (qPCR) assays could detect and quantify up to 1 pg concentration of A. pullulans DNA. Both assays displayed satisfactory performance parameters at fast thermal cycling mode. The molecular assay has great potential as a molecular diagnosis tool for early detection of fungal infection caused by A. pullulans, which merits future study in clinical diagnosis.

  11. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  12. Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens.

    PubMed

    Carpenter, Margaret A; Ridgway, Hayley J; Stringer, Alison M; Hay, Amanda J; Stewart, Alison

    2008-04-01

    A monooxygenase gene was isolated from a biocontrol strain of Trichoderma hamatum and its role in biocontrol was investigated. The gene had homologues in other fungal genomes, but was not closely related to any fully characterised gene. The T. hamatum monooxygenase gene was expressed specifically in response to the plant pathogens Sclerotinia sclerotiorum, Sclerotinia minor and Sclerotium cepivorum, but not in response to Botrytis cinerea or T. hamatum. Expression of the gene did not occur until contact had been made between the two fungal species. Homologues in T. atroviride and T. virens showed similar expression patterns. Expression of the gene in response to S. sclerotiorum was influenced by pH, with a peak of expression at pH 4, and was subject to nitrogen catabolite repression. Disruption of the monooxygenase gene did not affect the growth or morphology of T. hamatum, but caused a decrease in its ability to inhibit the growth and sclerotial production of S. sclerotiorum. The monooxygenase gene had a role in the antagonistic activity of Trichoderma species against specific fungal plant pathogens and is therefore a potentially important factor in biocontrol by Trichoderma species. PMID:18231791

  13. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity

    PubMed Central

    Lev, Sophie; Li, Cecilia; Desmarini, Desmarini; Saiardi, Adolfo; Fewings, Nicole L.; Schibeci, Stephen D.; Sharma, Raghwa; Sorrell, Tania C.

    2015-01-01

    ABSTRACT Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. PMID:26037119

  14. A Fungal Pathogen of Amphibians, Batrachochytrium dendrobatidis, Attenuates in Pathogenicity with In Vitro Passages

    PubMed Central

    Langhammer, Penny F.; Lips, Karen R.; Burrowes, Patricia A.; Tunstall, Tate; Palmer, Crystal M.; Collins, James P.

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen’s role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity. PMID:24130895

  15. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    PubMed

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.

  16. Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function

    PubMed Central

    Tonthat, Nam K.; Juvvadi, Praveen Rao; Zhang, Hengshan; Lee, Soo Chan; Venters, Ron; Spicer, Leonard; Steinbach, William J.; Heitman, Joseph

    2016-01-01

    ABSTRACT Invasive fungal infections remain difficult to treat and require novel targeting strategies. The 12-kDa FK506-binding protein (FKBP12) is a ubiquitously expressed peptidyl-prolyl isomerase with considerable homology between fungal pathogens and is thus a prime candidate for future targeting efforts to generate a panfungal strategy. Despite decades of research on FKBPs, their substrates and mechanisms of action remain unclear. Here we describe structural, biochemical, and in vivo analyses of FKBP12s from the pathogenic fungi Candida albicans, Candida glabrata, and Aspergillus fumigatus. Strikingly, multiple apo A. fumigatus and C. albicans FKBP12 crystal structures revealed a symmetric, intermolecular interaction involving the deep insertion of an active-site loop proline into the active-site pocket of an adjacent subunit. Such interactions have not been observed in previous FKBP structures. This finding indicates the possibility that this is a self-substrate interaction unique to the A. fumigatus and C. albicans fungal proteins that contain this central proline. Structures obtained with the proline in the cis and trans states provide more data in support of self-catalysis. Moreover, cysteine cross-linking experiments captured the interacting dimer, supporting the idea that it forms in solution. Finally, genetic studies exploring the impact of mutations altering the central proline and an adjacent residue provide evidence that any dimeric state formed in vivo, where FKBP12 concentrations are low, is transient. Taken together, these findings suggest a unique mechanism of self-substrate regulation by fungal FKBP12s, lending further novel understanding of this protein for future drug-targeting efforts. PMID:27118592

  17. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.

    PubMed

    Ghosh, Anup K; Wangsanut, Tanaporn; Fonzi, William A; Rolfes, Ronda J

    2015-12-01

    Candida albicans is the most common human fungal pathogen and can cause life-threatening infections. Filamentous growth is critical in the pathogenicity of C. albicans, as the transition from yeast to hyphal forms is linked to virulence and is also a pivotal process in fungal biofilm development. Homeodomain-containing transcription factors have been linked to developmental processes in fungi and other eukaryotes. We report here on GRF10, a homeobox transcription factor-encoding gene that plays a role in C. albicans filamentation. Deletion of the GRF10 gene, in both C. albicans SN152 and BWP17 strain backgrounds, results in mutants with strongly decreased hyphal growth. The mutants are defective in chlamydospore and biofilm formation, as well as showing dramatically attenuated virulence in a mouse infection model. Expression of the GRF10 gene is highly induced during stationary phase and filamentation. In summary, our study emphasizes a new role for the homeodomain-containing transcription factor in morphogenesis and pathogenicity of C. albicans.

  18. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome

    PubMed Central

    Langwig, Kate E.; Frick, Winifred F.; Reynolds, Rick; Parise, Katy L.; Drees, Kevin P.; Hoyt, Joseph R.; Cheng, Tina L.; Kunz, Thomas H.; Foster, Jeffrey T.; Kilpatrick, A. Marm

    2015-01-01

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. PMID:25473016

  19. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    PubMed

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity. PMID:26361476

  20. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.

    PubMed

    Langwig, Kate E; Frick, Winifred F; Reynolds, Rick; Parise, Katy L; Drees, Kevin P; Hoyt, Joseph R; Cheng, Tina L; Kunz, Thomas H; Foster, Jeffrey T; Kilpatrick, A Marm

    2015-01-22

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. PMID:25473016

  1. Currency notes and coins as a possible source of transmitting fungal pathogens of man and plants.

    PubMed

    Wanule, Dinesh; Jalander, Vaghmare; Gachande, B D; Sirsikar, A N

    2011-10-01

    Currency (notes and coins) handling by people during transaction is one of the most mobile objects within the community, which has a potential of transmitting pathogens. A survey carried out recently in Nanded city (Maharashtra) revealed heavy contamination of currency notes and coins by important fungal pathogens of plants and man, i.e. Aspergillus niger (60.37%), A. flavus (3.98%), A.nidulans (0.2%), Penicillium citrinum (17.80%), Alternaria tenuis (0.20%), Curvularia pallescens (0.20%), Cladosporium cladosporioides (10.69%), Rhizopus stolonifer (1.04%), an unidentified Aspergillus species .1 (0.20%) and another unidentified Aspergillus species.2 (3.14%), Fusarium sp. (0.20%), Trichoderma viride (0.20%),white sterile mycelium (0.62%) and brown sterile mycelium (0.62%). The study highlights the importance of preventing and controlling fungal contamination of currency notes and coins in public health and plant protection. Currency notes or coins are rarely suspected as infection sources and often not quarantined at airport or seaport terminal. Possible transmission of pathogens or "alien", invasive species through currency across borders or across countries needs to be taken into consideration especially under circumstances of serious outbreak of important disease or when there is a threat of biological warfare.

  2. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    PubMed Central

    Naglot, A.; Goswami, S.; Rahman, I.; Shrimali, D. D.; Yadav, Kamlesh K.; Gupta, Vikas K.; Rabha, Aprana Jyoti; Gogoi, H. K.; Veer, Vijay

    2015-01-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity. PMID:26361476

  3. De novo Genome Assembly of the Fungal Plant Pathogen Pyrenophora semeniperda

    PubMed Central

    Soliai, Marcus M.; Meyer, Susan E.; Udall, Joshua A.; Elzinga, David E.; Hermansen, Russell A.; Bodily, Paul M.; Hart, Aaron A.; Coleman, Craig E.

    2014-01-01

    Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a biocontrol agent due to its effectiveness at killing seeds within the seed bank; however, few genetic resources exist for the fungus. Here, the genome of P. semeniperda isolate assembled from sequence reads of 454 pyrosequencing is presented. The total assembly is 32.5 Mb and includes 11,453 gene models encoding putative proteins larger than 24 amino acids. The models represent a variety of putative genes that are involved in pathogenic pathways typically found in necrotrophic fungi. In addition, extensive rearrangements, including inter- and intrachromosomal rearrangements, were found when the P. semeniperda genome was compared to P. tritici-repentis, a related fungal species. PMID:24475219

  4. Induction of beta-1,3-glucanase in barley in response to infection by fungal pathogens.

    PubMed

    Jutidamrongphan, W; Andersen, J B; Mackinnon, G; Manners, J M; Simpson, R S; Scott, K J

    1991-05-01

    The sequence of a partial cDNA clone corresponding to an mRNA induced in leaves of barley (Hordeum vulgare) by infection with fungal pathogens matched almost perfectly with that of a cDNA clone coding for beta-1,-3-glucanase isolated from the scutellum of barley. Western blot analysis of intercellular proteins from near-isogenic barley lines inoculated with the powdery mildew fungus (Erysiphe graminis f. sp. hordei) showed a strong induction of glucanase in all inoculated lines but was most pronounced in two resistant lines. These data were confirmed by beta-1,3-glucanase assays. The barley cDNA was used as a hybridization probe to detect mRNAs in barley, wheat (Triticum aestivum), rice (oryza sativus), and sorghum (Sorghum bicolor), which are induced by infection with the necrotrophic pathogen Bipolaris sorokiniana. These results demonstrate that activation of beta-1,3-glucanase genes may be a general response of cereals to infection by fungal pathogens.

  5. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata.

    PubMed Central

    Hatta, Rieko; Ito, Kaoru; Hosaki, Yoshitsugu; Tanaka, Takayoshi; Tanaka, Aiko; Yamamoto, Mikihiro; Akimitsu, Kazuya; Tsuge, Takashi

    2002-01-01

    The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and tangerine pathotypes, which produce AF-toxin and ACT-toxin, respectively. This result is consistent with the fact that the toxins of these pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid structural moiety. In this study, three of the AKT homologs (AFT1-1, AFTR-1, and AFT3-1) were isolated on a single cosmid clone from strain NAF8 of the strawberry pathotype. In NAF8, all of the AKT homologs were present in multiple copies on a 1.05-Mb chromosome. Transformation-mediated targeting of AFT1-1 and AFT3-1 in NAF8 produced AF-toxin-minus, nonpathogenic mutants. All of the mutants lacked the 1.05-Mb chromosome encoding the AFT genes. This chromosome was not essential for saprophytic growth of this pathogen. Thus, we propose that a conditionally dispensable chromosome controls host-specific pathogenicity of this pathogen. PMID:12019223

  6. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana.

    PubMed

    Janni, Michela; Sella, Luca; Favaron, Francesco; Blechl, Ann E; De Lorenzo, Giulia; D'Ovidio, Renato

    2008-02-01

    A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plant's ability to inhibit the pathogen's capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defense cell wall glycoproteins that inhibit the activity of fungal endopolygalacturonases (endo-PGs). To assess the effectiveness of these proteins in protecting wheat from fungal pathogens, we produced a number of transgenic wheat lines expressing a bean PGIP (PvPGIP2) having a wide spectrum of specificities against fungal PGs. Three independent transgenic lines were characterized in detail, including determination of the levels of PvPGIP2 accumulation and its subcellular localization and inhibitory activity. Results show that the transgene-encoded protein is correctly secreted into the apoplast, maintains its characteristic recognition specificities, and endows the transgenic wheat with new PG recognition capabilities. As a consequence, transgenic wheat tissue showed increased resistance to digestion by the PG of Fusarium moniliforme. These new properties also were confirmed at the plant level during interactions with the fungal pathogen Bipolaris sorokiniana. All three lines showed significant reductions in symptom progression (46 to 50%) through the leaves following infection with this pathogen. Our results illustrate the feasibility of improving wheat's defenses against pathogens by expression of proteins with new capabilities to counteract those produced by the pathogens.

  7. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.

    PubMed

    Mahaffee, Walter F; Stoll, Rob

    2016-05-01

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.

  8. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.

    PubMed

    Mahaffee, Walter F; Stoll, Rob

    2016-05-01

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between. PMID:27003505

  9. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens.

    PubMed

    Otaka, Junnosuke; Seo, Shigemi; Nishimura, Marie

    2016-01-01

    α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota) extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection. PMID:27483218

  10. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens.

    PubMed

    Otaka, Junnosuke; Seo, Shigemi; Nishimura, Marie

    2016-07-28

    α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota) extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection.

  11. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    PubMed

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. PMID:22138549

  12. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans.

    PubMed

    Gauthier, Gregory M; Keller, Nancy P

    2013-12-01

    The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections.

  13. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36

    PubMed Central

    Mylonakis, Eleftherios; Tampakakis, Emmanouil; Colvin, Richard A.; Seung, Edward; Puckett, Lindsay; Tai, Melissa F.; Stewart, Cameron R.; Pukkila-Worley, Read; Hickman, Suzanne E.; Moore, Kathryn J.; Calderwood, Stephen B.; Hacohen, Nir; Luster, Andrew D.; El Khoury, Joseph

    2009-01-01

    Receptors involved in innate immunity to fungal pathogens have not been fully elucidated. We show that the Caenorhabditis elegans receptors CED-1 and C03F11.3, and their mammalian orthologues, the scavenger receptors SCARF1 and CD36, mediate host defense against two prototypic fungal pathogens, Cryptococcus neoformans and Candida albicans. CED-1 and C03F11.1 mediated antimicrobial peptide production and were necessary for nematode survival after C. neoformans infection. SCARF1 and CD36 mediated cytokine production and were required for macrophage binding to C. neoformans, and control of the infection in mice. Binding of these pathogens to SCARF1 and CD36 was β-glucan dependent. Thus, CED-1/SCARF1 and C03F11.3/CD36 are β-glucan binding receptors and define an evolutionarily conserved pathway for the innate sensing of fungal pathogens. PMID:19237602

  14. Mitochondrial Protein Nfu1 Influences Homeostasis of Essential Metals in the Human Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Kim, Jeongmi; Park, Minji; Do, Eunsoo

    2014-01-01

    Mitochondrial protein Nfu1 plays an important role in the assembly of mitochondrial Fe-S clusters and intracellular iron homeostasis in the model yeast Saccharomyces cerevisiae. In this study, we identified the Nfu1 ortholog in the human fungal pathogen Cryptococcus neoformans. Our data showed that C. neoformans Nfu1 localized in the mitochondria and influenced homeostasis of essential metals such as iron, copper and manganese. Marked growth defects were observed in the mutant lacking NFU1, which suggests a critical role of Nfu1 in Fe-S cluster biosynthesis and intracellular metal homeostasis in C. neoformans. PMID:25606020

  15. Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans

    PubMed Central

    Martínez-Duncker, Iván; Díaz-Jímenez, Diana F.; Mora-Montes, Héctor M.

    2014-01-01

    Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection. PMID:25104959

  16. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Briard, Benoit; Heddergott, Christoph

    2016-01-01

    ABSTRACT Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. PMID:26980832

  17. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity.

    PubMed

    Tian, Shiping; Qin, Guozheng; Li, Boqiang

    2013-08-01

    Senescence is a vital aspect of fruit life cycles, and directly affects fruit quality and resistance to pathogens. Reactive oxygen species (ROS), as the primary mediators of oxidative damage in plants, are involved in senescence. Mitochondria are the main ROS and free radical source. Oxidative damage to mitochondrial proteins caused by ROS is implicated in the process of senescence, and a number of senescence-related disorders in a variety of organisms. However, the specific sites of ROS generation in mitochondria remain largely unknown. Recent discoveries have ascertained that fruit senescence is greatly related to ROS and incidental oxidative damage of mitochondrial protein. Special mitochondrial proteins involved in fruit senescence have been identified as the targets of ROS. We focus in discussion on our recent advances in exploring the mechanisms of how ROS regulate fruit senescence and fungal pathogenicity.

  18. Growth inhibition of an Araucaria angustifolia (Coniferopsida) fungal seed pathogen, Neofusicoccum parvum, by soil streptomycetes

    PubMed Central

    2013-01-01

    Background Araucariaceae are important forest trees of the southern hemisphere. Life expectancy of their seedlings can largely be reduced by fungal infections. In this study we have isolated and characterized such a fungus and investigated the potential of Streptomyces Actinobacteria from the respective rhizosphere to act as antagonists. Results The pathogenic fungus from Araucaria angustifolia seeds was identified by morphological markers (pore-associated Woronin-bodies) as belonging to the Pezizomycotina. Molecular data identified the fungus as Neofusicoccum parvum (Botryosphaeriaceae). Co-cultures on agar of this fungus with certain streptomycete isolates from the rhizosphere, and from the surface of Araucaria roots significantly reduced the growth of the fungus. HPLC analysis of the agar yielded streptomycete-specific exudate compounds which were partly identified. There were differences in compounds between single (bacteria, fungus) and dual cultures (bacteria + fungus). Conclusion Streptomycetes from the rhizosphere of Araucariaceae produce exudates which can suppress the development of pathogenic fungi in their seeds. PMID:23866024

  19. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens.

    PubMed

    Lorito, M; Woo, S L; Garcia, I; Colucci, G; Harman, G E; Pintor-Toro, J A; Filippone, E; Muccifora, S; Lawrence, C B; Zoina, A; Tuzun, S; Scala, F; Fernandez, I G

    1998-07-01

    Disease resistance in transgenic plants has been improved, for the first time, by the insertion of a gene from a biocontrol fungus. The gene encoding a strongly antifungal endochitinase from the mycoparasitic fungus Trichoderma harzianum was transferred to tobacco and potato. High expression levels of the fungal gene were obtained in different plant tissues, which had no visible effect on plant growth and development. Substantial differences in endochitinase activity were detected among transformants. Selected transgenic lines were highly tolerant or completely resistant to the foliar pathogens Alternaria alternata, A. solani, Botrytis cinerea, and the soilborne pathogen Rhizoctonia solani. The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria. These results demonstrate a rich source of genes from biocontrol fungi that can be used to control diseases in plants.

  20. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  1. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    PubMed

    Roux, Olivier; Céréghino, Régis; Solano, Pascal J; Dejean, Alain

    2011-01-01

    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

  2. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola

    SciTech Connect

    Cho, Yangrae; Ohm, Robin A.; Grigoriev, Igor V.; Srivastava, Akhil

    2012-12-03

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.

  3. Climate change triggers effects of fungal pathogens and insect herbivores on litter decomposition

    NASA Astrophysics Data System (ADS)

    Butenschoen, Olaf; Scheu, Stefan

    2014-10-01

    Increasing infestation by insect herbivores and pathogenic fungi in response to climate change will inevitably impact the amount and quality of leaf litter inputs into the soil. However, little is known on the interactive effect of infestation severity and climate change on litter decomposition, and no such study has been published for deciduous forests in Central Europe. We assessed changes in initial chemical quality of beech (Fagus sylvatica L.) and maple litter (Acer platanoides L.) in response to infestation by the gall midge Mikiola fagi Hart. and the pathogenic fungus Sawadaea tulasnei Fuckel, respectively, and investigated interactive effects of infestation severity, changes in temperature and soil moisture on carbon mineralization in a short-term laboratory study. We found that infestation by the gall midge M. fagi and the pathogenic fungus S. tulasnei significantly changed the chemical quality of beech and maple litter. Changes in element concentrations were generally positive and more pronounced, and if negative less pronounced for maple than beech litter most likely due to high quality fungal tissue remaining on litter after abscission. More importantly, alterations in litter chemical quality did not translate to distinct patterns of carbon mineralization at ambient conditions, but even low amounts of infested litter accelerated carbon mineralization at moderately increased soil moisture and in particular at higher temperature. Our results indicate that insect herbivores and fungal pathogens can markedly alter initial litter chemical quality, but that afterlife effects on carbon mineralization depend on soil moisture and temperature, suggesting that increased infestation severity under projected climate change potentially increases soil carbon release in deciduous forests in Central Europe.

  4. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    PubMed

    Roux, Olivier; Céréghino, Régis; Solano, Pascal J; Dejean, Alain

    2011-01-01

    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth. PMID:21655182

  5. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

    PubMed

    Rivero, Mercedes; Furman, Nicolás; Mencacci, Nicolás; Picca, Pablo; Toum, Laila; Lentz, Ezequiel; Bravo-Almonacid, Fernando; Mentaberry, Alejandro

    2012-01-20

    Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.

  6. Organization and evolutionary trajectory of the mating type (MAT) locus in dermatophyte and dimorphic fungal pathogens.

    PubMed

    Li, Wenjun; Metin, Banu; White, Theodore C; Heitman, Joseph

    2010-01-01

    Sexual reproduction in fungi is governed by a specialized genomic region, the mating type (MAT) locus, whose gene identity, organization, and complexity are diverse. We identified the MAT locus of five dermatophyte fungal pathogens (Microsporum gypseum, Microsporum canis, Trichophyton equinum, Trichophyton rubrum, and Trichophyton tonsurans) and a dimorphic fungus, Paracoccidioides brasiliensis, and performed phylogenetic analyses. The identified MAT locus idiomorphs of M. gypseum control cell type identity in mating assays, and recombinant progeny were produced. Virulence tests in Galleria mellonella larvae suggest the two mating types of M. gypseum may have equivalent virulence. Synteny analysis revealed common features of the MAT locus shared among these five dermatophytes: namely, a small size ( approximately 3 kb) and a novel gene arrangement. The SLA2, COX13, and APN2 genes, which flank the MAT locus in other Ascomycota are instead linked on one side of the dermatophyte MAT locus. In addition, the transcriptional orientations of the APN2 and COX13 genes are reversed compared to the dimorphic fungi Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. A putative transposable element, pogo, was found to have inserted in the MAT1-2 idiomorph of one P. brasiliensis strain but not others. In conclusion, the evolution of the MAT locus of the dermatophytes and dimorphic fungi from the last common ancestor has been punctuated by both gene acquisition and expansion, and asymmetric gene loss. These studies further support a foundation to develop molecular and genetic tools for dermatophyte and dimorphic human fungal pathogens. PMID:19880755

  7. Multicenter Outbreak of Infections by Saprochaete clavata, an Unrecognized Opportunistic Fungal Pathogen

    PubMed Central

    Vaux, Sophie; Criscuolo, Alexis; Desnos-Ollivier, Marie; Diancourt, Laure; Tarnaud, Chloé; Vandenbogaert, Matthias; Brisse, Sylvain; Coignard, Bruno; Garcia-Hermoso, Dea; Blanc, Catherine; Hoinard, Damien; Lortholary, Olivier; Bretagne, Stéphane; Thiolet, Jean-Michel; de Valk, Henriette; Courbil, Rémi; Chabanel, Anne; Simonet, Marion; Maire, Francoise; Jbilou, Saadia; Tiberghien, Pierre; Blanchard, Hervé; Venier, Anne-Gaëlle; Bernet, Claude; Simon, Loïc; Sénéchal, Hélène; Pouchol, Elodie; Angot, Christiane; Ribaud, Patricia; Socié, G.; Flèche, M.; Brieu, Nathalie; Lagier, Evelyne; Chartier, Vanessa; Allegre, Thierry; Maulin, Laurence; Lanic, Hélène; Tilly, Hervé; Bouchara, Jean-Philippe; Pihet, Marc; Schmidt, Aline; Kouatchet, Achille; Vandamme, Yves-Marie; Ifrah, Norbert; Mercat, Alain; Accoceberry, Isabelle; Albert, Olivier; Leguay, Thibaut; Rogues, Anne-Marie; Bonhomme, Julie; Reman, Oumédaly; Lesteven, Claire; Poirier, Philippe; Chabrot, Cécile Molucon; Calvet, Laure; Baud, Olivier; Cambon, Monique; Farkas, Jean Chistophe; Lafon, Bruno; Dalle, Frédéric; Caillot, Denis; Lazzarotti, Aline; Aho, Serge; Combret, Sandrine; Facon, Thierry; Sendid, Boualem; Loridant, Séverine; Louis, Terriou; Cazin, Bruno; Grandbastien, Bruno; Bourgeois, Nathalie; Lotthé, Anne; Cartron, Guillaume; Ravel, Christophe; Colson, Pascal; Gaudard, Philippe; Bonmati, Caroline; Simon, Loic; Rabaud, Christian; Machouart, Marie; Poisson, Didier; Carp, Diana; Meunier, Jérôme; Gaschet, Anne; Miquel, Chantal; Sanhes, Laurence; Ferreyra, Milagros; Leibinger, Franck; Geudet, Philippe; Toubas, Dominique; Himberlin, Chantal; Bureau-Chalot, Florence; Delmer, Alain; Favennec, Loïc; Gargala, Gilles; Michot, Jean-Baptiste; Girault, Christophe; David, Marion; Leprêtre, Stéphane; Jardin, Fabrice; Honderlick, Pierre; Caille, Vincent; Cerf, Charles; Cassaing, Sophie; Recher, Christian; Picard, Muriel; Protin, Caroline; Huguet, Françoise; Huynh, Anne; Ruiz, Jean; Riu-Poulenc, Béatrice; Letocart, Philippe; Marchou, Bruno; Verdeil, Xavier; Cavalié, Laurent; Chauvin, Pamela; Iriart, Xavier; Valentin, Alexis; Bouvet, Emmanuelle; Delmas-Marsalet, Béatrice; Jeblaoui, Asma; Kassis-Chikhani, Najiby; Mühlethaler, Konrad; Zimmerli, Stefan; Zalar, Polona; Sánchez-Reus, Ferran; Gurgui, Merce

    2014-01-01

    ABSTRACT Rapidly fatal cases of invasive fungal infections due to a fungus later identified as Saprochaete clavata were reported in France in May 2012. The objectives of this study were to determine the clonal relatedness of the isolates and to investigate possible sources of contamination. A nationwide alert was launched to collect cases. Molecular identification methods, whole-genome sequencing (WGS), and clone-specific genotyping were used to analyze recent and historical isolates, and a case-case study was performed. Isolates from thirty cases (26 fungemias, 22 associated deaths at day 30) were collected between September 2011 and October 2012. Eighteen cases occurred within 8 weeks (outbreak) in 10 health care facilities, suggesting a common source of contamination, with potential secondary cases. Phylogenetic analysis identified one clade (clade A), which accounted for 16/18 outbreak cases. Results of microbiological investigations of environmental, drug, or food sources were negative. Analysis of exposures pointed to a medical device used for storage and infusion of blood products, but no fungal contamination was detected in the unused devices. Molecular identification of isolates from previous studies demonstrated that S. clavata can be found in dairy products and has already been involved in monocentric outbreaks in hematology wards. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen. This report also underlines further the potential of WGS for investigation of outbreaks due to uncommon fungal pathogens. PMID:25516620

  8. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    PubMed Central

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  9. Local adaptation and evolutionary potential along a temperature gradient in the fungal pathogen Rhynchosporium commune

    PubMed Central

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2013-01-01

    To predict the response of plant pathogens to climate warming, data are needed on current thermal adaptation, the pathogen's evolutionary potential, and the link between them. We conducted a common garden experiment using isolates of the fungal pathogen Rhynchosporium commune from nine barley populations representing climatically diverse locations. Clonal replicates of 126 genetically distinct isolates were assessed for their growth rate at 12°C, 18°C, and 22°C. Populations originating from climates with higher monthly temperature variation had higher growth rate at all three temperatures compared with populations from climates with less temperature fluctuation. Population differentiation in growth rate (QST) was significantly higher at 22°C than population differentiation for neutral microsatellite loci (GST), consistent with local adaptation for growth at higher temperatures. At 18°C, we found evidence for stabilizing selection for growth rate as QST was significantly lower than GST. Heritability of growth rate under the three temperatures was substantial in all populations (0.58–0.76). Genetic variation was lower in populations with higher growth rate at the three temperatures and evolvability increased under heat stress in seven of nine populations. Our findings imply that the distribution of this pathogen is unlikely to be genetically limited under climate warming, due to its high genetic variation and plasticity for thermal tolerance. PMID:23745143

  10. Invasive fungal infections in neutropenic enterocolitis: A systematic analysis of pathogens, incidence, treatment and mortality in adult patients

    PubMed Central

    Gorschlüter, Marcus; Mey, Ulrich; Strehl, John; Schmitz, Volker; Rabe, Christian; Pauls, Katharina; Ziske, Carsten; Schmidt-Wolf, Ingo GH; Glasmacher, Axel

    2006-01-01

    Background Neutropenic enterocolitis is a life-threatening complication most frequently occurring after intensive chemotherapy in acute leukaemias. Gramnegative bacteria constitute the most important group of causative pathogens. Fungi have also been reported, but their practical relevance remains unclear. The guidelines do not address concrete treatment recommendations for fungal neutropenic enterocolitis. Methods Here, we conducted a metaanalysis to answer the questions: What are frequency and mortality of fungal neutropenic enterocolitis? Do frequencies and microbiological distribution of causative fungi support empirical antimycotic therapy? Do reported results of antimycotic therapy in documented fungal neutropenic enterocolitis help with the selection of appropriate drugs? Following a systematic search, we extracted and summarised all detail data from the complete literature. Results Among 186 articles describing patients with neutropenic enterocolitis, we found 29 reports describing 53 patients with causative fungal pathogens. We found no randomised controlled trial, no good quality cohort study and no good quality case control study on the role of antifungal treatment. The pooled frequency of fungal neutropenic enterocolitis was 6.2% calculated from all 860 reported patients and 3.4% calculated from selected representative studies only. In 94% of the patients, Candida spp. were involved. The pooled mortality rate was 81.8%. Most authors did not report or perform antifungal therapy. Conclusion In patients with neutropenic enterocolitis, fungal pathogens play a relevant, but secondary role compared to bacteria. Evidence concerning therapy is very poor, but epidemiological data from this study may provide helpful clues to select empiric antifungal therapy in neutropenic enterocolitis. PMID:16504141

  11. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection

    PubMed Central

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24–48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest. PMID:27043942

  12. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    PubMed

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  13. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    PubMed

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity.

