Science.gov

Sample records for airborne gravity surveys

  1. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  2. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  3. Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.

    2013-01-01

    This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.

  4. Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Panet, Isabelle; Pajot-Métivier, Gwendoline; Christophe, Bruno; Foulon, Bernard; Lequentrec-Lalancette, Marie-Françoise; Diament, Michel

    2015-12-01

    Moving-base gravity gradiometry has proven to be a convenient method to determine the Earth's gravity field. The ESA mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) has enabled to map the Earth gravity field and its gradients with a resolution of 80 km, leading to significant advances in physical oceanography and solid Earth physics. At smaller scales, airborne gravity gradiometry has been increasingly used during the past decade in mineral and hydrocarbon exploration. In both cases the sensitivity of gradiometers to the short wavelengths of the gravity field is of crucial interest. Here, we quantify and characterize the error on the gravity gradients estimated from measurements performed with a new instrument concept, called GREMLIT, for typical airborne conditions. GREMLIT is an ultra-sensitive planar gravitational gradiometer which consists in a planar acceleration gradiometer together with 3 gyroscopes. To conduct this error analysis, a simulation of a realistic airborne survey with GREMLIT is carried out. We first simulate realistic GREMLIT synthetic data, taking into account the acceleration gradiometer and gyroscope noises and biases and the variation of orientation of the measurement reference frame. Then, we estimate the gravity gradients from these data. Special attention is paid to the processing of the gyroscopes measurements whose accuracy is not commensurate with the ultra-sensitive gradiometer. We propose a method to calibrate the gyroscopes biases with a precision of the order 10^{-8} rad/s. In order to transform the tensor from the measurement frame to the local geodetic frame, we estimate the error induced when replacing the non-measured elements of the gravity gradient tensor by an a priori model. With the appropriate smoothing, we show that it is possible to achieve a precision better than 2E for an along-track spatial resolution of 2 km.

  5. Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.

    2008-01-01

    Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.

  6. Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania

    NASA Astrophysics Data System (ADS)

    Roberts, Doug; Chowdhury, Priyanka Roy; Lowe, Sharon Jenny; Christensen, Asbjorn Norlund

    2016-02-01

    The Lake Tanganyika South petroleum exploration block covers the southern portion of the Tanzanian side of Lake Tanganyika and is located within the East African Rift System. The rifting process has formed rotated fault blocks which provide numerous play types in the resulting basins. Interpretation of 2D seismic data from 1984 indicated that sufficient sediment thickness is present for hydrocarbon generation. The prospectivity of the lake sediment sequence is enhanced by large oil discoveries further north along the rift system at Lake Albert in Uganda. Airborne gravity gradiometry (AGG) has been used in the Lake Albert region to delineate the structural framework of sedimentary basins. Based on this analogy, in 2010 Beach Energy commissioned CGG to fly a FALCON AGG and high-resolution airborne magnetic survey over the Lake Tanganyika South block to provide data for mapping the basin architecture and estimating the depth to magnetic basement. A total of nearly 28000 line kilometres of data were acquired. The subsequent interpretation incorporated the AGG and magnetic data with available 2D seismic data, elevation model data, bathymetry, Landsat and regional geology information. The integrated data interpretation revealed that the Lake Tanganyika rifting structures occur as half-grabens that were formed through reactivation of Precambrian fault structures. Two major depocentres were identified in the magnetic depth-to-basement map in the north and in the west-central part of the survey area with sediment thicknesses in excess of 4 km and 3 km, respectively. Smaller, shallower depocentres (with less than 3 km of sediment) occur in the south-western region. This information was used to plan a 2100 km 2D marine seismic survey that was recorded in 2012. An interpretation of the results from the seismic survey confirmed a rifting structure similar to that encountered further north at Lake Albert in Uganda. Several targets were identified from the seismic sections for

  7. On the impact of airborne gravity data to fused gravity field models

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander

    2016-06-01

    In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

  8. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  9. GTE: a new FFT based software to compute terrain correction on airborne gravity surveys in spherical approximation.

    NASA Astrophysics Data System (ADS)

    Capponi, Martina; Sampietro, Daniele; Sansò, Fernando

    2016-04-01

    The computation of the vertical attraction due to the topographic masses (Terrain Correction) is still a matter of study both in geodetic as well as in geophysical applications. In fact it is required in high precision geoid estimation by the remove-restore technique and it is used to isolate the gravitational effect of anomalous masses in geophysical exploration. This topographical effect can be evaluated from the knowledge of a Digital Terrain Model in different ways: e.g. by means of numerical integration, by prisms, tesseroids, polyedra or Fast Fourier Transform (FFT) techniques. The increasing resolution of recently developed digital terrain models, the increasing number of observation points due to extensive use of airborne gravimetry and the increasing accuracy of gravity data represents nowadays major issues for the terrain correction computation. Classical methods such as prism or point masses approximations are indeed too slow while Fourier based techniques are usually too approximate for the required accuracy. In this work a new software, called Gravity Terrain Effects (GTE), developed in order to guarantee high accuracy and fast computation of terrain corrections is presented. GTE has been thought expressly for geophysical applications allowing the computation not only of the effect of topographic and bathymetric masses but also those due to sedimentary layers or to the Earth crust-mantle discontinuity (the so called Moho). In the present contribution we summarize the basic theory of the software and its practical implementation. Basically the GTE software is based on a new algorithm which, by exploiting the properties of the Fast Fourier Transform, allows to quickly compute the terrain correction, in spherical approximation, at ground or airborne level. Some tests to prove its performances are also described showing GTE capability to compute high accurate terrain corrections in a very short time. Results obtained for a real airborne survey with GTE

  10. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  11. Airborne Gravity Data Enhances NGS Experimental Gravimetric Geoid in Alaska

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Childers, V. A.; Li, X.; Roman, D. R.

    2014-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, continues to update its gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Several airborne campaigns have already been flown over Alaska and its coastline. Some of this Alaskan coastal data have been incorporated into a new NGS experimental geoid model - xGEOID14. The xGEOID14 model is the first in a series of annual experimental geoid models that will incorporate NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques by which the airborne and land-survey data are filtered and cleaned, and then combined with satellite gravity models, elevation data (etc.) with the ultimate aim of computing a geoid model that can support a national physical height system by 2022. Here we will examine the NGS GRAV-D airborne data in Alaska, and assess its contribution to xGEOID14. Future prospects for xGEOID15 will also be considered.

  12. Three years of practical use of airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    van Leeuwen, E.

    2003-04-01

    BHP Billiton has successfully built and deployed three airborne gravity gradiometer (AGG) systems, (Newton, Einstein and Galileo) based upon the Bell Airspace (now Lockheed Martin) Gravity Gradient Instruments developed for the United States Department of Defense. A second-generation gradiometer (Feynman) is presently nearing completion. The GGI technology is based on groups of four (4) accelerometers where the accelerometers are equi-spaced on a circle. The configuration successfully rejects both common mode accelerations and rotations about the axis perpendicular to the plane of the complement. The GGI is mounted within an aircraft in a specially designed, inertially stabilized platform, which significantly reduces sensitivity to noise and turbulence. The BHP Billiton AGG Technology provides high quality gravity maps with a resolution and sensitivity to map gravity anomalies associated with both minerals and hydrocarbon deposits. To date the purpose built and designed hardware and data processing algorithms, in conjunction with several other geophysical survey instruments, have been deployed against a broad range of mineral and hydrocarbon targets, a total of over 300,000km of operational flights having been made. Data will also be presented on the in-flight sensitivity of a gravity gradiometer to the airborne environment. It will also outline some of the many unexpected problems that were encountered in the 18-month flight trials required to achieve satisfactory airborne operation.

  13. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  14. Sedimentary basin analysis using airborne gravity data: a case study from the Bohai Bay Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Wenyong; Liu, Yanxu; Zhou, Jianxin; Zhou, Xihua; Li, Bing

    2016-11-01

    In this paper, we discuss the application of an airborne gravity survey to sedimentary basin analysis. Using high-precision airborne gravity data constrained by drilling and seismic data from the Bohai Bay Basin in eastern China, we interpreted faults, structural elements, sedimentary thickness, structural styles and local structures (belts) in the central area of the Basin by the wavelet transform method. Subsequently, these data were subtracted from the Bouguer gravity to calculate the residual gravity anomalies. On this basis, the faults were interpreted mainly by linear zones of high gravity gradients and contour distortion, while the sedimentary thicknesses were computed by the Euler deconvolution. The structural styles were identified by the combination of gravity anomalies and the local structures interpreted by the first vertical derivative of the residual gravity. The results showed evidence for seven faults, one sag and ten new local structure belts.

  15. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Yan Ming

    2016-12-01

    One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.

  16. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  17. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  18. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  19. A new noise reduction method for airborne gravity gradient data

    NASA Astrophysics Data System (ADS)

    Jirigalatu; Ebbing, Jörg; Sebera, Josef

    2016-09-01

    Airborne gravity gradient (AGG) measurements offer an increased resolution and accuracy compared to terrestrial measurements. But interpretation and processing of AGG data are often challenging as levelling errors and survey noise affect the data, and these effects are not easily recognised in the gradient components. We adopted the classic method of upward continuation in the noise reduction using the noise level estimates by the AGG system. By iteratively projecting the survey data to a lower level and upward continuing the data back to the survey height, parts of the high-frequency signal are suppressed. The filter, which is defined by this approach, is directly dependent on the noise level of the AGG data, the maximum number of iterations and the iterative step. We demonstrate the method by applying it to both synthetic data and real AGG data over Karasjok, Norway, and compare the results to the directional filtering method. The results show that the iterative filter can effectively reduce high-frequency noise in the data.

  20. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  1. Environmental applications of gravity surveying

    SciTech Connect

    Barrows, L.J. ); Nesbit, L.C. ); Khan, W.A. )

    1994-04-01

    The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.

  2. First application of airborne gravity to oil exploration in the Shengli oil province, eastern China

    NASA Astrophysics Data System (ADS)

    Li, Wenyong; Zhoud, Jianxin; Liu, Yanxu; Xu, Jianchun

    2015-07-01

    An airborne gravity survey was successfully conducted over the Dongying, Gudao and Gudong oilfields of Shengli oil province, eastern China. These survey areas cover onshore and offshore regions of the south-west Bohai Sea. The data were processed using the potential field transformation approach. The derived Bouguer gravity data correlate well with features such as known faults, swells and sags identified by earlier seismic survey and drilling data. The depth to the Cenozoic basement in the study area, including the Dongying, Gudao, and Gudong oilfields, was calculated by means of gravity inversion constrained by seismic and drilling data. The differences between the depths to the Cenozoic basement calculated from gravity anomaly and those determined by the earlier seismic and drilling data are less than 5%.

  3. New airborne-gravity and satellite gravity views of crustal structure in Antarctica (Invited)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Kusznir, N. J.; Scheinert, M.; Jordan, T. A.; Bell, R. E.; Blankenship, D. D.; Young, D. A.; Aitken, A.; Forsberg, R.; Anderson, L.; Jokat, W.; Mieth, M.; Armadillo, E.

    2013-12-01

    Gravity anomalies provide a tool to study crustal structure, effective elastic thickness, and isostatic and tectonic processes. Over the last 10 years major airborne gravity surveys were flown by the international community over several Antarctic frontiers. The longer-wavelength Antarctic gravity anomaly field is increasingly better resolved with satellite-gravity. These recent airborne and satellite gravity datasets provide novel perspectives on Antarctic crustal structure and geodynamic evolution. We review results from some of these surveys over the Gamburtsev Subglacial Mountains, Dronning Maud Land, the Wilkes Subglacial Basin, the Transantarctic Mountains and the West Antarctic Rift System and present gravity modelling outputs of crustal thickness for these regions. We contrast these gravity results with a seismically-derived estimation of Antarctic crustal thickness (Baranov and Morelli, 2013, Tectonophys). Anomalously thick East Antarctic crust lies beneath the Gamburtsev Mountains and parts of Dronning Maud Land (50-58 km). Crustal thickening may stem from the collision of a mosaic of East Antarctic crustal provinces in Meso to Neoproterozoic times (Ferraccioli et al., 2011, Nature), or during younger Edicaran to early Cambrian 'Pan-African age' orogenic events. The preservation of such thick crust provides significant support for the high bedrock topography in East Antarctica. Additional flexural uplift along the flanks of the Permian to Cretaceous East Antarctic Rift System helps explain the enigmatic Gamburtsev Mountains. Lithospheric flexure along the flank of the West Antarctic Rift System (WARS) may explain the Transantarctic Mountains (TAM), the longest and highest non-compressional mountain range on Earth. Whether the Wilkes Subglacial Basin also developed in response to lithospheric flexure is debated. Our gravity models image thicker crust beneath the Transantarctic Mountains (TAM) (ca 40 km thick), compared to the relatively thinner crust (30

  4. Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian

    2016-09-01

    We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.

  5. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  6. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper

  7. Space-Wise approach for airborne gravity data modelling

    NASA Astrophysics Data System (ADS)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2016-12-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  8. Quantitative interpretation of airborne gravity gradiometry data for mineral exploration

    NASA Astrophysics Data System (ADS)

    Martinez, Cericia D.

    In the past two decades, commercialization of previously classified instrumentation has provided the ability to rapidly collect quality gravity gradient measurements for resource exploration. In the near future, next-generation instrumentation are expected to further advance acquisition of higher-quality data not subject to pre-processing regulations. Conversely, the ability to process and interpret gravity gradiometry data has not kept pace with innovations occurring in data acquisition systems. The purpose of the research presented in this thesis is to contribute to the understanding, development, and application of processing and interpretation techniques available for airborne gravity gradiometry in resource exploration. In particular, this research focuses on the utility of 3D inversion of gravity gradiometry for interpretation purposes. Towards this goal, I investigate the requisite components for an integrated interpretation workflow. In addition to practical 3D inversions, components of the workflow include estimation of density for terrain correction, processing of multi-component data using equivalent source for denoising, quantification of noise level, and component conversion. The objective is to produce high quality density distributions for subsequent geological interpretation. I then investigate the use of the inverted density model in orebody imaging, lithology differentiation, and resource evaluation. The systematic and sequential approach highlighted in the thesis addresses some of the challenges facing the use of gravity gradiometry as an exploration tool, while elucidating a procedure for incorporating gravity gradient interpretations into the lifecycle of not only resource exploration, but also resource modeling.

  9. Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation

    NASA Astrophysics Data System (ADS)

    Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.

    2016-09-01

    The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.

  10. Airborne detection of asperities: Linking aerogravimetry surveys and earthquake studies

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Boedecker, G.

    2003-04-01

    During the last decade, airborne gravimetric surveys have become a reliable and useful geophysical method to explore mid to large scale geologic settings. Ocean continent boundaries down to seamounts are detectable using conventional scalar, platform stabilized airborne gravimetry systems. New systems such as 3-D strap-down instruments promise a better spatial resolution recovering the gravity vector. Airborne gravimetric gradiometer systems are already able to detect small scale gradients in high spatial resolution. Following this trend in aerogravimetry, new research applications are emerging. One of the most challenging and interesting new aspects of airborne gravimetry is the systematic search for asperity structures. Asperities are patches of the oceanic or continental crust that are able to store more stress than the surrounding material. If due to stress overload or other mechanic forces the asperity breaks, up to mega-thrust earthquakes are triggered. The character of an asperity to carry more stress than the weaker environment must be related to its physical properties such as composition, thickness and density. Questions connected to define and detect an asperity are: How large is an asperity? Do asperities have sharp boundaries? Are asperities isolated structures? Do asperities have special gravimetric signatures? Wells et al. (2000) found that off southern Chile slip maxima from earthquakes coincide with forearc gravity lows. It is well accepted that in this region seismicity is a product of the subduction on the active continental margin. It is still debated whether subducted asperities from the oceanic plate are individual earthquake sources or if they i.e. trigger the break of asperities in the continental crust. Apart from this, very few investigations have been made trying to connect gravimetry and asperities. Therefore, the GeoForschungsZentrum Potsdam in collaboration with Bayerische Akademie der Wissenschaften in Munich , FU Berlin

  11. Airborne sodium lidar measurements of gravity wave intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Kwon, Kang H.; Gardner, Chester S.

    1990-11-01

    A data analysis technique for determining gravity wave intrinsic parameters including wave propagation direction is described. The technique involves measuring the altitude variations of the wave-induced density perturbations of the atmospheric Na layer. This technique can be used with airborne lidars, multiple ground-based lidars, and steerable lidars. In this paper the technique is applied to airborne Na lidar data obtained during a round-trip flight from Denver, Colorado, to the Pacific Coast in November 1986. During the flight, strong wave perturbations were observed in the Na layer near the Pacific coast over a horizontal distance of nearly 700 km. The intrinsic horizontal wavelength of this wave was estimated to be about 85 km, and the vertical wavelength was 4.1 km. The intrinsic period was about 102 min, and the propagation direction was almost due south.

  12. DEM sourcing guidelines for computing 1 Eö accurate terrain corrections for airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Annecchione, Maria; Hatch, David; Hefford, Shane W.

    2017-01-01

    In this paper we investigate digital elevation model (DEM) sourcing requirements to compute gravity gradiometry terrain corrections accurate to 1 Eötvös (Eö) at observation heights of 80 m or more above ground. Such survey heights are typical in fixed-wing airborne surveying for resource exploration where the maximum signal-to-noise ratio is sought. We consider the accuracy of terrain corrections relevant for recent commercial airborne gravity gradiometry systems operating at the 10 Eö noise level and for future systems with a target noise level of 1 Eö. We focus on the requirements for the vertical gradient of the vertical component of gravity (Gdd) because this element of the gradient tensor is most commonly interpreted qualitatively and quantitatively. Terrain correction accuracy depends on the bare-earth DEM accuracy and spatial resolution. The bare-earth DEM accuracy and spatial resolution depends on its source. Two possible sources are considered: airborne LiDAR and Shuttle Radar Topography Mission (SRTM). The accuracy of an SRTM DEM is affected by vegetation height. The SRTM footprint is also larger and the DEM resolution is thus lower. However, resolution requirements relax as relief decreases. Publicly available LiDAR data and 1 arc-second and 3 arc-second SRTM data were selected over four study areas representing end member cases of vegetation cover and relief. The four study areas are presented as reference material for processing airborne gravity gradiometry data at the 1 Eö noise level with 50 m spatial resolution. From this investigation we find that to achieve 1 Eö accuracy in the terrain correction at 80 m height airborne LiDAR data are required even when terrain relief is a few tens of meters and the vegetation is sparse. However, as satellite ranging technologies progress bare-earth DEMs of sufficient accuracy and resolution may be sourced at lesser cost. We found that a bare-earth DEM of 10 m resolution and 2 m accuracy are sufficient for

  13. Towards an improved knowledge of the gravity field and geoid in Antarctica utilizing airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Scheinert, M.

    2011-12-01

    For the determination of high-resolution earth's gravity field models (EGM) satellite measurements have to be combined with terrestrial gravity anomalies. In this respect, Antarctica remains one of the largest data gaps in the global coverage of terrestrial gravity data. This is especially critical, since the polar data gap resulting from the orbit inclination of GOCE, the recent and most powerful satellite gravity mission, amounts to a cap of about 1,300 km diameter at the pole. Furthermore, the limitation to a certain harmonic degree of resolution prevent a complete, high resolution data coverage to be obtained from the dedicated gravity missions only. For Antarctica, characterized by a hostile environment and difficult logistic conditions, airborne gravimetry offers the most powerful technique to survey large areas. In the perspective of geodesy, the coordination of activities is in the focus of the "Antarctic Geoid Project" (AntGP), Sub-Commission 2.4f of the International Association of Geodesy (IAG), and of project 3 "Physical Geodesy" within the GIANT program of the Standing Scientific Group on Geosciences (SSG-G) of the Scientific Committee on Antarctic Research (SCAR), both chaired by the author. This contribution will review the progress made realizing gravity surveys in Antarctica. Often initiated by a geophysically focussed rationale a great number of airborne surveys were accomplished during the last years. Furthermore, new plans shall be discussed. In this context, the initiative to make use of the new German "High Altitude and Long Range Research Aircraft" (HALO) for geoscientific applications will be presented. Based on a modified Gulfstream G550 jet it opens unprecedented possibilities for atmospheric and geoscientific research. Being the first geoscientific mission, GEOHALO shall demonstrate the feasibility and performance of the geodetic-geophysical instrumentation to gain airborne gravimetry and magnetometry measurements, GNSS direct, reflected

  14. Synopsis of early field test results from the gravity gradiometer survey system

    NASA Technical Reports Server (NTRS)

    Brzezowski, S.; Gleason, D.; Goldstein, J.; Heller, W.; Jekeli, Christopher; White, J.

    1989-01-01

    Although the amount of data yielded by the initial airborne and surface tests was modest, it was sufficient to demonstrate that the full gravity gradient tensor was successfully measured from moving platforms both in the air and on the surface. The measurements were effectively continuous with spatial along-track resolution limited only by choice of integration lengths taken to reduce noise. The airborne data were less noisy (800 E squared/Hz typical) than were the Gravity Gradiometer Survey System (GGSS) measurements taken at the surface (5000 E squared/Hz typical). Single tracks of surface gravity disturbances recovered from airborne data were accurate to 3 to 4 mgal in each component of gravity when compared to 5 x 5 mean gravity anomalies over a 90 km track. Multitrack processing yielded 2 to 3 mgal when compared to 5 x 5 mean anomalies. Deflection of the vertical recovery over a distance of 150 km was about one arcsecond.

  15. GREMLIT : an airborne gravity gradiometer inheriting from GOCE

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Douch, K.; Christophe, B.; Panet, I.; Boulanger, D.; Lebat, V.

    2012-04-01

    The knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to space gravity measurements from recent GRACE and GOCE missions. But the spatial resolution of those gravity data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like in high mountain or coastal areas. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions. The gradiometer is built using a planar configuration for the gradiometer and is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment. Such a planar configuration is especially well suited to sustain the proof-mass levitation in the Earth's gravity field. It also presents intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. The compactness of the design ensures excellent dimensional stability, good thermal homogeneity and makes the conception of the stabilized platform easier. The performance objective is between 0.1 and 1 Eötvös taking into account the difficulty of measurements onboard an aircraft by comparison to the particularly conducive satellite measurement environment.

  16. Subglacial Geology of the Thwaites Glacier Catchment, West Antarctica: Airborne Gravity Reduction and Inversion

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Blankenship, D. D.; Holt, J. W.

    2006-12-01

    The Amundsen Sea Embayment (ASE) of the West Antarctic Ice Sheet (WAIS) is one of the most vulnerable areas of the continent to global warming, based on the behavior of its two major glaciers: Thwaites and Pine Island. These glaciers are among the fastest moving and highest discharge in West Antarctica and they lack protective, buttressing ice shelves. Warm ocean currents around Antarctica are diverted away from the Siple Coast ice streams by the Ross Ice Shelf. The ASE is not so fortunate and is exposed to these warm currents because the glaciers lack any sizable ice shelves. However, modeling the response of the ASE glaciers to climate-induced melting requires understanding the ASE subglacial environment. Based on the Siple Coast ice streams, we know that the character of subglacial geology, especially the availability of basal sediment, can greatly influence ice flow. Yet despite the ASE's recognized potential of being an access point of ocean waters to the interior of the WAIS, very little data has been collected in the area until recently. The University of Texas, in conjunction with the British Antarctic Survey (BAS), completed the first comprehensive surveys of the ASE during a 2004-2005 aerogeophysical field campaign. Together our investigations covered over 290,000 sq. km. of the ASE, with BAS working primarily in the Pine Island Glacier catchment and UT in the Thwaites Glacier catchment. Our geophysical platform includes ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Here we present the results of the airborne gravity reduction. This was the first use of the LaCoste & Romberg Air/Sea II gravity meter in an airborne survey and it performed very well, especially considering the extreme flight conditions and unusual survey design required for the region. The data were acquired on a 15km grid; the free-air gravity anomaly results have a mean deviation crossover error of 3.8 mGals and a half-wavelength spatial resolution of 9

  17. Resolving bathymetry from airborne gravity along Greenland fjords

    NASA Astrophysics Data System (ADS)

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-12-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  18. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  19. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  20. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  1. An Improved Platform Levelling System for Airborne Gravity Meters.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2014-12-01

    Recent advances in sensor technology have enabled Lacoste and Romberg type relative gravity meters to improve in accuracy to the point where other non-sensor related sources of error serve to limit the overall accuracy of the system. One of these sources of error is derived from the inability of the platform, in which the sensor is mounted, to keep the sensor perfectly level during survey flight. Off level errors occur when the aircraft is unable to maintain straight and level flight along a survey line. The levelling platform of a typical Lacoste and Romberg type dynamic gravity meter utilizes a complex feedback loop involving both accelerometers and gyroscopes with an output connected to torque motors mounted to the platform to sense an off level situation and correct for it. The current system is limited by an inability of the platform to distinguish between an acceleration of the platform due to a change in heading, altitude or speed of the aircraft and a true change in the local gravity vertical. Both of these situations cause the platform to tilt in reponse however the aircraft acceleration creates an error in the gravity measurement. These off level errors can be corrected for to a limited degree depending on the algorithm used and the size and duration of the causal acceleration. High precision GPS now provides accurate real time position information which can be used to determine if an accleration is a real level change or due to an anomalous acceleration. The correct implementation of the GPS position can significantly improve the accuracy of the platform levelling including keeping the platform level during course reversals or drape flying during a survey. This can typically improve the quality of the gravity data before any processing corrections. The enhanced platform also reduces the time taken to stabilize the platform at the beginning of a survey line therefore improving the efficiency of the data collection. This paper discusses the method and

  2. Final report. Electro-Seise, Inc., Airborne Survey

    SciTech Connect

    Schulte, Ralph

    2001-06-01

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of an airborne microgravity and electric field sensing technology developed by Electro-Seise, Inc. of Fort Worth, Texas. The test involved the use of a single engine airplane to gather data over the Teapot Dome oil field along a tight grid spacing and along thirty (30) survey lines. The resultant gravity structure maps, based on the field data, were found to overlay the known structure of Teapot Dome. In addition, fault maps, based on the field data, were consistent with the known fault strike at Teapot Dome. Projected hydrocarbon thickness maps corresponded to some of the known production histories at RMOTC. Exceptions to the hydrocarbon thickness maps were also found to be true.

  3. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  4. Relation of Topography to Airborne Gravity in Afghanistan and the Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J. M.; Peters, M. F.

    2012-12-01

    As part of a multi-sensor, multi-disciplinary aerogeophysical survey, the US Naval Research Laboratory collected airborne gravity over most of Afghanistan in 2006 (http://pubs.usgs.gov/of/2008/1089/Afghan_grv.html). The data were measured using a pair of ZLS Corporation air-sea gravimeters 7 km altitude above mean sea level aboard an NP-3D Orion aircraft operated by the US Navy's Scientific Development Squadron One (VXS-1). Aircraft positions were determined from kinematic GPS measurements in the aircraft relative to five base stations using differential interferometric techniques. Track spacing was set to 4 km over much of Afghanistan, but was increased to 8 km in the northern block of the survey area. Aircraft ground speed averaged between 300 and 380 knots, faster than ideal for high resolution gravity, but enabled approximately 113,000-km of data tracks to be flown in 220 flight hours, covering more than 330000 km2. In this presentation, we investigate the implications of the airborne gravity data for the tectonic development history of Afghanistan. Afghanistan is described as comprising three different platforms (Wheeler et al., 2005): 1) the north Afghanistan platform north of the Hari-Rud fault (HRF), a part of the Eurasian plate for 250-350 my; 2) the accreted terranes south of the HRF including low flats, formed as island arcs and fragments of continental and oceanic crust collided with the Eurasian plate during the closure of the Tethys Ocean in the past 250 my; and 3) the transpressional plate in the east, formed as the Indian plate moves northward since Cretaceous. The Bouguer anomaly map reveals elongated negative values along the east-west striking HRF, which seems to manifest different tectonic developmental histories across the boundary. Over the southern flats in the accreted terranes platform, the Bouguer anomaly map appears to show a continuation of alternating southwest-northeast trending highs and lows like those over the northern high

  5. Airborne Expendable Bathythermogragh Surveys, 1981, Western Tasman Sea.

    DTIC Science & Technology

    1982-03-01

    No. 2/82 AIRBORNE EXPENDABLE BATHYTHERMOGRAGH SURVEYS, 1981, WESTERN TASMAN SEA BY P.J. MULHEARN APPROVED DTIC ELECTE FOR PUTBLI I ~LT -i~ COPY• N. 7...NO. 2/82 AIRBORNE EXPENDABLE BATHYTHERMOGRAPH SURVEYS, 1981, WESTERN TASMAN SEA P.J. MULHEARN ABSTRACT On four occasions in 1981 AXBT surveys were...conducted in the western Tasman Sea in support of the RAN’s ocean analysis scheme. The results of these surveys show that the limited number of probes

  6. Consequences of flight height and line spacing on airborne (helicopter) gravity gradient resolution in the Great Sand Dunes National Park and Preserve, Colorado

    USGS Publications Warehouse

    Kass, M. Andy

    2013-01-01

    Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.

  7. Television camera on RMS surveys insulation on Airborne Support Equipment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The television camera on the end effector of the Canadian-built Remote Manipulator System (RMS) is seen surveying some of the insulation on the Airborne Support Equipment (ASE). Flight controllers called for the survey following the departure of the Advanced Communications Technology Satellite (ACTS) and its Transfer Orbit Stage (TOS).

  8. Inversion of Airborne Gravity Data over Subglacial Lakes in East Antarctica

    NASA Astrophysics Data System (ADS)

    Blankenship, D.

    2003-12-01

    The team of the University of Texas Institute for Geophysics (UTIG) has been performing airborne geophysical surveys in Antarctica since 1991. Over 260,000 line-km have been surveyed during nine field seasons. The UTIG airborne platform is a contracted DeHavilland Twin Otter instrumented with ice-penetrating radar, laser altimeter, magnetometer, and a gravimeter. The gravimeter utilized is a Bell Aerospace BGM-3 marine system, modified for airborne use, which provides measurements of vertical accelerations at 1 Hz, with verticality of the sensor maintained by a gyro-stabilized platform. The aerogeophysical surveys over subglacial Lake Concordia and Lake Vostok in East Antarctica were conducted by a team from UTIG over the course of the Antarctic field seasons. The region surrounding Lake Concordia was sampled by 6 profiles with a 10 km separation whereas the Lake Vostok survey block was 165 x 330 km with a line spacing of 7.5 km with 11.25 km and 22.5 km ties. 2D gravity inversion was performed for both lakes. The forward problem was solved using Talwani's algorithm for a 2D body of irregular shape. It is described by a non-linear equation between the body's shape and it's density contrast with surrounding rocks. The assumption was that the density contrast between ice/water and rock along the profile is constant. The densities of ice and water are close enough, so the ice and water of the lake can be considered as one body. For Lake Vostok the gravity data were inverted for 2-layered model, consisting of ice/water and sediment lying over dense bedrock. Inversion was performed by a conjugate gradient algorithm for several fixed values of density contrasts. The coordinates of layers' corners were chosen as model parameters. The model was constrained by the lake's boundaries and sub-ice topography, determined from radar sounding. Also, several pre-existing seismic soundings were used as `a priori' information incorporated into the model. The best agreement with

  9. Investigating subglacial landscapes and crustal structure of the Gamburtsev Province in East Antarctica with the aid of new airborne gravity data

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Studinger, M.; Bell, R. E.; Damaske, D.; Elieff, S.; Finn, C.; Braaten, D. A.; Corr, H.

    2009-12-01

    The AGAP project was undertaken as part of the 2008\\09 field season and explored the Gamburtsev Subglacial Mountains (GSM) province in East Antarctica. AGAP collected >120, 000 line km of new airborne radar, aerogravity and aeromagnetic data. Here we focus on the airborne gravity part of the survey. The airborne gravity data were collected from two Twin Otters operating from remote field camps either side of Dome A. A high-resolution Sander Geophysics AIRGrav system was used for the first time in Antarctica and was mounted in the US plane. A more traditional L&R airborne gravity meter modified by ZLS was installed on the British Antarctic Survey aircraft. The AIRGrav system was flown in draped mode, which proved ideal for the simultaneous acquisition of radar and magnetic data, while the L&R system required flying along constant elevation survey blocks. The processed free-air gravity anomalies exhibit low cross-over errors of 1 mGal over the southern sector of the GSM, where the AIRGrav system was primarily used, and a spatial resolution of 3.5 km. Larger cross-over errors of 3.5 mGal and a coarser spatial resolution of 8 km characterise the northern part of the GSM and the adjacent Lambert Glacier, where the L&R meter was mainly flown. The merged free-air gravity anomaly grid primarily reflects the subglacial topography of the GSM province. The contrast between the Pensacola-Pole and Lambert Glacier basins and the rugged alpine-type relief of the GSM is clearly imaged. A dentritic system of subglacial valleys is mapped in the GSM, in good agreement with independent radar data. Inversion of the free-air gravity data assists in tracing the bedrock under several km-thick and fast-flowing crevassed ice of the Lambert Glacier. Using the ice thickness and bedrock topography data derived from airborne radar we compiled a new Bouguer anomaly map for the GSM province. The new gravity anomaly data can be used to estimate crustal thickness variations under the GSM and

  10. Low Gravity Guidance System for Airborne Microgravity Research

    NASA Technical Reports Server (NTRS)

    Rieke, W. J.; Emery, E. F.; Boyer, E. O.; Hegedus, C.; ODonoghue, D. P.

    1996-01-01

    Microgravity research techniques have been established to achieve a greater understanding of the role of gravity in the fundamentals of a variety of physical phenomena and material processing. One technique in use at the NASA Lewis Research Center involves flying Keplarian trajectories with a modified Lear Jet and DC-9 aircraft to achieve a highly accurate Microgravity environment by neutralizing accelerations in all three axis of the aircraft. The Low Gravity Guidance System (LGGS) assists the pilot and copilot in flying the trajectories by displaying the aircraft acceleration data in a graphical display format. The Low Gravity Guidance System is a microprocessor based system that acquires and displays the aircraft acceleration information. This information is presented using an electroluminescent display mounted over the pilot's instrument panel. The pilot can select the Microgravity range that is required for a given research event. This paper describes the characteristics, design, calibration and testing of the Low Gravity Guidance System Phase 3, significant lessons from earlier systems and the developmental work on future systems.

  11. Spectral combination of land-based, airborne, shipborne and altimeter-derived gravity values: examples in Taiwan and Tahiti

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway

    2016-04-01

    Taiwan and Tahiti are bordered by seas and are islands with mountain ranges up to 4000 m height. The gravity fields here are rough due to the geodynamic processes that create the islands. On and around the two islands, gravity data have been collected by land gravimeters in relative gravity networks (point-wise), by airborne and shipborne (along-track) methods and by transformations from sea surface heights (altimeter-derived). Typically, network-adjusted land gravity values have accuracies of few tens of micro gals and contain the full gravity spectrum. Airborne gravity values are obtained by filtering original one-HZ along-track gravity values collected at varying flight altitudes that are affected by aircraft dynamics, GPS positioning error and gravimeter error. At a 5000-m flight height, along-track airborne gravity has a typical spatial resolution of 4 km and an accuracy of few mgal. Shipborne gravity is similar to airborne gravity, but with higher spatial resolutions because of ship's lower speed. Altimeter-derived gravity has varying spatial resolutions and accuracies, depending on altimeter data, processing method and extent of waveform interference. Using the latest versions of Geosat/GM, ERS-1/GM, ENVISAT, Jason-1/GM, Cryosat-2 and SARAL altimeter data, one can achieve accuracies at few mgal. The synergy of the four kinds of gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The method uses the best contributions from a DEM, a global gravity model, available gravity datasets to form an optimal gravity grid. We experiment with different optimal spherical harmonic degrees of EGM08 for use around the two islands. For Tahiti, the optimal degree is 1500. New high-resolution gravity and geoid grids are constructed for the two islands and can be used in future geophysical and geodetic studies.

  12. AIRBORNE INERTIAL SURVEYING USING LASER TRACKING AND PROFILING TECHNIQUES.

    USGS Publications Warehouse

    Cyran, Edward J.; ,

    1986-01-01

    The U. S. Geological Survey through a contract with the Charles Stark Draper Laboratory has developed the Aerial Profiling of Terrain System. This is an airborne inertial surveying system designed to use a laser tracker to provide position and velocity updates, and a laser profiler to measure terrain elevations. The performance characteristics of the system are discussed with emphasis placed on the performance of the laser devices. The results of testing the system are summarized for both performance evaluation and applications.

  13. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  14. Geophysical and Geodetic Analysis of Airborne Gravity Data from GRAV-D in Alaska

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Preaux, S.; Childers, V. A.

    2009-12-01

    The U.S. National Geodetic Survey’s mission is to define and maintain the spatial reference system of the United States. Official policy, adopted in 2008, calls for the definition a new national vertical datum based on a gravimetric geoid by 2018 and for its maintenance into the future. The project that will accomplish data collection and analysis tasks toward that goal is called GRAV-D (Gravity for the Redefinition of the American Vertical Datum). The project is underway to collect new airborne gravity data across the entire U.S. To date, GRAV-D has collected nearly 1 million sq km of high-altitude airborne gravity data at 12,500 ft to 35,000 ft. Data sets exist in Alaska, Puerto Rico and the Virgin Islands, and the coastal Gulf of Mexico from the Florida panhandle to the Mexican border. In support of the GRAV-D mission, information about the geologic setting of the data sets and geophysical interpretations of the gravity data are necessary. For instance, geodetic concerns about knowledge of an area’s density structure for completing geoid calculations within topography can be addressed with geophysical interpretation techniques. Here we examine GRAV-D data located in a tectonically and topographically complex area of the country near Anchorage, AK and Fairbanks, AK. We assess the contribution of information gained from gravity analysis techniques, combined with information from geologic studies, for geodetic application in the area.