  14. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres

    PubMed Central

    2010-01-01

    Background Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley's most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR, and complemented by cytogenetic karyotyping and the first genome-wide genetic map for P. teres f. teres. Results The total assembly was 41.95 Mbp and contains 11,799 gene models of 50 amino acids or more. Comparison against two sequenced BACs showed that complex regions with a high GC content assembled effectively. Electrophoretic karyotyping showed distinct chromosomal polymorphisms between isolates 0-1 and 15A, and cytological karyotyping confirmed the presence of at least nine chromosomes. The genetic map spans 2477.7 cM and is composed of 243 markers in 25 linkage groups, and incorporates simple sequence repeat markers developed from the assembly. Among predicted genes, non-ribosomal peptide synthetases and efflux pumps in particular appear to have undergone a P. teres f. teres-specific expansion of non-orthologous gene families. Conclusions This study demonstrates that paired-end Solexa sequencing can successfully capture coding regions of a filamentous fungal genome. The assembly contains a plethora of predicted genes that have been implicated in a necrotrophic lifestyle and pathogenicity and presents a significant resource for examining the bases for P. teres f. teres pathogenicity. PMID:21067574

  15. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    SciTech Connect

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  16. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    SciTech Connect

    Kingsley, Mark T

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, an d analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: (1) to assess the potential terrorist threat to U.S. agricultural crops, (2) to determine whether suitable assays exist to monitor that threat, and (3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  17. The effects of microgravity and clinorotation on the interaction of plant cells with fungal pathogen

    NASA Astrophysics Data System (ADS)

    Nedukha, O.; Kordyum, E.; Leach, J.; Martyn, G.; Ryba-White, M.

    The influence of microgravity and slow horizontal clinorotation (2 rev/min), which partly mimics microgravity, on the interaction of plant cells of soybean roots to Phytophthora sojae and of potato minitubers to Phytophthora infestans was studied during the Space Shuttle Mission STS-87 and during clinorotation. Seedlings of soybean cultivar Williams 82 grown in spaceflight and at 1 g were untreated or inoculated with pathogen P. sojae; minitubers of potato (cv Adreta) grown at horizontal clinorotation and the vertical control also were untreated or inoculated with pathogen P. infestans. The methods of light microscopy, scanning and transmission electron microscopy, confocal microscopy and also cytochemistry for the determination of callose content and peroxydase activity were used in the experiments. Post-landing analysis of the meristem cells of soybean roots infected with P. sojae and post-clinorotation analysis of the parenchyma cells of potato minitubers cells infected with P. infestans showed more destroying symptoms in cells of plant-host, which were more extensive colonized relative to the controls exposed to the pathogen fungus. Infected cells of plants-host were divided in two types: cells of first type were completely destroyed and hyphae of pathogen fungus were into these cells or in intercellular spaces; cells of second type characterized by partly changed ultrastructure and a calcium sites were contained above in mentioned cells. These data suggest that root cells of soybean seedlings grown in microgravity and cells of potato minitubers grown at slow horizontal clinorotation are more susceptible to penetration of a fungal pathogen in comparison with the corresponding controls.

  18. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen.

    PubMed

    Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita

    2013-07-01

    Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and

  19. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    PubMed Central

    2012-01-01

    Background Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both

  20. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline

    PubMed Central

    Piovia-Scott, Jonah; Pope, Karen; Joy Worth, S; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet

    2015-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines. PMID:25514536

  1. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.

    PubMed

    Qiu, Dan; Xu, Liangsheng; Vandemark, George; Chen, Weidong

    2016-03-01

    The fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum are morphologically similar, but differ considerably in host range. In an effort to elucidate mechanisms of the host range difference, transcriptomes of the 2 species at vegetative growth stage were compared to gain further insight into commonality and uniqueness in gene expression and pathogenic mechanisms of the 2 closely related pathogens. A total of 23133 and 21043 unique transcripts were obtained from S. sclerotiorum and S. trifoliorum, respectively. Approximately 43% of the transcripts were genes with known functions for both species. Among 1411 orthologous contigs, about 10% (147) were more highly (>3-fold) expressed in S. trifoliorum than in S. sclerotiorum, and about 12% (173) of the orthologs were more highly (>3-fold) expressed in S. sclerotiorum than in S. trifoliorum. The expression levels of genes on the supercontig 30 have the highest correlation coefficient value between the 2 species. Twenty-seven contigs were found to be new and unique for S. trifoliorum. Additionally, differences in expressed genes involved in pathogenesis like oxalate biosynthesis and endopolygalacturonases were detected between the 2 species. The analyses of the transcriptomes not only discovered similarities and uniqueness in gene expression between the 2 closely related species, providing additional information for annotation the S. sclerotiorum genome, but also provided foundation for comparing the transcriptomes with host-infecting transcriptomes.

  2. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline.

    PubMed

    Piovia-Scott, Jonah; Pope, Karen; Worth, S Joy; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet

    2015-07-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.

  3. Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis.

    PubMed

    Robert, S; Ravigne, V; Zapater, M-F; Abadie, C; Carlier, J

    2012-03-01

    Reconstructing and characterizing introduction routes is a key step towards understanding the ecological and evolutionary factors underlying successful invasions and disease emergence. Here, we aimed to decipher scenarios of introduction and stochastic demographic events associated with the global spread of an emerging disease of bananas caused by the destructive fungal pathogen Mycosphaerella fijiensis. We analysed the worldwide population structure of this fungus using 21 microsatellites and 8 sequence-based markers on 735 individuals from 37 countries. Our analyses designated South-East Asia as the source of the global invasion and supported the location of the centre of origin of M. fijiensis within this area. We confirmed the occurrence of bottlenecks upon introduction into other continents followed by widespread founder events within continents. Furthermore, this study suggested contrasting introduction scenarios of the pathogen between the African and American continents. While potential signatures of admixture resulting from multiple introductions were detected in America, all the African samples examined seem to descend from a single successful founder event. In combination with historical information, our study reveals an original and unprecedented global scenario of invasion for this recently emerging disease caused by a wind-dispersed pathogen.

  4. Quantifying the forces driving cell-cell adhesion in a fungal pathogen

    PubMed Central

    Alsteens, David; Van Dijck, Patrick; Lipke, Peter N.; Dufrêne, Yves F.

    2013-01-01

    Owing to its ability to form biofilms on implanted medical devices, the fungal pathogen Candida albicans causes frequent infections in humans. A hallmark of C. albicans biofilms is the presence of two types of cells, budding yeast cells and growing hyphae, which are bound together and embedded in extracellular matrix material. Although cell-cell adhesion is critical to biofilm formation, architecture and cohesion, we know little about the fundamental forces behind this interaction. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in yeast-hyphae adhesion, focusing on the role of Als (Agglutinin-like sequence) proteins as prototypes of cell adhesion molecules. We show that adhesion between individual yeast and hyphal cells involves strong, short-range cohesive interactions (1.1 nN ± 0.2 nN; 86 ± 33 nm), and weak, long-range tether interactions (0.4 ± 0.2 nN; 234 ± 81 nm). Control experiments demonstrate that these interactions originate from cell surface proteins that are specific to C. albicans. Using mutant strains deficient for Als expression, we find that Als3 proteins, primarily expressed on the germ tube, play a key role in establishing strong cohesive adhesion. We suggest a model in which cohesive adhesion during biofilm formation originates from tight hydrophobic interactions between Als tandem repeat domains on adjacent cells. When subjected to force, the two interacting cell surfaces detach but the cell bodies remain tethered through macromolecular extensions. Our results represent the first direct, non-invasive measurement of adhesion forces between interacting fungal cells, and provide novel insights into the molecular origin of the cohesive strength of fungal biofilms. PMID:24152214

  5. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates

    PubMed Central

    2014-01-01

    Background Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. Methods The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005 - 5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. Result GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Conclusion Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative. PMID:24885234

  6. Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum.

    PubMed

    Griffiths, Scott; Saccomanno, Benedetta; de Wit, Pierre J G M; Collemare, Jérôme

    2015-11-01

    Cladosporium fulvum is a non-obligate biotrophic fungal tomato pathogen for which fifteen secondary metabolite (SM) gene clusters were previously identified in its genome. However, most of these SM biosynthetic pathways remain cryptic during growth in planta and in different in vitro conditions. The sole SM produced in vitro is the pigment cladofulvin. In this study, we attempted to activate cryptic pathways in order to identify new compounds produced by C. fulvum. For this purpose, we manipulated orthologues of the global regulators VeA, LaeA and HdaA known to regulate SM biosynthesis in other fungal species. In C. fulvum, deleting or over-expressing these regulators yielded no new detectable SMs. Yet, quantification of cladofulvin revealed that CfHdaA is an activator whilst CfVeA and CfLaeA seemed to act as repressors of cladofulvin production. In the wild type strain, cladofulvin biosynthesis was affected by the carbon source, with highest production under carbon limitation and traces only in presence of saccharose. Repression of cladofulvin production by saccharose was dependent on both CfVeA and CfLaeA. Deletion of CfVeA or CfLaeA caused production of sterile mycelia, whilst Δcfhdaa deletion mutants sporulated, suggesting that cladofulvin production is not linked to asexual reproduction. Profiling the transcription of these regulators showed that CfHdaA-mediated regulation of cladofulvin production is independent of both CfVeA and CfLaeA. Our data suggest CfLaeA directly affects cladofulvin production whilst the effect of CfVeA is indirect, suggesting a role for CfLaeA outside of the Velvet complex. In conclusion, our results showed that regulation of SM production in C. fulvum is different from other fungi and indicate that manipulation of global regulators is not a universal tool to discover new fungal natural products. PMID:26415644

  7. Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum.

    PubMed

    Griffiths, Scott; Saccomanno, Benedetta; de Wit, Pierre J G M; Collemare, Jérôme

    2015-11-01

    Cladosporium fulvum is a non-obligate biotrophic fungal tomato pathogen for which fifteen secondary metabolite (SM) gene clusters were previously identified in its genome. However, most of these SM biosynthetic pathways remain cryptic during growth in planta and in different in vitro conditions. The sole SM produced in vitro is the pigment cladofulvin. In this study, we attempted to activate cryptic pathways in order to identify new compounds produced by C. fulvum. For this purpose, we manipulated orthologues of the global regulators VeA, LaeA and HdaA known to regulate SM biosynthesis in other fungal species. In C. fulvum, deleting or over-expressing these regulators yielded no new detectable SMs. Yet, quantification of cladofulvin revealed that CfHdaA is an activator whilst CfVeA and CfLaeA seemed to act as repressors of cladofulvin production. In the wild type strain, cladofulvin biosynthesis was affected by the carbon source, with highest production under carbon limitation and traces only in presence of saccharose. Repression of cladofulvin production by saccharose was dependent on both CfVeA and CfLaeA. Deletion of CfVeA or CfLaeA caused production of sterile mycelia, whilst Δcfhdaa deletion mutants sporulated, suggesting that cladofulvin production is not linked to asexual reproduction. Profiling the transcription of these regulators showed that CfHdaA-mediated regulation of cladofulvin production is independent of both CfVeA and CfLaeA. Our data suggest CfLaeA directly affects cladofulvin production whilst the effect of CfVeA is indirect, suggesting a role for CfLaeA outside of the Velvet complex. In conclusion, our results showed that regulation of SM production in C. fulvum is different from other fungi and indicate that manipulation of global regulators is not a universal tool to discover new fungal natural products.

  8. De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Morrow, Carl A.; Valkov, Eugene; Stamp, Anna; Chow, Eve W. L.; Lee, I. Russel; Wronski, Ania; Williams, Simon J.; Hill, Justine M.; Djordjevic, Julianne T.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.

    2012-01-01

    We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. PMID:23071437

  9. Tissue specific localization of root infection by fungal pathogens: role of root border cells.

    PubMed

    Gunawardena, Uvini; Hawes, Martha C

    2002-11-01

    When roots of pea seedlings were inoculated uniformly with spores of Nectria haematocca or other pea pathogenic fungi, more than 90% developed lesions in the region of elongation within 3 days. More mature regions of most roots as well as the tip showed no visible signs of infection. Yet, microscopic observation revealed that 'mantles,' comprised of fungal hyphae intermeshed with populations of border cells, covered the tips of most roots. After physical detachment of the mantle, the underlying tip of most roots was found to be free of infection. Mantle-covered root tips did not respond to invasion of their border cells by activation of known defense genes unless there was invasion of the tip itself, as revealed by the presence of a lesion. Concomitant with the activation of defense genes was the induction of a cell-wall degrading enzyme whose expression is a marker for renewed production of border cells. Mantle formation did not occur in response to nonpathogens. The data are consistent with the hypothesis that border cells serve as a host-specific 'decoy' that protects root meristems by inhibiting fungal infection of the root tip.

  10. Biofertilization and Biocontrol in the fight against soilborne fungal root pathogens in Australian soils

    NASA Astrophysics Data System (ADS)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2015-04-01

    Control of soilborne fungal root pathogens that severely compromise cotton production and other crops worldwide has historically been through the use of synthetic fungicides and fertilizers, these often have hazardous implications for environmental and soil health. The search for sustainable alternatives has lead to heightened interest in biocontrol, using soil microorganisms that suppress the growth of phytopathogens directly and biofertilization, the use of microorganisms to increasing the nutrient availability in soils, increasing seedling vigour. Soil properties and consequently soil microbial properties are strongly impacted by agricultural practices, therefore we are isolating indigenous microorganisms from soils collected from ten different geographical locations within the Australian cotton-growing region. These differ vastly in soil type and management practices. Soils are being analysed to compare the abundance of phosphate solubilising, auxin producing and nitrogen cycling bacteria. Rhizospheric bacteria capable of plant growth promoting through a multiple actions are being isolated. In addition, a method for isolating soilborne fungal suppressive microbes directly from soil samples has been designed and is currently being used. Comparisons between agricultural practices and the plant growth promoting microbial component of soil microbiome will be reported on. We will discuss the microbial isolates identified, their modes of action and their potential use as biocontrol agents and/or biofertilizers in Australian cotton growing soils.

  11. Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol.

    PubMed

    Kang, Yunhee; Lee, Seung-Ho; Lee, Jungkwan

    2014-12-01

    The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus. PMID:25506308

  12. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans

    PubMed Central

    Lee, Kyung-Tae; So, Yee-Seul; Yang, Dong-Hoon; Jung, Kwang-Woo; Choi, Jaeyoung; Lee, Dong-Gi; Kwon, Hyojeong; Jang, Juyeong; Wang, Li Li; Cha, Soohyun; Meyers, Gena Lee; Jeong, Eunji; Jin, Jae-Hyung; Lee, Yeonseon; Hong, Joohyeon; Bang, Soohyun; Ji, Je-Hyun; Park, Goun; Byun, Hyo-Jeong; Park, Sung Woo; Park, Young-Min; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna F.; Choi, Jong-Soon; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Bahn, Yong-Sun

    2016-01-01

    Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets. PMID:27677328

  13. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae.

    PubMed

    Tian, Liangliang; Xu, Jun; Zhou, Lei; Guo, Wangzhen

    2014-10-25

    The vascular wilt fungus Verticillium dahliae infects the roots of cotton plants and can seriously diminish the yield and quality of this and other dicotyledons. However, the key genes involved in V. dahliae infection and pathogenesis in cotton remain unclear. Msb encodes a transmembrane mucin that is highly conserved in the MAPK signal pathway. Msb has been implicated previously in pathogenicity in various aerial plant fungi. In this study, V. dahliae Msb (VdMsb) was found to be required for fungal virulence and microsclerotia production. Strains lacking VdMsb exhibited reduced conidiation and microsclerotia formation. Compared with wild-type and gene-complemented strains, the invasive growth and adhesive capacity of VdMsb deletion mutants were significantly decreased. These results suggest that VdMsb plays a role in development and virulence in V. dahliae.

  14. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    PubMed

    Healey, Kelley R; Zhao, Yanan; Perez, Winder B; Lockhart, Shawn R; Sobel, Jack D; Farmakiotis, Dimitrios; Kontoyiannis, Dimitrios P; Sanglard, Dominique; Taj-Aldeen, Saad J; Alexander, Barbara D; Jimenez-Ortigosa, Cristina; Shor, Erika; Perlin, David S

    2016-03-29

    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy.

  15. Agropyrenol and agropyrenal, phytotoxins from Ascochyta agropyrina var. nana, a fungal pathogen of Elitrigia repens.

    PubMed

    Andolfi, Anna; Cimmino, Alessio; Vurro, Maurizio; Berestetskiy, Alexander; Troise, Ciro; Zonno, Maria Chiara; Motta, Andrea; Evidente, Antonio

    2012-07-01

    A strain of Ascochyta agropyrina var. nana, a fungal pathogen of the perennial weed Elytrigia repens, produced several toxins in a liquid medium, and its primary toxin, named agropyrenol, was characterized as a substituted salicylaldehyde on the basis of its chemical and spectroscopic properties. Its absolute stereochemistry was determined by Mosher's method. Two other minor metabolites were isolated from the same culture and named agropyrenal and agropyrenone, respectively. They were characterized as a trisubstituted naphthalene carbaldehyde and a pentasubstituted 3H-benzofuranone, respectively, using the same techniques. When assayed on leaves of several weed plants, i.e., Mercurialis annua, Chenopodium album and Setaria viridis, agropyrenol proved to be phytotoxic, causing the appearance of necrotic lesions, agropyrenal was less active, while agropyrenone was inactive. None of the compounds showed antibiotic, fungicidal or zootoxic activity.

  16. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens.

    PubMed

    Price, Claire L; Parker, Josie E; Warrilow, Andrew G S; Kelly, Diane E; Kelly, Steven L

    2015-08-01

    Plant fungal pathogens can have devastating effects on a wide range of crops, including cereals and fruit (such as wheat and grapes), causing losses in crop yield, which are costly to the agricultural economy and threaten food security. Azole antifungals are the treatment of choice; however, resistance has arisen against these compounds, which could lead to devastating consequences. Therefore, it is important to understand how these fungicides are used and how the resistance arises in order to tackle the problem fully. Here, we give an overview of the problem and discuss the mechanisms that mediate azole resistance in agriculture (point mutations in the CYP51 amino acid sequence, overexpression of the CYP51 enzyme and overexpression of genes encoding efflux pump proteins). © 2015 Society of Chemical Industry.

  17. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  18. Genetics of Brassica rapa (syn. campestris). 2. Multiple disease resistance to three fungal pathogens: Peronospora parasitica, Albugo candida and Leptosphaeria maculans.

    PubMed

    Mitchell-Olds, T; James, R V; Palmer, M J; Williams, P H

    1995-10-01

    Although the genetic basis of multiple disease resistance (MDR) is poorly understood, it is of great value for understanding the evolution of disease resistance in natural plant populations and for increasing crop yields in agriculture. In Brassica rapa, we studied genetic correlations among levels of disease resistance to three fungal pathogens: Peronospora parasitica, Albugo candida and Leptosphaeria maculans. A large, replicated quantitative genetics experiment used artificial selection on resistance to individual pathogens, and examined correlated responses to selection for resistance to other, unselected pathogens. Data from 9518 plants, each measured simultaneously for resistance to three fungal pathogens, showed heritable genetic variation for resistance to each pathogen and a positive genetic correlation between resistance to P. parasitica and L. maculans. This indicates that some resistance genes provide defence against fundamental characteristics common to two taxonomic orders of fungal pathogens. Conceivably, such MDR could contribute to a durable defence that might not be easily circumvented by rapidly evolving fungal pathogens.

  19. Pathogenic Yet Environmentally Friendly? Black Fungal Candidates for Bioremediation of Pollutants

    PubMed Central

    Blasi, Barbara; Poyntner, Caroline; Rudavsky, Tamara; Prenafeta-Boldú, Francesc X.; Hoog, Sybren De; Tafer, Hakim; Sterflinger, Katja

    2016-01-01

    ABSTRACT A collection of 163 strains of black yeast-like fungi from the CBS Fungal Biodiversity Center (Utrecht, The Netherlands), has been screened for the ability to grow on hexadecane, toluene and polychlorinated biphenyl 126 (PCB126) as the sole carbon and energy source. These compounds were chosen as representatives of relevant environmental pollutants. A microtiter plate-based culture assay was set up in order to screen the fungal strains for growth on the selected xenobiotics versus glucose, as a positive control. Growth was observed in 25 strains on at least two of the tested substrates. Confirmation of substrate assimilation was performed by cultivation on closed vials and analysis of the headspace composition with regard to the added volatile substrates and the generated carbon dioxide. Exophiala mesophila (CBS 120910) and Cladophialophora immunda (CBS 110551), both of the order Chaetothyriales and isolated from a patient with chronic sinusitis and a polluted soil sample, respectively, showed the ability to grow on toluene as the sole carbon and energy source. Toluene assimilation has previously been described for C. immunda but this is the first account for E. mesophila. Also, this is the first time that the capacity to grow on alkylbenzenes has been demonstrated for a clinical isolate. Assimilation of toluene could not be demonstrated for the human opportunistic pathogen Pseudoallescheria boydii (CBS 115.59, Microascales), but the results from microtiter plate assays suggest that strains of this species are promising candidates for further studies. The outstanding abilities of black yeast-like fungi to thrive in extreme environments makes them ideal agents for the bioremediation of polluted soils, and for the treatment of contaminated gas streams in biofilters. However, interrelations between hydrocarbonoclastic and potentially pathogenic strains need to be elucidated in order to avoid the possibility of biohazards occurring. PMID:27019541

  20. Predicting Invasive Fungal Pathogens Using Invasive Pest Assemblages: Testing Model Predictions in a Virtual World

    PubMed Central

    Paini, Dean R.; Bianchi, Felix J. J. A.; Northfield, Tobin D.; De Barro, Paul J.

    2011-01-01

    Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96–98% success rate (depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1–10 species) were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84–98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk. PMID:22016773

  1. Structural and biochemical characteristics of citrus flowers associated with defence against a fungal pathogen

    PubMed Central

    Marques, João Paulo Rodrigues; Amorim, Lilian; Silva-Junior, Geraldo José; Spósito, Marcel Bellato; Appezzato-da Gloria, Beatriz

    2015-01-01

    The constitutive characters of plants can be structural or biochemical and play an important role in their defence against pathogens. Citrus postbloom fruit drop (PFD) caused by Colletotrichum spp. is one of the most important fungal diseases of citrus. The pathogen infects the flowers, leading to premature fruit drop and reducing citrus production. However, flower buds smaller than 8 mm long are usually not infected by Colletotrichum spp. Thus, this study investigated whether there are constitutive mechanisms in flower buds related to Colletotrichum spp. infection. We studied flower buds that were 2, 3, 4, 8, 12 and 15 mm long and petals, after anthesis, of sweet orange ‘Valência’ using light and scanning electron microscopy and histochemistry. We evaluated the effect of volatile organic compounds (VOCs) in flowers (R-limonene and linalool) on the in vitro growth of Colletotrichum acutatum. We found that the arrangement of the epidermal papillae in the petal primordia, the occurrence of prismatic crystals and the distribution of oil glands are the main differences between buds smaller than 8 mm and buds 8–15 mm long. Osmophores at the tips of petals produced and accumulated phenols, terpenes and lipophilic compounds. Flower buds smaller than 8 mm long have constitutive structural and biochemical barriers to Colletotrichum spp. infection. In addition, this is the first time that osmophores have been reported in citrus. Our study shows that natural terpenes of Citrus flowers inhibit the fungal growth in vitro, highlighting the potential use of terpenes for the chemical control of PFD in citrus. PMID:25535209

  2. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    Benito, Ernesto P.; Couloux, Arnaud; Coutinho, Pedro M.; de Vries, Ronald P.; Dyer, Paul S.; Fillinger, Sabine; Fournier, Elisabeth; Gout, Lilian; Hahn, Matthias; Kohn, Linda; Lapalu, Nicolas; Plummer, Kim M.; Pradier, Jean-Marc; Quévillon, Emmanuel; Sharon, Amir; Simon, Adeline; ten Have, Arjen; Tudzynski, Bettina; Tudzynski, Paul; Wincker, Patrick; Andrew, Marion; Anthouard, Véronique; Beffa, Rolland; Benoit, Isabelle; Bouzid, Ourdia; Brault, Baptiste; Chen, Zehua; Choquer, Mathias; Collémare, Jérome; Cotton, Pascale; Danchin, Etienne G.; Da Silva, Corinne; Gautier, Angélique; Giraud, Corinne; Giraud, Tatiana; Gonzalez, Celedonio; Grossetete, Sandrine; Güldener, Ulrich; Henrissat, Bernard; Howlett, Barbara J.; Kodira, Chinnappa; Kretschmer, Matthias; Lappartient, Anne; Leroch, Michaela; Levis, Caroline; Mauceli, Evan; Neuvéglise, Cécile; Oeser, Birgitt; Pearson, Matthew; Poulain, Julie; Poussereau, Nathalie; Quesneville, Hadi; Rascle, Christine; Schumacher, Julia; Ségurens, Béatrice; Sexton, Adrienne; Silva, Evelyn; Sirven, Catherine; Soanes, Darren M.; Talbot, Nicholas J.; Templeton, Matt; Yandava, Chandri; Yarden, Oded; Zeng, Qiandong; Rollins, Jeffrey A.; Lebrun, Marc-Henri; Dickman, Marty

    2011-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such

  3. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    PubMed Central

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  4. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    PubMed Central

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  5. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum.