  15. The Multi-sensor Airborne Radiation Survey (MARS) Instrument

    SciTech Connect

    Fast, James E.; Aalseth, Craig E.; Asner, David M.; Bonebrake, Christopher A.; Day, Anthony R.; Dorow, Kevin E.; Fuller, Erin S.; Glasgow, Brian D.; Hossbach, Todd W.; Hyronimus, Brian J.; Jensen, Jeffrey L.; Johnson, Kenneth I.; Jordan, David V.; Morgen, Gerald P.; Morris, Scott J.; Mullen, O Dennis; Myers, Allan W.; Pitts, W. Karl; Rohrer, John S.; Runkle, Robert C.; Seifert, Allen; Shergur, Jason M.; Stave, Sean C.; Tatishvili, Gocha; Thompson, Robert C.; Todd, Lindsay C.; Warren, Glen A.; Willett, Jesse A.; Wood, Lynn S.

    2013-01-11

    The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gama ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach, we found, is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. Moreover, the system is ruggedized and shock mounted for use in a variety of field applications, including airborne and maritime operations.

  16. The Multi-sensor Airborne Radiation Survey (MARS) instrument

    NASA Astrophysics Data System (ADS)

    Fast, J. E.; Aalseth, C. E.; Asner, D. M.; Bonebrake, C. A.; Day, A. R.; Dorow, K. E.; Fuller, E. S.; Glasgow, B. D.; Hossbach, T. W.; Hyronimus, B. J.; Jensen, J. L.; Johnson, K. I.; Jordan, D. V.; Morgen, G. P.; Morris, S. J.; Mullen, O. D.; Myers, A. W.; Pitts, W. K.; Rohrer, J. S.; Runkle, R. C.; Seifert, A.; Shergur, J. M.; Stave, S. C.; Tatishvili, G.; Thompson, R. C.; Todd, L. C.; Warren, G. A.; Willett, J. A.; Wood, L. S.

    2013-01-01

    The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gama ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. The system is ruggedized and shock mounted for use in a variety of field applications, including airborne and maritime operations.

  17. Airborne gravity measurement over sea-ice: The western Weddel Sea

    SciTech Connect

    Brozena, J.; Peters, M. ); LaBrecque, J.; Bell, R.; Raymond, C. )

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative of the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.

  18. Airborne infrared mineral mapping survey of Marysvale, Utah

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.

    1982-01-01

    Infrared spectroradiometer survey results from flights over the Marysvale, Utah district show that hydrothermal alteration mineralogy can be mapped using very rapid and effective airborne techniques. The system detects alteration mineral absorption band intensities in the infrared spectral region with high sensitivity. The higher resolution spectral features and high spectral differences characteristic of the various clay and carbonate minerals are also readily identified by the instrument allowing the mineralogy to be mapped as well as the mineralization intensity.

  19. Airborne geophysical surveys over the eastern Adirondacks, New York State

    USGS Publications Warehouse

    Shah, Anjana K.

    2016-01-01

    Airborne geophysical surveys were conducted in the eastern Adirondacks from Dec. 7, 2015 - Dec. 21, 2015, by Goldak Airborne Surveys. The area was flown along a draped surface with a nominal survey height above ground of 200 meters. The flight line spacing was 250 meters for traverse lines and 2500 meters for control lines. Here we present downloadable magnetic and radiometric (gamma spectrometry) data from those surveys as image (Geotiff) and flight line data (csv format).BackgroundThe Eastern Adirondacks region was known for iron mining in the 1800's and 1900's but it also contains deposits of rare earth minerals. Rare earth minerals are used in advanced technology such as in cell phones, rechargeable batteries and super-magnets. In many areas rare earth minerals appear to be associated with iron ore.The surveys were flown in order to map geologic variations in three dimensions. Magnetic surveys measure subtle changes in Earth's magnetic field that reflect different types of buried rock, such as iron-rich ore bodies. Radiometric methods detect naturally occurring gamma particles. The energy spectra of these particles can be used to estimate relative amounts of potassium, uranium and thorium (also referred to as gamma ray spectrometry), which are sometimes associated with rare earth elements. Together, these data provide insights into the regional tectonic and magmatic history as well as mineral resources in the area.

  20. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  1. The position and orientation system (POS) for airborne survey applications

    SciTech Connect

    Reid, B.; Scherzinger, B.; Lithopoulos, E.

    1996-10-01

    The Position and Orientation System (POS) is an integrated inertial/GPS system that generates accurate position (latitude, longitude, altitude) and orientation (roll, pitch, heading) for airborne survey/mapping applications as well as various other land and marine applications. POS is a GPS-aided strapdown inertial navigator that uses a Kalman filter and a closed-loop error controller to provide an optimally blended position and orientation solution from inertial data from an IMU and aiding data from a GPS receiver. This paper gives a brief description of POS and compares it to other available technologies. It then describes the various application areas of POS for airborne vehicles (POS/AV). Some applications from other POS variants, POS/LV for Land Vehicles, POS/MV for Marine Vessels, are also described. 4 refs., 4 figs., 1 tab.

  2. Global gravity survey by an orbiting gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Paik, Ho Jung; Leung, Jurn-Sun; Morgan, Samuel H.; Parker, Joseph

    1988-11-01

    The scientific aims, design, and mission profile of the Superconducting Gravity Gradiometer Mission (SGGM), a NASA spacecraft mission proposed for the late 1990s, are discussed and illustrated with drawings and diagrams. SGGM would complement the two other planned gravimetry missions, GRM and Aristoteles, and would provide gravitational-field measurements with accuracy 2-3 mGal in 55 x 55-km blocks. The principal instruments are a (1) three-axis superconducting gravity gradiometer with intrinsic sensitivity 100 microeotvos/sq rt Hz, (2) a six-axis superconducting accelerometer with sensitivity 100 fg(E)/sq rt Hz linear and 10 prad/sec squared sq rt Hz angular, and (3) a six-axis shaker for active control of the platform. Consideration is given to the error budget and platform requirements, the orbit selection criteria, and the spacecraft design.

  3. Global gravity survey by an orbiting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Leung, Jurn-Sun; Morgan, Samuel H.; Parker, Joseph

    1988-01-01

    The scientific aims, design, and mission profile of the Superconducting Gravity Gradiometer Mission (SGGM), a NASA spacecraft mission proposed for the late 1990s, are discussed and illustrated with drawings and diagrams. SGGM would complement the two other planned gravimetry missions, GRM and Aristoteles, and would provide gravitational-field measurements with accuracy 2-3 mGal in 55 x 55-km blocks. The principal instruments are a (1) three-axis superconducting gravity gradiometer with intrinsic sensitivity 100 microeotvos/sq rt Hz, (2) a six-axis superconducting accelerometer with sensitivity 100 fg(E)/sq rt Hz linear and 10 prad/sec squared sq rt Hz angular, and (3) a six-axis shaker for active control of the platform. Consideration is given to the error budget and platform requirements, the orbit selection criteria, and the spacecraft design.

  4. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high‐temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG‐5 gravimeter and a LaCoste and Romberg (L&R) Model‐G gravimeter. The CG‐5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill‐hole intercept values. Preliminary Interpretation of Results: The Carson Sink

  5. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  6. Airborne gravity and other geophysical techniques for understanding the lithosphere beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bell, Robin E.; Blankenship, Donald D.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    As part of a program entitled Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), an aerogeophysical platform was developed to study the interaction of geological and glaciological processes in West Antarctica. A de Havilland Twin Otter was equipped with an ice-penetrating radar, a proton precession magnetometer, an airborne gravity system, and a laser altimeter. The 60-MHz ice-penetrating radar can recover sub-ice topography with an accuracy of about 10 m through 3 km of comparatively warm West Antarctic ice, while the laser altimeter profiling of the ice surface is accurate to approximately 1 m. The magnetic field observations are accurate to several nT, and the gravity measurements are accurate to better than 3 mGal. The aircraft is navigated by a local radio transponder network, while differential positioning techniques based on the Global Positioning System (GPS) satellites are used for recovering high-resolution horizontal and vertical positions. Attitude information from an inertial navigation system is used to correct the laser altimetry and a digital pressure transducer is used to recover vertical positions and accelerations in the absence of satellite positioning. Continuous base-station observations are made for the differential GPS positioning and the removal of ionospheric noise from the airborne magnetometer measurements.

  7. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  8. Modeling Airborne Gravity Data with Local Functions for Regional Geoid Enhancement ---- A Case Study in Puerto Rico Area

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2016-04-01

    Airborne gravimetry has been used as the primary method to quickly and economically obtain updated gravity field information over a region, targeted specifically. Thus, unlike the satellite missions that provide global or near global data coverage, the observables from airborne campaigns are apparently space limited. Moreover, they are also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques have to be applied to overcome the low signal to noise ratio problem that are presented in the airborne systems due to mechanical and mathematical limitations in computing the accelerations, both the kinematic one and the dynamic one. As a result, in this study, a band-limited local function system based on the point mass model is used to process these airborne gravity data that have both a limited frequency domain and a limited space domain in the target area: Puerto Rico Island and its nearby ocean areas. The resulting geoid model show obvious middle to short wavelength geoid changes due to airborne gravity data contribution. In the land area, these changes improved the geoid precision from 3.27cm to 2.09cm at the local GNSS/Leveling bench marks. More importantly, the error trend in the geoid models is largely reduced if not completely removed. Various oceanographic models will be used to validate the geoid changes in the nearby open sea areas.

  9. Production of Bulk Metallic Glasses for Use in Airborne Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Igel, Joshua

    Bulk metallic glasses (BMGs) are ideal candidates for airborne gravity gradiometer (AGG) flexures due to their unique mechanical properties. In this thesis, the role of processing variables in the production Zr-based BMGs by arc melting and suction casting was investigated and an electrochemical method for determining the degree of crystallization after electric discharge machining (EDM) was examined. Homogenization was most effectively obtained using multiple melting iterations and prolonged melting times. The difference between input and actual Zr concentration was found to be significant in arc melting and suction casting. Superior GFA was obtained using high purity argon purge gas and low purity Zr contrary to the consensus that GFA strictly increases with increasing raw material purities. The use of potentiostatic polarization in 1M NaNO3 for evaluating the degree of crystallization in Zr55Cu 30Al10Ni5 samples after EDM may be feasible due to the dependence of passivation behaviour on the degree of crystallization.

  10. Gravity survey in the San Luis Valley area, Colorado

    USGS Publications Warehouse

    Gaca, J. Robert; Karig, Daniel E.

    1965-01-01

    During the summers of 1963 and 1964, a regional gravity survey covering 6,000 square miles of the San Luis Valley and surrounding areas was made to determine subsurface basement configurations and to guide future crustal studies. The San Luis Valley, a large intermontane basin, is a segment of the Rio Grande trough, a reef system characterized by volcanism, normal faulting, and tilted fault blocks. The gravity data, accurate to about 0.5 mgal, were reduced to complete-Bouguer anomaly values. The Bouguer-anomaly gravity map delineates a series of en-echelon gravity highs in the central and western San Luis Valley. These gravity highs are interpreted as horsts of Precambrian rock buried by basin fill. A series of en-echelon gravity lows along the eastern edge of the Valley is interpreted as a graben filled with sedimentary and igneous rock estimated to be up to 30,000 ft thick. The relatively high regional gravity over the Sangre de Cristo Mountains suggests that these mountains are locally uncompensated. A subcircular gravity low in the Bonanza area is interpreted as an indication of low-density volcanic rocks within a caldera structure.

  11. Aided-Airborne Gravity Gradiometer Survey System (GGSS) Study.

    DTIC Science & Technology

    1986-03-01

    39) 1OFFSCALE) (OFFSCALE) * Is PROJECTED MAXIMUM LEVEL FOR GGSS *ALL POINTS WHERE USER LOCATION: STATISTIC POINTS POOP < 14.3 LATITUDE Z 3 dog C L...set designated 2, etc. Within the circled outage regions, the PDOP will be very large (on the order of thousands) and result in unacceptable four...MEAN - 3.8 2.3 LONGITUDE -96 dog a STANDARD 0 I 2 3 4 5 6 7 a 9 10 11 12 13 14 is 16 17 18 19 20 21 22 23 24 TIME (hr) Figure A.3-5 Typical PDOP

  12. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    SciTech Connect

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

  13. Differentiating dark energy and modified gravity with galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2008-05-01

    The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rates for cosmic large scale structure, fg(z). If gravity is not modified, the measured H(z) leads to a unique prediction for fg(z), fgH(z), if dark energy and dark matter are separate. Comparing fgH(z) with the measured fg(z) provides a transparent and straightforward test of gravity. We show that a simple χ2 test provides a general figure of merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and fg(z). We find that a magnitude-limited NIR galaxy redshift survey covering >10 000 (deg)2 and a redshift range of 0.5gravity model and an equivalent dark energy model that predict the same H(z), a survey area of 11 931 (deg)2 is required to rule out the DGP gravity model at the 99.99% confidence level. It is feasible for such a galaxy redshift survey to be carried out by the next generation space missions from NASA and ESA, and it will revolutionize our understanding of the universe by differentiating between dark energy and modified gravity.

  14. Airborne laser altimetry survey of Glaciar Tyndall, Patagonia

    NASA Astrophysics Data System (ADS)

    Keller, Kristian; Casassa, Gino; Rivera, Andrés; Forsberg, Rene; Gundestrup, Niels

    2007-10-01

    The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser-INS-GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of - 3.1 ± 1.0 m a - 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of - 7.7 ± 1.0 m a - 1 at the calving front at 50 m a.s.l. and minimum values of between - 1.0 and - 2.0 ± 1.0 m a - 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at ˜ 600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of - 3.2 m a - 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239-247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation

  15. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  16. SURVEY OF CULTURABLE AIRBORNE BACTERIA AT FOUR DIVERSE LOCATIONS IN OREGON: URBAN, RURAL, FOREST, AND COASTAL

    EPA Science Inventory

    To determine the risks of microbial air pollution from microorganisms used for pesticides and bioremediation, or emanating from composting, fermentation tanks, or other agricultural and urban sources, airborne microbial levels must be evaluated. This study surveyed the atmospheri...

  17. High Resolution Airborne Gravity Gradiometer Based on an Othogonal Mass Quadruploe

    NASA Astrophysics Data System (ADS)

    Tryggvason, B. V.

    2003-04-01

    The Gedex Airborne Gravity Gradiometer (AGG) uses an orthogonal quadrupole responder (OQR) developed at the University of Western Australia with support from Rio Tinto. The OQR design is based on pairs of balance beams orientated at 90 degrees to one another, with each beam supported on a micro-flexure. A gradient along the length of a beam in the gravitational acceleration component that is perpendicular to the beam axis and the web axis will generate a small torque about the flexure. With two orthogonal beams, rotations of the base will result in both beams rotating in a common direction compared to the base, whereas the beams will rotate in opposite, or differential, directions due to gravity gradients. The differential rotation arises because of the properties of the gravity gradient tensor. The sensor can thus in principle distinguish between base rotations and gravity gradients. Additionally the beams are designed such that the center of rotation about the supporting flexures coincides with the location of the center of mass of the beams. This eliminates rotational response of the beams when subjected to linear accelerations. Thus the OQR configuration provides a sensor that is inherently insensitive to both rotational and linear accelerations of the support. However, the practical world has a habit of complicating seemingly simple situations. The first design challenge is that fabrication of the beams and the supporting flexures has to be done to very stringent tolerances, which has only recently become possible with the development of technologies such as Electric Discharge Machining (EDM). The second major obstacle is that there are higher order terms in the response of the sensing elements that can be driven by base vibrations and aircraft motions. These require mounting the sensor on an isolation system designed to provide a very low level of disturbance to the gradiometer. In the Gedex development this isolation system is based on technology developed

  18. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    SciTech Connect

    Leftwich, John; Nowroozi, Ali, A.

    1999-10-01

    This work reports the progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one-degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  19. Gravity survey of the Mt. Toondina impact structure, South Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Shoemaker, E. M.; Shoemaker, C. S.

    1991-01-01

    The Mt. Toondina impact structure is located in northern South Australia, about 45 km south of the town of Oodnadatta. Only the central uplift is exposed. The outcrops at Mt. Toondina reveal a remarkable structural anomaly surrounded by a broad expanse of nearly flat-lying beds of the Bulldog Shale of Early Cretaceous age. A gravity survey was undertaken in 1989 to determine the diameter of the impact structure, define the form of the central uplift, and understand the local crustal structure. Data were collected along two orthogonal lines across the structure. In addition to the profiles, a significant number of measurements were made on and around the central uplift. The 1989 gravity data combined with 1963 gravity data and the seismic reflection data provide an excellent data base to interpret the subsurface structure of the Mt. Toondina feature.

  20. Fabrication and Machining of Bulk Metallic Glass for Airborne Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Cole, Kevin Mark

    Bulk metallic glass is an intriguing material ideally suited for use as a flexure in an airborne gravity gradiometry. Successful fabrication of Zr56Ni20Al15Cu5Nb4 was achieved using arc melting and suction casting. The effect of oxygen and microalloying Nb into this alloy composition was investigated. It was determined that oxygen in solute form is much more detrimental than as an oxide with respect to glass forming ability. Through microalloying Nb, a high glass forming region was observed between 2 – 4 at.% Nb. Studies on crystallization kinetics revealed that upon heating these amorphous samples, a multi-step phase transformation pathway can be observed. Lastly, electrochemical micromachining (ECMM) and abrasive water jet machining (AWJM) were shown to be effective techniques which can be used to shape BMGs after casting without inducing crystallization. ECMM parameters were investigated to optimize the micron-machining process. AWJM demonstrated that fast cutting could be achieved with smooth surface finishes and good dimensional tolerance.

  1. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    USGS Publications Warehouse

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  2. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    SciTech Connect

    Ali A. Nowroozi; John Leftwich

    1997-12-31

    Our research to date has involved the Interpretation of the Bouguer Gravity Anomaly Associated with the Richmond and Taylorsville Triassic Basins and its Vicinity. Continental rift basins around the world contain about 5% of the earth's sedimentary layers and produce about 20% of the total hydrocarbon production of the world (Ziegler (1983). Nearly 30 large basins of this type are reported by Manspeizer and Cousminer (1988) in eastern North America and northwestern Africa. There are eleven exposed basins of this type in the state of Virginia, from which nine are totally and two partially within the state's border. The number of unexposed basin's is not known. Exploration and drilling have been hampered largely because surface data are insufficient for even evaluation of those basins which are partly or completely exposed in the Piedmont Province. Generation of data through random exploratory drilling and seismic exploration is much too expensive and, therefore, these methods have not been widely used. In order to remedy this situation, we have used a geophysical method and completed a detailed and dense ground gravity surveys of the Richmond (Nowroozi and Wong, 1989, Daniels and Nowroozi, 1987). In this work we report our progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this progress report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  3. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    USGS Publications Warehouse

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  4. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  5. Drift Rates of Three Micro-g LaCoste Turnkey Airborne Gravity Systems (TAGS) Used for the GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Preaux, S. A.; Crump, B.; Damiani, T.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project of NOAA's National Geodetic Survey has been collecting airborne gravity data since 2008 using 3 TAGS gravimeters, S-137, S-160 and S-161 (Table 1). The 38 surveys contain 1697 gravimeter calibration readings taken when the aircraft is parked on the ground before and after each flight, called still readings. This dataset is uniquely suited to examine the drift characteristics of these instruments. This study is broken into 3 parts: re-computation of individual still reading values; examination of drift rates during flights and surveys; and examination of long term drift rates. Re-computation of still readings was accomplished by isolating the least-noisy 10-minute segment of gravity data while the aircraft was parked and the beam unclamped. This automated method worked in most cases, but a small number of readings required further examination. This method improved the consistency of pre- and post-flight still readings as compared to those recorded in the field. Preliminary results indicate that the drift rate for these 3 instruments during a typical survey period is both small (95% smaller than 0.35 mGal/day) and linear. The average drift rate during a survey is -0.11 mGal/day with a standard deviation of 0.12 mGal/day (Figure 1). Still readings for most surveys were well represented by a linear trend, but a small number have curvature or discontinuities. The nature and cause of this non-linearity will be investigated. Early results show a long term linear drift rate for these 3 gravimeters between 0.01 and 0.04 mGal/day. There also appears to be significant non-linear variability. Comparing the 1.5-2 year time series of still readings from S-160 and S-161 with the 7.5 year time series for S-137, indicates that data from more than two years are needed to accurately characterize the long-term behavior. Instrumentation and processing causes for this non-linearity will be explored. Table1

  6. Development of a network RTK positioning and gravity-surveying application with gravity correction using a smartphone.

    PubMed

    Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu

    2013-07-12

    This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size.

  7. Superconducting techniques for gravity survey and inertial navigation

    SciTech Connect

    Chan, H.A.; Moody, M.V.; Paik, H.J.; Parke, J.W.

    1985-03-01

    Major improvements in sensitivity and drift can be made in inertial instruments by utilizing benign properties of materials available at liquid helium temperatures. We are developing a three-axis gravity gradiometer in which magnetic fields produced by persistent currents are modulated by motions of superconducting proof masses. Signals arising from both differential and common mode motions of the proof masses are detected by SQUIDs. The present design parameters give an intrinsic gravity gradient noise of 2 X 10/sup -12/ s/sup -2/ Hz /SUP -1/2/ , subject to improvements with new superconducting techniques under tests. A demonstration of such high sensitivity requires a very strict control of all error sources. The performance of our prototype gravity gradiometer when tested in a noisy terrestrial environment with its sensitive axis tilted at an angle of tan/sup -1/ 2 /SUP 1/2/ with respect to Earth's gravity is degraded to an error level of 7 X 10/sup -10/ s/sup -2/ Hz /SUP -1/2/ . In order to compensate for commonacceleration induced errors, we are also developing a six-axis superconducting accelerometer, based on a similar principle, which can detect the linear and angular acceleration vectors of the gradiometer platform simultaneously. Motion of a single, magnetically levitated, proof mass is monitored to resolve linear acceleration components to 4 X 10/sup -12/ m s/sup -2/ Hz /SUP -1/2/ and angular acceleration components to 3 X 10/sup -11/ rad s/sup -2/ Hz /SUP -1/2/ . This accelerometer, combined with the gradiometer, represents a gradiometer-aided inertial navigation/survey system.

  8. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  9. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT E) project by EG G Energy Measurement's (EG G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  10. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT&E) project by EG&G Energy Measurement`s (EG&G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory`s unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG&G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  11. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  12. Airborne radioactivity survey in the vicinity of Grants, McKinley and Valencia Counties, New Mexico

    USGS Publications Warehouse

    Stead, Frank W.

    1951-01-01

    An airborne radioactivity survey in the vicinity of Grants, New Mexico, was made on May 28. 1951; aeromagnetic measurements were made concurrently with the radioactivity measurements. Several radioactivity anomalies were noted in conjunction with negative magnetic anomalies; this association is unusual and may reflect a genetic relationship between the uranium mineralization and the geologic structure causing the negative magnetic effect. Further investigation of the vicinity of the anomalies near the Haystack area, including ground magnetometer survey, seems warranted.

  13. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, M.W.; Gettings, M.E.; Wynn, Jeff

    1999-01-01

    Executive Summary -- In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds (location map, http://geopubs.wr.usgs.gov/open-file/of99-007-b/index.jpg) was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a 'bird' about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97?457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest

  14. Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

    USGS Publications Warehouse

    Dickinson, Jesse E.; Pool, D.R.; Groom, R.W.; Davis, L.J.

    2010-01-01

    An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.

  15. Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Watt, Janet T.

    2016-09-12

    IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.

  16. Augmentation the Great Lakes Basin's Geoid by Harmonic Downward Continuing of Newly Acquired Scalar Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Roman, Daniel R.; Li, Xiaopeng

    2014-05-01

    Roughly 10% U.S. population and more than 30% of the Canadian population are living around the Great Lakes Basin (Superior, Michigan, Huron, Erie and Ontario as well as the associated watersheds and connecting channels)[1]. The Great Lakes system contains 84% of the North America's surface fresh water and 21% world widely [2,3]. Only the polar ice caps contain more fresh water [1]. Thus, a high resolution accurate geoid will definitely help us to better understand the Great Lakes system and its influences to local and global environmental changes. Over the years, both U.S. and Canada had developed regional geoid models that cover the Great Lakes area. By incorporating the up-to-date satellite information from GRACE and GOCE, the long wavelength component of the geoid is better defined. The newly acquired scalar airborne gravity data in this area is used to augment the middle to short wavelength. A recent study [4] showed that when compared with EGM2008, the airborne data detects the same new features as the satellite model does, but with more detailed information. As a continuation of the previous study, the airborne data will be harmonicly downward continued onto the surface with some predefined bands. Various weighting schemes between surface data and the downward continued airborne data will be carried out to find the most accurate geoid in terms of directly fitting on surface observations from both GPS/Leveling benchmarks and tidal benchmarks on both the U.S. side and the Canadian side. References: 1. "Great Lakes - U.S. EPA". Epa.gov. 2006-06-28. Retrieved 2011-02-19. 2. Waples, James T. (2008). "The Laurentian Great Lakes" (PDF). North American Continental Margins (Great Lakes Environmental Research Laboratory): 73-81. 3 Grady, Wayne (2007). The Great Lakes. Vancouver: Greystone Books and David Suzuki Foundation. pp. 13, 21-26, 42-43. ISBN 978-1-55365-197-0. 4. Daniel R. Roman; Xiaopeng Li; Simon A. Holmes (2013) Regional geoid height models developed using

  17. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.

    PubMed

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-15

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data.

  18. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Data from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey along the 99/sup 0/ longitude meridian from the Canadian border southward to the Mexican border are presented. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the US. (DMC)

  19. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction

  20. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Sallenger, Asbury H.; Krabill, William B.; Swift, Robert N.

    2002-01-01

    This paper provides an overview of the basic principles of airborne laser altimetry for surveys of coastal topography, and describes the methods used in the acquisition and processing of NASA Airborne Topographic Mapper (ATM) surveys that cover much of the conterminous US coastline. This form of remote sensing, also known as "topographic lidar", has undergone extremely rapid development during the last two decades, and has the potential to contribute within a wide range of coastal scientific investigations. Various airborne laser surveying (ALS) applications that are relevant to coastal studies are being pursued by researchers in a range of Earth science disciplines. Examples include the mapping of "bald earth" land surfaces below even moderately dense vegetation in studies of geologic framework and hydrology, and determination of the vegetation canopy structure, a key variable in mapping wildlife habitats. ALS has also proven to be an excellent method for the regional mapping of geomorphic change along barrier island beaches and other sandy coasts due to storms or long-term sedimentary processes. Coastal scientists are adopting ALS as a basic method in the study of an array of additional coastal topics. ALS can provide useful information in the analysis of shoreline change, the prediction and assessment of landslides along seacliffs and headlands, examination of subsidence causing coastal land loss, and in predicting storm surge and tsunami inundation.

  1. Detailed Analysis of Marine Gravity Survey Data from Panama Canal Transits: Improving Error Models and Signal Processing for BGM-3 Marine Gravimeter Survey Systems

    NASA Astrophysics Data System (ADS)

    Sailor, R. V.; Medler, C. L.; Kinsey, J. C.; Zettergren, E. W.; Insanic, E.

    2015-12-01

    Our prior work (Sailor et al., 2015) showed that the Panama Canal locking operations impart a peak vertical acceleration of about 60 mGal (6 x 10-4 m/sec2) to ships as the individual lock chambers are filled or emptied. During a period of 8 to 12 minutes the ship's elevation changes by over 8 meters. This motion is very repeatable, since it is driven by gravity-fed hydraulics backed up by a huge mass of water. The novelty of the prior work was to demonstrate that the lock-driven vertical acceleration is significant, of relatively long duration, easily observed by the BGM-3 accelerometer/gravimeter, and is equivalent tothe gravity anomaly caused by a moderately-sized seamount. Thus, the lock-induced vertical acceleration is a known external acceleration input that falls within the amplitude and time duration band of interest for marine gravity as well as airborne gravity survey systems. Here we report an extension to the prior work, using BGM-3 gravimeter data from the RV Marcus G Langseth and the RV Melville, in addition to the previously-used two datasets from the RV Knorr. The new analysis allows us to compare the quality of the gravity data from these three ships in two ways, using: 1) Differences along nearly perfectly coincident gravity anomaly data profiles collected underway, during passage through calm and narrow channels with little or no vertical ship motion; and 2) Observed vertical-motion-induced accelerations, with no horizontal motion, experienced during lock operations. We use the raw 1-Hz output of the BGM-3 gravimeter and compare various filtering methods. Furthermore, good quality vertical channel GPS is used to compare to the output of our solution of a boundary value problem: Given the observed outputs of the gravimeter, solve for h(t), the elevation of the ship vs time and also for two parameters: initial gravity value prior to vertical motion in the lock and apparent vertical gravity gradient.

  2. Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data

    USGS Publications Warehouse

    ,

    2014-01-01

    This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.

  3. An airborne gamma-ray spectrometry survey of nuclear sites in Belgium.

    PubMed

    Sanderson, D C W; Cresswell, A J; Hardeman, F; Debauche, A

    2004-01-01

    As part of a wider study to define the existing background levels in Belgium an airborne gamma-ray survey was conducted in two areas associated with nuclear sites. In the Mol area, the survey zone included areas surrounding the SCK-CEN nuclear research centre, and its associated neighbourhood which includes radioactive waste stores, fuel manufacture and fabrication facilities and an international accelerator laboratory. In the vicinity of Fleurus, the survey included the IRE complex with radiochemical laboratories, irradiation facilities and stores, and isotope production accelerators. The survey was conducted using a twin engined helicopter equipped with a combined scintillation and semiconductor spectrometer. The system was installed and tested in the UK, and then transferred to Belgium for operations. The complete survey was conducted successfully within 1 week. The results provide a comprehensive record of the radiation environment of the nuclear sites at time of survey, and show a range of signals associated with the types of activity present in each area. They confirm that radiation fields are largely confined to the operational sites, and provide a traceable record against which future changes could be assessed. The demonstration of efficient deployment between two European countries, coupled with rapid mapping of many different radiometric signals around these sites confirms the utility of the airborne gamma spectrometry approach for accurate definition of enhanced radiation fields. This has important implications for emergency response.

  4. Development of a Network RTK Positioning and Gravity-Surveying Application with Gravity Correction Using a Smartphone

    PubMed Central

    Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu

    2013-01-01

    This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size. PMID:23857258

  5. A comparison of the use of sodium iodide and lanthanum bromide scintillation crystals for airborne surveys

    NASA Astrophysics Data System (ADS)

    Bailey, Derek M.

    The Environmental Protection Agency (EPA) Aerial Spectral Environmental Collection Technology (ASPECT) program performs aerial radiological and chemical characterization of geographical regions of interest. Airborne surveys are performed to characterize environmental radionuclide content, for mineral exploration, as well as for emergency scenarios such as major releases or lost sources. Two radiological detection systems are used by the ASPECT team for gamma-ray detection and characterization: lanthanum bromide [LaBr 3(Ce)] and sodium iodide [NaI(Tl)] scintillation systems. An aerial survey of a uranium mine in the western United States was performed using both NaI(Tl) and LaBr3(Ce) detection systems. Analyses of the survey data were performed with RadAssist software and applying International Atomic Energy Agency (IAEA) airborne gamma ray mapping guidelines. The data for the survey were corrected for cross-over, which is spectral interference from higher energy photons as a result of Compton scattering, height attenuation, cosmic ray contribution to signal, and Radon contribution to signal. Two radiation survey contours were generated from each discrete data set. Based on analysis of the uranium mine survey results, LaBr3(Ce) produced a product comparable to that of NaI(Tl). The LaBr3(Ce) detection system contained 1/16th the scintillating volume and had a total system weight that was 1/4th that of the NaI(Tl) system. LaBr3(Ce) demonstrated a clear advantage over NaI(Tl) detectors in system mobility, and weight factors in airborne gamma ray spectroscopy.

  6. Airborne Hyperspectral Infrared Imaging Survey of the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Johnson, P. D.

    2014-12-01

    The San Andreas Fault (SAF) between Desert Hot Springs and Bombay Beach has been surveyed with Mako, an airborne hyperspectral imager operating across the wavelength range 7.6-13.2 μm in the thermal-infrared (TIR) spectral region. The data were acquired with a 4-km swath width centered on the SAF, and many tectonic features are recorded in the imagery. Spectral analysis using diagnostic features of minerals can identify rocks, soils and vegetation. Mako imagery can also locate rupture zones and measure slip distances. Designed and built by The Aerospace Corporation, the innovative and highly capable airborne imaging spectrometer used for this work enables low-noise performance (NEΔT ≲ 0.1 K @ 10 μm) at small pixel IFOV (0.55 mrad) and high frame rates, making possible an area-coverage rate of 20 km2 per minute with 2-m ground resolution from 12,500 ft (3.8 km) above-ground altitude. Since its commissioning in 2010, Mako has been used in numerous studies involving other earthquake fault systems (Hector Mine, S. Bristol Mts.), mapping of surface geology, geothermal sources (fumaroles near the Salton Sea), urban surveys, and the detection, quantification, and tracking of natural and anthropogenic gaseous emission plumes. Mako is available for airborne field studies and new applications are of particular interest. It can be flown at any altitude below 20,000 ft to achieve the desired GSD.

  7. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff

  8. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  9. Airborne Surveys of Snow Depth over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.

    2011-01-01

    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  10. Detailed gravity and aeromagnetic surveys in the Black Rock Desert Area, Utah. Topical report

    SciTech Connect

    Serpa, L.F.; Cook, K.L.

    1980-01-01

    Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft) and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.

  11. High spatial resolution observations of 137Cs in northern Britain and Ireland from airborne geophysical survey.

    PubMed

    Scheib, Cathy; Beamish, David

    2010-09-01

    This study reports the (137)Cs data derived from three regional and national scale High Resolution Airborne Resource and Environmental Surveys (HiRES) in northern Britain and Ireland. The detailed spatial resolution, combined with the large areas these surveys collectively cover, gives insight into large-scale deposition patterns and possible subsequent re-distribution of (137)Cs on a level that was previously not possible. The largest survey area considered covers the whole of Northern Ireland. All three data sets display some clustering of higher (137)Cs activities on high ground together with regional scale NNW-SSE and NW-SE banding features. We interpret these as representing a series of rainfall interceptions of the repeated passage of the Chernobyl plume. Our observations, obtained at 200 m flight line intervals, appear to provide significant detail in relation to existing knowledge of large scale along-wind deposition of (137)Cs.

  12. MTADS Airborne and Vehicular Survey of Target S1 at Isleta Pueblo, Albuquerque, NM, 17 February-2 March 2003

    DTIC Science & Technology

    2007-11-02

    analysis teams (NRL and ORNL ) chose 20 targets from the list of “no finds” for reinvestigation and an additional 10 as backups. On January 18th 2004...remenant magnetization .....................35 Fig. 18 – Location performance of the two systems for the vehicular area remediated targets ....36 Fig...three survey teams (MTADS vehicular, MTADS airborne, and ORNL airborne) analysts from the Institute for Defense Analyses, IDA, selected targets for

  13. Gravity survey of marine field: Case study for Silurian reef exploration

    SciTech Connect

    Heigold, P.C.; Whitaker, S.T. )

    1989-08-01

    A gravity survey conducted over and around Marine field in southwestern Illinois has been used as an example to show how measurement of the local gravity field can aid in the search for Silurian reefs in the Illinois basin. Acquisition parameters for gravity surveys over Silurian reefs should be calculated beforehand from simple models of the reef based on estimates of density contrasts, depths, and size. Residual and derivative mapping techniques generally enhance gravity anomalies and enable more accurate portrayals of the structural relief on buried reefs. The second vertical derivative map of the residual Bouguer gravity anomaly surface at Marine field compares very well with the structure of the reef as mapped from subsurface data. This study indicates that similar mapping techniques could be effective on other reefs throughout the Illinois basin. Although gravity mapping methods are potentially powerful exploration tools in themselves, the writers believe that their proper role is as a part of a more comprehensive exploration approach. Gravity surveys can be used effectively as an initial exploration method in reef-prone areas to define smaller, prospect-size areas in which more intensive exploration techniques can subsequently be focused.

  14. Recovery and reanalysis of archived airborne gamma spectrometry data from the 1991 Dounreay survey.

    PubMed

    Cresswell, A J

    2012-01-01

    Archived Airborne Gamma Spectrometry (AGS) data from the 1991 NIREX characterisations of Caithness have been recovered. The separate gamma spectrometry and positional data streams for approximately 120,000 measurements have been combined into a single data stream using the European Radiometrics and Spectrometry (ERS) data format. An analysis using working calibration coefficients and spectral stripping procedure has verified that the original survey recorded high quality data. The converted data stream is in a format more accessible to future research use, including evaluation of environmental change in the Caithness region.

  15. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted along the 99/sup 0/ longitude meridian from the Canadian border southward to the Mexican border. A total of 1555 line miles of geophysical data were acquired and, subsequently, compiled. The north-south tieline was flown as part of the National Uranium Resources Evaluation. NURE is a program of the US Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  16. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  17. Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion

    NASA Astrophysics Data System (ADS)

    Dugan, J. P.; Piotrowski, C. C.; Williams, J. Z.