    PubMed

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  6. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  7. Arabitol and mannitol as tracers for the quantification of airborne fungal spores

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Claeys, Magda; Vermeylen, Reinhilde; Schueller, Elisabeth; Weinke, Gert; Berger, Anna; Puxbaum, Hans

    Fungal spores constitute a sizeable fraction of coarse organic carbon (OC) in the atmospheric aerosol. In order to avoid tedious spore count methods, tracers for quantifying the spore-OC in atmospheric aerosol are sought. Arabitol and mannitol have been proposed as such tracers, since no other emission sources for these compounds have been reported. By parallel investigations of spore counts and tracer determinations from PM 10 filter samples we could derive quantitative relationships between the amounts of tracer compounds and the numbers of spores in the atmosphere for different sites in the area of Vienna. We obtained over all average relationships of 1.2 pg arabitol spore -1, with a range of 0.8-1.8, and 1.7 pg mannitol spore -1, with a range of 1.2-2.4, with a clear site dependence. Thus, using these conversion factors from spore counts to spore-OC and spore-mass, along with analytical data for arabitol or mannitol in filter samples, the contribution of fungal spores to the OC and to the mass balance of atmospheric aerosol particles can be estimated.

  8. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens.

    PubMed

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V; Dolja, Valerian V; Wei, Yangdou

    2014-09-23

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

  9. The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Bahn, Yong-Sun

    2009-09-01

    Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC (Protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The Ca(2+)/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

  10. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates

    PubMed Central

    Giovannetti, Marco; Mari, Alfredo; Novero, Mara; Bonfante, Paola

    2015-01-01

    The objective of this study is to evaluate Lotus japonicus transcriptomic responses to arbuscular mycorrhizal (AM) germinated spore exudates (GSEs), responsible for activating nuclear Ca2+ spiking in plant root epidermis. A microarray experiment was performed comparing gene expression in Lotus rootlets treated with GSE or water after 24 and 48 h. The transcriptional pattern of selected genes that resulted to be regulated in the array was further evaluated upon different treatments and timings. In particular, Lotus rootlets were treated with: GSE from the pathogenic fungus Colletotrichum trifolii; short chitin oligomers (COs; acknowledged AM fungal signals) and long COs (as activators of pathogenic responses). This experimental set up has revealed that AM GSE generates a strong transcriptomic response in Lotus roots with an extensive defense-related response after 24 h and a subsequent down-regulation after 48 h. A similar subset of defense-related genes resulted to be up-regulated also upon treatment with C. trifolii GSE, although with an opposite trend. Surprisingly, long COs activated both defense-like and symbiosis-related genes. Among the genes regulated in the microarray, promoter-GUS assay showed that LjMATE1 activates in epidermal cells and root hairs. PMID:26175746

  11. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens

    PubMed Central

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V.; Dolja, Valerian V.; Wei, Yangdou

    2014-01-01

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

  12. Growth in microgravity increases susceptibility of soybean to a fungal pathogen

    NASA Technical Reports Server (NTRS)

    Ryba-White, M.; Nedukha, O.; Hilaire, E.; Guikema, J. A.; Kordyum, E.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    2001-01-01

    The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls.

  13. Experimental verification and molecular basis of active immunization against fungal pathogens in termites

    PubMed Central

    Liu, Long; Li, Ganghua; Sun, Pengdong; Lei, Chaoliang; Huang, Qiuying

    2015-01-01

    Termites are constantly exposed to many pathogens when they nest and forage in the field, so they employ various immune strategies to defend against pathogenic infections. Here, we demonstrate that the subterranean termite Reticulitermes chinensis employs active immunization to defend against the entomopathogen Metarhizium anisopliae. Our results showed that allogrooming frequency increased significantly between fungus-treated termites and their nestmates. Through active social contact, previously healthy nestmates only received small numbers of conidia from fungus-treated individuals. These nestmates experienced low-level fungal infections, resulting in low mortality and apparently improved antifungal defences. Moreover, infected nestmates promoted the activity of two antioxidant enzymes (SOD and CAT) and upregulated the expression of three immune genes (phenoloxidase, transferrin, and termicin). We found 20 differentially expressed proteins associated with active immunization in R. chinensis through iTRAQ proteomics, including 12 stress response proteins, six immune signalling proteins, and two immune effector molecules. Subsequently, two significantly upregulated (60S ribosomal protein L23 and isocitrate dehydrogenase) and three significantly downregulated (glutathione S-transferase D1, cuticle protein 19, and ubiquitin conjugating enzyme) candidate immune proteins were validated by MRM assays. These findings suggest that active immunization in termites may be regulated by different immune proteins. PMID:26458743

  14. Experimental verification and molecular basis of active immunization against fungal pathogens in termites.

    PubMed

    Liu, Long; Li, Ganghua; Sun, Pengdong; Lei, Chaoliang; Huang, Qiuying

    2015-10-13

    Termites are constantly exposed to many pathogens when they nest and forage in the field, so they employ various immune strategies to defend against pathogenic infections. Here, we demonstrate that the subterranean termite Reticulitermes chinensis employs active immunization to defend against the entomopathogen Metarhizium anisopliae. Our results showed that allogrooming frequency increased significantly between fungus-treated termites and their nestmates. Through active social contact, previously healthy nestmates only received small numbers of conidia from fungus-treated individuals. These nestmates experienced low-level fungal infections, resulting in low mortality and apparently improved antifungal defences. Moreover, infected nestmates promoted the activity of two antioxidant enzymes (SOD and CAT) and upregulated the expression of three immune genes (phenoloxidase, transferrin, and termicin). We found 20 differentially expressed proteins associated with active immunization in R. chinensis through iTRAQ proteomics, including 12 stress response proteins, six immune signalling proteins, and two immune effector molecules. Subsequently, two significantly upregulated (60S ribosomal protein L23 and isocitrate dehydrogenase) and three significantly downregulated (glutathione S-transferase D1, cuticle protein 19, and ubiquitin conjugating enzyme) candidate immune proteins were validated by MRM assays. These findings suggest that active immunization in termites may be regulated by different immune proteins.

  15. Identification of Biocontrol Agents to Control the Fungal Pathogen, Geomyces destructans, in Bats

    NASA Astrophysics Data System (ADS)

    Braunstein, S.; Cheng, T.

    2013-12-01

    The fungal pathogen Geomyces destructans (Gd) causes the disease White-nose Syndrome (WNS) in bats and is estimated to have killed millions of bats since its emergence in North America in 2006. Gd is predicted to cause the local extinction of at least three bat species if rates of decline continue unabated. Given the devastating impacts of Gd to bat populations, identifying a viable method for controlling the pathogen is pertinent for conservation of affected bat species. Our work focuses on identifying naturally-occurring skin bacteria on bats that are antagonistic to Gd that could potentially be used as a biocontrol. We cultured bacteria from skin swabs taken from wild bats (Myotis lucifugus, Eptesicus fuscus, Myotis sodalis, Perimyotis subflavus). We conducted challenge experiments to identify bacterial strains that inhibited Gd growth. Bacteria that exhibited antifungal properties were identified using 16S and gyrB markers. Our methods identified several bacteria in the Pseudomonas fluorescens complex as potential biocontrol agents. Future work will continue to test the viability of these bacteria as biocontrol agents via experimental treatments with live captive bats. The failure of previous non-biocontrol methods highlights the importance of developing these bacteria as a biologically-friendly method for controlling Gd. A bat infected with Geomyces destructans. Photo by West Virginia Division of Natural Resources Bacterial culture from the swab of a bat's wings

  16. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.

    PubMed

    Wu, Yuncheng; Yuan, Jun; E, Yaoyao; Raza, Waseem; Shen, Qirong; Huang, Qiwei

    2015-09-01

    A Streptomyces albulus strain NJZJSA2 was isolated from the forest soil sample of Tzu-chin Mountain (Nanjing China) and identified based on its morphological and physiological properties and 16S rDNA gene sequence analysis. The strain S. albulus NJZJSA2 was evaluated for the production of antifungal volatile organic compounds (VOCs) against two fungal pathogens. Results showed that the VOCs generated by S. albulus NJZJSA2 inhibited mycelial growth of Sclerotinia sclerotiorum (SS) and Fusarium oxysporum (FO) by 100 and 56.3%, respectively. The germination of SS sclerotia and FO conidia was completely inhibited in the presence of VOCs produced by S. albulus NJZJSA2 in vitro. In soil, the VOCs delayed the germination of SS sclerotia and inhibited the germination of FO conidia for 45 days. The strain S. albulus NJZJSA2 was able to produce 13 VOCs based on GC/MS analyses. Among those, six compounds were purchased and used for the antifungal activity assay. Three relatively abundant VOCs, 4-methoxystyrene, 2-pentylfuran, and anisole were proved to have antifungal activity. Microscopy analysis showed that the pathogen hyphae were shriveled and damaged after treatment with 4-methoxystyrene. These results suggest that the S. albulus strain NJZJSA2 produce VOCs that not only reduce the growth of SS and FO, but also significantly inhibit the SS sclerotia and FO conidia. The results are useful for the better understanding of biocontrol mechanisms by S. albulus strains and will help to improve the biological control efficiency of lethal plant diseases.

  17. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  18. The use of high pressure freezing and freeze substitution to study host-pathogen interactions in fungal diseases of plants.

    PubMed

    Mims, C W; Celio, Gail J; Richardson, Elizabeth A

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host-pathogen interactions in fungal diseases of plants. The specific host-pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host-pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host-pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions. PMID:14750987

  19. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages

    PubMed Central

    Gueidan, C.; Villaseñor, C. R.; de Hoog, G. S.; Gorbushina, A. A.; Untereiner, W. A.; Lutzoni, F.

    2008-01-01

    Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis. PMID

  20. Battle through Signaling between Wheat and the Fungal Pathogen Septoria tritici Revealed by Proteomics and Phosphoproteomics*

    PubMed Central

    Yang, Fen; Melo-Braga, Marcella N.; Larsen, Martin R.; Jørgensen, Hans J. L.; Palmisano, Giuseppe

    2013-01-01

    The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat–S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14–3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a

  1. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages.

    PubMed

    Short, Dylan P G; Gurung, Suraj; Gladieux, Pierre; Inderbitzin, Patrik; Atallah, Zahi K; Nigro, Franco; Li, Guoqing; Benlioglu, Seher; Subbarao, Krishna V

    2015-08-01

    The spread of aggressive fungal pathogens into previously non-endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil-borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well-differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.

  2. Rapid detection of fungal pathogens in bronchoalveolar lavage samples using panfungal PCR combined with high resolution melting analysis.

    PubMed

    Bezdicek, Matej; Lengerova, Martina; Ricna, Dita; Weinbergerova, Barbora; Kocmanova, Iva; Volfova, Pavlina; Drgona, Lubos; Poczova, Miroslava; Mayer, Jiri; Racil, Zdenek

    2016-10-01

    Despite advances in the treatment of invasive fungal diseases (IFD), mortality rates remain high. Moreover, due to the expanding spectrum of causative agents, fast and accurate pathogen identification is necessary. We designed a panfungal polymerase chain reaction (PCR), which targets the highly variable ITS2 region of rDNA genes and uses high resolution melting analysis (HRM) for subsequent species identification. The sensitivity and specificity of this method was tested on a broad spectrum of the most clinically important fungal pathogens including Aspergillus spp., Candida spp. and mucormycetes. Despite the fact that fluid from bronchoalveolar lavage (BAL) is one of the most frequently tested materials there is a lack of literature sources aimed at panfungal PCR as an IFD diagnostic tool from BAL samples. The applicability of this method in routine practice was evaluated on 104 BAL samples from immunocompromised patients. Due to high ITS region variability, we obtained divergent melting peaks for different fungal species. Thirteen out of 18 patients with proven or probable IFD were positive. Therefore, the sensitivity, specificity, positive predictive value and negative predictive value of our method were 67%, 100%, 100%, and 94%, respectively. In our assay, fungal pathogens identification is based on HRM, therefore omitting the expensive and time consuming sequencing step. With the high specificity, positive and negative predictive values, short time needed to obtain a result, and low price, the presented assay is intended to be used as a quick screening method for patients at risk of IFD. PMID:27161789

  3. Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum

    PubMed Central

    Leal, Sixto M.; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S.; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections. PMID:23853581

  4. Clathrin- and Arp2/3-Independent Endocytosis in the Fungal Pathogen Candida albicans

    PubMed Central

    Epp, Elias; Nazarova, Elena; Regan, Hannah; Douglas, Lois M.; Konopka, James B.; Vogel, Jackie; Whiteway, Malcolm

    2013-01-01

    ABSTRACT Clathrin-mediated endocytosis (CME) is conserved among eukaryotes and has been extensively analyzed at a molecular level. Here, we present an analysis of CME in the human fungal pathogen Candida albicans that shows the same modular structure as those in other fungi and mammalian cells. Intriguingly, C. albicans is perfectly viable in the absence of Arp2/3, an essential component of CME in other systems. In C. albicans, Arp2/3 function remains essential for CME as all 15 proteins tested that participate in CME, including clathrin, lose their characteristic dynamics observed in wild-type (WT) cells. However, since arp2/3 cells are still able to endocytose lipids and fluid-phase markers, but not the Ste2 and Mup1 plasma membrane proteins, there must be an alternate clathrin-independent pathway we term Arp2/3-independent endocytosis (AIE). Characterization of AIE shows that endocytosis in arp2 mutants relies on actin cables and other Arp2/3-independent actin structures, as inhibition of actin functions prevented cargo uptake in arp2/3 mutants. Transmission electron microscopy (TEM) showed that arp2/3 mutants still formed invaginating tubules, cell structures whose proper functions are believed to heavily rely on Arp2/3. Finally, Prk1 and Sjl2, two proteins involved in patch disassembly during CME, were not correctly localized to sites of endocytosis in arp2 mutants, implying a role of Arp2/3 in CME patch disassembly. Overall, C. albicans contains an alternative endocytic pathway (AIE) that relies on actin cable function to permit clathrin-independent endocytosis (CIE) and provides a system to further explore alternate endocytic routes that likely exist in fungal species. PMID:23982070

  5. Jasmonic acid signalling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but not Alternaria, fungal pathogens.

    PubMed

    Luu, Van Thi; Schuck, Stefan; Kim, Sang-Gyu; Weinhold, Arne; Baldwin, Ian T

    2015-03-01

    We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.-infected plants displayed fewer symptoms and recovered, Fusarium spp.-infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA-Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosum Utah 4, indicating that products derived from the JA-Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov-nahG plants which were silenced in pathogen-induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.

  6. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    PubMed

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Ibeas, José I

    2011-09-01

    A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  7. Estimation of infectious risks in residential populations exposed to airborne pathogens during center pivot irrigation of dairy wastewaters.

    PubMed

    Dungan, Robert Stephen

    2014-05-01

    In the western United States where dairy wastewaters are commonly land applied, there are concerns over individuals being exposed to airborne pathogens. In response, a quantitative microbial risk assessment (QMRA) was performed to estimate infectious risks after inhalation exposure of pathogens aerosolized during center pivot irrigation of diluted dairy wastewaters. The dispersion of pathogens (Campylobacter jejuni, Escherichia coli O157:H7, non-O157 E. coli, Listeria monocytogenes, and Salmonella spp.) was modeled using the atmospheric dispersion model, AERMOD. Pathogen concentrations at downwind receptors were used to calculate infectious risks during one-time (1, 8, and 24 h) and multiday (7 d at 1 h d(-1)) exposure events using a β-Poisson dose-response model. This assessment considered risk of infection in residential populations that were 1 to 10 km from a center pivot operation. In the simulations, infectious risks were estimated to be the greatest in individuals closest to the center pivot, as a result of a higher pathogen dose. On the basis of the results from this QMRA, it is recommended that wastewaters only be applied during daylight hours when inactivation and dilution of airborne pathogens is highest. Further refinement of the dispersion and dose-response models should be considered to increase the utility of this QMRA. PMID:24697271

  8. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley.

    PubMed

    Risk, Joanna M; Selter, Liselotte L; Chauhan, Harsh; Krattinger, Simon G; Kumlehn, Jochen; Hensel, Goetz; Viccars, Libby A; Richardson, Terese M; Buesing, Gabriele; Troller, Anna; Lagudah, Evans S; Keller, Beat

    2013-09-01

    The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad-spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad-spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34-conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability.

  9. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia

    PubMed Central

    Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret; Saif, Sakina; Whiston, Emily A.; Young, Sarah; Zeng, Qiandong; Goldman, William E.; Mardis, Elaine R.; Taylor, John W.; McEwen, Juan G.; Clay, Oliver K.; Klein, Bruce S.; Cuomo, Christina A.

    2015-01-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution

  10. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.

    PubMed

    Wu, Yuncheng; Yuan, Jun; E, Yaoyao; Raza, Waseem; Shen, Qirong; Huang, Qiwei

    2015-09-01

    A Streptomyces albulus strain NJZJSA2 was isolated from the forest soil sample of Tzu-chin Mountain (Nanjing China) and identified based on its morphological and physiological properties and 16S rDNA gene sequence analysis. The strain S. albulus NJZJSA2 was evaluated for the production of antifungal volatile organic compounds (VOCs) against two fungal pathogens. Results showed that the VOCs generated by S. albulus NJZJSA2 inhibited mycelial growth of Sclerotinia sclerotiorum (SS) and Fusarium oxysporum (FO) by 100 and 56.3%, respectively. The germination of SS sclerotia and FO conidia was completely inhibited in the presence of VOCs produced by S. albulus NJZJSA2 in vitro. In soil, the VOCs delayed the germination of SS sclerotia and inhibited the germination of FO conidia for 45 days. The strain S. albulus NJZJSA2 was able to produce 13 VOCs based on GC/MS analyses. Among those, six compounds were purchased and used for the antifungal activity assay. Three relatively abundant VOCs, 4-methoxystyrene, 2-pentylfuran, and anisole were proved to have antifungal activity. Microscopy analysis showed that the pathogen hyphae were shriveled and damaged after treatment with 4-methoxystyrene. These results suggest that the S. albulus strain NJZJSA2 produce VOCs that not only reduce the growth of SS and FO, but also significantly inhibit the SS sclerotia and FO conidia. The results are useful for the better understanding of biocontrol mechanisms by S. albulus strains and will help to improve the biological control efficiency of lethal plant diseases. PMID:26059065

  11. Characterization of the Complete Uric Acid Degradation Pathway in the Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.

    2013-01-01

    Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704

  12. Force nanoscopy of hydrophobic interactions in the fungal pathogen Candida glabrata.

    PubMed

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Derclaye, Sylvie; Alsteens, David; Kucharíková, Soňa; Van Dijck, Patrick; Dufrêne, Yves F

    2015-02-24

    Candida glabrata is an opportunistic human fungal pathogen which binds to surfaces mainly through the Epa family of cell adhesion proteins. While some Epa proteins mediate specific lectin-like interactions with human epithelial cells, others promote adhesion and biofilm formation on plastic surfaces via nonspecific interactions that are not yet elucidated. We report the measurement of hydrophobic forces engaged in Epa6-mediated cell adhesion by means of atomic force microscopy (AFM). Using single-cell force spectroscopy, we found that C. glabrata wild-type (WT) cells attach to hydrophobic surfaces via strongly adhesive macromolecular bonds, while mutant cells impaired in Epa6 expression are weakly adhesive. Nanoscale mapping of yeast cells using AFM tips functionalized with hydrophobic groups shows that Epa6 is massively exposed on WT cells and conveys strong hydrophobic properties to the cell surface. Our results demonstrate that Epa6 mediates strong hydrophobic interactions, thereby providing a molecular basis for the ability of this adhesin to drive biofilm formation on abiotic surfaces.

  13. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.

    PubMed

    Ritpitakphong, Unyarat; Falquet, Laurent; Vimoltust, Artit; Berger, Antoine; Métraux, Jean-Pierre; L'Haridon, Floriane

    2016-05-01

    We have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea. The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere. When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of lacs2.3 results from endogenous mechanisms. The phyllosphere microbiome showed distinct populations in WT plants compared to cuticle mutants. One species identified as Pseudomonas sp isolated from the microbiome of bdg provided resistance to B. cinerea on Arabidopsis thaliana as well as on apple fruits. No direct activity was observed against B. cinerea and the action of the bacterium required the plant. Thus, microbes present on the plant surface contribute to the resistance to B. cinerea. These results open new perspectives on the function of the leaf microbiome in the protection of plants. PMID:26725246

  14. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens

    PubMed Central

    He, Yan; Tian, Jun; Chen, Xintao; Sun, Weiguang; Zhu, Hucheng; Li, Qin; Lei, Liang; Yao, Guangmin; Xue, Yongbo; Wang, Jianping; Li, Hua; Zhang, Yonghui

    2016-01-01

    Four naphtho-γ-pyrones (fonsecinones A and C and aurasperones A and E) were identified as potential antibacterial agents against Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing E. coli, Pseudomonas aeruginosa, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus (MRSA) in an in vitro antibacterial screen of 218 fungal metabolites. Fonsecinone A (2) exhibited the most potent antibacterial activity, with minimum inhibitory concentrations (MICs) of 4.26, 17.04, and 4.26 μg/mL against ESBL-producing E. coli, P. aeruginosa, and E. faecalis, respectively. The inhibitory effects of fonsecinones A (2) and C (3) against E. coli and ESBL-producing E. coli were comparable to those of amikacin. Molecular docking-based target identification of naphtho-γ-pyrones 1–8 revealed bacterial enoyl-acyl carrier protein reductase (FabI) as an antibacterial target, which was further validated by FabI affinity and inhibition assays. Fonsecinones A (2) and C (3) and aurasperones A (6) and E (7) bound FabI specifically and produced concentration-dependent inhibition effects. This work is the first report of anti-drug-resistant bacterial activities of naphtho-γ-pyrones 1–8 and their possible antibacterial mechanism of action and provides an example of the successful application of in silico methods for drug target identification and validation and the identification of new lead antibiotic compounds against drug-resistant pathogens. PMID:27063778

  15. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations.

    PubMed

    Bradley, Paul W; Gervasi, Stephanie S; Hua, Jessica; Cothran, Rickey D; Relyea, Rick A; Olson, Deanna H; Blaustein, Andrew R

    2015-10-01

    Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.

  16. The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light

    PubMed Central

    Fuller, Kevin K.; Ringelberg, Carol S.; Loros, Jennifer J.; Dunlap, Jay C.

    2013-01-01

    ABSTRACT Light is a pervasive environmental factor that regulates development, stress resistance, and even virulence in numerous fungal species. Though much research has focused on signaling pathways in Aspergillus fumigatus, an understanding of how this pathogen responds to light is lacking. In this report, we demonstrate that the fungus does indeed respond to both blue and red portions of the visible spectrum. Included in the A. fumigatus light response is a reduction in conidial germination rates, increased hyphal pigmentation, enhanced resistance to acute ultraviolet and oxidative stresses, and an increased susceptibility to cell wall perturbation. By performing gene deletion analyses, we have found that the predicted blue light receptor LreA and red light receptor FphA play unique and overlapping roles in regulating the described photoresponsive behaviors of A. fumigatus. However, our data also indicate that the photobiology of this fungus is complex and likely involves input from additional photosensory pathways beyond those analyzed here. Finally, whole-genome microarray analysis has revealed that A. fumigatus broadly regulates a variety of metabolic genes in response to light, including those involved in respiration, amino acid metabolism, and metal homeostasis. Together, these data demonstrate the importance of the photic environment on the physiology of A. fumigatus and provide a basis for future studies into this unexplored area of its biology. PMID:23532976

  17. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    PubMed Central

    Reem, Nathan T.; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A.; Bellincampi, Daniela; Zabotina, Olga A.

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens. PMID:27242834

  18. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    PubMed

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

  19. Determination of cellular carbohydrates in peanut fungal pathogens and baker's yeast by capillary electrophoresis and electrochromatography.

    PubMed

    Zhang, M; Melouk, H A; Chenault, K; El Rassi, Z

    2001-11-01

    In this work, the quantitation of cellular carbohydrates, namely chitin and glucan, in peanut fungal pathogens and baker's yeast was carried out by capillary electrophoresis (CE) and capillary electrochromatography (CEC). The chitin and glucan of the fungi were hydrolyzed by the enzymes chitinase and glucanase, respectively, to their corresponding sugar monomers N-acetylglucosamine (GlcNAc) and glucose (Glc). These two monosaccharides were then tagged with 6-aminoquinoline (6-AQ) to allow their separation and detection in CE and CEC. The 6-AQ derivatives of GlcNAc and Glc formed the basis for the determination by CE and CEC of chitin and glucan in peanut fungi and baker's yeast. Several parameters affecting the separation of the 6-AQ derivatives of GlcNAc and Glc, including the separation voltage and the composition of the running electrolyte, were investigated. Under the optimized separation conditions, the contents of cellular carbohydrates including N-acetylglucosamine, chitin, glucose, and glucan in some fungi, such as Sclerotinia minor, Sclerotium rolfsii, and baker's yeast, were successfully determined. The method described here allowed the assessment of genetic differences in Sclerotium rolfsii isolates from various locations. PMID:11714314

  20. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    PubMed

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens. PMID:27242834

  1. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  2. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race.