    2001-08-01

    Visible images of nearshore ocean waves obtained from an aircraft have been utilized to estimate the surface currents and water depth below the waves. A digital framing camera was mounted in a motion-stabilized turret and used to obtain temporal sequences of high-quality optical images of shoaling ocean waves. Data on the position and attitude of the camera/turret were used to map the image data to a rectilinear coordinate system at the level of the surface, effectively separating the spatial and temporal modulations due to the waves. The resulting three-dimensional (3-D) space-time data sets were Fourier transformed to obtain frequency-wave number spectra of these modulations. These spectra contain information on the propagation characteristics of the waves, such as their wavelengths and frequencies, and their directions and speeds of propagation. The water depth and current vector have been estimated by choosing these parameters so that a "best" fit is obtained between the theoretical dispersion relation for linear gravity waves and these 3-D wave spectra. Image data sets were acquired during the Shoaling Waves Experiment (SHOWEX) along the quasi-linear coastline in the vicinity of the Army Corps of Engineers' Field Research Facility (FRF) near Duck on the North Carolina Outer Banks. Summary wave parameters and bathymetry and current retrievals are typically within 10% of contemporaneous in situ measurements, though outliers occur.

  18. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  19. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  20. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  1. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric

    2008-01-01

    Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).

  2. Automated planimetric quality control in high accuracy airborne laser scanning surveys

    NASA Astrophysics Data System (ADS)

    Vosselman, George

    2012-11-01

    With the increasing point densities of airborne laser scanning surveys, the applications of the generated point clouds have evolved from the production of digital terrain models to 3D modelling of a wide variety of objects. Likewise in quality control procedures criteria for height accuracy are extended with measures to describe the planimetric accuracy. This paper introduces a measure for the potential accuracy of outlining objects in a point cloud. It describes how this accuracy can be verified with the use of ridge lines of gable roofs in strip overlaps. Because of the high accuracy of modern laser scanning surveys, the influence of roof tiles onto the estimation of ridge lines is explicitly modelled. New selection criteria are introduced that allow an automated, reliable and accurate extraction of ridge lines from point clouds. The applicability of the procedure is demonstrated in a pilot project in an area covering 100,000 ha with around 20 billion points.

  3. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  4. A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.

  5. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  6. A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration

    SciTech Connect

    Mark Zumberge

    2011-09-30

    Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} and track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.

  7. Airborne Electromagnetic Surveys for Baseline Permafrost Mapping and Potential Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Walvoord, M. A.; Cannia, J. C.; Voss, C. I.

    2010-12-01

    Concerns over the impacts of climate change have recently energized research on permafrost and the potential impacts that thawing permafrost may have on groundwater flow, infrastructure, ecosystems, and contaminant transport. There is typically little known at watershed or regional scales about the three-dimensional distribution of permafrost, including its thickness and the distribution of taliks (unfrozen zones), and other permafrost features thereby impeding the assessment of consequences of permafrost degradation. Airborne remote sensing methods for mapping permafrost are attractive, particularly in arctic and subarctic studies where ground access is difficult and ecosystems are fragile. As part of its Climate Effect Network (CEN) research and observation effort in the Yukon River Basin, the U.S. Geological Survey (USGS) has initiated an effort to map permafrost using airborne geophysics to complement hydrologic and biogeochemical studies in the study area. Interpretation of airborne geophysical data will be integrated with other remotely sensed data to supply critical hydrogeologic information needed for refining groundwater flow models in the Yukon Flats Basin. Airborne surveys also provide baseline data for estimating 3D permafrost distribution that can be compared to future permafrost surveys to estimate a volumetric change over time. In June 2010, the USGS conducted a helicopter frequency domain electromagnetic (HFEM) survey in the area of Fort Yukon, Alaska to map permafrost distribution. Flight line data processing has been completed that includes data leveling and a simple transformation to resistivity-depth along the flight lines. Preliminary resistivity-depth images from the survey can be qualitatively compared with known permafrost features and used to establish new permafrost features. Electrical properties of earth materials are impacted by temperature and the presence of ice causing them to become substantially more resistive when frozen. The area

  8. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    DTIC Science & Technology

    1981-01-24

    set of vertical prism elements. The tops of the prisms lie in a common horizontal plane. The bottoms of the prisms collectively represent the bottom of...the valley fill. Each prism has a cross-sectional area equal to one grid square and a uniform density. A grid square of 2 kilometers by 2 kilometers...was selected as representative of the gravity station distribution. Computation was continued for eight iterations of mutually interactive prism

  9. A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration

    SciTech Connect

    Mark Zumberge; Scott Nooner

    2005-12-13

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 4.3 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. This report covers 3/19/05 to 9/18/05. During this time, gravity and pressure modeling were completed and graduate student Scott Nooner finished his Ph.D. dissertation, of which this work is a major part. Three new ROVDOG (Remotely Operated Vehicle deployable Deep Ocean Gravimeter) instruments were also completed with funding from Statoil. The primary changes are increased instrument precision and increased data sampling rate. A second gravity survey was carried out from August to September of 2005, allowing us to begin examining the time-lapse gravity changes caused by the injection of CO{sub 2} into the underground aquifer, known as the Utsira formation. Preliminary processing indicates a repeatability of 3.6 {micro}Gal, comparable to the baseline survey.

  10. Gravity survey of the Mount Toondina impact structure, South Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Shoemaker, E. M.; Shoemaker, C. S.

    1994-01-01

    Gravity and seismic reflection data, together with geologic mapping, indicate that the Mount Toondina feature in South Australia is best interpreted as an eroded 4-km-diameter impact structure consisting of a ring structural depression surrounding a pronounced central uplift. Beds at the center of the structure within the central uplift have been raised as much as 200 m from depth and deformed by convergent flow. Seismic reflection data indicate that deformation extends to depths of only approximately = 800 m; at greater depths the reflectors are nearly flat lying, indicating little or no deformation. Gravity data show residual anomalies of +1.0 mGal coincident with the central uplift and a -0.5 Mgal low associated with the ring structural depression. Modeling of the gravity data indicates that relatively high-density material occurs within the central uplift, whereas the ring depression is filled with low-density material. The deformation at Mount Toondina is typical of a complex impact crater; the 4-km diameter is consistent with the expected threshold size for complex craters formed in weak to moderate strength sedimentary rocks.

  11. Gravity Survey of the Mt. Toondina Impact Structure South Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Shoemaker, E. M.; Shoemaker, C. S.

    1994-01-01

    Gravity and seismic reflection data, together with geologic mapping, indicate that the Mt. Toondina feature in South Australia is best interpreted as an eroded 4-km-diameter impact structure consisting of a ring structural depression surrounding a pronounced central uplift. Beds at the center of the structure within the central uplift have been raised as much as 200 m from depth and deformed by convergent flow. Seismic reflection data indicate that deformation extends to depths of only about 800 m; at greater depths the reflectors are nearly flat lying indicating little or no deformation. Gravity data show residual anomalies of +1.0 mGal coincident with the central uplift and a -0.5 mGal low associated with the ring structural depression. Modeling of the gravity data indicates that relatively high-density material occurs within the central uplift, whereas the ring depression is filled with low-density material. The deformation at Mt. Toondina is typical of a complex impact crater; the 4-km diameter is consistent with the expected threshold size for complex craters formed in weak to moderate strength sedimentary rocks.

  12. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  13. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION

    SciTech Connect

    Mark Zumberge

    2003-06-13

    At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.

  14. Correlation of haemoglobin-acrylamide adducts with airborne exposure: an occupational survey.

    PubMed

    Jones, Kate; Garfitt, Sarah; Emms, Vicky; Warren, Nick; Cocker, John; Farmer, Peter

    2006-04-10

    This paper reports an occupational hygiene survey of exposure to acrylamide comparing acrylamide haemoglobin adduct measurements with personal air monitoring and glove liner analysis. The air monitoring data showed that exposure to acrylamide was well-controlled with all samples below the UK maximum exposure limit (MEL) of 300 microg/m(3) with mean exposure about one tenth of the MEL. Each worker provided two blood samples approximately 3 months apart. These samples were well correlated (r=0.61) with a slope of 0.74, indicating that exposure was reasonably constant. Mean personal airborne acrylamide levels and mean acrylamide haemoglobin adduct levels were well correlated (r=0.72, N=46) and using the calculated linear correlation, exposure at the MEL would be expected to give rise to a haemoglobin adduct level of 1,550 pmol/g globin. Smoking status did not affect the correlation. There was also a correlation between levels of acrylamide detected on gloves and haemoglobin adduct levels. A combined regression model between haemoglobin adducts, airborne acrylamide and acrylamide glove contamination was significant for both airborne acrylamide and gloves with a regression coefficient of 0.89. The study showed that haemoglobin adduct level was a good biomarker of acrylamide exposure which correlated to both inhaled and potentially skin absorbed acrylamide estimates. There was excellent discrimination between well-controlled occupational levels and environmental levels from diet and smoking, allowing haemoglobin adduct measurement to be used to determine even low level exposures. Due to the complexity of the current methodology, new techniques would be useful in making haemoglobin adducts more widely applicable.

  15. Airborne radioactivity survey of parts of the Atlantic Ocean beach, North and South Carolina

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.; Bortner, T.E.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey along the Atlantic Ocean beach between Edisto Island, South Carolina and Cape Fear, North Carolina. The survey was made May 20, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the nominal 500 foot flight altitude varies with areal extent and intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1400 feet. The accompanying maps show the approximate locations of the areas of greater-than-average radioactivity (at left) and the location of the traverse flown (at right). The abnormal radioactivity is apparently caused by radioactive minerals associated with "black sand" deposits which occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given in the accompanying map showing the localities of greater-than-average radioactivity therefore, suggests areas in which uranium and thorium deposits are more likely to occur.

  16. Airborne radioactivity survey of the Gulf of Mexico beach between Sanibel Island and Caladesi Island, Florida

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.; Bortner, T.E.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey along the Gulf of Mexico beach between Sanibel Island and Caladesi Island in Florida. This survey was made May 4, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude , parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the nominal 500 foot flight altitude varies with the areal extent and intensity of the radioactivity the width of the zone may be as much as 1400 feet. The accompanying map and index map show the approximate locations of the areas of greater-than-average radioactivity and the location of the traverse flown. The abnormal radioactivity is apparently caused by radioactive minerals associated with "black sand" deposits which occur locally along the beach in the region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given in the accompanying map showing the localities of greater-than-average radioactivity therefore, suggests area in which uranium or thorium deposits are more likely to occur.

  17. Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida

    USGS Publications Warehouse

    Moxham, R.M.; Johnson, R.W.

    1953-01-01

    The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more

  18. A Survey and Recent Development of Lunar Gravity Assist

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    2000-01-01

    Earth's moon is the largest in the solar system relative to its parent body, the Earth, and can have significant effect on the path of a spacecraft flying close by. This effect, when planned to benefit a specific mission, is called lunar gravity assist (LGA) , and assumes that one aims the spacecraft towards the Moon in such a way that the Moon's gravitational pull will alter the spacecraft's course in a favorable manner. The first application of LGA was in the Apollo program, where the command and lunar modules (and astronauts) were propelled to the Moon such that, if no additional course changes were made, they would swing around the backside of the Moon at a certain altitude and be flung back to Earth to enter the atmosphere at a specified location in the Pacific ocean. This LGA was an essential element saving the lives of the astronauts on Apollo 13. This paper will illustrate the basic mechanics of gravity assist, and list the many applications where it has been used effectively over the past 30 some years. These include missions to the sun and Earth libration points, redirecting a spacecraft from one of these point to a comet encounter, and enhancing payloads by providing an energy boost by the Moon. More recently, studies and actual missions have shown the benefits of LGA in: (1) assisting lunar capture, (2) repositioning geosynchronous communications satellites, (3) boosting spacecraft to Earth escape and departure to planets and other solar system bodies, and (4) allowing small spacecraft to be launched as secondary payloads and released into almost a random orbit from which each may depart and maneuver in space with gravity assists from the Earth and Moon to perform a specific planetary or other mission. This latter application is a recent development by the author and is being applied in 2002 and later years, with piggyback flights on the Ariane 5 which launches comsats to GEO.

  19. Airborne radioactivity survey of the Miller Hill area, Carbon county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 65 square miles northwest of Miller Hill, Carbon county, Wyoming. The survey was made by the U.S. Geological Survey as part of a cooperative program with the U.S. Atomic Energy Commission. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomalies shown on the accompanying map cannot be interpreted in terms of either the radioactive content or the extent of the source materials. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to uranium, or to thorium, or to a combination of uranium and thorium. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area. Any particular anomaly

  20. NASA IceBridge: Airborne surveys of the polar sea ice covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2014-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis. Primary OIB sensors being used for sea ice observations include the Airborne Topographic Mapper laser altimeter, the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the campaigns and highlight key scientific accomplishments, which include: • Documented changes in the Arctic marine cryosphere since the dramatic sea ice loss of 2007 • Novel snow depth measurements over sea ice in the Arctic • Improved skill of April-to-September sea ice predictions via numerical ice/ocean models • Validation of satellite altimetry measurements (ICESat, CryoSat-2, and IceSat-2/MABEL)

  1. Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona

    USGS Publications Warehouse

    Hegmann, Mary

    2001-01-01

    Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.

  2. A BASIC STUDY FOR GRAVITY SURVEY USING A FORCE-BALANCED-TYPE ACCELEROMETER

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroko; Morikawa, Hitoshi; Matsuda, Shigeo; Tokue, Satoshi; Komazawa, Masao; Kusumoto, Shigekazu

    The gravity survey is applied to model a ground structure. For this purpose, a spring-type relative gravimeter is usually used. Though this type of gravimeter can provide very accurate data, it is very expensive and difficult to handle. This means that a simple and inexpensive sensor to measure the gravity is required. For this, we began to develop a new gravimeter using a force-balanced-type accelerometer. In this study, we develop a preliminary system and calibrate it. Then, a simple measurements is carried out on an observation wheel, on a car, and on a ship. The gravity data is contaminated by vibration of carriers, though we found a technique of blind source separation can be hopeful to pick up gravity data from the observed data. However, we also recognized some problems that needs to be solved.

  3. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION

    SciTech Connect

    Mark Zumberge; Scott Nooner; Glenn Sasagawa

    2004-05-19

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/03 to 3/18/04. During this time, significant advancement in the 3-D gravity forward modeling code was made. Testing of the numerical accuracy of the code was undertaken using both a sheet of mass and a frustum of a cone for test cases. These were chosen because of our ability to do an analytic calculation of gravity for comparison. Tests were also done to determine the feasibility of using point mass approximations rather than cuboids for the forward modeling code. After determining that the point mass approximation is sufficient (and over six times faster computationally), several CO{sub 2} models were constructed and the time-lapse gravity signal was calculated from each. From these models, we expect to see a gravity change ranging from 3-16 {micro}Gal/year, depending on reservoir conditions and CO{sub 2} geometry. While more detailed modeling needs to be completed, these initial results show that we may be able to learn a great deal about the state of the CO{sub 2} from the time-lapse gravity results. Also, in December of 2003, we presented at the annual AGU meeting in San Francisco.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Jamestown quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-03-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Jamestown map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps.

  5. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  6. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle.

  7. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  8. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

    NASA Astrophysics Data System (ADS)

    Gondwe, Bibi R. N.; Ottowitz, David; Supper, Robert; Motschka, Klaus; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2012-11-01

    Geometry and connectivity of high-permeability zones determine groundwater flow in karst aquifers. Efficient management of karst aquifers requires regional mapping of preferential flow paths. Remote-sensing technology provides tools to efficiently map the subsurface at such scales. Multi-spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain. One known preferential flow path, the Holbox fracture zone, showed lower bulk electrical resistivity than its surroundings in the AEM surveys. Anomalous structures delineated inland were sealed above by a low-resistivity layer (resistivity: 1-5 Ωm, thickness: 5-6 m). This layer was interpreted as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined with remote-sensing data analysis provide a potentially powerful multi-scale methodology for structural mapping in karst aquifers on the Yucatan Peninsula and beyond.

  9. Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010

    USGS Publications Warehouse

    Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.

    2011-01-01

    In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.

  10. The United States Army Special Forces--Walter Reed Army Institute of Research Field Epidemiologic Survey Team (Airborne).

    PubMed

    Dorogi, Louis Theodore

    2009-01-01

    The U.S. Army Special Forces--Walter Reed Army Institute of Research Field Epidemiological Survey Team (Airborne) was formed in late 1965 and later deployed to Vietnam in 1966. Funded by Walter Reed Army Institute of Research and staffed by highly trained Special Forces qualified medical personnel from Fort Bragg, North Carolina, the team was attached to the 5th Special Forces Group (Airborne) while in Vietnam. During its short existence, the team conducted extensive and important field studies on diseases of military medical importance, often under combat conditions.

  11. Airborne radioactivity survey of the Devils Tower area, Crook county, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 45 square miles northwest of Devils Tower, Crook County, Wyoming. The survey was made by the U.S. Geological Survey on September 4, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the

  12. Airborne radioactivity survey of the West Lonetree area, Uinta county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey in an area of 154 square miles in Uinta county, Wyoming. The survey was made by the U.S. Geological Survey, October 23, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area

  13. Airborne radioactivity survey of the Aspen Mountain area, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 700 square miles in the Aspen Mountain area, Sweetwater county, Wyoming. The survey was made by the U.S. Geological Survey, October 22, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils

  14. Airborne radioactivity survey of the Tabernacle Buttes area, Sublette and Fremont counties, Wyoming

    USGS Publications Warehouse

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey in an area of 670 square miles in Sublette and Fremont counties, Wyoming. The survey was made by the U.S. Geological Survey, October 20, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the

  15. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  16. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    SciTech Connect

    Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah; Jouvel, Stephanie; Abdalla, Filipe B.; Frieman, Joshua A.

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  17. Three decades of BGR airborne geophysical surveys over the polar regions - a review

    NASA Astrophysics Data System (ADS)

    Damaske, Detlef

    2013-04-01

    The Federal Institute for Geosciences and Natural Resources (BGR) has been conducting geological polar research since 1979. A few years later BGR engaged in airborne geophysical projects. Investigation of the lithosphere of the continent and the continental margins was one of the key issues for BGR. Right from the beginning geophysical research was closely associated with the geological activities. The GANOVEX (German Antarctic North Victoria Land Expedition) program combined geological research with geophysical (mainly airborne) investigations. This proved to be a fruitful approach to many of the open questions regarding the tectonic development of the Ross Sea region. Aeromagnetic surveys evolved into a powerful tool for identifying geological structures and following them underneath the ice covered areas - not accessible to direct geological investigations. To achieve this aim it was essential to lay out these surveys with a relatively closely spaced line separation on the expense of covering large areas at the same time. Nevertheless, over many years of continues research areas of more than a just regional extent could be covered. This was, however, only possible through international collaboration. During the first years, working in the Ross Sea area, the cooperation with the US and Italian programs played a significant role, especially the GITARA (German-Italian Aeromagnetic Research in Antarctica) program has to be mentioned. GEOMAUD (Geoscientific Expedition to Dronning Maud Land) and the German-Australian joint venture PCMEGA (Prince Charles Mountains Expedition of Germany & Australia) expanded research activities to the East Antarctic shield area. In the International Polar Year (IPY), BGR played a leading role in the international project AGAP (Antarctica's GAmburtsev Province) as part of the main topic "Venture into Unknown Regions". AGAP was jointly conducted by the USA, Great Britain, Australia, China and Germany. While in the Ross Sea area even

  18. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-03-01

    We combine 131 new medium-resolution (R ∼ 2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μm, and the 1.2 μm FeH J absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  19. MX Siting Investigation. Gravity Survey - Big Smokey Valley, Nevada.