  3. Volatiles Emitted from Maize Ears Simultaneously Infected with Two Fusarium Species Mirror the Most Competitive Fungal Pathogen

    PubMed Central

    Sherif, Mohammed; Becker, Eva-Maria; Herrfurth, Cornelia; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2016-01-01

    Along with barley and rice, maize provides staple food for more than half of the world population. Maize ears are regularly infected with fungal pathogens of the Fusarium genus, which, besides reducing yield, also taint grains with toxic metabolites. In an earlier work, we have shown that maize ears infection with single Fusarium strains was detectable through volatile sensing. In nature, infection most commonly occurs with more than a single fungal strain; hence we tested how the interactions of two strains would modulate volatile emission from infected ears. For this purpose, ears of a hybrid and a dwarf maize variety were simultaneously infected with different strains of Fusarium graminearum and F. verticillioides and, the resulting volatile profiles were compared to the ones of ears infected with single strains. Disease severity, fungal biomass, and the concentration of the oxylipin 9-hydroxy octadecadienoic acid, a signaling molecule involved in plant defense, were monitored and correlated to volatile profiles. Our results demonstrate that in simultaneous infections of hybrid and dwarf maize, the most competitive fungal strains had the largest influence on the volatile profile of infected ears. In both concurrent and single inoculations, volatile profiles reflected disease severity. Additionally, the data further indicate that dwarf maize and hybrid maize might emit common (i.e., sesquiterpenoids) and specific markers upon fungal infection. Overall this suggests that volatile profiles might be a good proxy for disease severity regardless of the fungal competition taking place in maize ears. With the appropriate sensitivity and reliability, volatile sensing thus appears as a promising tool for detecting fungal infection of maize ears under field conditions. PMID:27729923

  4. Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt.

    PubMed

    Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph

    2014-07-08

    Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M

  5. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen

    PubMed Central

    Faino, Luigi; Seidl, Michael F.; Shi-Kunne, Xiaoqian; Pauper, Marc; van den Berg, Grardy C.M.; Wittenberg, Alexander H.J.

    2016-01-01

    Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in “arms races” with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich, physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive genome evolution in the fungal plant pathogen Verticillium dahliae. We show that highly variable lineage-specific (LS) regions evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons. We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of pathogen virulence. PMID:27325116

  6. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.

  7. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

    PubMed Central

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  8. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen, Candida albicans

    PubMed Central

    Hise, Amy G.; Tomalka, Jeffrey; Ganesan, Sandhya; Patel, Krupen; Hall, Brian A.; Brown, Gordon D.; Fitzgerald, Katherine A.

    2010-01-01

    SUMMARY Candida albicans is an opportunistic fungal pathogen causing life-threatening mucosal and systemic infections in immunocompromised humans. Using a murine model of mucosal Candida infection we investigated the role of the proinflammatory cytokine IL-1β in host-defense to Candida albicans. We find that the synthesis, processing and release of IL-1β in response to Candida are tightly controlled and first require transcriptional induction, followed by a second signal leading to caspase-1 mediated cleavage of the pro-IL1β cytokine. The known fungal pattern recognition receptorsTLR2 and Dectin-1 regulate IL-1β gene transcription, while the NLRP3 containing pro-inflammatory multiprotein complex, the NLRP3 inflammasome, controls caspase-1 mediated cleavage of pro-IL1β. Furthermore, we show that TLR2, Dectin-1 and NLRP3 are essential for defense against dissemination of mucosal infection and mortality in vivo. Therefore, in addition to sensing bacterial and viral pathogens, the NLRP3 inflammasome senses fungal pathogens and is critical in host defense against Candida. PMID:19454352

  9. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis.

    PubMed

    Misra, Rajesh Chandra; Sandeep; Kamthan, Mohan; Kumar, Santosh; Ghosh, Sumit

    2016-01-01

    Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops. PMID:27150014

  10. Replacement of a dominant viral pathogen by a fungal pathogen does not alter the collapse of a regional forest insect outbreak.

    PubMed

    Hajek, Ann E; Tobin, Patrick C; Haynes, Kyle J

    2015-03-01

    Natural enemies and environmental factors likely both influence the population cycles of many forest-defoliating insect species. Previous work suggests precipitation influences the spatiotemporal patterns of gypsy moth outbreaks in North America, and it has been hypothesized that precipitation could act indirectly through effects on pathogens. We investigated the potential role of climatic and environmental factors in driving pathogen epizootics and parasitism at 57 sites over an area of ≈72,300 km(2) in four US mid-Atlantic states during the final year (2009) of a gypsy moth outbreak. Prior work has largely reported that the Lymantria dispar nucleopolyhedrovirus (LdNPV) was the principal mortality agent responsible for regional collapses of gypsy moth outbreaks. However, in the gypsy moth outbreak-prone US mid-Atlantic region, the fungal pathogen Entomophaga maimaiga has replaced the virus as the dominant source of mortality in dense host populations. The severity of the gypsy moth population crash, measured as the decline in egg mass densities from 2009 to 2010, tended to increase with the prevalence of E. maimaiga and larval parasitoids, but not LdNPV. A significantly negative spatial association was detected between rates of fungal mortality and parasitism, potentially indicating displacement of parasitoids by E. maimaiga. Fungal, viral, and parasitoid mortality agents differed in their associations with local abiotic and biotic conditions, but precipitation significantly influenced both fungal and viral prevalence. This study provides the first spatially robust evidence of the dominance of E. maimaiga during the collapse of a gypsy moth outbreak and highlights the important role played by microclimatic conditions. PMID:25510217

  11. Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus.

    PubMed

    Wang, Rui; Leng, Yueqiang; Shrestha, Subidhya; Zhong, Shaobin

    2016-08-01

    LaeA and velvet proteins regulate fungal development and secondary metabolism through formation of multimeric complexes in many fungal species, but their functions in the cereal fungal pathogen Cochliobolus sativus are not well understood. In this study, four velvet complex genes (CsLaeA, CsVeA, CsVelB, and CsVelC) in C. sativus were identified and characterized using knockout mutants generated for each of the genes. Both ΔCsVeA and ΔCsVelB showed significant reduction in aerial mycelia growth. ΔCsVelB also exhibited a hypermorphic conidiation phenotype with indeterminate growth of the conidial tip cells and premature germination of conidia. ΔCsLaeA, ΔCsVeA, and ΔCsVelB produced more conidia under constant dark conditions than under constant light conditions whereas no differences were observed under the two conditions for the wild type. These three mutants also showed significantly reduced conidiation under constant light conditions, but produced more small sized conidia under constant dark conditions compared to the wild type. All knockout mutants (ΔCsLaeA, ΔCsVeA, ΔCsVelB and ΔCsVelC) showed some extent of reduction in virulence on susceptible barley plants compared to the wild type strain. The results revealed the conserved and unique roles of velvet-complex proteins as regulators in mediating fungal development and secondary metabolism in C. sativus. PMID:27521627

  12. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  13. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana

    PubMed Central

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  14. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana.

    PubMed

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  15. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis.

    PubMed

    Zheng, Xiaoli; Xia, Yuxian

    2012-03-01

    Pattern recognition proteins, which form part of the innate immune system, initiate host defense reactions in response to pathogen surface molecules. The pattern recognition protein β-1,3-glucan recognition protein (βGRP) binds to β-1,3-glucan on fungal surfaces to mediate melanization via the prophenoloxidase (PPO)-activating cascade. In this study, cDNA encoding a 53-kDa βGRP (LmβGRP) was cloned from Locusta migratoria manilensis. LmβGRP mRNA shown to be constitutively expressed specifically in hemocytes and was highly upregulated following fungal infection. LmβGRP-silenced (LmβGRP-RNAi) mutant locusts exhibited significantly reduced survival rate following fungal infection (Metarhizium acridum) compared with the wild-type. Furthermore, LmβGRP-RNAi mutants exhibited abnormally loose stools indicative of a gut defect. 16S rRNA gene analysis detected the opportunistic pathogenic bacterium, Vibrio vulnificus in LmβGRP mutant but not wild-type locusts, suggesting changes in the composition of gut bacterial communities. These results indicate that LmβGRP is essential to gut immunity in L. migratoria manilensis. PMID:22062247

  16. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Cheng, Tina L; Rovito, Sean M; Wake, David B; Vredenburg, Vance T

    2011-06-01

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83-90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed-the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical "Bd epidemic wave" that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world.

  17. Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album.

    PubMed

    Evidente, Marco; Cimmino, Alessio; Zonno, Maria Chiara; Masi, Marco; Berestetskyi, Alexander; Santoro, Ernesto; Superchi, Stefano; Vurro, Maurizio; Evidente, Antonio

    2015-09-01

    Two phytotoxins were isolated from the liquid culture of Phoma chenopodiicola, a fungal pathogen proposed for the biological control of Chenopodium album, a common worldwide weed of arable crops. The two phytotoxins appeared to be a new tetrasubstituted furopyran and a new ent-pimaradiene. From the same culture a new tetrasubstituted isocoumarin was also isolated. These compounds were characterized by using spectroscopic (essentially 1D and 2D NMR and HR ESI MS) and chemical methods as 3-(3-methoxy-2,6-dimethyl-7aH-furo[2,3-b]pyran-4-yl)-but-2-en-1-ol (chenopodolan D, 1) (1S,2S,3S,4S,5S,9R,10S,12S,13S)-1,3,12-triacetoxy-2,hydroxy-6-oxo-ent-pimara-7(8),15-dien-18-oic acid 2,18-lactone (chenopodolin B, 3), and, 4,5,7-trihydroxy-3-methyl-isochroman-1-one (chenisocoumarin, 2) The absolute configuration of chenisocoumarin was assigned by applying an advanced Mosher's method through the derivatization of its secondary hydroxylated carbon C-4, while that of chenopodolan D by application of quantum mechanical calculations of chiroptical (ECD and ORD) properties. When assayed by leaf puncture against non-host weeds, chenopodolan D and chenopodolin B showed phytotoxicity while chenisocoumarin and the 9-O-acetyl derivative of chenopodolan D were inactive. These results confirm that the nature of the side chain at C-4 in chenopodolans, and in particular its hydroxylation, are important features for activity. The activity of chenopodolin B could also be explained by its possible hydrolysis to chenopodolin. PMID:26226110

  18. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis

    PubMed Central

    Cheng, Tina L.; Rovito, Sean M.; Wake, David B.; Vredenburg, Vance T.

    2011-01-01

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83–90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed—the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical “Bd epidemic wave” that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world. PMID:21543713

  19. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans

    PubMed Central

    Komalapriya, Chandrasekaran; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D.; Belmonte, Rodrigo C.; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P. S.; Gow, Neil A. R.; Thiel, Marco; Quinn, Janet

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  20. Population Genetic Analyses of the Fungal Pathogen Colletotrichum fructicola on Tea-Oil Trees in China

    PubMed Central

    Li, He; Zhou, Guo-Ying; Liu, Jun-Ang; Xu, Jianping

    2016-01-01

    The filamentous fungus Colletotrichum fructicola is found in all five continents and is capable of causing severe diseases in a number of economically important plants such as avocado, fig, cocoa, pear, and tea-oil trees. However, almost nothing is known about its patterns of genetic variation and epidemiology on any of its host plant species. Here we analyzed 167 isolates of C. fructicola obtained from the leaves of tea-oil tree Camellia oleifera at 15 plantations in seven Chinese provinces. Multilocus sequence typing was conducted for all isolates based on DNA sequences at fragments of four genes: the internal transcribed spacers of the nuclear ribosomal RNA gene cluster (539 bp), calmodulin (633 bp), glutamine synthetase (711 bp), and glyceraldehyde-3-phosphate dehydrogenase (190 bp), yielding 3.52%, 0.63%, 8.44%, and 7.89% of single nucleotide polymorphic sites and resulting in 15, 5, 12 and 11 alleles respectively at the four gene fragments in the total sample. The combined allelic information from all four loci identified 53 multilocus genotypes with the most frequent represented by 21 isolates distributed in eight tea-oil plantations in three provinces, consistent with long-distance clonal dispersal. However, despite evidence for clonal dispersal, statistically significant genetic differentiation among geographic populations was detected. In addition, while no evidence of recombination was found within any of the four gene fragments, signatures of recombination were found among the four gene fragments in most geographic populations, consistent with sexual mating of this species in nature. Our study provides the first insights into the population genetics and epidemiology of the important plant fungal pathogen C. fructicola. PMID:27299731

  1. Population Genetic Analyses of the Fungal Pathogen Colletotrichum fructicola on Tea-Oil Trees in China.

    PubMed

    Li, He; Zhou, Guo-Ying; Liu, Jun-Ang; Xu, Jianping

    2016-01-01

    The filamentous fungus Colletotrichum fructicola is found in all five continents and is capable of causing severe diseases in a number of economically important plants such as avocado, fig, cocoa, pear, and tea-oil trees. However, almost nothing is known about its patterns of genetic variation and epidemiology on any of its host plant species. Here we analyzed 167 isolates of C. fructicola obtained from the leaves of tea-oil tree Camellia oleifera at 15 plantations in seven Chinese provinces. Multilocus sequence typing was conducted for all isolates based on DNA sequences at fragments of four genes: the internal transcribed spacers of the nuclear ribosomal RNA gene cluster (539 bp), calmodulin (633 bp), glutamine synthetase (711 bp), and glyceraldehyde-3-phosphate dehydrogenase (190 bp), yielding 3.52%, 0.63%, 8.44%, and 7.89% of single nucleotide polymorphic sites and resulting in 15, 5, 12 and 11 alleles respectively at the four gene fragments in the total sample. The combined allelic information from all four loci identified 53 multilocus genotypes with the most frequent represented by 21 isolates distributed in eight tea-oil plantations in three provinces, consistent with long-distance clonal dispersal. However, despite evidence for clonal dispersal, statistically significant genetic differentiation among geographic populations was detected. In addition, while no evidence of recombination was found within any of the four gene fragments, signatures of recombination were found among the four gene fragments in most geographic populations, consistent with sexual mating of this species in nature. Our study provides the first insights into the population genetics and epidemiology of the important plant fungal pathogen C. fructicola. PMID:27299731

  2. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.

    PubMed

    Komalapriya, Chandrasekaran; Kaloriti, Despoina; Tillmann, Anna T; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D; Belmonte, Rodrigo C; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P S; Gow, Neil A R; Thiel, Marco; Quinn, Janet; Brown, Alistair J P; Romano, M Carmen

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  3. Robust calling performance in frogs infected by a deadly fungal pathogen.

    PubMed

    Greenspan, Sasha E; Roznik, Elizabeth A; Schwarzkopf, Lin; Alford, Ross A; Pike, David A

    2016-08-01

    Reproduction is an energetically costly behavior for many organisms, including species with mating systems in which males call to attract females. In these species, calling males can often attract more females by displaying more often, with higher intensity, or at certain frequencies. Male frogs attract females almost exclusively by calling, and we know little about how pathogens, including the globally devastating fungus, Batrachochytrium dendrobatidis, influence calling effort and call traits. A previous study demonstrated that the nightly probability of calling by male treefrogs, Litoria rheocola, is elevated when they are in good body condition and are infected by B. dendrobatidis. This suggests that infections may cause males to increase their present investment in mate attraction to compensate for potential decreases in future reproduction. However, if infection by B. dendrobatidis decreases the attractiveness of their calls, infected males might experience decreased reproductive success despite increases in calling effort. We examined whether calls emitted by L. rheocola infected by B. dendrobatidis differed from those of uninfected individuals in duration, pulse rate, dominant frequency, call rate, or intercall interval, the attributes commonly linked to mate choice. We found no effects of fungal infection status or infection intensity on any call attribute. Our results indicate that infected males produce calls similar in all the qualities we measured to those of uninfected males. It is therefore likely that the calls of infected and uninfected males should be equally attractive to females. The increased nightly probability of calling previously demonstrated for infected males in good condition may therefore lead to greater reproductive success than that of uninfected males. This could reduce the effectiveness of natural selection for resistance to infection, but could increase the effectiveness of selection for infection tolerance, the ability to

  4. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata.

    PubMed

    Gutiérrez-Escobedo, Guadalupe; Orta-Zavalza, Emmanuel; Castaño, Irene; De Las Peñas, Alejandro

    2013-08-01

    Candida glabrata, an opportunistic fungal pathogen, accounts for 18-26 % of all Candida systemic infections in the US. C. glabrata has a robust oxidative stress response (OSR) and in this work we characterized the role of glutathione (GSH), an essential tripeptide-like thiol-containing molecule required to keep the redox homeostasis and in the detoxification of metal ions. GSH is synthesized from glutamate, cysteine, and glycine by the sequential action of Gsh1 (γ-glutamyl-cysteine synthetase) and Gsh2 (glutathione synthetase) enzymes. We first screened for suppressor mutations that would allow growth in the absence of GSH1 (gsh1∆ background) and found a single point mutation in PRO2 (pro2-4), a gene that encodes a γ-glutamyl phosphate reductase and catalyzes the second step in the biosynthesis of proline. We demonstrate that GSH is important in the OSR since the gsh1∆ pro2-4 and gsh2∆ mutant strains are more sensitive to oxidative stress generated by H2O2 and menadione. GSH is also required for Cadmium tolerance. In the absence of Gsh1 and Gsh2, cells show decreased viability in stationary phase. Furthermore, C. glabrata does not contain Saccharomyces cerevisiae high affinity GSH transporter ortholog, ScOpt1/Hgt1, however, our genetic and biochemical experiments show that the gsh1∆ pro2-4 and gsh2∆ mutant strains are able to incorporate GSH from the medium. Finally, GSH and thioredoxin, which is a second redox system in the cell, are not essential for the catalase-independent adaptation response to H2O2. PMID:23455613

  5. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  6. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens.

    PubMed

    Huang, Yan; Liu, Hong; Jia, Zhichun; Fang, Qing; Luo, Keming

    2012-10-01

    Populus species are susceptible to infection by microbial pathogens that severely affect their growth and substantially decrease their economic value. In this study, two pathogenesis-related protein genes consisting of Beauveria bassiana chitinase (Bbchit1) and motherwort lipid-transfer protein (LJAMP2) were introduced into Chinese white poplar (Populus tomentosa Carr.) via Agrobacterium-mediated transformation using the hygromycin (hyg) and neomycin phosphotransferase (NPTII) genes as selectable markers, respectively. Polymerase chain reaction analysis confirmed the stable integration of transgenes in the genome of transgenic plants. In vitro assays showed that inhibitory activity against the fungal pathogen Alternaria alternata (Fr.) Keissler was evident from the crude leaf extracts from transgenic plants. Importantly, the double-transgenic plants exhibited significantly higher resistance to the pathogen than either of the single-gene transformants and wild-type plants when inoculated with A. alternata. The level of disease reduction in double-transgenic lines was between 82 and 95%, whereas that of single-gene transformants carrying either LJAMP2 or Bbchit1 was between 65 and 89%. These results indicated that the combined expression of the LJAMP2 and Bbchit-1 genes could significantly enhance resistance to necrotrophic fungal pathogens in poplar.

  7. Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco.

    PubMed

    Cox, K D; Layne, D R; Scorza, R; Schnabel, G

    2006-11-01

    Diseases of agricultural crops are caused by pathogens from several higher-order phylogenetic lineages including fungi, straminipila, eubacteria, and metazoa. These pathogens are commonly managed with pesticides due to the lack of broad-spectrum host resistance. Gastrodia anti-fungal protein (GAFP; gastrodianin) may provide a level of broad-spectrum resistance due to its documented anti-fungal activity in vitro and structural similarity to insecticidal lectins. We transformed tobacco (Nicotiana tabacum cv. Wisconsin 38) with GAFP-1 and challenged transformants with agriculturally important plant pathogens from several higher-order lineages including Rhizoctonia solani (fungus), Phytophthora nicotianae (straminipile), Ralstonia solanacearum (eubacterium), and Meloidogyne incognita (metazoan). Quantitative real-time PCR and western blotting analysis indicated that GAFP-1 was transcribed and translated in transgenic lines. When challenged by R. solani and P. nicotianae, GAFP-1 expressing lines had reduced symptom development and improved plant vigor compared to non-transformed and empty vector control lines. These lines also exhibited reduced root galling when challenged by M. incognita. Against R. solanacearum expression of GAFP-1 neither conferred resistance, nor exacerbated disease development. These results indicate that heterologous expression of GAFP-1 can confer enhanced resistance to a diverse set of plant pathogens and may be a good candidate gene for the development of transgenic, root-disease-resistant crops.

  8. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Paciência, Inês; Rufo, João Cavaleiro; Pereira, Cristiana; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-05-01

    Until now the influence of risk factors resulting from exposure to biological agents in indoor air has been far less studied than outdoor pollution; therefore the uncertainty of health risks, and how to effectively prevent these, remains. This study aimed (i) to quantify airborne cultivable bacterial and fungal concentrations in four different types of indoor environment as well as to identify the recovered fungi; (ii) to assess the impact of outdoor bacterial and fungal concentrations on indoor air; (iii) to investigate the influence of carbon dioxide (CO2), temperature and relative humidity on bacterial and fungal concentrations; and (iv) to estimate bacterial and fungal dose rate for children (3-5 years old and 8-10 years old) in comparison with the elderly. Air samples were collected in 68 homes, 9 child day-care centres, 20 primary schools and 22 elderly care centres, in a total of 264 rooms with a microbiological air sampler and using tryptic soy agar and malt extract agar culture media for bacteria and fungi growth, respectively. For each building, one outdoor representative location were identified and simultaneously studied. The results showed that child day-care centres were the indoor microenvironment with the highest median bacterial and fungal concentrations (3870 CFU/m3 and 415 CFU/m3, respectively), whereas the lowest median concentrations were observed in elderly care centres (222 CFU/m3 and 180 CFU/m3, respectively). Indoor bacterial concentrations were significantly higher than outdoor concentrations (p < 0.05); whereas the indoor/outdoor ratios for the obtained fungal concentrations were approximately around the unit. Indoor CO2 levels were associated with the bacterial concentration, probably due to occupancy and insufficient ventilation. Penicillium and Cladosporium were the most frequently occurring fungi. Children's had two times higher dose rate to biological pollutants when compared to adult individuals. Thus, due to children

  9. Identification of airborne bacterial and fungal species in the clinical microbiology laboratory of a university teaching hospital employing ribosomal DNA (rDNA) PCR and gene sequencing techniques.

    PubMed

    Nagano, Yuriko; Walker, Jim; Loughrey, Anne; Millar, Cherie; Goldsmith, Colin; Rooney, Paul; Elborn, Stuart; Moore, John

    2009-06-01

    Universal or "broad-range" PCR-based ribosomal DNA (rDNA) was performed on a collection of 58 isolates (n = 30 bacteria + 28 fungi), originating from environmental air from several locations within a busy clinical microbiology laboratory, supporting a university teaching hospital. A total of 10 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 27/30 (90%) of total bacterial species, consisting of seven genera and included (in descending order of frequency) Staphylococcus, Micrococcus, Corynebacterium, Paenibacillus, Arthrobacter, Janibacter and Rothia. Gram-negative organisms were less frequently isolated 3/30 (10%) and comprised three genera, including Moraxella, Psychrobacter and Haloanella. Eight fungal genera were identified among the 28 fungal organisms isolated, including (in descending order of frequency) Cladosporium, Penicillium, Aspergillus, Thanatephorus, Absidia, Eurotium, Paraphaeosphaeria and Tritirachium, with Cladosporium accounting for 10/28 (35.7%) of the total fungal isolates. In conclusion, this study identified the presence of 10 bacterial and eight fungal genera in the air within the laboratory sampled. Although this reflected diversity of the microorganisms present, none of these organisms have been described previously as having an inhalational route of laboratory-acquired infection. Therefore, we believe that the species of organisms identified and the concentration levels of these airborne contaminants determined, do not pose a significant health and safety threat for immunocompotent laboratory personnel and visitors. PMID:20183192

  10. Honey bee fungal pathogen, Ascosphaera apis; current understanding of host-pathogen interactions and host mechanisms of resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides an overview of the profound knowledge accumulated in recent years from genome and transcriptome-wide attempts to determine host immune responses to honey bee fungal diseases and to identify quantitative trait loci (QTLs) that underline host mechanisms of resistance. Considering...

  11. Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata

    PubMed Central

    Schuck, Stefan; Baldwin, Ian T.

    2014-01-01

    The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context. PMID:25036191

  12. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security.

    PubMed

    Thornton, Christopher R; Wills, Odette E

    2015-02-01

    Filamentous fungi (moulds), yeast-like fungi, and oomycetes cause life-threatening infections of humans and animals and are a major constraint to global food security, constituting a significant economic burden to both agriculture and medicine. As well as causing localized or systemic infections, certain species are potent producers of allergens and toxins that exacerbate respiratory diseases or cause cancer and organ damage. We review the pathogenic and toxigenic organisms that are etiologic agents of both animal and plant diseases or that have recently emerged as serious pathogens of immunocompromised individuals. The use of hybridoma and phage display technologies and their success in generating monoclonal antibodies for the detection and control of fungal and oomycete pathogens are explored. Monoclonal antibodies hold enormous potential for the development of rapid and specific tests for the diagnosis of human mycoses, however, unlike plant pathology, their use in medical mycology remains to be fully exploited.

  13. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing.

    PubMed

    de Jonge, Ronnie; van Esse, H Peter; Maruthachalam, Karunakaran; Bolton, Melvin D; Santhanam, Parthasarathy; Saber, Mojtaba Keykha; Zhang, Zhao; Usami, Toshiyuki; Lievens, Bart; Subbarao, Krishna V; Thomma, Bart P H J

    2012-03-27

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens. PMID:22416119

  14. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    PubMed

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  15. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity.

    PubMed

    Perlin, Michael H; Andrews, Jared; Toh, Su San

    2014-01-01

    Fungi depend heavily on their ability to exploit resources that may become available to them in their myriad of possible lifestyles. Whether this requires simple uptake of sugars as saprobes or competition for host-derived carbohydrates or peptides, fungi must rely on transporters that effectively allow the fungus to accumulate such nutrients from their environments. In other cases, fungi secrete compounds that facilitate their interactions with potential hosts and/or neutralize their competition. Finally, fungi that find themselves on the receiving end of insults, from hosts, competitors, or the overall environment are better served if they can get rid of such toxins or xenobiotics. In this chapter, we update studies on the most ubiquitous transporters, the ABC and MFS superfamilies. In addition, we discuss the importance of subsets of these proteins with particular relevance to plant pathogenic fungi. The availability of ever-increasing numbers of sequenced fungal genomes, combined with high-throughput methods for transcriptome analysis, provides insights previously inaccessible prior to the -omics era. As examples of such broader perspectives, we point to revelations about exploitive use of sugar transporters by plant pathogens, expansion of trichothecene efflux pumps in fungi that do not produce these mycotoxins, and the discovery of a fungal-specific oligopeptide transporter class that, so far, is overrepresented in the plant pathogenic fungi.