    DTIC Science & Technology

    1980-11-28

    ground- water resources. 1.2 LOCATION Big Smoky Valley is in northeastern Esmeralda and northwestern Nye counties, Nevada. The town of Tonopah, Nevada...sediments, predominantly of the Esmeralda Formation (sandstones, siltstones, and mudstones) (Kleinhampl and Ziony, 1967). The southern Toquima Range, at...Survey, Open file map, scale 1:200,000. Rush, F. E., and Schroer, C. V., 1979, Water resources of Big Smoky Valley, Landu, Nye and Esmeralda counties

  20. Measurements of aquifer-storage change and specific yield using gravity surveys

    USGS Publications Warehouse

    Pool, D.R.; Eychaner, J.H.

    1995-01-01

    Pinal Creek is an intermittent stream that drains a 200-square-mile alluvial basin in central Arizona. Large changes in water levels and aquifer storage occur in an alluvial aquifer near the stream in response to periodic recharge and ground-water withdrawals. Outflow components of the ground-water budget and hydraulic properties of the alluvium are well-defined by field measurements; however, data are insufficient to adequately describe recharge, aquifer-storage change, and specific-yield values. An investigation was begun to assess the utility of temporal-gravity surveys to directly measure aquifer-storage change and estimate values of specific yield.The temporal-gravity surveys measured changes in the differences in gravity between two reference stations on bedrock and six stations at wells; changes are caused by variations in aquifer storage. Specific yield was estimated by dividing storage change by water-level change. Four surveys were done between February 21, 1991, and March 31, 1993. Gravity increased as much as 158 microGal ± 1 to 6 microGal, and water levels rose as much as 58 feet. Average specific yield at wells ranged from 0.16 to 0.21, and variations in specific yield with depth correlate with lithologic variations. Results indicate that temporal-gravity surveys can be used to estimate aquifer-storage change and specific yield of water-table aquifers where significant variations in water levels occur. Direct measurement of aquifer-storage change can eliminate a major unknown from the ground-water budget of arid basins and improve residual estimates of recharge.

  1. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies.

  2. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  3. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  5. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    SciTech Connect

    Not Available

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  6. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  7. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    SciTech Connect

    Not Available

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

  8. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Eureka quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Eureka/Crescent City, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were aquired, compiled, and interpreted during the survey, of which 349.5 line miles are in this area. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  10. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, Mark W.; Gettings, Mark E.; Wynn, Jeff

    1999-01-01

    In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a "bird" about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97–457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest desert setting as a means of mapping depth to water.

  11. 3. Neural changes in different gravity and ecophysiological environments - A survey

    NASA Astrophysics Data System (ADS)

    Slenzka, K.

    Neural changes or neuronal plasticity occur after and during different stimulations and inputs in general. Gravity is one major input to the brain transferred from the vestibular system. However, often also direct effects of gravity on the cellular level are discussed. Our group was investigating the influence of different gravity environments on a large variety of neuronal enzymes in the developing fish brain. Long-term space travel or bases on Moon and Mars will have to deal not only with neural changes based on the different gravity environment, but also with potential negative or even toxic changes in the respective life support system. Our goal is now to identify reported enzyme activity changes in the brain based for example on potential toxic drugs or endocrine disruptors in combination with gravity induced changes. In this paper a survey will be undertaken discussing recent results obtained in ecotoxicology, gravitational biology combined with new data from our group regarding potential differences in brain glucose-6-phosphate dehydrogenase of medaka and zebrafish.

  12. Airborne electromagnetic surveys in support of groundwater models in western Nebraska

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Viezzoli, A.; Cannia, J. C.; Smith, B. D.; Brown, W.; Peterson, S. M.

    2010-12-01

    The USGS, SkyTEM, Aarhus Geophysics, North Platte, South Platte and Twin Platte Natural Resource Districts have collaborated to collect airborne time domain geophysical surveys over selected of areas of western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater-surface water relations to be used in water management decisions. The base of aquifer in many of these areas is in excess of 100 meters deep and little detailed information of the configuration of the bedrock exits. Many of the aquifers exist as alluvial fills in paleochannels upon complex bedrock topography. Controlling factors for groundwater flow are the variations of the hydraulic properties of the fill and the boundary geometry of the paleochannels. Results from groundwater modeling efforts prior to the addition of the airborne data revealed the hydrogeologic framework was sufficient for the regional scale models, but when these models were reduced to 40 acres cell size, the lack of detail adversely affected model results. The SkyTEM system is a helicopter-borne time-domain electromagnetic system capable of detecting small changes in resistivity from the near-surface down to depths of up to 300 m and is well-suited for aquifer mapping. An innovative design of the receiver coils and transmitter pattern eliminates the self response that is characteristic of airborne systems and spatial measurement sensors mounted on a rigid frame enable rigorous quantitative interpretation of the EM data. The ability to quickly collect and deliver high quality, high resolution geophysical data contributes significantly to modeling efforts and further understanding of subsurface hydrological systems. The raw AEM data have to be edited to exclude data that have been affected by coupling with man made infrastructures. For resistivity data to be related to lithologic information to refine groundwater model inputs, and to make the

  13. The XMM Cluster Survey: testing chameleon gravity using the profiles of clusters

    NASA Astrophysics Data System (ADS)

    Wilcox, Harry; Bacon, David; Nichol, Robert C.; Rooney, Philip J.; Terukina, Ayumu; Romer, A. Kathy; Koyama, Kazuya; Zhao, Gong-Bo; Hood, Ross; Mann, Robert G.; Hilton, Matt; Manolopoulou, Maria; Sahlén, Martin; Collins, Chris A.; Liddle, Andrew R.; Mayers, Julian A.; Mehrtens, Nicola; Miller, Christopher J.; Stott, John P.; Viana, Pedro T. P.

    2015-09-01

    The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts (0.1 < z < 1.2), including 12 new to the literature, using X-ray data from the XMM Cluster Survey and weak lensing data from the Canada-France-Hawaii-Telescope Lensing Survey. Using a multiparameter Markov chain Monte Carlo analysis, we constrain the two chameleon gravity parameters (β and φ∞). Our fits are consistent with general relativity, not requiring a fifth force. In the special case of f(R) gravity (where β = √{1/6}), we set an upper limit on the background field amplitude today of |fR0| < 6 × 10-5 (95 per cent CL). This is one of the strongest constraints to date on |fR0| on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey.

  14. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION

    SciTech Connect

    Mark Zumberge; Scott Nooner; Ola Eiken

    2004-11-29

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 3/18/04 to 9/19/04. During this time, we participated in several CO{sub 2} sequestration-related meetings and conferences. On March 29, 2004, we participated in the 2004 Carbon Sequestration Project Review Meeting for the Department of Energy in Pittsburgh, PA. During the week of May 2, 2004, we attended and presented at the Third Annual Conference on Carbon Capture and Sequestration in Alexandria, VA. Finally, during the week of August 8, 2004, we took part in the U.S.-Norway, CO{sub 2} Summer School in Santa Fe, NM. Additional modeling was also completed, examining the seismic velocity pushdown estimates from the gravity models and the expected deformation of the seafloor due to the injected CO{sub 2}.

  15. Airborne Gravimetry and Downward Continuation (Invited)

    NASA Astrophysics Data System (ADS)

    Jekeli, C.; Yang, H.; Kwon, J.

    2009-12-01

    Measuring the Earth’s gravity field using airborne instrumentation is fully operational and has been widely practiced for nearly three decades since its official debut in the early 1980s (S. Hammer: “Airborne Gravity is Here!”) coinciding with the precision kinematic positioning capability of GPS. Airborne gravimetry is undertaken for both efficient geophysical exploration purposes, as well as the determination of the regional geoid to aid in the modernization of height systems. Especially for the latter application, downward continuation of the data and combination with existing terrestrial gravimetry pose theoretical as well as practical challenges, which, on the other hand, create multiple processing possibilities. Downward continuation may be approached in various ways from the viewpoint of potential theory and the boundary-value problem to using gradients either estimated locally or computed from existing models. Logistical constraints imposed by the airborne survey, instrumental noise, and the intrinsic numerical instability of downward continuation all conspire to impact the final product in terms of achievable resolution and accuracy. In this paper, we review the theory of airborne gravimetry and the methodology of downward continuation, and provide a numerical comparison of possible schemes and their impact on geoid determination.

  16. A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION

    SciTech Connect

    Mark Zuberge; Scott Nooner; Glenn Sasagawa

    2003-11-17

    Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A three-week trip to Statoil Research Centre in Trondheim, Norway, was made in the summer of 2003. This visit consisted of gathering data and collaborating with scientists working on the Sleipner project. The trip ended with a presentation of the seafloor gravity results to date at a SACS2 (Saline Aquifer CO{sub 2} Storage 2) meeting. This meeting provided the perfect opportunity to meet and gather information from the world's experts on the Sleipner project.

  17. Deep crustal structure of magma-rich passive margin as revealed by the Northeast GreenlandSPAN 2D seismic survey and airborne Full Tensor Gradiometry

    NASA Astrophysics Data System (ADS)

    Mazur, Stanislaw; Rippington, Stephen; Silva, Mercia; Houghton, Phill; Helwig, Jim

    2014-05-01

    The objective of our project was to integrate the results from the Northeast GreenlandSPAN™ 2D seismic survey with newly acquired airborne Full Tensor Gradiometry (FTG) and Magnetic potential field data over the Danmarkshaven Ridge area, NE Greenland. The potential field data were constrained by 32 long offset pre stack depth migrated seismic profiles selected from the Northeast GreenlandSPAN™ survey. The results provide a new insight in the deep crustal architecture of the Greenland passive margin. They also shed a new light on crustal-scale deformation and igneous activity in a magma-rich continental margin. The structural data set is based on the integrated interpretation of 2D seismic data and FTG data, which was further supplemented by the airborne magnetic data plus the gravity and magnetic shipborne data. 2D gravity and magnetic forward modelling was used for testing geological/seismic models against the potential field data. A regional Moho grid derived from 3D gravity inversion was as a starting point and reference for the 2D modelling. The resultant horizons from the 2D potential fields models were subsequently gridded to help create a 3D structural model. The computed residual signal from the 3D model, the difference between the observed gravity and the forward calculated model response, allowed the accuracy of the structural interpretation to be tested. The area is dominated by three structural trends: (1) N-S to NNE-SSW, (2) WNW-ESE, and (3) NW-SE. The first trend is represented by Early Cretaceous normal faults defining the Danmarkshaven Ridge whereas the second set of structures corresponds to the WNW-ESE oriented right-lateral strike slip faults. The third structural trend is delineated by the NW-SE oriented Greenland Fracture Zone (GFZ). Importantly, a distinct step in the COB suggests post-break-up reactivation of the GFZ with left-lateral kinematics. There is a good match between the modelled Moho and the GFZ suggesting its continuation

  18. High Resolution Magnetic and Gravity Surveys to Constrain Maar Geometry and Eruption Mechanisms, Rattlesnake Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S. E.; Connor, C.; Connor, L.; Abdollahzadeh, M.; Harburger, A.; Richardson, J. A.; Courtland, L. M.; Farrell, A. K.; Kiflu, H. G.; Malservisi, R.; McNiff, C. M.; Njoroge, M.; Nushart, N.; Rookey, K.

    2013-12-01

    Located 25 kilometers east of Flagstaff, Arizona, Rattlesnake Crater is an oblong phreatomagmatic feature in the San Francisco Volcanic Field. The shallow crater is approximately 1.4 kilometers at its widest point, and surrounded by an uneven tuff ring which is overlapped by a scoria cone volcano on the southeastern side. Improved understanding of its formation and evolution requires geophysical study because there are very few outcrops, and no digging is permitted on site. Geologic features related to the crater are further obscured by deposits from the overlapping scoria cone, as well as tephra from eruptions at nearby Sunset Crater. We present the results of a detailed magnetic and gravity survey in and around Rattlesnake Crater. A substantial NW-SE trending elongate magnetic anomaly (1400 nT) and a smaller similarly trending anomaly are observed inside the crater, as well as a longer wavelength positive gravitational anomaly (+1.0-1.5 mGal) across the crater. The magnetic survey was completed on foot with a 50 meter line spacing inside the crater, and 100 meter line spacing across a portion of the surrounding area outside the crater. The gravity survey was done on two intersecting survey lines - one running west to east, and another roughly north to south, with recordings every 100 meters extending at least 1000 meters outside the crater in all four directions. 2D models of the magnetic and gravity data are presented illustrating the possible geometry of the diatreme, and the approximate size and shape of the major intrusive features. Eruption estimates based on the models are calculated, and the models are favorably compared to the size and depth estimates given in a recent publication (Valentine 2012) that used xenolith content to estimate the size and depth of the diatreme.

  19. Airborne Grid Sea-Ice Surveys for Comparison with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.

    2014-12-01

    The U.S. Naval Research Laboratory is engaged in a study of the changing Arctic with a particular focus on ice thickness and distribution variability. The purpose is to optimize computer models used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat-2 ice thickness data prior to its incorporation into new ice forecast models. The large footprint of the CryoSat-2 altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of airborne scanning lidar and nadir pointing radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. One difficulty in the collection of grids comprised of adjacent overlapping tracks is that the ice moves as much as 300 m over the duration of a single track (~ 10 min). With a typical lidar swath width of 500m we needed to adjust the survey tracks in near real-time for the ice motion. This was accomplished by a photogrammetric method of ice velocity determination (RTIME) reported in another presentation. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. An important factor is that we were able to reconstruct the ice configuration at the time of the satellite overflight, resulting in an accurate representation of the surface illuminated by CryoSat-2. Our intention is to develop a model of the ice surface using the lidar grid which includes both snow and ice using radar profiles to determine snow thickness. In 2013 a set of 6

  20. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  1. Preliminary analysis of gravity and aeromagnetic surveys of the Timber Mountain Area, southern Nevada

    SciTech Connect

    Kane, M.F.; Webring, M.W.; Bhattacharyya, B.K.

    1981-12-31

    Recent (1977 to 1978) gravity and aeromagnetic surveys of the Timber Mountain region, southern Nevada, have revealed new details of subsurface structure and lithology. The data strongly suggest that deformation caused by volcanic events has been accommodated along straight-line faults combining in such a fashion as to given a curvilinear appearance to regional structure. The magnetic data suggest that rock units in the central graben and along the southeast margin of Timber Mountain may have been altered, perhaps thermally, from their original state. The gravity data indicate that the south part of the Timber Mountain is underlain by relatively dense rock possibly intrusive rock, like that which crops out along its southeast side. The gravity data also suggest that the Silent Canyon caldera may extend considerably south of its presently indicated southern limit and may underlie much of the area of Timber Mountain. The moat areas appear to be more rectangular or triangular than annular in shape. The southern part of Timber Mountain caldera is separated from the Yucca Mountain area to the south by a triangular horst. The structural relations of the rock units making up the horst are complex. Several linear terrain features in the southern part of the caldera area are closely aligned with geophysical features, implying that the terrain features are fault-controlled.

  2. Environmental Protection Agency (EPA) airborne gamma spectrometry system for environmental and emergency response surveys

    NASA Astrophysics Data System (ADS)

    Cardarelli, John, II; Thomas, Mark; Curry, Timothy

    2010-08-01

    The EPA Airborne Spectral Photometric Environmental Collection Technology (ASPECT) Program provides airborne ortho-rectified imagery, video, chemical and now radiological information directly to emergency response personnel via a commercial satellite link onboard the aircraft. EPA initiated the ASPECT Gamma Emergency Mapper GEM Project in 2008 to improve its airborne gamma-screening and mapping capability for monitoring any ground-based gamma contamination. This paper will provide an overview of the system, which can be configured to carry six 2"x4"x16" NaI(Tl) detectors and two 3"x3" LaBr3(Ce) detectors or eight 2"x4"x16" NaI(Tl) detectors. The paper will provide an overview of the analysis of gamma radiation spectra, system limitations, and emergency response applications.

  3. Airborne Geophysical Surveys Illuminate the Geologic and Hydrothermal Framework of the Pilgrim Springs Geothermal Area, Alaska

    NASA Astrophysics Data System (ADS)

    McPhee, D. K.; Glen, J. M.; Bedrosian, P. A.

    2012-12-01

    An airborne magnetic and frequency-domain electromagnetic (EM) survey of the Pilgrim Springs geothermal area, located on the Seward Peninsula in west-central Alaska, delineates key structures controlling hydrothermal fluid flow. Hot springs, nearby thawed regions, and high lake temperatures are indicative of high heat flow in the region that is thought to be related to recent volcanism. By providing a region-wide geologic and geophysical framework, this work will provide informed decisions regarding drill-site planning and further our understanding of geothermal systems in active extensional basins. Helicopter magnetic and EM data were acquired using a Fugro RESOLVE system equipped with a high sensitivity cesium magnetometer and a multi-coil, multi-frequency EM system sensitive to the frequency range of 400-140,000 Hz. The survey was flown ~40 m above ground along flight lines spaced 0.2-0.4 km apart. Various derivative and filtering methods, including maximum horizontal gradient of the pseudogravity transformation of the magnetic data, are used to locate faults, contacts, and structural domains. A dominant northwest trending anomaly pattern characterizes the northeastern portion of the survey area between Pilgrim Springs and Hen and Chickens Mountain and may reflect basement structures. The area south of the springs, however, is dominantly characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with the north-south extension that formed the basin. Regionally, the springs are characterized by a magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. The lows may result from demagnetization of magnetic material along range-front parallel features that dissect the basin. We inverted in-phase and quadrature EM data along each profile using the laterally-constrained inversion of Auken et al. (2005). Data were inverted for 20-layer

  4. Extensive survey of molecules related to wood formation and gravity for space agriculture.

    NASA Astrophysics Data System (ADS)

    Motohashi, Kyohei; Tomita-Yokotani, Kaori; Baba, Keiichi; Furukawa, Jun; Sato, Seigo; Suzuki, Toshisada; Hashimoto, Hirofumi; Yamashita, Masamichi; Japanese Space Tree Working Group

    Most, if not all, terrestrial subjects are under the influence of gravity. Since the gravitational force is proportional to the mass of subject, gravity is dominant for larger masses. The response of a plant against gravity is not an exception in this respect even it shows rather complicated features. For the angiosperm tree, its shape is determined by the forming tension wood, which induces more tensile stress in the xylem than in the normal wood. The mechanism of tension wood formation and its relevance to gravity have been extensively studied. Gibberellin is known to be responsible for this phenomenon in angiosperm tree, for example, the Japanese cherry tree, Prunus jamasakura. However, full understanding of the mechanisms has not yet been clarified. For an extensive survey of molecules related to tension wood formation, we induced an artificial tension wood formation and examined the tension wood formation by microscopic observations with double-staining. This enables the screening of really functional molecules in the space environment for future space agriculture. We demonstrated that Prunus incise is suitable for this research as a test material based on several reasons. We focused our attention in the region of the branch, i.e., the CosmoTree in CosmoBon, and established an experimental system to analyze the real functional factors of the tension wood. This study might ensure wood formation in a space environment and use woody plants as a material for space development. ("CosmoBon" is the Bonsai small tree for our space experiments. "CosmoTree" is a small branch/tree.)