  16. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    PubMed Central

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  17. Purification, Cloning and Immuno-Biochemical Characterization of a Fungal Aspartic Protease Allergen Rhi o 1 from the Airborne Mold Rhizopus oryzae

    PubMed Central

    Sircar, Gaurab; Saha, Bodhisattwa; Mandal, Rahul Shubhra; Pandey, Naren; Saha, Sudipto; Gupta Bhattacharya, Swati

    2015-01-01

    Background Fungal allergy is considered as serious health problem worldwide and is increasing at an alarming rate in the industrialized areas. Rhizopus oyzae is a ubiquitously present airborne pathogenic mold and an important source of inhalant allergens for the atopic population of India. Here, we report the biochemical and immunological features of its 44 kDa sero-reactive aspartic protease allergen, which is given the official designation ‘Rhi o 1’. Method The natural Rhi o 1 was purified by sequential column chromatography and its amino acid sequence was determined by mass spectrometry and N-terminal sequencing. Based on its amino acid sequence, the cDNA sequence was identified, cloned and expressed to produce recombinant Rhi o 1. The allergenic activity of rRhi o 1 was assessed by means of its IgE reactivity and histamine release ability. The biochemical property of Rhi o 1 was studied by enzyme assay. IgE-inhibition experiments were performed to identify its cross-reactivity with the German cockroach aspartic protease allergen Bla g 2. For precise characterization of the cross-reactive epitope, we used anti-Bla g 2 monoclonal antibodies for their antigenic specificity towards Rhi o 1. A homology based model of Rhi o 1 was built and mapping of the cross-reactive conformational epitope was done using certain in silico structural studies. Results The purified natural nRhi o 1 was identified as an endopeptidase. The full length allergen cDNA was expressed and purified as recombinant rRhi o 1. Purified rRhi o 1 displayed complete allergenicity similar to the native nRhi o 1. It was recognized by the serum IgE of the selected mold allergy patients and efficiently induced histamine release from the sensitized PBMC cells. This allergen was identified as an active aspartic protease functional in low pH. The Rhi o 1 showed cross reactivity with the cockroach allergen Bla g 2, as it can inhibit IgE binding to rBla g 2 up to certain level. The rBla g 2 was also found

  18. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline.

    PubMed

    Fernandes, Isabel; Alves, Artur; Correia, António; Devreese, Bart; Esteves, Ana Cristina

    2014-01-01

    The characterisation of the secretome of phytopathogenic fungi may contribute to elucidate the molecular mechanisms of pathogenesis. This is particularly relevant for Diplodia corticola, a fungal plant pathogen belonging to the family Botryosphaeriaceae, whose genome remains unsequenced. This phytopathogenic fungus is recognised as one of the most important pathogens of cork oak, being related to the decline of cork oak forests in the Iberian Peninsula. Unfortunately, secretome analysis of filamentous fungi is limited by the low protein concentration and by the presence of many interfering substances, such as polysaccharides, which affect the separation and analysis by 1D and 2D gel electrophoresis. We compared six protein extraction protocols concerning their suitability for further application with proteomic workflows. The protocols involving protein precipitation were the most efficient, with emphasis on TCA-acetone protocol, allowing us to identify the most abundant proteins on the secretome of this plant pathogen. Approximately 60% of the spots detected were identified, all corresponding to extracellular proteins. Most proteins identified were carbohydrate degrading enzymes and proteases that may be related to D. corticola pathogenicity. Although the secretome was assessed in a noninfection environment, potential virulence factors such as the putative glucan-β-glucosidase, neuraminidase, and the putative ferulic acid esterase were identified. The data obtained forms a useful basis for a deeper understanding of the pathogenicity and infection biology of D. corticola. Moreover, it will contribute to the development of proteomics studies on other members of the Botryosphaeriaceae.

  19. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    PubMed Central

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  20. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens.

    PubMed

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  1. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    PubMed

    Sabiiti, Wilber; May, Robin C

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB.

  2. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    PubMed

    Sabiiti, Wilber; May, Robin C

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB. PMID:22530025

  3. Finding the sweet spot: how human fungal pathogens acquire and turn the sugar inositol against their hosts.

    PubMed

    Xue, Chaoyang

    2015-03-03

    Inositol is an essential nutrient with important structural and signaling functions in eukaryotes. Its role in microbial pathogenesis has been reported in fungi, protozoans, and eubacteria. In a recent article, Porollo et al. [mBio 5(6):e01834-14, 2014, doi:10.1128/mBio.01834-14] demonstrated the importance of inositol metabolism in the development and viability of Pneumocystis species--obligate fungal pathogens that remain unculturable in vitro. To understand their obligate nature, the authors used innovative comparative genomic approaches and discovered that Pneumocystis spp. are inositol auxotrophs due to the lack of inositol biosynthetic enzymes and that inositol insufficiency is a contributing factor preventing fungal growth in vitro. This work is in accord with other studies suggesting that inositol plays a conserved role in microbial pathogenesis. Inositol uptake and metabolism therefore may represent novel antimicrobial drug targets. Using comparative genomics to analyze metabolic pathways offers a powerful tool to gain new insights into nutrient utilization in microbes, especially obligate pathogens.

  4. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen

    PubMed Central

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Fan, Yanhua; Juárez, M. Patricia; Keyhani, Nemat O.

    2015-01-01

    Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrAO) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrAO strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution. PMID:26056261

  5. Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum.

    PubMed

    Garrigues, Sandra; Gandía, Mónica; Marcos, Jose F

    2016-03-01

    Antifungal proteins (AFPs) of fungal origin have been described in filamentous fungi. AFPs are small, highly stable, cationic cysteine-rich proteins (CRPs) that are usually secreted in high amounts and show potent antifungal activity against non-self fungi. The role of AFPs in the biology of the producer fungus remains unclear. AFPs have been proposed as promising lead compounds for the development of new antifungals. The analyses of available antifungal CRP sequences from fungal origin and their phylogenetic reconstruction led us to propose a new classification of AFPs in three distinct classes: A, B and C. We initiate for the first time the characterization of an AFP in a fungal pathogen, by analysing the functional role of the unique afpB gene in the citrus fruit pathogen Penicillium digitatum. Null ΔafpB mutants revealed that this gene is dispensable for vegetative growth and fruit infection. However, strains that artificially express afpB in a constitutive way (afpB (C)) showed a phenotype of restricted growth, distortion of hyphal morphology and strong reduction in virulence to citrus fruits. These characteristics support an antifungal role for AfpB. Surprisingly, we did not detect the AfpB protein in any of the P. digitatum strains and growth conditions that were analysed in this study, regardless of high gene expression. The afpB (C) phenotype is not stable and occasionally reverts to a wild type-like phenotype but molecular changes were not detected with this reversion. The reduced virulence of afpB (C) strains correlated with localized fruit necrosis and altered timing of expression of fruit defence genes. PMID:26545756

  6. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination.

    PubMed

    Barkal, Layla J; Walsh, Naomi M; Botts, Michael R; Beebe, David J; Hull, Christina M

    2016-05-16

    Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination. PMID:27026574

  7. Fungal pathogen complexes associated with rambutan, longan and mango diseases in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different fungi have been associated with diseased inflorescences, leaves, and fruits of mango, rambutan and longan. During a fungal disease survey conducted between 2008 and 2013 at six orchards of rambutan and longan, and one orchard of mango in Puerto Rico, symptoms such as fruit rot, infloresc...

  8. Chemo-sensitization of fungal pathogens to antimicrobial agents using benzaldehyde analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activity of conventional antifungal agents, fludioxonil, strobilurin and antimycinA, which target the oxidative and osmotic stress response systems, was elevated by co-application of certain analogs of benzaldehyde. Fungal tolerance to 2,3-dihydroxybenzaldehyde or 2,3-dihydroxybenzoic acid was foun...

  9. Effects of temperature during soybean seed development on defense-related gene expression and fungal pathogen accumulation.

    PubMed

    Upchurch, Robert G; Ramirez, Martha E

    2011-12-01

    Soybean [Glycine max (L.) Merr] plants were exposed to three temperature regimens during seed development to investigate the effect of temperature on the expression of eight defense-related genes and the accumulation of two fungal pathogens in inoculated seeds. In seeds prior to inoculation, either a day/night warm (34/26 °C) or a cool temperature (22/18 °C) relative to normal (26/22 °C) resulted in altered patterns of gene expression including substantially lower expression of PR1, PR3 and PR10. After seed inoculation with Cercospora kikuchii, pathogen accumulation was lowest in seeds produced at 22/18 °C in which of all defense genes, MMP2 was uniquely most highly induced. For seeds inoculated with Diaporthe phaseolorum, pathogen accumulation was lowest in seeds produced at 34/26 °C in which of all defense genes, PR10 was uniquely most highly induced. Our detached seed assays clearly demonstrated that the temperature regimens we applied during seed development produced significant changes in seed defense-related gene expression both pre- and post inoculation and our findings support the hypothesis that global climate change may alter plant-pathogen interactions and thereby potentially crop productivity.

  10. Nitric Oxide in the Offensive Strategy of Fungal and Oomycete Plant Pathogens

    PubMed Central

    Arasimowicz-Jelonek, Magdalena; Floryszak-Wieczorek, Jolanta

    2016-01-01

    In the course of evolutionary changes pathogens have developed many invasion strategies, to which the host organisms responded with a broad range of defense reactions involving endogenous signaling molecules, such as nitric oxide (NO). There is evidence that pathogenic microorganisms, including two most important groups of eukaryotic plant pathogens, also acquired the ability to synthesize NO via non-unequivocally defined oxidative and/or reductive routes. Although the both kingdoms Chromista and Fungi are remarkably diverse, the experimental data clearly indicate that pathogen-derived NO is an important regulatory molecule controlling not only developmental processes, but also pathogen virulence and its survival in the host. An active control of mitigation or aggravation of nitrosative stress within host cells seems to be a key determinant for the successful invasion of plant pathogens representing different lifestyles and an effective mode of dispersion in various environmental niches. PMID:26973690

  11. Polymorphic DNA sequences of the fungal honey bee pathogen Asosphaera apis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenic fungus Ascosphaera apis is ubiquitous in honey bee populations. We used the draft genome assembly of this pathogen to search for polymorphic intergenic loci. Primers were designed for five different loci and tested against a panel of closely related species. Subsequently, sequence var...

  12. RNA-mediated Gene Silencing in the Cereal Fungal Pathogen Cochliobolus sativus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is the causal agent of spot blotch, common root rot and black point in barley and wheat. However, little is known about the mechanisms underlying the pathogenicity and virulence of the pathogen. In this study, we developed a high-throughput RNA-...

  13. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients

    PubMed Central

    Kaur, Jashanpreet; Pethani, Bhavin P.; Kumar, Sheemal; Kim, Minkyoung; Sunna, Anwar; Kautto, Liisa; Penesyan, Anahit; Paulsen, Ian T.; Nevalainen, Helena

    2015-01-01

    The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S

  14. Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Barrero-Canosa, J.; Dueñas, L. F.; Sánchez, J. A.

    2013-03-01

    A major environmental problem in the ocean is the alarming increase in diseases affecting diverse marine organisms including corals. Environmental factors such as the rising seawater temperatures and terrestrial microbial input to the ocean have contributed to the increase in diseased organisms. We isolated and identified the fungal agents that may be leading to a disease in the Pacific sea fan Pacifigorgia eximia (Gorgoniidae, Octocorallia) in the Tropical Eastern Pacific. We isolated thirteen fungal genera in healthy and diseased colonies including Aspergillus sydowii. Aspergillus has been previously identified as responsible for the mortality of gorgonian corals in the Caribbean. This disease was observed in the Eastern Pacific affecting a completely different set of species nearly 30 years after the Caribbean outbreak, which concur with rising seawater temperatures and thermal anomalies that have been observed in the last 4 years.

  15. Species-Specific Identification of a Wide Range of Clinically Relevant Fungal Pathogens by Use of Luminex xMAP Technology▿ †

    PubMed Central

    Landlinger, C.; Preuner, S.; Willinger, B.; Haberpursch, B.; Racil, Z.; Mayer, J.; Lion, T.

    2009-01-01

    In immunocompromised patients suffering from invasive fungal infection, rapid identification of the fungal species is a prerequisite for selection of the most appropriate antifungal treatment. We present an assay permitting reliable identification of a wide range of clinically relevant fungal pathogens based on the high-throughput Luminex microbead hybridization technology. The internal transcribed spacer (ITS2) region, which is highly variable among genomes of individual fungal species, was used to generate oligonucleotide hybridization probes for specific identification. The spectrum of pathogenic fungi covered by the assay includes the most commonly occurring species of the genera Aspergillus and Candida and a number of important emerging fungi, such as Cryptococcus, Fusarium, Trichosporon, Mucor, Rhizopus, Penicillium, Absidia, and Acremonium. Up to three different probes are employed for the detection of each fungal species. The redundancy in the design of the assay should ensure unambiguous fungus identification even in the presence of mutations in individual target regions. The current set of hybridization oligonucleotides includes 75 species- and genus-specific probes which had been carefully tested for specificity by repeated analysis of multiple reference strains. To provide adequate sensitivity for clinical application, the assay includes amplification of the ITS2 region by a seminested PCR approach prior to hybridization of the amplicons to the probe panel using the Luminex technology. A variety of fungal pathogens were successfully identified in clinical specimens that included peripheral blood, samples from biopsies of pulmonary infiltrations, and bronchotracheal secretions derived from patients with documented invasive fungal infections. Our observations demonstrate that the Luminex-based technology presented permits rapid and reliable identification of fungal species and may therefore be instrumental in routine clinical diagnostics. PMID:19244466

  16. Fungal allergens.

    PubMed Central

    Horner, W E; Helbling, A; Salvaggio, J E; Lehrer, S B

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immunotherapy of allergy to fungi require well-characterized or standardized extracts that contain the relevant allergen(s) of the appropriate fungus. Production of standardized extracts is difficult since fungal extracts are complex mixtures and a variety of fungi are allergenic. Thus, the currently available extracts are largely nonstandardized, even uncharacterized, crude extracts. Recent significant progress in isolating and characterizing relevant fungal allergens is summarized in the present review. Particularly, some allergens from the genera Alternaria, Aspergillus, and Cladosporium are now thoroughly characterized, and allergens from several other genera, including some basidiomycetes, have also been purified. The availability of these extracts will facilitate definitive studies of fungal allergy prevalence and immunotherapy efficacy as well as enhance both the diagnosis and therapy of fungal allergy. PMID:7621398

  17. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    PubMed

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (<40 μg ml(-1)) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments.

  18. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    PubMed

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (<40 μg ml(-1)) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments. PMID:23906229

  19. Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians

    PubMed Central

    Voyles, Jamie; Johnson, Leah R; Briggs, Cheryl J; Cashins, Scott D; Alford, Ross A; Berger, Lee; Skerratt, Lee F; Speare, Rick; Rosenblum, Erica Bree

    2014-01-01

    Virulence of infectious pathogens can be unstable and evolve rapidly depending on the evolutionary dynamics of the organism. Experimental evolution can be used to characterize pathogen evolution, often with the underlying objective of understanding evolution of virulence. We used experimental evolution techniques (serial transfer experiments) to investigate differential growth and virulence of Batrachochytrium dendrobatidis (Bd), a fungal pathogen that causes amphibian chytridiomycosis. We tested two lineages of Bd that were derived from a single cryo-archived isolate; one lineage (P10) was passaged 10 times, whereas the second lineage (P50) was passaged 50 times. We quantified time to zoospore release, maximum zoospore densities, and timing of zoospore activity and then modeled population growth rates. We also conducted exposure experiments with a susceptible amphibian species, the common green tree frog (Litoria caerulea) to test the differential pathogenicity. We found that the P50 lineage had shorter time to zoospore production (Tmin), faster rate of sporangia death (ds), and an overall greater intrinsic population growth rate (λ). These patterns of population growth in vitro corresponded with higher prevalence and intensities of infection in exposed Litoria caerulea, although the differences were not significant. Our results corroborate studies that suggest that Bd may be able to evolve relatively rapidly. Our findings also challenge the general assumption that pathogens will always attenuate in culture because shifts in Bd virulence may depend on laboratory culturing practices. These findings have practical implications for the laboratory maintenance of Bd isolates and underscore the importance of understanding the evolution of virulence in amphibian chytridiomycosis. PMID:25478154

  20. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

    SciTech Connect

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred; Belbahri, Lassaad; Bouzid, Ourdia; Broberg, Anders; Canback, Bjorn; Coutinho, Pedro M.; Cullen, Dan; Dalman, Kerstin; Deflorio, Giuliana; van Diepen, Linda T. A.; Dunand, Christophe; Duplessis, Sebastien; Durling, Mikael; Gonthier, Paolo; Grimwood, Jane; Fossdal, Carl Gunnar; Hansson, David; Henrissat, Bernard; Hietala, Ari; Himmelstrand, Kajsa; Hoffmeister, Dirk; Hogberg, Nils; James, Timothy Y.; Karlsson, Magnus; Kohler, Annegret; Lucas, Susan; Lunden, Karl; Morin, Emmanuelle; Murat, Claude; Park, Jongsun; Raffaello, Tommaso; Rouze, Pierre; Salamov, Asaf; Schmutz, Jeremy; Solheim, Halvor; Stahlberg, Jerry; Velez, Heriberto; de Vries, Ronald P.; Wiebenga, Ad; Woodward, Steve; Yakovlev, Igor; Garbelotto, Matteo; Martin, Francis; Grigoriev, Igor V.; Stenlid, Jan

    2012-01-01

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

  1. Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda

    PubMed Central

    Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931

  2. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean

    PubMed Central

    Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios

    2008-01-01

    Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens. PMID:18335093

  3. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen.

    PubMed

    Wang, Juan-Juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests. PMID:25955538

  4. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina.

    PubMed

    Kelly, Michelle N; Zheng, Mingquan; Ruan, Sanbao; Kolls, Jay; D'Souza, Alain; Shellito, Judd E

    2013-01-01

    Little is known about the role of NK cells or their interplay with other immune cells during opportunistic infections. Using our murine model of Pneumocystis pneumonia, we found that loss of NK cells during immunosuppression results in substantial Pneumocystis lung burden. During early infection of C57B/6 CD4(+) T cell-depleted mice, there were significantly fewer NK cells in the lung tissue compared with CD4(+) T cell-intact animals, and the NK cells present demonstrated decreased upregulation of the activation marker NKp46 and production of the effector cytokine, IFN-γ. Furthermore, coincubation studies revealed a significant increase in fungal killing when NK cells were combined with CD4(+) T cells compared with either cell alone, which was coincident with a significant increase in perforin production by NK cells. Finally, however, we found through adoptive transfer that memory CD4(+) T cells are required for significant NK cell upregulation of the activation marker NK group 2D and production of IFN-γ, granzyme B, and perforin during Pneumocystis infection. To the best of our knowledge, this study is the first to demonstrate a role for NK cells in immunity to Pneumocystis pneumonia, as well as to establish a functional relationship between CD4(+) T cells and NK cells in the host response to an opportunistic fungal pathogen.

  5. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  6. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Becker, Matthew H; Walke, Jenifer B; Murrill, Lindsey; Woodhams, Douglas C; Reinert, Laura K; Rollins-Smith, Louise A; Burzynski, Elizabeth A; Umile, Thomas P; Minbiole, Kevin P C; Belden, Lisa K

    2015-04-01

    The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis.

  7. Minimizing the exposure of airborne pathogens by upper-room ultraviolet germicidal irradiation: an experimental and numerical study.

    PubMed

    Yang, Y; Chan, W Y; Wu, C L; Kong, R Y C; Lai, A C K

    2012-12-01

    There has been increasing interest in the use of upper-room ultraviolet germicidal irradiation (UVGI) because of its proven effectiveness in disinfecting airborne pathogens. An improved drift flux mathematical model is developed for optimizing the design of indoor upper-room UVGI systems by predicting the distribution and inactivation of bioaerosols in a ventilation room equipped with a UVGI system. The model takes into account several bacteria removal mechanisms such as convection, turbulent diffusion, deposition and UV inactivation. Before applying the model, the natural die-off rate and susceptibility constants of bioaerosols were measured experimentally. Two bacteria aerosols, Escherichia coli and Serratia marcescens, were tested for this purpose. It was found out that the general decay trend of the bioaerosol concentration predicted by the numerical model agrees well with the experimental measurements. The modelling results agree better with experimental observations for the case when the UVGI inactivation mechanism dominates at the upper-room region than for the case without UVGI. The numerical results also illustrate that the spatial distribution of airborne bacteria was influenced by both air-flow pattern and irradiance distribution. In addition to predicting the local variation of concentration, the model assesses the overall performance of an upper-room UVGI system. This model has great potential for optimizing the design of indoor an upper-room UVGI systems.

  8. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Ribeiro, H.; Delgado, J. L.; Abreu, I.

    2009-01-01

    Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005-2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores ( Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores ( Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.

  9. Efficacy of Aqueous and Methanolic Extracts of Rheum Spiciformis against Pathogenic Bacterial and Fungal Strains

    PubMed Central

    Dar, Khalid Bashir; Bhat, Aashiq Hussain; Amin, Shajrul; Anees, Suhail; Masood, Akbar; Zargar, Mohammed Iqbal

    2016-01-01

    Introduction Rheum spiciformis is a newly identified edible medicinal plant of genus Rheum. The plant is used to treat various diseases on traditional levels in Kashmir Valley, India. Aim To evaluate the phytochemical screening, antibacterial and antifungal potential of aqueous and methanolic extracts of Rheum spiciformis, a traditionally used edible medicinal plant. Materials and Methods Methanolic and aqueous extracts of Rheum spiciformis were tested for their antimicrobial activities against six bacterial strains namely Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and Escherichia coli and four fungal strains Penicillium chrysogenum, Aspergillus fumigatus, Candida albicans and Saccharomyces cerevisiae. The susceptibility of microbial strains to the two extracts was determined using agar well diffusion method. Phytochemical screening was carried out by using various standard procedures. Results Methanolic extract showed potent antimicrobial activity as compared to aqueous extract at the concentrations of 10, 30, 50, 80 and 100mg/ml. The most susceptible bacterial strains were Staphylococcus aureus with zone of inhibition (25±0.10mm), Klebsiella pneumonia (23±0.25mm), Proteus vulgaris (22±0.10mm) at the concentration of 100mg/ml. Aqueous extracts at the higher concentration were found effective against Proteus vulgaris and Bacillus subtilis with zone of inhibition (17±0.24mm) and (17±0.10mm), respectively. Among fungal strains the most susceptible were Aspergillus fumigatus (21±0.10mm), Saccharomyces cerevisiae (20±0.20mm) and Penicillium Chrysogenum (17±0.15mm) at the concentration of 100mg/ml methanol extract. The zone of inhibition for aqueous extract against fungal strains ranged between 14±0.13mm to 16±0.19mm at the highest concentration of plant extract. Phytochemical analysis revealed the presence of various secondary metabolites like flavonoids, saponins, volatile oils, phenols, steroids

  10. Fungal stealth technology.

    PubMed

    Rappleye, Chad A; Goldman, William E

    2008-01-01

    Medically important fungi range from commensal organisms that cause opportunistic infections to primary fungal pathogens that can cause disease in immunocompetent hosts. Host phagocyte-expressed pattern-recognition receptors represent one obstacle to infection, and the extent to which fungal cells can evade detection by host receptors helps shape their pathogenic potential. This review highlights recently defined mechanisms employed by successful fungal pathogens to conceal their immunostimulatory molecular signatures from leukocyte receptors or to disrupt host response signals. Continued improvements in our understanding of these fungal stealth mechanisms should provide new options for future therapeutics to expose these fungal pathogens and limit their virulence capacity.

  11. Bacterial Antagonists of Fungal Pathogens Also Control Root-Knot Nematodes by Induced Systemic Resistance of Tomato Plants

    PubMed Central

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such “multi-purpose” bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses. PMID:24587352

  12. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae

    PubMed Central

    Badet, Thomas; Peyraud, Rémi; Raffaele, Sylvain

    2015-01-01

    Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases. PMID:26442085

  13. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.

    PubMed

    Wei, Yangdou; Shen, Wenyun; Dauk, Melanie; Wang, Feng; Selvaraj, Gopalan; Zou, Jitao

    2004-01-01

    Unidirectional transfer of nutrients from plant host to pathogen represents a most revealing aspect of the parasitic lifestyle of plant pathogens. Whereas much effort has been focused on sugars and amino acids, the identification of other significant metabolites is equally important for comprehensive characterization of metabolic interactions between plants and biotrophic fungal pathogens. Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae. The gpdhDelta strain had severe defects in carbon utilization as it could use neither glucose nor amino acids for sustained growth. Although the mutant mycelia were able to grow on potato dextrose agar medium, they displayed arrhythmicity in growth and failure to conidiate. The metabolic defect of gpdhDelta could be entirely ameliorated by glycerol in chemically defined minimal medium. Furthermore, glycerol was the one and only metabolite that could restore rhythmic growth and conidiation of gpdhDelta. Despite the profound defects in carbon source utilization, in planta the gpdhDelta strain exhibited normal pathogenicity, proceeded normally in its life cycle, and produced abundant conidia. Analysis of plant tissues at the peripheral zone of fungal infection sites revealed a time-dependent reduction in glycerol content. This study provides strong evidence for a role of glycerol as a significant transferred metabolite from plant to fungal pathogen.

  14. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food.

    PubMed

    Hossain, Farah; Follett, Peter; Dang Vu, Khang; Harich, Mehdi; Salmieri, Stephane; Lacroix, Monique

    2016-02-01

    The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Penicillium chrysogenum. The antifungal activity of the EOs was assessed by the minimum inhibitory concentration (MIC) using 96-well microplate analysis. The interactions between different EO combinations were done by the checkerboard technique. The highest antifungal activity was exhibited by oregano and thyme which showed lower MIC values amongst all the tested fungi. The antifungal activity of the other EOs could be appropriately ranked in a descending sequence of cinnamon, peppermint, tea tree and basil. Eucalyptus and mandarin showed the least efficiency as they could not inhibit any of the fungal growth at 10,000 ppm. The interaction between these two EOs also showed no interaction on the tested species. A combined formulation of oregano and thyme resulted in a synergistic effect, showing enhanced efficiency against A. flavus and A. parasiticus and P. chrysogenum. Mixtures of peppermint and tea tree produced synergistic effect against A. niger. Application of a modified Gompertz model considering fungal growth parameters like maximum colony diameter, maximum growth rate and lag time periods, under the various EO treatment scenarios, showed that the model could adequately describe and predict the growth of the tested fungi under these conditions. PMID:26678126

  15. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food.

    PubMed

    Hossain, Farah; Follett, Peter; Dang Vu, Khang; Harich, Mehdi; Salmieri, Stephane; Lacroix, Monique

    2016-02-01

    The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Penicillium chrysogenum. The antifungal activity of the EOs was assessed by the minimum inhibitory concentration (MIC) using 96-well microplate analysis. The interactions between different EO combinations were done by the checkerboard technique. The highest antifungal activity was exhibited by oregano and thyme which showed lower MIC values amongst all the tested fungi. The antifungal activity of the other EOs could be appropriately ranked in a descending sequence of cinnamon, peppermint, tea tree and basil. Eucalyptus and mandarin showed the least efficiency as they could not inhibit any of the fungal growth at 10,000 ppm. The interaction between these two EOs also showed no interaction on the tested species. A combined formulation of oregano and thyme resulted in a synergistic effect, showing enhanced efficiency against A. flavus and A. parasiticus and P. chrysogenum. Mixtures of peppermint and tea tree produced synergistic effect against A. niger. Application of a modified Gompertz model considering fungal growth parameters like maximum colony diameter, maximum growth rate and lag time periods, under the various EO treatment scenarios, showed that the model could adequately describe and predict the growth of the tested fungi under these conditions.

  16. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.

    PubMed

    Garvey, Mary; Andrade Fernandes, Joao Paulo; Rowan, Neil

    2015-07-01

    Microorganisms are naturally found as biofilm communities more than planktonic free-floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed-light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.

  17. In vitro screening of mucus and solvent extracts of Eisenia foetida against human bacterial and fungal pathogens.

    PubMed

    Andleeb, Saiqa; Ejaz, Mubashir; Awan, Uzma Azeem; Ali, Shaukat; Kiyani, Ayesha; Shafique, Irsa; Zafar, Atiya

    2016-05-01

    Earthworms are macro invertebrate and have been widely used as therapeutic drugs for thousands of years. In the current research, experiments viz., the antibacterial, antifungal and antioxidant activity of mucus and solvent extracts of Eisenia foetida were conducted to investigate for the first time in Pakistan against human infectious pathogens. Antimicrobial activity of E. foetida against human pathogens underwent investigation through an agar disc diffusion method while an ABTS(•+) free radical scavenging method assessed the antioxidant activity. The percentage of bacterial and fungal growth was analyzed statistically with One-Way Analysis of Variance (ANOVA). Results showed that the mucus IV of E. foetida produced a strong potent antibacterial and antifungal activity. Pseudomonas aeruginosa exhibited the highest inhibition zone (33.67±1.53 mm), followed by Klebsiella pneumonia (30.33±1.53mm), Penicillium notatum (30±0.051), Escherichia coli (29±1 mm), Candida albicans (28.33±0.54 mm), Staphylococcus aureus (27±1mm), Serratia marcescens (25.33±0.58 mm), Aspergillus flavus (25.33±0.58 mm), Staphylococcus epidermidis (24.33±0.58 mm), Streptococcus pyogenes (21.67±1.53 mm), and Aspergillus niger (20.67±0.53 mm). Mucus IV of E. foetida also showed the highest antioxidant activity (99%). The results clearly indicate that the mucus and solvent extracts contain effective antimicrobial properties and bioactive compounds to inhibit the growth of infectious pathogens. We conclude that mucus extracts of earthworm have significant level of antimicrobial and antioxidant activities and in future could be potentially used against various infectious pathogens. PMID:27166541

  18. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  19. Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants.

    PubMed

    Schalchli, H; Tortella, G R; Rubilar, O; Parra, L; Hormazabal, E; Quiroz, A

    2016-01-01

    Fungi are an extraordinary and immensely diverse group of microorganisms that colonize many habitats even competing with other microorganisms. Fungi have received recognition for interesting metabolic activities that have an enormous variety of biotechnological applications. Previously, volatile organic compounds produced by fungi (FVOCs) have been demonstrated to have a great capacity for use as antagonist products against plant pathogens. However, in recent years, FVOCs have been received attention as potential alternatives to the use of traditional pesticides and, therefore, as important eco-friendly biotechnological tools to control plant pathogens. Therefore, highlighting the current state of knowledge of these fascinating FVOCs, the actual detection techniques and the bioactivity against plant pathogens is essential to the discovery of new products that can be used as biopesticides.

  20. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat st...

  1. Draft Genome Sequence of Bacillus subtilis ALBA01, a Strain with Antagonistic Activity against the Soilborne Fungal Pathogen of Onion Setophoma terrestris

    PubMed Central

    Tobares, Romina A.; Ducasse, Daniel A.; Smania, Andrea M.

    2016-01-01

    Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris. PMID:27257193

  2. Draft Genome Sequence of Bacillus subtilis ALBA01, a Strain with Antagonistic Activity against the Soilborne Fungal Pathogen of Onion Setophoma terrestris.

    PubMed

    Albarracín Orio, Andrea G; Tobares, Romina A; Ducasse, Daniel A; Smania, Andrea M

    2016-01-01

    Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris. PMID:27257193

  3. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced and compared the genomes of Dothideomycete fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum that are related phylogenetically, but have different lifestyles and infect different hosts. C. fulvum is a biotroph that infects tomato, while D. septosporum is a hemibiotr...

  4. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of verticillium wilt of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The study aimed to identify volatile organic compounds (VOCs) produced by the non-pathogenic Fusarium oxysporum (Fo) strain CanR-46, and to determine the anti-fungal spectrum and the control efficacy of the Fo-VOCs. Methods: The Fo-VOCs were identified by GC-MS. The antifungal activity of the...

  5. Chrysosporium anamorph Nannizziopsis vriesii: an emerging fungal pathogen of captive and wild reptiles.

    PubMed

    Mitchell, Mark A; Walden, Michael R

    2013-09-01

    Chrysosporium anamorph Nannizziopsis vriesii is a recent pathogen associated with infections in lizards, snakes, and crocodilians. It seems to be an obligate pathogen. It has been isolated from wild reptiles in addition to captive animals. Affected animals often present with aggressive, pyogranulomatous lesions that can affect the integument and musculoskeletal systems. Diagnosis can be done using culture, histopathology, and polymerase chain reaction assay. Ancillary diagnostic tests can be useful in characterizing the health status of the affected reptile and aid in planning supportive care and therapy. Treatment using antifungals has shown mixed results.

  6. Passive Administration of Monoclonal Antibodies Against H. capsulatum and Others Fungal Pathogens

    PubMed Central

    Guimarães, Allan J.; Martinez, Luis R.; Nosanchuk, Joshua D.

    2011-01-01

    The purpose of the use of this methodology is 1) to advance our capacity to protect individuals with antibody or vaccine for preventing or treating histoplasmosis caused by the fungus Histoplasma capsulatum and 2) to examine the role of virulence factors as target for therapy. To generate mAbs, mice are immunized, the immune responses are assessed using a solid phase ELISA system developed in our laboratory, and the best responder mice are selected for isolation of splenocytes for fusion with hybridoma cells. C57BL/6 mice have been extensively used to study H. capsulatum pathogenesis and provide the best model for obtaining the data required. In order to assess the role of the mAbs in infection, mice are intraperitoneally administered with either mAb to H. capsulatum or isotype matched control mAb and then infected by either intravenous (i.v.), intraperitoneal (i.p.), or intranasal (i.n.) routes. In the scientific literature, efficacy of mAbs for fungal infections in mice relies on mortality as an end point, in conjunction with colony formin units (CFU) assessments at earlier time points. Survival (time to death) studies are necessary as they best represent human disease. Thus, efficacy of our intervention would not adequately be established without survival curves. This is also true for establishing efficacy of vaccine or testing of mutants for virulence. With histoplasmosis, the mice often go from being energetic to dead over several hours. The capacity of an intervention such as the administration of a mAb may initially protect an animal from disease, but the disease can relapse which would not be realized in short CFU experiments. In addition to survival and fungal burden assays, we examine the inflammatory responses to infection (histology, cellular recruitment, cytokine responses). For survival/time to death experiments, the mice are infected and monitored at least twice daily for signs of morbidity. To assess fungal burden, histopathology, and cytokine

  7. Response of soybean fungal and oomycete pathogens to apigenin and genistein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants recognize invading pathogens and respond biochemically to prevent invasion or inhibit the colonization of plant cells. Many plant defense compounds are flavonoids and some of these are known to have a broad spectrum of biological activity. In this study, we tested two flavonoids, apigenin and...

  8. Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella Graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...

  9. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of wood-infecting pathogens is often limited to the late stage of infection, when disease symptoms are obvious. Detection of the early stage of infection would benefit from identification of host-based markers in asymptomatic leaves. The fungus Neofusicoccum parvum (Botryosphaeria diebac...

  10. New insights on the phylogeny and biology of the fungal ant pathogen Aegeritella.

    PubMed

    Wrzosek, Marta; Dubiel, Grzegorz; Gorczak, Michał; Pawłowska, Julia; Tischer, Marta; Bałazy, Stanisław

    2016-01-01

    This paper evaluates the phylogenetic position of the ectoparasitic fungus Aegeritella tuberculata Bałazy & Wiśniewski, and broadly discusses its presence on ants in southern Poland. Field work was conducted in the Silesian Beskid Mountains in 2011-2013. The fungus was found on four species of ants: Lasius niger L., Lasius brunneus Latr., Formica lemani Bondr. and Formica fusca L. The first three species have not been noted previously in the literature as hosts of Aegeritella fungi. The infection rate ranged from 1% for Formica lemani to 21% for L. brunneus. Molecular analysis based on ITS and SSU rDNA sequences revealed close relationships between Aegeritella and Trichosporon isolates. We conclude that the genus Aegeritella-inceratae sedis until now, should be placed within the fungal group Basidiomycota, Tremellomycetes, Tremellomycetidae, Tremellales, Trichosporonaceae. PMID:26585300

  11. Fungistatic activity of iron-free bovin lactoferrin against several fungal plant pathogens and antagonists.

    PubMed

    Lahoz, Ernesto; Pisacane, Anna; Iannaccone, Marco; Palumbo, Daniela; Capparelli, Rosanna

    2008-01-01

    Lactoferrin (LF) is a member of the transferrin family of iron-binding glycoproteins. It is also a multifunctional protein of 80 kDa that is synthesized by glandular epithelial cells and secreted into mucosal fluid. High levels of LF are present in colostrom and milk and low levels in tears, saliva, and gastrointestinal and reproductive secretions. Data regarding the antifungal effects of LF are limited. Studies have been performed on Candida albicans, which demonstrated that LF inhibits the growth of this fungus. This study reports the results of experiments carried out in order to evaluate the effects of LF on the growth of 11 fungi, which were isolated from plants and soils. These experiments employed the methods of amended agar utilizing nine different concentration levels of LF (0, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 5000 mg L(-1)). The effects of LF on the growth of these fungi were based on measures of the radial growth of the fungal colonies expressed both as percentage of inhibition and as IC(50) values (the concentration at which the fungal growth was inhibited by 50% relative to controls). LF had no effects on Alternaria alternata, Gliocladium roseum, Fusarium solani and Colletotrichum lindemuthianum. It did, however, inhibit the growth of Aspergillus niger, Trichoderma viride, Sclerotinia sclerotiorum, Sclerotium rolfsii, Rhizoctonia solani and Phoma exigua to the point that their IC(50) values ranged from 31.1 mg L(-1) for S. sclerotiorum to 952 mg L(-1) for T. viride. PMID:18629710

  12. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection. PMID:26277722

  13. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa.

    PubMed

    Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães

    2014-11-01

    Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.

  14. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa.

    PubMed

    Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães

    2014-11-01

    Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions. PMID:25371547

  15. A Single-Step Purification of Cauliflower Lysozyme and Its Dual Role Against Bacterial and Fungal Plant Pathogens.

    PubMed

    Manikandan, Muthu; Balasubramaniam, R; Chun, Se-Chul

    2015-09-01

    A novel lysozyme from cauliflower was purified in a single step, for the first time, using Sephadex G100 column chromatography. The purified lysozyme exhibited a homogenized single band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular mass was calculated to be 22.0 kDa. The purified lysozyme showed activity between 30 to 60 °C with 40 °C as the optimum temperature for its maximal activity. Although the purified lysozyme was functional at pH ranges between 3.0 and 9.0, the optimum pH for the enzyme activity was 8.0. By Michaelis-Menten equation, the threshold substrate concentration for the optimal enzyme activity was calculated to be 133.0 μg. The purified lysozyme showed extraordinary activity against plant pathogenic bacteria and fungi. At 10-μg concentrations, it inhibited the growth of plant pathogenic bacteria such as Pseudomonas syringae, Xanthomonas campestris, and Erwinia carotovora exhibiting 4.28, 5.90, and 3.88-fold inhibition, respectively. Further, it also completely inhibited the conidial germination of Archemonium obclavatum and, to a very large extent, other fungal species such as Fusarium solani (79.3 %), Leptosphaeria maculans (88.6 %), Botrytis cinera (73.3 %), Curvularia lunata (68 %), Rhizoctonia solani (79.6 %), and Alternaria alternata (83.6 %).

  16. Antifungal Screening of Lavender Essential oils and Essential Oil Constituents on three Post-harvest Fungal Pathogens.

    PubMed

    Erland, Lauren A E; Bitcon, Christopher R; Lemke, Ashley D; Mahmoud, Soheil S

    2016-04-01

    A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandida x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 µ/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.

  17. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection.

  18. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum.

    PubMed

    Webster, Rachael Hanby; Sil, Anita

    2008-09-23

    The human fungal pathogen Histoplasma capsulatum grows in a sporulating filamentous form in the soil and, after inhalation of infectious spores, converts to a pathogenic yeast form inside host macrophages in response to temperature. Here we report the identification of two genes (RYP2 and RYP3) required for yeast-phase growth. Ryp2 and Ryp3 are homologous to each other and to the Velvet A family of regulatory proteins in Aspergillus species and other filamentous fungi. Wild-type H. capsulatum grows as filaments at room temperature and as yeast cells at 37 degrees C, but ryp2 and ryp3 mutants constitutively grow as filaments independent of temperature. RYP2 and RYP3 transcripts accumulate to higher levels at 37 degrees C than at room temperature. This differential expression is similar to the previously identified RYP1 transcript, which encodes a transcriptional regulator required for the yeast-phase expression program. Ryp1 associates with the upstream region of RYP2, and each of the three RYP genes is required for the differential expression of the others at 37 degrees C. In addition to responding to the elevated temperature of the mammalian host, RYP2 and RYP3 are essential for viable spore production and regulation of sporulation at room temperature. This regulatory function is strikingly similar to the role of the Aspergillus Velvet A protein family in spore development in response to light, with the notable distinction that the H. capsulatum circuit responds to temperature. PMID:18791067

  19. A Single-Step Purification of Cauliflower Lysozyme and Its Dual Role Against Bacterial and Fungal Plant Pathogens.

    PubMed

    Manikandan, Muthu; Balasubramaniam, R; Chun, Se-Chul

    2015-09-01

    A novel lysozyme from cauliflower was purified in a single step, for the first time, using Sephadex G100 column chromatography. The purified lysozyme exhibited a homogenized single band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular mass was calculated to be 22.0 kDa. The purified lysozyme showed activity between 30 to 60 °C with 40 °C as the optimum temperature for its maximal activity. Although the purified lysozyme was functional at pH ranges between 3.0 and 9.0, the optimum pH for the enzyme activity was 8.0. By Michaelis-Menten equation, the threshold substrate concentration for the optimal enzyme activity was calculated to be 133.0 μg. The purified lysozyme showed extraordinary activity against plant pathogenic bacteria and fungi. At 10-μg concentrations, it inhibited the growth of plant pathogenic bacteria such as Pseudomonas syringae, Xanthomonas campestris, and Erwinia carotovora exhibiting 4.28, 5.90, and 3.88-fold inhibition, respectively. Further, it also completely inhibited the conidial germination of Archemonium obclavatum and, to a very large extent, other fungal species such as Fusarium solani (79.3 %), Leptosphaeria maculans (88.6 %), Botrytis cinera (73.3 %), Curvularia lunata (68 %), Rhizoctonia solani (79.6 %), and Alternaria alternata (83.6 %). PMID:26208688

  20. Antifungal Screening of Lavender Essential oils and Essential Oil Constituents on three Post-harvest Fungal Pathogens.

    PubMed

    Erland, Lauren A E; Bitcon, Christopher R; Lemke, Ashley D; Mahmoud, Soheil S

    2016-04-01

    A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandida x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 µ/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens. PMID:27396210

  1. Introduction a potato cultivar "sprit" as relatively resistant to main fungal pathogens causal agents of early blight and wilting on potato in Iran.

    PubMed

    Saremi, H; Davoodvandy, M H; Amarlou, A

    2007-01-01

    Potato (Solanum tubersum L.) is one of the most human food production cultured in Iran especially Zanjan province as a temperate region. Some fungal pathogens caused severely infected on potato tubers or foliage in the majority grown areas and resulted yield losses in potato production. Recent years from 2002 to 2004 infected samples were collected from different potato grown regions in Zanjan province then cultured on PDA after surface sterilization with sodium hypochlorite. Isolated fungal pathogens were identified and study showed the main pathogens with high incidence and frequency were Alternaria solani, Fusarium oxysporum and Verticillium sp. in studied areas. The regions which used convention varieties showed more diseases than other locations which used relatively resistant races. The rate of resistance for 10 international potato varieties was studied by inoculation of them by 10(5) spores suspension of three common fungal pathogens in the field. Study showed Sprit cultivar was more resistant than others to all three common pathogens and Lady-Claire was most susceptible. Yield production of Sprit per unit of land area was also exceeded that of other cultivars by factors of 1.10 to 2.25 respectively. The results of the study helped potato growers to culture Sprit cultivar and have good yield production in Zanjan and Hamedan provinces in this year.

  2. In Vitro Evaluation of Antagonism of Endophytic Colletotrichum gloeosporioides Against Potent Fungal Pathogens of Camellia sinensis.

    PubMed

    Rabha, Aparna Jyoti; Naglot, Ashok; Sharma, Gauri Dutta; Gogoi, Hemant Kumar; Veer, Vijay

    2014-09-01

    An endophytic fungus isolated from Camellia sinensis, Assam, Northeastern India was identified as Colletotrichum gloeosporioides on the basis of morphological characteristics and rDNA ITS analysis. This endophytic fungus was evaluated for growth inhibition against tea pathogens Pestalotiopsis theae and Colletotrichum camelliae. One isolate of C. gloeosporioides showed strong antagonistic activity against Pestalotiopsis theae (64 %) and moderate activity against C. camelliae (37 %). Fifty percent cell-free culture filtrate from 5-day-old cultures showed highest antagonistic activity against both the pathogens although the inhibition percent was less as compared to dual culture. In the experiment of volatile compounds none of the isolates of C. gloeosporioides strains showed visible inhibition against P. theae and C. camelliae. The activity of extracellular hydrolytic enzymes chitinase and protease was also high in this culture fluid and measured 10 and 4.3 IU/μl, respectively.

  3. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls

    PubMed Central

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; L’Ollivier, Coralie; Lachaud, Laurence; Bourgeois, Nathalie; Rebaudet, Stanislas; Piarroux, Renaud; Mauffrey, Jean-François; Ranque, Stéphane

    2016-01-01

    The opportunistic pathogenic yeast Candida glabrata is a component of the mycobiota of both humans and yellow-legged gulls that is prone to develop fluconazole resistance. Whether gulls are a reservoir of the yeast and facilitate the dissemination of human C. glabrata strains remains an open question. In this study, MLVA genotyping highlighted the lack of genetic structure of 190 C. glabrata strains isolated from either patients in three hospitals or fecal samples collected from gull breeding colonies located in five distinct areas along the French Mediterranean littoral. Fluconazole-resistant isolates were evenly distributed between both gull and human populations. These findings demonstrate that gulls are a reservoir of this species and facilitate the diffusion of C. glabrata and indirect transmission to human or animal hosts via environmental contamination. This eco-epidemiological view, which can be applied to other vertebrate host species, broadens our perspective regarding the reservoirs and dissemination patterns of antifungal-resistant human pathogenic yeast. PMID:27782182

  4. Characterization of a chitinase (Chit62) from Serratia marcescens B4A and its efficacy as a bioshield against plant fungal pathogens.

    PubMed

    Babashpour, S; Aminzadeh, S; Farrokhi, N; Karkhane, A; Haghbeen, K

    2012-10-01

    Chitinases have been suggested to be involved in pathogen-antagonist interaction during biological control progress of plant pathogenic fungi. Here, a recombinant bacterial chitinase originally from Serratia marcescens B4A was produced, purified, and assayed biochemically to ascertain the activity and determine the kinetics parameters. Active enzyme was used to determine its biocontrol features against fungal phytopathogens. The results demonstrated that the optimum pH and temperature for the enzyme activity were 6.0 and 55 °C, respectively. The K(m) and V(max) values were 3.30 mg ml(-1) and 0.92 units, respectively. The recombinant chitinase was demonstrated to be highly active in controlling fungal pathogens.

  5. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  6. First Probable Case of Subcutaneous Infection Due to Truncatella angustata: a New Fungal Pathogen of Humans?

    PubMed Central

    Żak, Iwona; Tyrak, Jerzy; Bryk, Agata

    2015-01-01

    Truncatella angustata is a coelomycetous fungus, typically associated with vascular plants as either an endophyte or a pathogen. This organism has not previously been implicated in human disease. This report describes a case of T. angustata subcutaneous infection in an immunocompetent patient. A conclusive diagnosis was achieved through partial sequencing of ribosomal DNA (rDNA) cluster. The patient was successfully treated with voriconazole followed by itraconazole. PMID:25809973

  7. Transformation of the Fungal Soybean Pathogen Cercospora kikuchii with the Selectable Marker bar.

    PubMed

    Upchurch, R G; Meade, M J; Hightower, R C; Thomas, R S; Callahan, T M

    1994-12-01

    An improved transformation protocol, utilizing selection for resistance to the herbicide bialaphos, has been developed for the plant pathogenic fungus Cercospora kikuchii. Stable, bialaphos-resistant transformants are recovered at frequencies eight times higher than those achieved with the previous system that was based on selection for benomyl resistance. In addition to C. kikuchii, this improved method can also be used to transform other species of Cercospora.

  8. Transformation of the Fungal Soybean Pathogen Cercospora kikuchii with the Selectable Marker bar

    PubMed Central

    Upchurch, Robert G.; Meade, Maura J.; Hightower, Robin C.; Thomas, Robert S.; Callahan, Terrence M.

    1994-01-01

    An improved transformation protocol, utilizing selection for resistance to the herbicide bialaphos, has been developed for the plant pathogenic fungus Cercospora kikuchii. Stable, bialaphos-resistant transformants are recovered at frequencies eight times higher than those achieved with the previous system that was based on selection for benomyl resistance. In addition to C. kikuchii, this improved method can also be used to transform other species of Cercospora. Images PMID:16349469

  9. Efficacy of Organophosphorus Derivatives Containing Chalcones/Chalcone Semicarbazones Against Fungal Pathogens of Sugarcane

    PubMed Central

    Pandey, O. P.; Rao, G. P.; Singh, Priyanka

    2002-01-01

    Ten newly synthesized organophosphorus derivatives containing substituted chalcones and substituted chalcone semicarbazones were tested for their antifungal efficacy against Colletotrichum falcatum, Fusarium oxysporum, Curvularia pallescens (all sugarcane pathogens). The O,O-diethylphosphate derivatives containing 2-chlorochalcone and 2-chlorochalcone semicarbazone exhibited 70-85% mycelial inhibition against all the test fungi at 1000 ppm. The screening results were correlated with structural features of the tested compounds. PMID:18476009

  10. Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England

    NASA Astrophysics Data System (ADS)

    Sadyś, M.; Skjøth, C. A.; Kennedy, R.

    2014-02-01

    We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis.

  11. Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis.

    PubMed

    Vergnes, Sophie; Ladouce, Nathalie; Fournier, Sylvie; Ferhout, Hicham; Attia, Faouzi; Dumas, Bernard

    2014-01-01

    Essential oil from Gaultheria procumbens is mainly composed of methylsalicylate (MeSA) (>96%), a compound which can be metabolized in plant tissues to salicylic acid, a phytohormone inducing plant immunity against microbial pathogens. The potential use of G. procumbens essential oil as a biocontrol agent was evaluated on the model plant Arabidopsis thaliana. Expression of a selection of defense genes was detected 1, 6, and 24 h after essential oil treatment (0.1 ml/L) using a high-throughput qPCR-based microfluidic technology. Control treatments included methyl jasmonate and a commercialized salicylic acid (SA) analog, benzo(1,2,3)-thiadiazole-7carbothiolic acid (BTH). Strong induction of defense markers known to be regulated by the SA pathway was observed after the treatment with G. procumbens essential oil. Treatment induced the accumulation of total SA in the wild-type Arabidopsis line Col-0 and analysis of the Arabidopsis line sid2, mutated in a SA biosynthetic gene, revealed that approximately 30% of MeSA sprayed on the leaves penetrated inside plant tissues and was demethylated by endogenous esterases. Induction of plant resistance by G. procumbens essential oil was tested following inoculation with a GFP-expressing strain of the Arabidopsis fungal pathogen Colletotrichum higginsianum. Fluorescence measurement of infected tissues revealed that treatments led to a strong reduction (60%) of pathogen development and that the efficacy of the G. procumbens essential oil was similar to the commercial product BION(®). Together, these results show that the G. procubens essential oil is a natural source of MeSA which can be formulated to develop new biocontrol products.

  12. Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis

    PubMed Central

    Vergnes, Sophie; Ladouce, Nathalie; Fournier, Sylvie; Ferhout, Hicham; Attia, Faouzi; Dumas, Bernard

    2014-01-01

    Essential oil from Gaultheria procumbens is mainly composed of methylsalicylate (MeSA) (>96%), a compound which can be metabolized in plant tissues to salicylic acid, a phytohormone inducing plant immunity against microbial pathogens. The potential use of G. procumbens essential oil as a biocontrol agent was evaluated on the model plant Arabidopsis thaliana. Expression of a selection of defense genes was detected 1, 6, and 24 h after essential oil treatment (0.1 ml/L) using a high-throughput qPCR-based microfluidic technology. Control treatments included methyl jasmonate and a commercialized salicylic acid (SA) analog, benzo(1,2,3)-thiadiazole-7carbothiolic acid (BTH). Strong induction of defense markers known to be regulated by the SA pathway was observed after the treatment with G. procumbens essential oil. Treatment induced the accumulation of total SA in the wild-type Arabidopsis line Col-0 and analysis of the Arabidopsis line sid2, mutated in a SA biosynthetic gene, revealed that approximately 30% of MeSA sprayed on the leaves penetrated inside plant tissues and was demethylated by endogenous esterases. Induction of plant resistance by G. procumbens essential oil was tested following inoculation with a GFP-expressing strain of the Arabidopsis fungal pathogen Colletotrichum higginsianum. Fluorescence measurement of infected tissues revealed that treatments led to a strong reduction (60%) of pathogen development and that the efficacy of the G. procumbens essential oil was similar to the commercial product BION®. Together, these results show that the G. procubens essential oil is a natural source of MeSA which can be formulated to develop new biocontrol products. PMID:25295045

  13. CD103+ Conventional Dendritic Cells Are Critical for TLR7/9-Dependent Host Defense against Histoplasma capsulatum, an Endemic Fungal Pathogen of Humans

    PubMed Central

    Van Prooyen, Nancy; Henderson, C. Allen; Hocking Murray, Davina; Sil, Anita

    2016-01-01

    Innate immune cells shape the host response to microbial pathogens. Here we elucidate critical differences in the molecular response of macrophages vs. dendritic cells (DCs) to Histoplasma capsulatum, an intracellular fungal pathogen of humans. It has long been known that macrophages are permissive for Histoplasma growth and succumb to infection, whereas DCs restrict fungal growth and survive infection. We used murine macrophages and DCs to identify host pathways that influence fungal proliferation and host-cell viability. Transcriptional profiling experiments revealed that DCs produced a strong Type I interferon (IFN-I) response to infection with Histoplasma yeasts. Toll-like receptors 7 and 9 (TLR7/9), which recognize nucleic acids, were required for IFN-I production and restriction of fungal growth in DCs, but mutation of TLR7/9 had no effect on the outcome of macrophage infection. Moreover, TLR7/9 were essential for the ability of infected DCs to elicit production of the critical cytokine IFNγ from primed CD4+ T cells in vitro, indicating the role of this pathway in T cell activation. In a mouse model of infection, TLR7/9 were required for optimal production of IFN-I and IFNγ, host survival, and restriction of cerebral fungal burden. These data demonstrate the critical role of this pathway in eliciting an appropriate adaptive immune response in the host. Finally, although other fungal pathogens have been shown to elicit IFN-I in mouse models, the specific host cell responsible for producing IFN-I has not been elucidated. We found that CD103+ conventional DCs were the major producer of IFN-I in the lungs of wild-type mice infected with Histoplasma. Mice deficient in this DC subtype displayed reduced IFN-I production in vivo. These data reveal a previously unknown role for CD103+ conventional DCs and uncover the pivotal function of these cells in modulating the host immune response to endemic fungi. PMID:27459510

  14. Broadly Conserved Fungal Effector BEC1019 Suppresses Host Cell Death and Enhances Pathogen Virulence in Powdery Mildew of Barley (Hordeum vulgare L.).