  5. Airborne geophysical survey of ice caps in the Queen Elizabeth Islands, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Palmer, S. J.; Dowdeswell, J. A.; Christoffersen, P.; Benham, T. J.; Young, D. A.; Blankenship, D. D.; Richter, T.; Ng, G.; Grima, C.; Habbal, F.; Sharp, M. J.; Rutishauser, A.

    2014-12-01

    Previous studies have shown that between 2003 and 2009, 60 ± 6 Gt of ice was lost each year from the Canadian Arctic (Gardner et al., 2013), making the region the largest cryospheric contributor to global sea level rise outside of the great ice sheets. Glacier ice in the Queen Elizabeth Islands (QEI) currently covers more than 100,000 km2, representing 20% of Earth's ice-covered land area outside of Greenland and Antarctica. The vast majority of this ice is stored within six ice caps located on Ellesmere, Devon and Axel Heiberg islands. Recent satellite observations of the outlet glaciers draining these ice caps have revealed significant velocity variability on inter-annual and multi-year timescales (Van Wychen et al., 2014), though the drivers of these dynamics are not yet understood. Here we present results obtained in May 2014 during an airborne geophysical survey of the ice caps of Axel Heiberg, Ellesmere and Devon islands, including Agassiz Ice Cap (17,300 km2), Prince of Wales Icefield (19,300 km2) and Devon Ice Cap (14,000 km2). We used a Basler BT-67 aircraft equipped with a suite of geophysical instruments, including a phase-coherent VHF ice-penetrating radar, to measure ice thickness and investigate ice basal conditions along outlet glacier flow lines and in the interior of the ice caps. We reveal that the glaciers draining the ice caps of the QEI exhibit diverse characteristics over short spatial scales, and that fast-flowing tidewater glaciers are located adjacent to previously fast-flowing areas that have subsequently stagnated. Our results show that many ice cap outlet glaciers on Ellesmere and Devon islands are between 700 and 1000 m thick and flow through deep bedrock troughs whose beds lie below sea-level. Some of the outlet glaciers also have floating tongues of ice which extend into the adjacent fjord waters. We intend to use our results to characterize the substrate beneath the ice, and to reveal any variations in conditions at the ice

  6. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  7. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    NASA Astrophysics Data System (ADS)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  8. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  9. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. The ancient harbour system of Terracina (Latium, Italy) obtained by gravity survey.

    NASA Astrophysics Data System (ADS)

    di Nezza, M.; di Filippo, M.

    2009-04-01

    Historical research has shown that Terracina (Latina, Latium) played a fundamental role in the maritime and land traffic since before the foundation of the colony. The settlement was established where the organized system of maritime, land, coastal, and fluvial transport had the most ideal conditions to constitute an important commercial crossroads, apparently since the beginning of recorded history. In order to reconstruction the buried archaeological structures attributed to the ancient Roman port, traditionally attributed to Traiano, in the current area of the harbour of Terracina, it was carried out a gravity survey, more than 380 gravity stations. This method enables to recognize the cavity and the structures of the buildings underground through the results of variations density in the subsoil. In the residual gravity anomaly map a series of positive anomalies are visible which confirm the round structures and the pier of the buried foundations of the Imperial harbour. Unfortunately, little remains of the functioning facilities of the harbour's activities. The modern construction of the harbour, in fact, has to be developed around the new inhabitable commercial area, know today as Terracina Bassa or Borgo alla Marina. It had to be developed with a modern infrastructure of a harbor area, as in the construction of the rooms for storage of goods, warehouses, as well as for the thermal baths, hotels and amphitheatre. Furthermore, there are always the positive anomalies that characterize the area to the north-east of "Montone" hill where archaeological remains are easily visible near Via Lungolinea Pio VI. A large negative anomaly is situated in correspondence with "Montone". Gravity information shows an average density of the hill approximately 1.10 g/cm3, notably less than the recorded data relative to dry sand, approximately 1.6 g/cm3. The low value founds hits at the possibility of an "emptiness" in the subsoil of "Montone" hill, attribuiting to the possible

  11. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  12. Elemental composition of airborne particulates and source identification - An extensive one year survey. [in Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  13. Interactive interpretation of airborne gravity, magnetic, and drill-hole data within the crustal framework of the northern Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Senosy, Mahmoud. M.; Abdel Zaher, Mohamed

    2016-11-01

    The northern part of Western Desert represents the second most important oil-producing and gas provinces in Egypt. The aim of the present study is to highlight the subsurface structures, tectonic framework, and variation of the crust and upper mantle of the northern Western Desert. Geophysical data in the form of airborne gravity and magnetic maps as well as drill-hole data were used to achieve the objectives of the study. 2D interactive sequential modeling of aerogravity and aeromagnetic data was done along some selected profiles with constraints of the existing deep drill-holes at the study area. From these models, three maps for the depths to Precambrian basement, Conrad, and Moho surfaces were constructed. The results of this study indicate that the depth to the basement surface (thickness of the sedimentary section) ranges between 900 m at the southern parts and more than 5500 m at the northern parts. Meanwhile, the depth of Conrad discontinuity which reflect thickness of the upper crust; varies approximately between 10,000 m at the central and northern parts and 17,000 m at the southern parts of the area. While the Moho depth which represents the crustal thickness ranges from 27,000 m at the northern parts to 39,000 m southward. Integrating the results shows that the main compressive stress which influenced the studied area is in N55°W direction that supposed to cause primary shear in N25°W and N85°W directions with right and left lateral movements, respectively.

  14. Autonomous and Remote-Controlled Airborne and Ground-Based Robotic Platforms for Adaptive Geophysical Surveying

    NASA Astrophysics Data System (ADS)

    Spritzer, J. M.; Phelps, G. A.

    2011-12-01

    Low-cost autonomous and remote-controlled robotic platforms have opened the door to precision-guided geophysical surveying. Over the past two years, the U.S. Geological Survey, Senseta, NASA Ames Research Center, and Carnegie Mellon University Silicon Valley, have developed and deployed small autonomous and remotely controlled vehicles for geophysical investigations. The purpose of this line of investigation is to 1) increase the analytical capability, resolution, and repeatability, and 2) decrease the time, and potentially the cost and map-power necessary to conduct near-surface geophysical surveys. Current technology has advanced to the point where vehicles can perform geophysical surveys autonomously, freeing the geoscientist to process and analyze the incoming data in near-real time. This has enabled geoscientists to monitor survey parameters; process, analyze and interpret the incoming data; and test geophysical models in the same field session. This new approach, termed adaptive surveying, provides the geoscientist with choices of how the remainder of the survey should be conducted. Autonomous vehicles follow pre-programmed survey paths, which can be utilized to easily repeat surveys on the same path over large areas without the operator fatigue and error that plague man-powered surveys. While initial deployments with autonomous systems required a larger field crew than a man-powered survey, over time operational experience costs and man power requirements will decrease. Using a low-cost, commercially available chassis as the base for autonomous surveying robotic systems promise to provide higher precision and efficiency than human-powered techniques. An experimental survey successfully demonstrated the adaptive techniques described. A magnetic sensor was mounted on a small rover, which autonomously drove a prescribed course designed to provide an overview of the study area. Magnetic data was relayed to the base station periodically, processed and gridded. A

  15. The ancient harbour system of Terracina (Latium, Italy) obtained by gravity and seismic surveys.

    NASA Astrophysics Data System (ADS)

    di Nezza, Maria; di Filippo, Michele

    2010-05-01

    Historical research has shown that Terracina (Latina, Latium) played a fundamental role in the maritime and land traffic since before the foundation of the colony. The settlement was established where the organized system of maritime, land, coastal, and fluvial transport had the most ideal conditions to constitute an important commercial crossroads, apparently since the beginning of recorded history. In order to reconstruction the buried archaeological structures attributed to the ancient Roman port, traditionally attributed to Traiano, in the current area of the harbour of Terracina, it was carried out a gravity survey, more than 380 gravity stations. The gravity method enables to recognize the cavity and the structures of the buildings underground through the results of variations density in the subsoil. Seismic tomography treats the problem of identifying a buried structure as a wave propagation process by inverting the linearized wave equation to compute the spatial distribution of the slowness of the velocity. The purpose of our tomographic study is to further test the method and to guide archaeologists in their future excavations by locating and identifying buried structures. In the residual gravity anomaly map a series of positive anomalies are visible which confirm the round structures and the pier of the buried foundations of the Imperial harbour. Unfortunately, little remains of the functioning facilities of the harbour's activities. The modern construction of the harbour, in fact, has to be developed around the new inhabitable commercial area, know today as Terracina Bassa or Borgo alla Marina. It had to be developed with a modern infrastructure of a harbor area, as in the construction of the rooms for storage of goods, warehouses, as well as for the thermal baths, hotels and amphitheatre. Furthermore, there are always the positive anomalies that characterize the area to the north-east of "Montone" hill where archaeological remains are easily visible

  16. Possible role of gravity in collapse of the wave-function: a brief survey of some ideas

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder P.

    2015-07-01

    This article is a brief survey of some approaches to implementing the suggestion that collapse of the wave function is mediated by gravity. These approaches include: a possible connection between the problem of time and problem of quantum measurement, decoherence models based on space-time uncertainty, the Schrödinger-Newton equation, attempts to introduce gravity into collapse models such as CSL, ideas based on the black hole - elementary particle complementarity, and the possible role of a complex space-time metric.

  17. Airborne radioactivity survey of parts of Baggs SW and Baggs SE quadrangles, Carbon and Sweetwater counties, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 151 square miles of Baggs SW and Baggs SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of twelve radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The radioactivity

  18. Airborne radioactivity survey of parts of Sand Creek SW and Sand Creek SE quadrangles, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 125 square miles of Sand Creek SW and Sand Creek SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of nine radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The

  19. Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing.

    PubMed

    Boelman, Natalie T; Asner, Gregory P; Hart, Patrick J; Martin, Roberta E

    2007-12-01

    We used airborne imaging spectroscopy and scanning light detection and ranging (LiDAR), along with bioacoustic recordings, to determine how a plant species invasion affects avian abundance and community composition across a range of Hawaiian submontane ecosystems. Total avian abundance and the ratio of native to exotic avifauna were highest in habitats with the highest canopy cover and height. Comparing biophysically equivalent sites, stands dominated by native Metrosideros polymorpha trees hosted larger native avian communities than did mixed stands of Metrosideros and the invasive tree Morella faya. A multi-trophic analysis strongly suggests that native avifauna provide biotic resistance against the invasion of Morella trees and exotic birds, thus slowing invasion "meltdowns" that disrupt the functioning of native Hawaiian ecosystems.

  20. Development of a laser fluorosensor for airborne surveying of the aquatic environment

    NASA Technical Reports Server (NTRS)

    Bristow, M. P. F.; Houston, W. R.; Measures, R. M.

    1975-01-01

    A field based laser fluorosensor, employing a pulsed nitrogen laser and telescope photomultiplier detector system, has been successfully tested at night from a cliff top site overlooking Lake Ontario providing target ranges greater than 274 meters. Remotely sensed spectra and amplitude changes in the fluorescence emission of natural waters have shown potential as a water quality indicator. In this connection, a convenient internal reference standard with which to gauge the amplitude of the fluorescence signal is realized in the form of the concurrent water Raman emission. Remote measurements of oil fluorescence emission spectra suggest that airborne laser fluorosensors are capable of detecting and characterizing the oil in a given slick and that environmental aging of these slicks does not significantly alter their fluorescence emission signature.

  1. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  2. Stream Morphologic Measurements from Airborne Laser Swath Mapping: Comparisons with Field Surveys, Traditional DEMs, and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Schultz, L. L.

    2005-12-01

    Precise measurement of stream morphology over entire watersheds is one of the great research opportunities provided by airborne laser swath mapping (ALSM). ALSM surveys allow for rapid quantification of factors, such as channel width and gradient, that control stream hydraulic and ecologic properties. We compare measurements from digital elevation models (DEMs) derived from ALSM data collected by the National Center for Airborne Laser Mapping (NCALM) to field surveys, traditional DEMs (rasterized from topographic maps), and aerial photographs. The field site is in the northern Black Mountains in arid Death Valley National Park (California). The area is unvegetated, and therefore is excellent for testing DEM analysis methods because the ALSM data required minimal filtering, and the resulting DEM contains relatively few unphysical sinks. Algorithms contained in geographic information systems (GIS) software used to extract stream networks from DEMs yield best results where streams are steep enough for resolvable pixel-to-pixel elevation change, and channel width is on the order of pixel resolution. This presents a new challenge with ALSM-derived DEMs because the pixel size (1 m) is often an order of magnitude or more smaller than channel width. We find the longitudinal profile of Gower Gulch in the northern Black Mountains (~4 km total length) extracted using the ALSM DEM and a flow accumulation algorithm is 14% longer than a traditional 10-m DEM, and 13% longer than a field survey. These differences in length (and therefore gradient) are due to the computed channel path following small-scale topographic variations within the channel bottom that are not relevant during high flows. However, visual analysis of shaded-relief images created from high-resolution ALSM data is an excellent method for digitizing channel banks and thalweg paths. We used these lines to measure distance, elevation, and width. In Gower Gulch, the algorithm-derived profile is 10% longer than that

  3. Preliminary Results of a Recent Gravity Survey Across the Border Ranges Fault System, Central Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G. M.; Eslick, B.

    2009-12-01

    We have collected over 580 gravity observations across the central Kenai Peninsula to better determine the structural geometry of the Border Ranges fault system (BRFS). Gravity points had a minimum spacing of 0.5 km, with denser readings taken over several moraines in an effort to determine density variations in glacial units. We also collected eight hand samples of exposed bedrock units for laboratory analysis of density and have assembled a suite of density logs from petroleum wells to estimate density variations within the Cook Inlet basin. We have tied our results to previous gravity surveys conducted in the 1960’s to 1990’s. Our preliminary results of analysis of gravity using Nettleton’s reduction method give Cretaceous accreted rocks with densities of around 2.9 g/cc whereas the densities of Quaternary alluvial and glacial deposits of the forearc basin range from 1.63 to 2.41 g/cc. Our ultimate goal is to test several plausible models of structure along the Border Ranges fault system using a 3-D inversion scheme on gravity and magnetic data constrained with other geophysical, borehole and surface geological information.

  4. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and Gamma-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Gruber, S.; Varley, N.; D'Antonio, M.; Supper, R.; Motschka, K.

    2016-05-01

    The island of Socorro is located in the eastern Pacific Ocean, 650 km off the coast of Mexico. It is a rare example of an oceanic volcanic island whose above sea level volume is made up mostly of peralkaline trachytes and rhyolites, with subordinate mafic rocks. Subaerial volcanism started several hundred thousand years ago and continues until recent times. We present an investigation of surface and subsurface geology of the island, based on the first detailed extensive geophysical survey on the island. Acquired airborne magnetic and gamma-ray data were compared to existing geological information and supplemented with field investigations and satellite imagery. Magnetic data show a wide minimum in the central part of the island, possibly connected to a high-temperature zone in the deeper central portion of the volcano, likely to be due to a still hot magma body. The data also depict two parallel edges possibly suggesting the existence of a nested caldera. Analysis on upward continued magnetic data by recent imaging techniques highlighted two deep sources located around 5 km b.s.l., interpreted as feeding structures that are now filled with crystalline rocks. Gamma-ray data have been interpreted through integration with the geological survey results. Several previously known volcanic deposits have been identified based on radioelement distribution, and others have been redefined based on field evidence. A new succession of volcanic members is proposed, to be verified through more detailed geological mapping, geochemical analyses of rock samples and radiometric dating.

  5. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  6. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  7. Airborne Hydromapping - How high-resolution bathymetric surveys will change the research and work focused on waterbody-related topics

    NASA Astrophysics Data System (ADS)

    Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus

    2013-04-01

    Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers

  8. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect

    Hammack, R. W.

    2006-12-28

    subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

  9. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  10. Semi-automated structural analysis of high resolution magnetic and gamma-ray spectrometry airborne surveys

    NASA Astrophysics Data System (ADS)

    Debeglia, N.; Martelet, G.; Perrin, J.; Truffert, C.; Ledru, P.; Tourlière, B.