    PubMed

    Whigham, Ehren; Qi, Shan; Mistry, Divya; Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Pliego, Clara; Bindschedler, Laurence V; Spanu, Pietro D; Dickerson, Julie A; Innes, Roger W; Nettleton, Dan; Bogdanove, Adam J; Wise, Roger P

    2015-09-01

    The interaction of barley, Hordeum vulgare L., with the powdery mildew fungus Blumeria graminis f. sp. hordei is a well-developed model to investigate resistance and susceptibility to obligate biotrophic pathogens. The 130-Mb Blumeria genome encodes approximately 540 predicted effectors that are hypothesized to suppress or induce host processes to promote colonization. Blumeria effector candidate (BEC)1019, a single-copy gene encoding a putative, secreted metalloprotease, is expressed in haustorial feeding structures, and host-induced gene silencing of BEC1019 restricts haustorial development in compatible interactions. Here, we show that Barley stripe mosaic virus-induced gene silencing of BEC1019 significantly reduces fungal colonization of barley epidermal cells, demonstrating that BEC1019 plays a central role in virulence. In addition, delivery of BEC1019 to the host cytoplasm via Xanthomonas type III secretion suppresses cultivar nonspecific hypersensitive reaction (HR) induced by Xanthomonas oryzae pv. oryzicola, as well as cultivar-specific HR induced by AvrPphB from Pseudomonas syringae pv. phaseolicola. BEC1019 homologs are present in 96 of 241 sequenced fungal genomes, including plant pathogens, human pathogens, and free-living nonpathogens. Comparative analysis revealed variation at several amino acid positions that correlate with fungal lifestyle and several highly conserved, noncorrelated motifs. Site-directed mutagenesis of one of these, ETVIC, compromises the HR-suppressing activity of BEC1019. We postulate that BEC1019 represents an ancient, broadly important fungal protein family, members of which have evolved to function as effectors in plant and animal hosts.

  15. Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality

    PubMed Central

    Kamthan, Ayushi; Kamthan, Mohan; Azam, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2012-01-01

    Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ≈23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops. PMID:23230516

  16. Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  17. DNA-based detection of the fungal pathogen Geomyces destructans in soil from bat hibernacula

    USGS Publications Warehouse

    Lindner, Daniel L.; Gargas, Andrea; Lorch, Jeffrey M.; Banik, Mark T.; Glaeser, Jessie; Kunz, Thomas H.; Blehert, David S.

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.

  18. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides

    PubMed Central

    Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  19. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides.

    PubMed

    Rahman, Md Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G H; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  20. DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula.

    PubMed

    Lindner, Daniel L; Gargas, Andrea; Lorch, Jeffrey M; Banik, Mark T; Glaeser, Jessie; Kunz, Thomas H; Blehert, David S

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples. PMID:20952799

  1. Exposure to Corticosterone Affects Host Resistance, but Not Tolerance, to an Emerging Fungal Pathogen

    PubMed Central

    Murone, Julie; DeMarchi, Joseph A.; Venesky, Matthew D.

    2016-01-01

    Host responses to pathogens include defenses that reduce infection burden (i.e., resistance) and traits that reduce the fitness consequences of an infection (i.e., tolerance). Resistance and tolerance are affected by an organism's physiological status. Corticosterone (“CORT”) is a hormone that is associated with the regulation of many physiological processes, including metabolism and reproduction. Because of its role in the stress response, CORT is also considered the primary vertebrate stress hormone. When secreted at high levels, CORT is generally thought to be immunosuppressive. Despite the known association between stress and disease resistance in domesticated organisms, it is unclear whether these associations are ecologically and evolutionary relevant in wildlife species. We conducted a 3x3 fully crossed experiment in which we exposed American toads (Anaxyrus [Bufo] americanus) to one of three levels of exogenous CORT (no CORT, low CORT, or high CORT) and then to either low or high doses of the pathogenic chytrid fungus Batrachochytrium dendrobatidis (“Bd”) or a sham exposure treatment. We assessed Bd infection levels and tested how CORT and Bd affected toad resistance, tolerance, and mortality. Exposure to the high CORT treatment significantly elevated CORT release in toads; however, there was no difference between toads given no CORT or low CORT. Exposure to CORT and Bd each increased toad mortality, but they did not interact to affect mortality. Toads that were exposed to CORT had higher Bd resistance than toads exposed to ethanol controls/low CORT, a pattern opposite that of most studies on domesticated animals. Exposure to CORT did not affect toad tolerance to Bd. Collectively, these results show that physiological stressors can alter a host’s response to a pathogen, but that the outcome might not be straightforward. Future studies that inhibit CORT secretion are needed to better our understanding of the relationship between stress physiology

  2. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    PubMed Central

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  3. Horizontal gene transfer drives adaptive colonization of apple trees by the fungal pathogen Valsa mali

    PubMed Central

    Yin, Zhiyuan; Zhu, Baitao; Feng, Hao; Huang, Lili

    2016-01-01

    Horizontal gene transfer (HGT) often has strong benefits for fungi. In a study of samples from apple canker in Shaanxi Province, China, diverse microbes, along with the necrotrophic pathogen Valsa mali, were found to colonize the apple bark, thus providing ample opportunity for HGT to occur. In the present study, we identified 32 HGT events in V. mali by combining phyletic distribution-based methods with phylogenetic analyses. Most of these HGTs were from bacteria, whereas several others were from eukaryotes. Three HGTs putatively functioned in competition with actinomycetes, some of which showed a significant inhibitory effect on V. mali. Three HGTs that were probably involved in nitrogen uptake were also identified. Ten HGTs were thought to be involved in pathogenicity because they were related to known virulence factors, including cell wall-degrading enzymes and candidate effector proteins. HGT14, together with HGT32, was shown to contribute to bleomycin resistance of V. mali.These results suggest that HGT drives the adaptive evolution of V. mali. The HGTs identified here provide new clues for unveiling the adaptation mechanisms and virulence determinants of V. mali. PMID:27634406

  4. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae.

    PubMed

    Qi, Xiliang; Su, Xiaofeng; Guo, Huiming; Qi, Juncang; Cheng, Hongmei

    2015-12-01

    To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus.

  5. Horizontal gene transfer drives adaptive colonization of apple trees by the fungal pathogen Valsa mali.

    PubMed

    Yin, Zhiyuan; Zhu, Baitao; Feng, Hao; Huang, Lili

    2016-01-01

    Horizontal gene transfer (HGT) often has strong benefits for fungi. In a study of samples from apple canker in Shaanxi Province, China, diverse microbes, along with the necrotrophic pathogen Valsa mali, were found to colonize the apple bark, thus providing ample opportunity for HGT to occur. In the present study, we identified 32 HGT events in V. mali by combining phyletic distribution-based methods with phylogenetic analyses. Most of these HGTs were from bacteria, whereas several others were from eukaryotes. Three HGTs putatively functioned in competition with actinomycetes, some of which showed a significant inhibitory effect on V. mali. Three HGTs that were probably involved in nitrogen uptake were also identified. Ten HGTs were thought to be involved in pathogenicity because they were related to known virulence factors, including cell wall-degrading enzymes and candidate effector proteins. HGT14, together with HGT32, was shown to contribute to bleomycin resistance of V. mali.These results suggest that HGT drives the adaptive evolution of V. mali. The HGTs identified here provide new clues for unveiling the adaptation mechanisms and virulence determinants of V. mali. PMID:27634406

  6. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives.

    PubMed

    Sharpton, Thomas J; Stajich, Jason E; Rounsley, Steven D; Gardner, Malcolm J; Wortman, Jennifer R; Jordar, Vinita S; Maiti, Rama; Kodira, Chinnappa D; Neafsey, Daniel E; Zeng, Qiandong; Hung, Chiung-Yu; McMahan, Cody; Muszewska, Anna; Grynberg, Marcin; Mandel, M Alejandra; Kellner, Ellen M; Barker, Bridget M; Galgiani, John N; Orbach, Marc J; Kirkland, Theo N; Cole, Garry T; Henn, Matthew R; Birren, Bruce W; Taylor, John W

    2009-10-01

    While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host. PMID:19717792

  7. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae.

    PubMed

    Qi, Xiliang; Su, Xiaofeng; Guo, Huiming; Qi, Juncang; Cheng, Hongmei

    2015-12-01

    To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus. PMID:26475327

  8. Partitiviruses of a fungal forest pathogen have species-specific quantities of genome segments and transcripts.

    PubMed

    Jurvansuu, Jaana; Kashif, Muhammad; Vaario, Leo; Vainio, Eeva; Hantula, Jarkko

    2014-08-01

    Heterobasidion partitiviruses infect forest pathogenic fungi of the genus Heterobasidion. We have studied the amounts of genomes and transcripts of four partitiviruses isolated from four different Heterobasidion strains infecting different host trees in Greece, Poland, Finland, and China. Heterobasidion partitiviruses have bisegmented genomes encoding coat protein and RNA-dependent RNA polymerase. Our results show that the coat protein genome segment is generally more abundant in infected mycelia than the RNA-dependent RNA polymerase segment and that this bias persists also at transcript levels. The different virus species all have unique ratios of the genome segments and the ratio is generally stable over different temperatures and hosts. The amounts of transcripts of each virus respond to host growth temperatures in a distinctive and consistent manner. The Heterobasidion partitiviruses studied here affect only rarely the growth of their natural hosts but do influence the growth of a new host more frequently.

  9. Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens.

    PubMed

    Pastor, Nicolás; Masciarelli, Oscar; Fischer, Sonia; Luna, Virginia; Rovera, Marisa

    2016-09-01

    Tomato is one of the most economically attractive vegetable crops due to its high yields. Diseases cause significant losses in tomato production worldwide. We carried out Polymerase Chain Reaction studies to detect the presence of genes encoding antifungal compounds in the DNA of Pseudomonas putida strain PCI2. We also used liquid chromatography-electrospray tandem mass spectrometry to detect and quantify the production of compounds that increase the resistance of plants to diseases from culture supernatants of PCI2. In addition, we investigated the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in PCI2. Finally, PCI2 was used for inoculation of tomato seeds to study its potential biocontrol activity against Fusarium oxysporum MR193. The obtained results showed that no fragments for the encoding genes of hydrogen cyanide, pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, or phenazine-1-carboxylic acid were amplified from the DNA of PCI2. On the other hand, PCI2 produced salicylic acid and jasmonic acid in Luria-Bertani medium and grew in a culture medium containing ACC as the sole nitrogen source. We observed a reduction in disease incidence from 53.33 % in the pathogen control to 30 % in tomato plants pre-inoculated with PCI2 as well as increases in shoot and root dry weights in inoculated plants, as compared to the pathogenicity control. This study suggests that inoculation of tomato seeds with P. putida PCI2 increases the resistance of plants to root rot caused by F. oxysporum and that PCI2 produces compounds that may be involved at different levels in increasing such resistance. Thus, PCI2 could represent a non-contaminating management strategy potentially applicable in vegetable crops such as tomato. PMID:27246499

  10. Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen

    PubMed Central

    Crawford, Don L.; Lynch, James M.; Whipps, John M.; Ousley, Margaret A.

    1993-01-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  11. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain)

    NASA Astrophysics Data System (ADS)

    Sabariego, S.; Díaz de la Guardia, C.; Alba, F.

    A study was made of the link between climatic factors and the daily content of certain fungal spores in the atmosphere of the city of Granada in 1994. Sampling was carried out with a Burkard 7-day-recording spore trap. The spores analysed corresponded to the taxa Alternaria, Ustilago and Cladosporium, with two morphologically different spore types in the latter genus, cladosporioides and herbarum. These spores were selected both for their allergenic capacity and for the high level of their presence in the atmosphere, particularly during the spring and autumn. The spores of Cladosporium were the most abundant (93.82% of the total spores identified). The Spearman correlation coefficients between the spore concentrations studied and the meteorological parameters show different indices depending on the taxon being analysed. Alternaria and Cladosporium are significantly correlated with temperature and hours of sunlight, while Ustilago shows positive correlation indices with relative humidity and negative indices with wind speed.

  12. Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia.

    PubMed

    von Lilienfeld-Toal, Marie; Lehmann, Lutz E; Raadts, Ansgar D; Hahn-Ast, Corinna; Orlopp, Katjana S; Marklein, Günter; Purr, Ingvill; Cook, Gordon; Hoeft, Andreas; Glasmacher, Axel; Stüber, Frank

    2009-08-01

    Infection is the main treatment-related cause of mortality in cancer patients. Rapid and accurate diagnosis to facilitate specific therapy of febrile neutropenia is therefore urgently warranted. Here, we evaluated a commercial PCR-based kit to detect the DNA of 20 different pathogens (SeptiFast) in the setting of febrile neutropenia after chemotherapy. Seven hundred eighty-four serum samples of 119 febrile neutropenic episodes (FNEs) in 70 patients with hematological malignancies were analyzed and compared with clinical, microbiological, and biochemical findings. In the antibiotic-naïve setting, bacteremia was diagnosed in 34 FNEs and 11 of them yielded the same result in the PCR. Seventy-three FNEs were negative in both systems, leading to an overall agreement in 84 of 119 FNEs (71%). During antibiotic therapy, positivity in blood culture occurred only in 3% of cases, but the PCR yielded a positive result in 15% of cases. In six cases the PCR during antibiotic treatment detected a new pathogen repetitively; this was accompanied by a significant rise in procalcitonin levels, suggestive of a true detection of infection. All patients with probable invasive fungal infection (IFI; n = 3) according to the standards of the European Organization for Research and Treatment of Cancer had a positive PCR result for Aspergillus fumigatus; in contrast there was only one positive result for Aspergillus fumigatus in an episode without signs and symptoms of IFI. Our results demonstrate that the SeptiFast kit cannot replace blood cultures in the diagnostic workup of FNEs. However, it might be helpful in situations where blood cultures remain negative (e.g., during antimicrobial therapy or in IFI).

  13. Analysis of a Food-Borne Fungal Pathogen Outbreak: Virulence and Genome of a Mucor circinelloides Isolate from Yogurt

    PubMed Central

    Billmyre, R. Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M.; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C.; Cuomo, Christina A.

    2014-01-01

    ABSTRACT Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (−) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. PMID:25006230

  14. Spontaneous bacterial and fungal infections in genetically engineered mice: Is Escherichia coli an emerging pathogen in laboratory mouse?

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2015-01-01

    The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.

  15. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

    PubMed

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A; Mou, Zhonglin

    2015-09-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.

  16. The regulatory gene VosA affects conidiogenesis and is involved in virulence of the fungal cereal pathogen Cochliobolus sativus.

    PubMed

    Wang, Rui; Leng, Yueqiang; Zhong, Shaobin

    2015-10-01

    VosA is one of the four components in the velvet complex shown to be involved in regulation of fungal development and secondary metabolism in filamentous fungi. However, the function of VosA has only been studied in a few plant pathogenic fungi. In this study, we identified the ortholog (CsVosA) of VosA in the cereal spot blotch pathogen Cochliobolus sativus and generated gene knockout mutants for functional characterization of the gene. Conidia of the CsVosA knockout mutants (ΔCsVosA) lacked trehalose, were significantly reduced in viability, had less pigmentation, and showed a dramatic reduction in tolerance to heat, oxidative, and ion stresses. However, ΔCsVosA produced more conidia than the wild type under both constant dark, and constant light conditions, suggesting that CsVosA is a negative-feedback regulator in conidiation. Interestingly, the ΔCsVosA mutants exhibited a hypermorphic conidiation phenotype with indeterminate growth of the conidial tip cells resulting in head-to-tail (acropetal) arrays of conidiogenesis, indicating that some genes involved in conidiation are also regulated by CsVosA. The ΔCsVosA mutants showed significant reduction in virulence on susceptible barley plants and the two genes for nonribosomal peptide synthetases (NRPSs) involved in virulence during host infection were down-regulated in ΔCsVosA, suggesting that CsVosA may affect virulence of the fungus by regulating the expression of the genes for NRPSs, as well as other genes directly or indirectly involved in virulence.

  17. The regulatory gene VosA affects conidiogenesis and is involved in virulence of the fungal cereal pathogen Cochliobolus sativus.

    PubMed

    Wang, Rui; Leng, Yueqiang; Zhong, Shaobin

    2015-10-01

    VosA is one of the four components in the velvet complex shown to be involved in regulation of fungal development and secondary metabolism in filamentous fungi. However, the function of VosA has only been studied in a few plant pathogenic fungi. In this study, we identified the ortholog (CsVosA) of VosA in the cereal spot blotch pathogen Cochliobolus sativus and generated gene knockout mutants for functional characterization of the gene. Conidia of the CsVosA knockout mutants (ΔCsVosA) lacked trehalose, were significantly reduced in viability, had less pigmentation, and showed a dramatic reduction in tolerance to heat, oxidative, and ion stresses. However, ΔCsVosA produced more conidia than the wild type under both constant dark, and constant light conditions, suggesting that CsVosA is a negative-feedback regulator in conidiation. Interestingly, the ΔCsVosA mutants exhibited a hypermorphic conidiation phenotype with indeterminate growth of the conidial tip cells resulting in head-to-tail (acropetal) arrays of conidiogenesis, indicating that some genes involved in conidiation are also regulated by CsVosA. The ΔCsVosA mutants showed significant reduction in virulence on susceptible barley plants and the two genes for nonribosomal peptide synthetases (NRPSs) involved in virulence during host infection were down-regulated in ΔCsVosA, suggesting that CsVosA may affect virulence of the fungus by regulating the expression of the genes for NRPSs, as well as other genes directly or indirectly involved in virulence. PMID:26399184

  18. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China.

    PubMed

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans. PMID:25667606

  19. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations. PMID:24802621

  20. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China.

    PubMed

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans.

  1. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana.

    PubMed

    Wang, Wei; Zhang, Lu; Guo, Ning; Zhang, Xiumei; Zhang, Chen; Sun, Guangming; Xie, Jianghui

    2014-02-21

    In plant cells, many cysteine proteinases (CPs) are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L.) belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps), and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3). Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  2. Detection of DOPA-Melanin in the Dimorphic Fungal Pathogen Penicillium marneffei and Its Effect on Macrophage Phagocytosis In Vitro

    PubMed Central

    Liu, Donghua; Wei, Lili; Guo, Ting; Tan, Weifen

    2014-01-01

    The fungal pathogen Penicillium marneffei produces melanin-like pigment in vitro. The synthetic pathway of melanin and its possible influence in the protective yeast cells surviving within macrophage cells are not known. In this work, P. marneffei produced brown black pigment in the presence of L-DOPA and black particles were extracted from yeast cells treated with proteolytic enzymes, denaturant and concentrated hot acid. Kojic acid inhibited the brown-black pigment production of P. marneffei yeast grown on brain heart infusion agar. Transmitting electron microscopy showed spherical granular electron-dense particles with an average diameter of 100 nm in a beaded arrangement in the innermost cell wall. Electron-paramagnetic resonance revealed that the black particles contain a stable free radical compound. The UV-visible and Fourier transform infrared spectra of particles extracted from P. marneffei and synthetic DOPA-melanin showed a high degree of similarity. Melanized yeast cells decreased phagocytosis by macrophage cells and increased resistance to intracellular digestion in vitro. These results indicate that P. marneffei can synthesize DOPA-melanin or melanin-like compounds in vitro and suggest that the DOPA-melanin pathway is associated with cell wall structure and enhances the resistance to phagocytosis by macrophages. PMID:24647795

  3. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    PubMed

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life. PMID:24147415

  4. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    PubMed

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  5. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  6. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention.

  7. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated “structure-activity relationship” for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  8. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.

  9. Detection and assessment of chemical hormesis on the radial growth in vitro of oomycetes and fungal plant pathogens.

    PubMed

    Flores, Francisco J; Garzon, Carla D

    2012-01-01

    Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies, agricultural productivity relies heavily on the use of chemical pesticides and biocides for disease prevention and treatment and sanitation of tools and substrates. Despite the prominent use of fungi in early hormesis studies and the continuous use of yeast as a research model, the relevance of hormesis in agricultural systems has not been investigated by plant pathologists, until recently. A protocol was standardized for detection and assessment of chemical hormesis in fungi and oomycetes using radial growth as endpoint. Biphasic dose-responses were observed in Pythium aphanidermatum exposed to sub-inhibitory doses of ethanol, cyazofamid, and propamocarb, and in Rhizoctonia zeae exposed to ethanol. This report provides an update on chemical hormesis in fungal plant pathogens and a perspective on the potential risks it poses to crop productivity and global food supply.

  10. Bioactivity of natural O-prenylated phenylpropenes from Illicium anisatum leaves and their derivatives against spider mites and fungal pathogens.

    PubMed

    Koeduka, T; Sugimoto, K; Watanabe, B; Someya, N; Kawanishi, D; Gotoh, T; Ozawa, R; Takabayashi, J; Matsui, K; Hiratake, J

    2014-03-01

    A variety of volatile phenylpropenes, C6-C3 compounds are widely distributed in the plant kingdom, whereas prenylated phenylpropenes are limited to a few plant species. In this study, we analysed the volatile profiles from Illicium anisatum leaves and identified two O-prenylated phenylpropenes, 4-allyl-2-methoxy-1-[(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyleugenol (9)] and 5-allyl-1,3-dimethoxy-2-(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyl-6-methoxyeugenol (11)] as major constituents. The structure-activity relationship of a series of eugenol derivatives showed that specific phenylpropenes, including eugenol (1), isoeugenol (2) and 6-methoxyeugenol (6), with a phenolic hydroxy group had antifungal activity for a fungal pathogen, whereas guaiacol, a simple phenolic compound, and allylbenzene had no such activity. The eugenol derivatives that exhibited antifungal activity, in turn, had no significant toxicant property for mite oviposition. Interestingly, O-dimethylallyleugenol (9) in which the phenolic oxygen was masked with a dimethylallyl group exhibited a specific, potent oviposition deterrent activity for mites. The sharp contrast in structural requirements of phenylpropenes suggested distinct mechanisms underlying the two biological activities and the importance of a phenolic hydroxy group and its dimethylallylation for the structure-based design of new functional properties of phenylpropenes.

  11. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens

    PubMed Central

    Cruz, Andre Freire; Ishii, Takaaki

    2012-01-01

    Summary The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria ‘probable endobacteria’ (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

  12. Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2011-06-01

    Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6''' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.

  13. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus

    PubMed Central

    Sheridan, Kevin J.; Lechner, Beatrix Elisabeth; Keeffe, Grainne O’; Keller, Markus A.; Werner, Ernst R.; Lindner, Herbert; Jones, Gary W.; Haas, Hubertus; Doyle, Sean

    2016-01-01

    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis. PMID:27748436

  14. Lasiolactols A and B Produced by the Grapevine Fungal Pathogen Lasiodiplodia mediterranea.

    PubMed

    Andolfi, Anna; Basso, Sara; Giambra, Selene; Conigliaro, Gaetano; Lo Piccolo, Sandra; Alves, Artur; Burruano, Santella

    2016-04-01

    A strain of Lasiodiplodia mediterranea, a fungus associated with grapevine decline in Sicily, produced several metabolites in liquid medium. Two new dimeric γ-lactols, lasiolactols A and B (1 and 2), were characterized as (2S*,3S*,4R*,5R*,2'S*,3'S*,4'R*,5'R*)- and (2R*,3S*,4R*,5R*,2'R*,3'S*,4'R*,5'R*)-(5-(4-hydroxymethyl-3,5-dimethyl-tetrahydro-furan-2-yloxy)-2,4-dimethyl-tetrahydro-furan-3-yl]-methanols by IR, 1D- and 2D-NMR, and HR-ESI-MS. Other four metabolites were identified as botryosphaeriodiplodin, (5R)-5-hydroxylasiodiplodin, (-)-(1R,2R)-jasmonic acid, and (-)-(3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone (3 - 6, resp.). The absolute configuration (R) at hydroxylated secondary C-atom C(7) was also established for compound 3. The compounds 1 - 3, 5, and 6, tested for their phytotoxic activities to grapevine cv. Inzolia leaves at different concentrations (0.125, 0.25, 0.5, and 1 mg/ml) were phytotoxic and compound 5 showed the highest toxicity. All metabolites did not show in vitro antifungal activity against four plant pathogens. PMID:26938016

  15. Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea

    PubMed Central

    DOUHAN, G. W.; SMITH, M. E.; HUYRN, K. L.; WESTBROOK, A.; Beerli, P.; FISHER, A. J.

    2008-01-01

    Claviceps purpurea is an important pathogen of grasses and source of novel chemical compounds. Three groups within this species (G1, G2, and G3) have been recognized based on habitat association, sclerotia and conidia morphology, and alkaloid production. These groups have further been supported by RAPD and AFLP markers, suggesting this species may be more accurately described as a species complex. However, all divergent ecotypes can coexist in sympatric populations with no obvious physical barriers to prevent gene flow. In this study, we used both phylogenetic and population genetic analyses to test for speciation within C. purpurea using DNA sequences from ITS, a RAS-like locus, and a portion of beta-tubulin. The G1 types are significantly divergent from the G2/G3 types based on each of the three loci and the combined dataset, whereas the G2/G3 types are more integrated with one another. Although the G2 and G3 lineages have not diverged as much as the G1 lineage based on DNA sequence data, the use of three DNA loci does reliably separate the G2 and G3 lineages. However, the population genetic analyses strongly suggest little to no gene flow occurring between the different ecotypes and we argue that this process is driven by adaptations to ecological habitats; G1 isolates are associated with terrestrial grasses, G2 isolates are found in wet and shady environments, and G3 isolates are found in salt marsh habitats. PMID:18373531

  16. Dishwashers--a man-made ecological niche accommodating human opportunistic fungal pathogens.

    PubMed

    Zalar, P; Novak, M; de Hoog, G S; Gunde-Cimerman, N

    2011-10-01

    Habitats in human households may accommodate microorganisms outside the common spectrum of ubiquitous saprobes. Enrichment of fungi that may require specific environmental conditions was observed in dishwashers, 189 of which were sampled in private homes of 101 towns or communities. One-hundred-two were sampled from various localities in Slovenia; 42 from other European countries; 13 and 3 from North and South America, respectively; 5 from Israel; 10 from South Africa; 7 from Far East Asia; and 7 from Australia. Isolation was performed on samples incubated at 37°C. Species belonging to genera Aspergillus, Candida, Magnusiomyces, Fusarium, Penicillium and Rhodotorula were found occasionally, while the black yeasts Exophiala dermatitidis and Exophiala phaeomuriformis (Chaetothyriales) were persistently and most frequently isolated. Sixty-two percent of the dishwashers were positive for fungi, and 56% of these accommodated Exophiala. Both Exophiala species are known to be able to cause systemic disease in humans and frequently colonize the lungs of patients with cystic fibrosis. We conclude that high temperature, high moisture and alkaline pH values typically occurring in dishwashers can provide an alternative habitat for species also known to be pathogenic to humans. PMID:21944212

  17. Genome‐wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata

    PubMed Central

    Guo, Yanan; Sim, Andre D.; Kabir, M. Shahjahan; Chettri, Pranav; Ozturk, Ibrahim K.; Hunziker, Lukas; Ganley, Rebecca J.; Cox, Murray P.

    2015-01-01

    Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host. PMID:25919703

  18. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage.

    PubMed

    Jung, Yu-Jin; Lee, Soon-Youl; Moon, Yong-Sun; Kang, Kwon-Kyoo

    2012-01-01

    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection.

  19. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage.

    PubMed

    Jung, Yu-Jin; Lee, Soon-Youl; Moon, Yong-Sun; Kang, Kwon-Kyoo

    2012-01-01

    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection. PMID:22308171

  20. Mycobiome of the Bat White Nose Syndrome Affected Caves and Mines Reveals Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans

    PubMed Central

    Rajkumar, Sunanda S.; Li, Xiaojiang; Okoniewski, Joseph C.; Hicks, Alan C.; Davis, April D.; Broussard, Kelly; LaDeau, Shannon L.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010–2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi (‘mycobiome’). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  1. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    PubMed

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  2. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen

    PubMed Central

    Savage, Anna E.; Terrell, Kimberly A.; Gratwicke, Brian; Mattheus, Nichole M.; Augustine, Lauren; Fleischer, Robert C.

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1–15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29–55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations. PMID:27293759

  3. Agrobacterium tumefaciens-Mediated Transformation for Investigation of Somatic Recombination in the Fungal Pathogen Armillaria mellea▿

    PubMed Central

    Baumgartner, Kendra; Fujiyoshi, Phillip; Foster, Gary D.; Bailey, Andy M.

    2010-01-01

    Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus. PMID:20952653

  4. A Restriction Fragment Length Polymorphism Map and Electrophoretic Karyotype of the Fungal Maize Pathogen Cochliobolus Heterostrophus

    PubMed Central

    Tzeng, T. H.; Lyngholm, L. K.; Ford, C. F.; Bronson, C. R.

    1992-01-01

    A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical to map distance should make this RFLP map a useful tool for cloning genes. PMID:1346261

  5. MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2014-01-01

    We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum. PMID:24722578

  6. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen.

    PubMed

    Savage, Anna E; Terrell, Kimberly A; Gratwicke, Brian; Mattheus, Nichole M; Augustine, Lauren; Fleischer, Robert C

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1-15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29-55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations.

  7. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen.

    PubMed

    Savage, Anna E; Terrell, Kimberly A; Gratwicke, Brian; Mattheus, Nichole M; Augustine, Lauren; Fleischer, Robert C

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1-15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29-55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations. PMID:27293759

  8. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium

    NASA Astrophysics Data System (ADS)

    Recio, Marta; del Mar Trigo, María; Docampo, Silvia; Melgar, Marta; García-Sánchez, José; Bootello, Lourdes; Cabezudo, Baltasar

    2012-11-01

    Alternaria and Cladosporium are two fungal taxa whose spores (conidia) are included frequently in aerobiological studies of outdoor environments. Both spore types are present in the atmosphere of Malaga (Spain) throughout almost the entire year, although they reach their highest concentrations during spring and autumn. To establish predicting variables for daily and weekly fluctuations, Spearman's correlations and stepwise multiple regressions between spore concentrations (measured using a volumetric 7-day recorder) and meteorological variables were made with results obtained for both spore types in 1996 and 1997. Correlations and regressions were also made between the different taxa and their concentrations in different years. Significant and positive correlation coefficients were always obtained between spore concentrations of both taxa, followed by temperature, their concentrations in different years, sunshine hours and relative humidity (this last in a negative sense). For the two spore types we obtained higher correlation and regression coefficients using weekly data. We showed different regression models using weekly values. From the results and a practical point of view, it was concluded that weekly values of the atmospheric concentration of Alternaria spores can be predicted from the maximum temperature expected and its concentrations in the years sampled. As regards the atmospheric concentration of Cladoposrium spores, the weekly values can be predicted based on the concentration of Alternaria spores, thus saving the time and effort that would otherwise be employed in counting them by optical microscopy.

  9. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium.

    PubMed

    Recio, Marta; Trigo, María del Mar; Docampo, Silvia; Melgar, Marta; García-Sánchez, José; Bootello, Lourdes; Cabezudo, Baltasar

    2012-11-01

    Alternaria and Cladosporium are two fungal taxa whose spores (conidia) are included frequently in aerobiological studies of outdoor environments. Both spore types are present in the atmosphere of Malaga (Spain) throughout almost the entire year, although they reach their highest concentrations during spring and autumn. To establish predicting variables for daily and weekly fluctuations, Spearman's correlations and stepwise multiple regressions between spore concentrations (measured using a volumetric 7-day recorder) and meteorological variables were made with results obtained for both spore types in 1996 and 1997. Correlations and regressions were also made between the different taxa and their concentrations in different years. Significant and positive correlation coefficients were always obtained between spore concentrations of both taxa, followed by temperature, their concentrations in different years, sunshine hours and relative humidity (this last in a negative sense). For the two spore types we obtained higher correlation and regression coefficients using weekly data. We showed different regression models using weekly values. From the results and a practical point of view, it was concluded that weekly values of the atmospheric concentration of Alternaria spores can be predicted from the maximum temperature expected and its concentrations in the years sampled. As regards the atmospheric concentration of Cladoposrium spores, the weekly values can be predicted based on the concentration of Alternaria spores, thus saving the time and effort that would otherwise be employed in counting them by optical microscopy.

  10. Comparative Transcriptomics of Infectious Spores from the Fungal Pathogen Histoplasma capsulatum Reveals a Core Set of Transcripts That Specify Infectious and Pathogenic States

    PubMed Central

    Inglis, Diane O.; Voorhies, Mark; Hocking Murray, Davina R.

    2013-01-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  11. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

    PubMed

    Inglis, Diane O; Voorhies, Mark; Hocking Murray, Davina R; Sil, Anita

    2013-06-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  12. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  13. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus).

    PubMed

    Jia, Zhichun; Gou, Jiqing; Sun, Yimin; Yuan, Li; Tang, Qiao; Yang, Xingyong; Pei, Yan; Luo, Keming

    2010-12-01

    The antimicrobial protein gene LJAMP2 is a plant non-specific lipid transfer protein from motherwort (Leonurus japonicus). In this study, it was introduced into Chinese white poplar (Populus tomentosa Carr.) via Agrobacterium-mediated transformation with neomycin phosphotransferase II gene conferring kanamycin resistance as selectable marker. A total of 16 poplar lines were obtained, and polymerase chain reaction (PCR) analysis established the stable integration of transgenes in the plant genome. Reverse transcription-PCR detected LJAMP2 expression in transgenic plants. Resistance to fungal pathogens Alternaria alternata (Fr.) Keissler and Colletotrichum gloeosporioides (Penz.) of transgenic poplar lines was tested. In vitro inhibitory activity against the fungal pathogens was evident from the crude leaf extracts from the transformants. In vivo assays showed that, after infection with both A. alternata (Fr.) Keissler and C. gloeosporioides (Penz.), there was a significant reduction in disease symptoms in transgenic poplar plants compared with the control. These results suggest that constitutive expression of the LJAMP2 gene from motherwort can be exploited to improve resistance to fungal pathogens in poplar.

  14. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  15. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  16. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast.

  17. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast. PMID:27118798

  18. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    PubMed

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  19. Ozone episodes in Southern Lower Saxony (FRG) and their impact on the susceptibility of cereals to fungal pathogens.

    PubMed

    von Tiedemann, A; Ostländer, P; Firsching, K H; Fehrmann, H

    1990-01-01

    Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31

  20. Broadly Conserved Fungal Effector BEC1019 Suppresses Host Cell Death and Enhances Pathogen Virulence in Powdery Mildew of Barley (Hordeum vulgare L.).

    PubMed

    Whigham, Ehren; Qi, Shan; Mistry, Divya; Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Pliego, Clara; Bindschedler, Laurence V; Spanu, Pietro D; Dickerson, Julie A; Innes, Roger W; Nettleton, Dan; Bogdanove, Adam J; Wise, Roger P

    2015-09-01

    The interaction of barley, Hordeum vulgare L., with the powdery mildew fungus Blumeria graminis f. sp. hordei is a well-developed model to investigate resistance and susceptibility to obligate biotrophic pathogens. The 130-Mb Blumeria genome encodes approximately 540 predicted effectors that are hypothesized to suppress or induce host processes to promote colonization. Blumeria effector candidate (BEC)1019, a single-copy gene encoding a putative, secreted metalloprotease, is expressed in haustorial feeding structures, and host-induced gene silencing of BEC1019 restricts haustorial development in compatible interactions. Here, we show that Barley stripe mosaic virus-induced gene silencing of BEC1019 significantly reduces fungal colonization of barley epidermal cells, demonstrating that BEC1019 plays a central role in virulence. In addition, delivery of BEC1019 to the host cytoplasm via Xanthomonas type III secretion suppresses cultivar nonspecific hypersensitive reaction (HR) induced by Xanthomonas oryzae pv. oryzicola, as well as cultivar-specific HR induced by AvrPphB from Pseudomonas syringae pv. phaseolicola. BEC1019 homologs are present in 96 of 241 sequenced fungal genomes, including plant pathogens, human pathogens, and free-living nonpathogens. Comparative analysis revealed variation at several amino acid positions that correlate with fungal lifestyle and several highly conserved, noncorrelated motifs. Site-directed mutagenesis of one of these, ETVIC, compromises the HR-suppressing activity of BEC1019. We postulate that BEC1019 represents an ancient, broadly important fungal protein family, members of which have evolved to function as effectors in plant and animal hosts. PMID:25938194

  1. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections.

    PubMed

    Ferrer, C; Colom, F; Frasés, S; Mulet, E; Abad, J L; Alió, J L

    2001-08-01

    The goal of this study was to determine whether sequence analysis of internal transcribed spacer/5.8S ribosomal DNA (rDNA) can be used to detect fungal pathogens in patients with ocular infections (endophthalmitis and keratitis). Internal transcribed spacer 1 (ITS1) and ITS2 and 5.8S rDNA were amplified by PCR and seminested PCR to detect fungal DNA. Fifty strains of 12 fungal species (yeasts and molds) were used to test the selected primers and conditions of the PCR. PCR and seminested PCR of this region were carried out to evaluate the sensitivity and specificity of the method. It proved possible to amplify the ITS2/5.8S region of all the fungal strains by this PCR method. All negative controls (human and bacterial DNA) were PCR negative. The sensitivity of the seminested PCR amplification reaction by DNA dilutions was 1 organism per PCR, and the sensitivity by cell dilutions was fewer than 10 organisms per PCR. Intraocular sampling or corneal scraping was undertaken for all patients with suspected infectious endophthalmitis or keratitis (nonherpetic), respectively, between November 1999 and February 2001. PCRs were subsequently performed with 11 ocular samples. The amplified DNA was sequenced, and aligned against sequences in GenBank at the National Institutes of Health. The results were PCR positive for fungal primers for three corneal scrapings, one aqueous sample, and one vitreous sample; one of them was negative by culture. Molecular fungal identification was successful in all cases. Bacterial detection by PCR was positive for three aqueous samples and one vitreous sample; one of these was negative by culture. Amplification of ITS2/5.8S rDNA and molecular typing shows potential as a rapid technique for identifying fungi in ocular samples.

  2. Detection and Identification of Fungal Pathogens by PCR and by ITS2 and 5.8S Ribosomal DNA Typing in Ocular Infections

    PubMed Central

    Ferrer, Consuelo; Colom, Francisca; Frasés, Susana; Mulet, Emilia; Abad, José L.; Alió, Jorge L.

    2001-01-01

    The goal of this study was to determine whether sequence analysis of internal transcribed spacer/5.8S ribosomal DNA (rDNA) can be used to detect fungal pathogens in patients with ocular infections (endophthalmitis and keratitis). Internal transcribed spacer 1 (ITS1) and ITS2 and 5.8S rDNA were amplified by PCR and seminested PCR to detect fungal DNA. Fifty strains of 12 fungal species (yeasts and molds) were used to test the selected primers and conditions of the PCR. PCR and seminested PCR of this region were carried out to evaluate the sensitivity and specificity of the method. It proved possible to amplify the ITS2/5.8S region of all the fungal strains by this PCR method. All negative controls (human and bacterial DNA) were PCR negative. The sensitivity of the seminested PCR amplification reaction by DNA dilutions was 1 organism per PCR, and the sensitivity by cell dilutions was fewer than 10 organisms per PCR. Intraocular sampling or corneal scraping was undertaken for all patients with suspected infectious endophthalmitis or keratitis (nonherpetic), respectively, between November 1999 and February 2001. PCRs were subsequently performed with 11 ocular samples. The amplified DNA was sequenced, and aligned against sequences in GenBank at the National Institutes of Health. The results were PCR positive for fungal primers for three corneal scrapings, one aqueous sample, and one vitreous sample; one of them was negative by culture. Molecular fungal identification was successful in all cases. Bacterial detection by PCR was positive for three aqueous samples and one vitreous sample; one of these was negative by culture. Amplification of ITS2/5.8S rDNA and molecular typing shows potential as a rapid technique for identifying fungi in ocular samples. PMID:11474006

  3. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A; Lee, Yong-Hwan

    2015-02-24

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis.

  4. Evidence of threat to European economy and biodiversity following the introduction of an alien pathogen on the fungal-animal boundary.

    PubMed

    Ercan, Didem; Andreou, Demetra; Sana, Salma; Öntaş, Canan; Baba, Esin; Top, Nildeniz; Karakuş, Uğur; Tarkan, Ali Serhan; Gozlan, Rodolphe Elie

    2015-09-02

    Recent years have seen a global and rapid resurgence of fungal diseases with direct impact on biodiversity and local extinctions of amphibian, coral, or bat populations. Despite similar evidence of population extinction in European fish populations and the associated risk of food aquaculture due to the emerging rosette agent Sphaerothecum destruens, an emerging infectious eukaryotic intracellular pathogen on the fungal-animal boundary, our understanding of current threats remained limited. Long-term monitoring of population decline for the 8-year post-introduction of the fungal pathogen was coupled with seasonal molecular analyses of the 18S rDNA and histological work of native fish species organs. A phylogenetic relationship between the existing EU and US strains using the ribosomal internal transcribed spacer sequences was also carried out. Here, we provide evidence that this emerging parasite has now been introduced via Pseudorasbora parva to sea bass farms, an industry that represents over 400 M€€ annually in a Mediterranean region that is already economically vulnerable. We also provide for the first time evidence linking S. destruens to disease and severe declines in International Union for Conservation of Nature threatened European endemic freshwater fishes (i.e. 80% to 90 % mortalities). Our findings are thus of major economic and conservation importance.

  5. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    PubMed

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

  6. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    PubMed

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens.

  7. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.

    PubMed

    Wang, Chenggang; Ding, Yezhang; Yao, Jin; Zhang, Yanping; Sun, Yijun; Colee, James; Mou, Zhonglin

    2015-09-01

    The evolutionarily conserved Elongator complex functions in diverse biological processes including salicylic acid-mediated immune response. However, how Elongator functions in jasmonic acid (JA)/ethylene (ET)-mediated defense is unknown. Here, we show that Elongator is required for full induction of the JA/ET defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) and for resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. A loss-of-function mutation in the Arabidopsis Elongator subunit 2 (ELP2) alters B. cinerea-induced transcriptome reprogramming. Interestingly, in elp2, expression of WRKY33, OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 (ORA59), and PDF1.2 is inhibited, whereas transcription of MYC2 and its target genes is enhanced. However, overexpression of WRKY33 or ORA59 and mutation of MYC2 fail to restore PDF1.2 expression and B. cinerea resistance in elp2, suggesting that ELP2 is required for induction of not only WRKY33 and ORA59 but also PDF1.2. Moreover, elp2 is as susceptible as coronatine-insensitive1 (coi1) and ethylene-insensitive2 (ein2) to B. cinerea, indicating that ELP2 is an important player in B. cinerea resistance. Further analysis of the lesion sizes on the double mutants elp2 coi1 and elp2 ein2 and the corresponding single mutants revealed that the function of ELP2 overlaps with COI1 and is additive to EIN2 for B. cinerea resistance. Finally, basal histone acetylation levels in the coding regions of WRKY33, ORA59, and PDF1.2 are reduced in elp2 and a functional ELP2-GFP fusion protein binds to the chromatin of these genes, suggesting that constitutive ELP2-mediated histone acetylation may be required for full activation of the WRKY33/ORA59/PDF1.2 transcriptional cascade.

  8. Physical Maps for Genome Analysis of Serotype A and D Strains of the Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Schein, Jacqueline E.; Tangen, Kristin L.; Chiu, Readman; Shin, Heesun; Lengeler, Klaus B.; MacDonald, William Kim; Bosdet, Ian; Heitman, Joseph; Jones, Steven J.M.; Marra, Marco A.; Kronstad, James W.

    2002-01-01

    The basidiomycete fungus Cryptococcus neoformans is an important opportunistic pathogen of humans that poses a significant threat to immunocompromised individuals. Isolates of C. neoformans are classified into serotypes (A, B, C, D, and AD) based on antigenic differences in the polysaccharide capsule that surrounds the fungal cells. Genomic and EST sequencing projects are underway for the serotype D strain JEC21 and the serotype A strain H99. As part of a genomics program for C. neoformans, we have constructed fingerprinted bacterial artificial chromosome (BAC) clone physical maps for strains H99 and JEC21 to support the genomic sequencing efforts and to provide an initial comparison of the two genomes. The BAC clones represented an estimated 10-fold redundant coverage of the genomes of each serotype and allowed the assembly of 20 contigs each for H99 and JEC21. We found that the genomes of the two strains are sufficiently distinct to prevent coassembly of the two maps when combined fingerprint data are used to construct contigs. Hybridization experiments placed 82 markers on the JEC21 map and 102 markers on the H99 map, enabling contigs to be linked with specific chromosomes identified by electrophoretic karyotyping. These markers revealed both extensive similarity in gene order (conservation of synteny) between JEC21 and H99 as well as examples of chromosomal rearrangements including inversions and translocations. Sequencing reads were generated from the ends of the BAC clones to allow correlation of genomic shotgun sequence data with physical map contigs. The BAC maps therefore represent a valuable resource for the generation, assembly, and finishing of the genomic sequence of both JEC21 and H99. The physical maps also serve as a link between map-based and sequence-based data, providing a powerful resource for continued genomic studies. [This paper is dedicated to the memory of Michael Smith, Founding Director of the Biotechnology Laboratory and the BC Cancer

  9. Highly polymorphic in silico-derived microsatellite loci in the potato-infecting fungal pathogen Rhizoctonia solani anastomosis group 3 from the Colombian Andes.

    PubMed

    Ferrucho, R L; Zala, M; Zhang, Z; Cubeta, M A; Garcia-Dominguez, C; Ceresini, P C

    2009-05-01

    Fourteen polymorphic microsatellite DNA markers derived from the draft genome sequence of Rhizoctonia solani anastomosis group 3 (AG-3), strain Rhs 1AP, were designed and characterized from the potato-infecting soil fungus R. solani AG-3. All loci were polymorphic in two field populations collected from Solanum tuberosum and S. phureja in the Colombian Andes. The total number of alleles per locus ranged from two to seven, while gene diversity (expected heterozygosity) varied from 0.11 to 0.81. Considering the variable levels of genetic diversity observed, these markers should be useful for population genetic analyses of this important dikaryotic fungal pathogen on a global scale.

  10. Polyphenols Variation in Fruits of the Susceptible Strawberry Cultivar Alba during Ripening and upon Fungal Pathogen Interaction and Possible Involvement in Unripe Fruit Tolerance.

    PubMed

    Nagpala, Ellaine Grace; Guidarelli, Michela; Gasperotti, Mattia; Masuero, Domenico; Bertolini, Paolo; Vrhovsek, Urska; Baraldi, Elena

    2016-03-01

    Strawberry (Fragaria × ananassa) fruit contains high concentrations of health-promoting phenolic compounds, playing important roles for the fruit ontogenic tolerance to fungi. In the highly susceptible cultivar Alba, the two major strawberry fungal pathogens, Colletotrichum acutatum and Botrytis cinerea, displayed disease symptoms only at red ripe stages because immature fruits are tolerant to diseases. We analyzed and compared the variation of 47 polyphenols in the surface of unripe and ripe Alba fruits upon 24 and 48 h of C. acutatum and B. cinerea infection or mock inoculation. Significant alteration in phenolic content was detected only in white infected fruit, with differences specific for each pathogen. The expression analysis of phenylpropanoid, flavonoid, and shikimate pathway genes showed in only a few cases correlation with the relative metabolite abundance. The alteration in phenolic content and the lack of consistency with gene expression data are discussed in light of previously reported metabolome data of different susceptible and resistant strawberry genotypes.

  11. Antagonistic potentiality of Trichoderma harzianum towards seed-borne fungal pathogens of winter wheat cv. Protiva in vitro and in vivo.

    PubMed

    Hasan, M M; Rahman, S M E; Kim, Gwang-Hee; Abdallah, Elgorban; Oh, Deog-Hwan

    2012-05-01

    The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.

  12. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15

    NASA Astrophysics Data System (ADS)

    Gokul Raj, K.; Manikandan, R.; Arulvasu, C.; Pandi, M.

    2015-03-01

    Cladosporium oxysporum a new taxol producing endophytic fungus was identified and production of taxol were characterized using UV-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), infrared (IR) nuclear magnetic resonance spectroscopy (NMR (13C and 1H)) and liquid chromatography-mass spectrometry (LC-MS). The taxol biosynthetic gene (dbat) was evaluated for new taxol producing fungus. Antibacterial activity against six different human pathogenic bacteria was done by agar well diffusion method. The anticancer efficacy of isolated fungal taxol were also evaluated in human colon cancer cell HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cytotoxicity and nuclear morphology analysis. The isolated fungal taxol showed positive towards biosynthetic gene (dbat) and effective against both Gram positive as well as Gram negative. The fungal taxol suppress growth of cancer cell line HCT 15 with an IC50 value of 3.5 μM concentration by 24 h treatment. Thus, the result reveals that C. oxysporum could be a potential alternative source for production of taxol and have antibacterial as well as anticancer properties with possible clinical applications.

  13. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15.

    PubMed

    Gokul Raj, K; Manikandan, R; Arulvasu, C; Pandi, M

    2015-03-01

    Cladosporium oxysporum a new taxol producing endophytic fungus was identified and production of taxol were characterized using UV-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), infrared (IR) nuclear magnetic resonance spectroscopy (NMR ((13)C and (1)H)) and liquid chromatography-mass spectrometry (LC-MS). The taxol biosynthetic gene (dbat) was evaluated for new taxol producing fungus. Antibacterial activity against six different human pathogenic bacteria was done by agar well diffusion method. The anticancer efficacy of isolated fungal taxol were also evaluated in human colon cancer cell HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cytotoxicity and nuclear morphology analysis. The isolated fungal taxol showed positive towards biosynthetic gene (dbat) and effective against both Gram positive as well as Gram negative. The fungal taxol suppress growth of cancer cell line HCT 15 with an IC50 value of 3.5μM concentration by 24h treatment. Thus, the result reveals that C. oxysporum could be a potential alternative source for production of taxol and have antibacterial as well as anticancer properties with possible clinical applications.

  14. The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease

    PubMed Central

    Shi, Gongjun; Zhang, Zengcui; Friesen, Timothy L.; Raats, Dina; Fahima, Tzion; Brueggeman, Robert S.; Lu, Shunwen; Trick, Harold N.; Liu, Zhaohui; Chao, Wun; Frenkel, Zeev; Xu, Steven S.; Rasmussen, Jack B.; Faris, Justin D.

    2016-01-01

    Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat Snn1 gene confers susceptibility to strains of the necrotrophic pathogen Parastagonospora nodorum that produce the SnTox1 protein. We report the positional cloning of Snn1, a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance. Recognition of SnTox1 by Snn1 activates programmed cell death, which allows this necrotroph to gain nutrients and sporulate. These results demonstrate that necrotrophic pathogens such as P. nodorum hijack host molecular pathways that are typically involved in resistance to biotrophic pathogens, revealing the complex nature of susceptibility and resistance in necrotrophic and biotrophic pathogen interactions with plants.

  15. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii.

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Moore, Paul H; Zhu, Yun J

    2008-05-01

    Taro (Colocasia esculenta) is one of the most important crops in the Pacific Islands, however, taro yields have been declining in Hawaii over the past 30 years partly due to diseases caused by oomycete and fungal pathogens. In this study, an efficient Agrobacterium tumefaciens-mediated transformation method for taro is first reported. In total, approximately 200 pieces (8 g) of embryogenic calluses were infected with the super-virulent A. tumefaciens strain EHA105 harboring the plant transformation plasmid pBI121/ricchi11 that contains the rice chitinase gene ricchi11. The presence and expression of the transgene ricchi11 in six independent transgenic lines was confirmed using polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR). Southern blot analysis of the six independent lines indicated that three out of six (50%) had integrated a single copy of the transgene, and the other three lines had two or three copies of the transgene. Compared to the particle bombardment transformation of taro method, which was used in the previous studies, the Agrobacterium-mediated transformation method obtained 43-fold higher transformation efficiency. In addition, these six transgenic lines via Agrobacterium may be more effective for transgene expression as a result of single-copy or low-copy insertion of the transgene than the single line with multiple copies of the transgene via particle bombardment. In a laboratory bioassay, all six transgenic lines exhibited increased tolerance to the fungal pathogen Sclerotium rolfsii, ranging from 42 to 63% reduction in lesion expansion.

  16. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao.

    PubMed

    Teixeira, Paulo J P L; Thomazella, Daniela P T; Vidal, Ramon O; do Prado, Paula F V; Reis, Osvaldo; Baroni, Renata M; Franco, Sulamita F; Mieczkowski, Piotr; Pereira, Gonçalo A G; Mondego, Jorge M C

    2012-01-01

    The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and have been characterized as markers of induced defense against pathogens. This work presents the characterization of eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches' broom disease in cacao. We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants.

  17. Functional analysis of CLPT1, a Rab/GTPase required for protein secretion and pathogenesis in the plant fungal