    2005-08-01

    A user-controlled procedure was implemented for the structural analysis of geophysical maps. Local edge segments are first extracted using a suitable edge detector function, then linked into straight discontinuities and, finally, organised in complex boundary lines best delineating geophysical features. Final boundary lines may be attributed by a geologist to lithological contacts and/or structural geological features. Tests of some edge detectors, (i) horizontal gradient magnitude (HGM), (ii) various orders of the analytic signal ( An), reduced to the pole or not, (iii) enhanced horizontal derivative (EHD), (iv) composite analytic signal (CAS), were performed on synthetic magnetic data (with and without noise). As a result of these comparisons, the horizontal gradient appears to remain the best operator for the analysis of magnetic data. Computation of gradients in the frequency domain, including filtering and upward continuation of noisy data, is well-suited to the extraction of magnetic gradients associated to deep sources, while space-domain smoothing and differentiation techniques is generally preferable in the case of shallow magnetic sources, or for gamma-ray spectrometry analysis. Algorithms for edge extraction, segment linking, and line following can be controlled by choosing adequate edge detector and processing parameters which allows adaptation to a desired scale of interpretation. Tests on synthetic and real case data demonstrate the adaptability of the procedure and its ability to produce basic layer for multi-data analysis. The method was applied to the interpretation of high-resolution airborne magnetic and gamma-ray spectrometry data collected in northern Namibia. It allowed the delineation of dyke networks concealed by superficial weathering and demonstrated the presence of lithological variations in alluvial flows. The output from the structural analysis procedure are compatible with standard GIS softwares and enable the geologist to (i) compare

  11. Contribution of the airborne geophysical survey to the study of the regolith : A case study in southern Paris Basin.

    NASA Astrophysics Data System (ADS)

    Prognon, Francois; Lacquement, Fréderic; Deparis, Jacques; Martelet, Guillaume; Perrin, José

    2010-05-01

    Studies of soil and subsoil, also called regolith, are at the crossroads of scientific new challenging questions as well as new environmental needs. Historically, geological maps were focussed on solid geology. Present societal needs increasingly require knowledge of regolith properties: superficial studies combining geology, geochemistry and geophysics become essential to better understand the natural processes which govern the repartition and evolution of subsoil formations. Such progress is critical to better orient the use and management of natural and groundwater resources. Among other techniques, airborne geophysics is appropriate to provide information on near surface, because of i) its high spatial coverage ii) the rapidity of acquisition and iii) the variety of available sensors (magnetic, spectral radiometry, electromagnetic …). We illustrate the results of an airborne geophysical survey carried out in France, in "Région Centre" administrative region in the southern part of the Paris Basin. Spectral radiometry data were collected throughout "Région Centre" with a line spacing of 1 km. This method provides maps of potassium (K), uranium (U) and thorium (Th) which are the only naturally occurring elements with direct or indirect radioisotopes that produce gamma rays of sufficient intensity to be measured at airborne survey heights. Gamma-rays emitted from the Earth surface are related to the primary mineralogy and geochemistry of the bedrock and/or the nature of secondary weathering including regolith materials. Obtained images are confronted with former geological investigations (1:50 000e geological maps). Geophysical data and geological maps are generally consistent on most of the covered area since the first-rate information delivered by the spectrometry derives from the geochemistry of the solid geology. Second-rate gamma-ray responses come from superimposed allochtonous deposits as well as in situ geochemical modifications. For instance

  12. OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Halliwell, George R.; Kourafalou, Vassiliki; Le Hénaff, Matthieu; Shay, Lynn K.; Atlas, Robert

    2015-01-01

    A prototype, rigorously validated ocean Observing System Simulation Experiment (OSSE) system is used to evaluate the impact of different sampling strategies for rapid-response airborne ocean profile surveys in the eastern interior Gulf of Mexico. Impacts are assessed with respect to improving ocean analyses, and forecasts initialized from those analyses, for two applications: improving oil spill forecasts and improving the ocean model response to tropical cyclone (TC) forcing. Rapid model error growth in this region requires that repeat surveys be conducted frequently in time, with separation of less than 4 days required to approach maximum error reduction in model analyses. Substantial additional error reduction in model dynamical fields is achieved by deploying deep (1000 m) AXCTDs instead of shallow (400 m) AXBTs. Shallow AXBTs constrain the ocean thermal field over the upper 400 m nearly as well as deep AXCTDs. However, in addition to constraining ocean fields over a greater depth range, AXCTDs also measure salinity profiles and more accurately constrain upper-ocean density than AXBTs, leading to a more accurate representation of upper ocean pressure and velocity fields. Sampling AXCTD profiles over a one-half degree array compared to one degree leads to substantial additional error reduction by constraining variability with horizontal scales too small to be corrected by satellite altimetry assimilation. A 2-day lag in availability of airborne profiles does not increase errors in dynamical ocean fields, but it does increase errors in upper-ocean thermal field including Tropical Cyclone Heat Potential (TCHP), demonstrating that these profiles must be rapidly made available for assimilation to improve TC forecasts. The additional error reduction in ocean analyses achieved by assimilation of airborne surveys translates into significantly improved forecasts persisting over time intervals ranging between 1 and 2 weeks for most model variables but several weeks for

  13. Gravity and geoid model for South America

    NASA Astrophysics Data System (ADS)

    Blitzkow, Denizar; Oliveira Cancoro de Matos, Ana Cristina; do Nascimento Guimarães, Gabriel; Pacino, María Cristina; Andrés Lauría, Eduardo; Nunes, Marcelo; Castro Junior, Carlos Alberto Correia e.; Flores, Fredy; Orihuela Guevara, Nuris; Alvarez, Ruber; Napoleon Hernandez, José

    2016-04-01

    In the last 20 years, South America Gravity Studies (SAGS) project has undertaken an ongoing effort in establishing the fundamental gravity network (FGN); terrestrial, river and airborne relative gravity densifications; absolute gravity surveys and geoid (quasi-geoid) model computation for South America. The old FGN is being replaced progressively by new absolute measurements in different countries. In recent years, Argentina, Bolivia, Brazil, Ecuador, Paraguay and Venezuela organizations participated with relative gravity surveys. Taking advantage of the large amount of data available, GEOID2015 model was developed for 15°N and 57°S latitude and 30 ° W and 95°W longitude based on EIGEN-6C4 until degree and order 200 as a reference field. The ocean area was completed with mean free air gravity anomalies derived from DTU10 model. The short wavelength component was estimated using FFT. The global gravity field models EIGEN-6C4, DIR_R5 were used for comparison with the new model. The new geoid model has been evaluated against 1,319 GPS/BM, in which 592 are located in Brazil and the reminder in other countries. The preliminary RMS difference between GPS/BM and GEOID2015 throughout South America and in Brazil is 46 cm and 17 cm, respectively. New activities are carrying out with the support of the IGC (Geographic and Cartographic Institute) under the coordination of EPUSP/LTG and CENEGEO (Centro de Estudos de Geodesia). The new project aims to establish new gravity points with the A-10 absolute gravimeter in South America. Recent such surveys occurred in São Paulo state, Argentina and Venezuela.

  14. Test plan and preliminary report of airborne electromagentic environment survey over USA urban areas 0.4 to 18.0 GHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1975-01-01

    An airborne electromagnetic environment survey is described of five urban areas where terrestrially-generated radio-frequency interference was measured over the frequency range from 0.4 to 18.0 GHz. A chartered Cessna 402 aircraft contained necessary measurement test equipment, including the receiving antennas mounted beneath the fuselage. Urban areas including Washington, D.C.; Baltimore, MD; Philadelphia, PA; New York, NY; Chicago, ILL; and Palestine, TX were surveyed. A flight test plan and preliminary test results for the 0.4 to 1.4 GHz frequency range, are included; a final test report describes more detailed results.

  15. Biomineralisation under zero gravity: A survey of past experience and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Epple, M.; Slenzka, K.

    Biomineralisation denotes the utilisation of inorganic minerals by biological systems for different purposes like mechanical protection (shells), tools (teeth and spicules), internal stabilisation (bones), and gravity sensors (otoliths, statoliths). The main principles are now understood, i.e. the biological control over crystal nucleation, crystal growth, crystallisation in confined compartments, and incorporation of biomolecules (mostly proteins) into inorganic structures. It is a question of fundamental interest whether these processes that have been developed over millions of years under 1 g-gravity on earth are still working properly under zero gravitation. Biominerals like calcium carbonate, calcium phosphate, silica, and iron oxide have a high specific weight, and therefore the absence of gravity may well influence the biomineralisation process in a purely physico-chemical and mechanical way. Of course, biological signalling pathways should also depend on the gravitational force. Of immediate medical interest is the influence of gravity on bone formation that is commonly associated with osteoporosis. Further points are teeth development and pathological biomineralisation phenomena like atherosclerosis. The contributions will highlight past experiments from the literature about biomineralisation under zero-gravity and try to formulate principles for the influence of gravity on biomineralisation.

  16. Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.

    2015-12-01

    The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the

  17. Model-independent constraints on modified gravity from current data and from the Euclid and SKA future surveys

    NASA Astrophysics Data System (ADS)

    Taddei, Laura; Martinelli, Matteo; Amendola, Luca

    2016-12-01

    The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called Geff) by using currently available fσ8 data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraints significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.

  18. Airborne LaCoste & Romberg gravimetry: a space domain approach

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Barriot, J. P.; Verdun, J.

    2007-04-01

    This paper introduces a new approach to reduce the airborne gravity data acquired by a LaCoste & Romberg (L&R) air/sea gravimeter, or other similar gravimeters. The acceleration exerted on the gravimeter is the sum of gravity and the vertical and Eötvös accelerations of the aircraft. The L&R gravimeter outputs are: (1) the beam position, (2) the spring tension and (3) the cross coupling. Vertical and Eötvös accelerations are computed from GPS-derived aircraft positions. However, the vertical perturbing acceleration sensed by the gravimeter is not the same as the one sensed by the aircraft (via GPS). A determination of the aircraft-to-sensor transfer function is necessary. The second-order differential equation of the motion of the gravimeter’s beam mixes all the input and output parameters of the gravimeter. Conventionally, low-pass filtering in the frequency domain is used to extract the gravity signal, the filter being applied to each flight-line individually. By transforming the differential equation into an integral equation and by introducing related covariance matrices, we develop a new filtering method based on a least-squares approach that is able to take into account, in one stage, the data corresponding to all flight-lines. The a posteriori covariance matrix of the estimated gravity signal is an internal criterion of the precision of the method. As an example, we estimate the gravity values along the flight-lines from an airborne gravity survey over the Alps and introduce an a priori covariance matrix of the gravity disturbances from a global geopotential model. This matrix is used to regularize the ill-posed Fredholm integral equation introduced in this paper.

  19. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  20. Lithological discrimination and structural trends in W-Rwanda (Africa) on images of airborne radiometric and aeromagnetic surveys, coregistered to a Landsat TM scene

    NASA Astrophysics Data System (ADS)

    Fernandez-Alonso, M.; Tahon, A.

    Processing and interpretation of an airborne gamma-ray and aeromagnetic survey, combined with Thematic Mapper imagery, enables the successful discrimination of lithological units and their geological and structural interpretation in a complex area, where weathering and a dense vegetation cover make traditional mapping extremely difficult. The visual inspection of RGB color-composites reveals the differentiation of the area in distinct colored domains, each of which has been related to existing units. The aeromagnetic data not only reveal superficial structures, but also show deeper structural detail inside the tectonometamorphic complexes of the area, adding weight to existing hypotheses on the evolution of the Kibaran orogeny.

  1. Weakening gravity on redshift-survey scales with kinetic matter mixing

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele; Vernizzi, Filippo

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ8 with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  2. 3D modelling of an aero-gravity and -magnetic survey as an first exploration step in a frontier basin

    NASA Astrophysics Data System (ADS)

    Köther, Nils; Eckard, Marcel; Götze, Hans-Jürgen

    2010-05-01

    The West African Taoudeni basin covers a desert area of about 1.8 million km² and is one of the last frontier basins worldwide. Here Wintershall Holding AG holds acreage of about 68000 km². During 2005-2007 geological surveys and an aero-gravity and -magnetic survey were conducted in this area. The potential field modelling should contribute first insight about the subsurface to plan an economic seismic survey. 2D models lead to poor results. 2008 the results of an internship (NK) were 3D subsurface models, which were enhanced during the following diploma thesis (Köther, 2009). Complex igneous rocks and sparsely distributed constraints lead to an ambiguous interpretation. Therefore, several simple 3D models were compiled with the in-house software IGMAS+, which base on geological ideas of the underground and fit well the measured data. These basic models allow a geophysical evaluation of different geological theories about the subsurface. Also, for a thorough interpretation field transformations (Euler, Curvature, and Derivatives) were calculated. These results led to new constraints for further interpretation of the basin structures and therefore they are important contributions for future exploration e.g. the planning of seismic surveys.

  3. Hydrogeologic inferences from drillers' logs and from gravity and resistivity surveys in the Amargosa Desert, southern Nevada

    USGS Publications Warehouse

    Oatfield, W.J.; Czarnecki, J.B.

    1991-01-01

    The Amargosa Desert of southern Nevada, in the Basin and Range province, is hydraulically downgradient from Yucca Mountain, the potential site of a repository for high-level nuclear waste. Groundwater flow paths and flow rates beneath the Amargosa Desert are controlled in part by the total saturated thickness and the hydraulic properties of basin-fill alluvial sediments. Drillers' logs of water wells completed in alluvium were analyzed to help characterize the hydrogeologic framework underlying the Amargosa Desert. Fractions of coarse-grained sediments, calculated from each of these logs, were contoured using a universal-kriging routine to interpolate values. Results from a previous electrical sounding survey also were contoured, including the estimated depth to Paleozoic (?) basement rocks. The vertical electric sounding results were obtained from individual depth-to-resistivity profiles, from which the average resistivity of the total profile and the resistivity of the upper 75 m were calculated. The distribution and variations in average resistivity of the total depth correlated reasonably well with the distribution of variations in regional gravity. Patterns of contours of the resistivity of the upper 75 m of alluvium were similar to patterns of regional contours of the predominant cation (sodium) in ground water. Gravity lows correspond in some places to the presence of lacustrine, eolian, or marsh surface deposits, which may function as barriers to groundwater flow. Gravity lows also correspond to areas with thick basin-fill sediments, which was corroborated by depth-to-basement data determined from vertical electric soundings. Depths to Paleozoic (?) basement rocks may be as much as 1600 m based on data from the resistivity survey, which were corroborated in part by seismic-refraction survey data. Small variations exist in the percentage of the basin fill that is saturated. The unsaturated zone is always < 15% of the alluvial column. Analysis of depth

  4. Gravity gradiometry developments at Lockheed Martin

    NASA Astrophysics Data System (ADS)

    Difrancesco, D.

    2003-04-01

    Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the

  5. Aeromagnetic and Gravity Surveys in Afghanistan: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2006-01-01

    Aeromagnetic data were digitized from aeromagnetic maps created from aeromagnetic surveys flown in southeastern and southern Afghanistan in 1966 by PRAKLA, Gesellschaft fur praktische Lagerstattenforschung GmbH, Hannover, Germany, on behalf of the 'Bundesanstalt fur Bodenforschung', Hannover, Germany. The digitization was done along contour lines, followed by interpolation of the data along the original survey flight-lines. Survey and map specifications can be found in two project reports, 'prakla_report_1967.pdf' and 'bgr_report_1968.pdf', made available in this open-file report.

  6. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  7. The use of high resolution ground and airborne magnetic surveys to evaluate the geometry of hydrothermal alteration zones over volcanic provinces (Invited)

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2013-12-01

    Geophysical methods can provide critical constraints on the distribution and volume of hydrothermal alteration, important parameters in understanding the evolution of geothermal systems. Because hydrothermal alteration modifies the magnetic properties of the volcanic substratum, magnetic surveys can be used to provide constraints on the distribution of hydrothermal alteration at depth. Using Yellowstone caldera as an example, we show that both ground and airborne magnetic surveys can be used to map and assess the volume of hydrothermal alteration. Ground magnetic surveys over unaltered volcanic terranes display high-amplitude, short-wavelength anomalies, in contrast to smooth, subdued magnetic anomalies over volcanic substrata demagnetized by hydrothermal alteration. We use this contrast to map areas of hydrothermal alteration in detail. Inverse methods applied to high-resolution airborne and ground magnetic data can be used to create three-dimensional models of the distribution of magnetization and thus illuminate the geometry of hydrothermal alteration. Because of the non-uniqueness of potential fields, the construction of inverse models requires simplifying assumptions on the distribution of magnetization, knowledge of induced and remanent magnetization of fresh and altered geological units, and detailed geological and geophysical data. Within the three hydrothermal sites that we investigated in Yellowstone National Park, subdued short-wavelength signal indicates pervasive demagnetization (alteration) of the shallow substratum that extends over larger areas than initially mapped by geology. These data also reveal that the largest degree of demagnetization (alteration) and maximum thicknesses of demagnetized (altered) substratum, reaching a few hundred meters, are associated with hydrothermal vents and with superficial hydrothermal alteration. Our three dimensional models of magnetization provide estimates of the volume of buried hydrothermal alteration ranging

  8. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal

  9. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  10. Gravity-dependent signal path variation in a large VLBI telescope modelled with a combination of surveying methods

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, C.; Vittuari, L.

    2009-11-01

    The very long baseline interferometry (VLBI) antenna in Medicina (Italy) is a 32-m AZ-EL mount that was surveyed several times, adopting an indirect method, for the purpose of estimating the eccentricity vector between the co-located VLBI and Global Positioning System instruments. In order to fulfill this task, targets were located in different parts of the telescope’s structure. Triangulation and trilateration on the targets highlight a consistent amount of deformation that biases the estimate of the instrument’s reference point up to 1 cm, depending on the targets’ locations. Therefore, whenever the estimation of accurate local ties is needed, it is critical to take into consideration the action of gravity on the structure. Furthermore, deformations induced by gravity on VLBI telescopes may modify the length of the path travelled by the incoming radio signal to a non-negligible extent. As a consequence, differently from what it is usually assumed, the relative distance of the feed horn’s phase centre with respect to the elevation axis may vary, depending on the telescope’s pointing elevation. The Medicina telescope’s signal path variation Δ L increases by a magnitude of approximately 2 cm, as the pointing elevation changes from horizon to zenith; it is described by an elevation-dependent second-order polynomial function computed as, according to Clark and Thomsen (Techical report, 100696, NASA, Greenbelt, 1988), a linear combination of three terms: receiver displacement Δ R, primary reflector’s vertex displacement Δ V and focal length variations Δ F. Δ L was investigated with a combination of terrestrial triangulation and trilateration, laser scanning and a finite element model of the antenna. The antenna gain (or auto-focus curve) Δ G is routinely determined through astronomical observations. A surprisingly accurate reproduction of Δ G can be obtained with a combination of Δ V, Δ F and Δ R.

  11. Interpretation of an airborne geophysical survey in southern Paris Basin: towards a lithological cartography, key tool for the management of shrinking/swelling clay problems

    NASA Astrophysics Data System (ADS)

    Prognon, F.; Tourliere, B.; Perrin, J.; Lacquement, F.; Martelet, G.; Deparis, J.; Gourdier, S.; Drufin, S.

    2011-12-01

    Regolith formations support a full spectrum of human activities. Among others, they provide a source of extractable materials and form the substratum of soils. As such, they should be considered as a capital to be managed and protected. Moreover, one of the main challenges for present and future land settlement is to prevent house building programs from being planned inside shrink-swell risky areas which is only possible thanks to an complete lithological mapping of the french regolith. We illustrate here the results of the geological interpretation of an airborne geophysical survey carried out in "Région Centre" administrative region in the southern part of the Paris Basin, in France. Among other techniques, airborne geophysics is appropriate to quickly provide information on near surface, because of i) its high spatial coverage ii) the rapidity of acquisition and iii) the variety of available sensors (magnetic, spectral radiometry, electromagnetic...). Spectral radiometry data were collected with a line spacing of 1 km. This method provides maps of potassium (K), uranium (U) and thorium (Th) which are the only naturally occurring elements with direct or indirect radioisotopes that produce gamma rays of sufficient intensity to be measured at airborne survey heights. On the radiometric data we applied the HAC (Hierarchical Ascendant Classification) computation procedure: taking into account several variables, the statistical HAC method groups individuals based on their resemblance. Also in this study, calibrated Total Count channel (TCm) is compared to an estimated dose rate (TCe) computed from the measured radioelement abundances: TCe = 13.078 * K + 5.675 * U + 2.494 * Th. Our results show that the ratio TCe/TCm came out to be a good indicator of ground property changes within Sologne mixed sandy-clay environment. Processed geophysical data are cross-checked with geological data (from field observations) and field or laboratory measurements of mineralogical data

  12. Reject the ridiculous and explore the plausible: A Bayesian McMC approach to model assessment and uncertainty analysis for airborne electromagnetic surveys (Invited)

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Brodie, R. C.; Bedrosian, P.; Esfahani, A.

    2013-12-01

    Geophysical data are typically used to infer a single ';best' model consistent with observations and prior information. However, because of non-uniqueness, limited resolution, and data errors, many models satisfy both the data and reasonable prior assumptions. Instead of seeking to describe the properties of any single model, we developed a trans-dimensional Bayesian Markov chain Monte Carlo (McMC) algorithm for the analysis of airborne electromagnetic (AEM) surveys that assesses the characteristics of models that are consistent with observations and prior assumptions. This is a powerful tool for model assessment and uncertainty analysis, and provides a wealth of information that can be used to make inferences about plausible subsurface properties. For example, we can estimate the likelihood of geological interfaces as a function of depth, quantify the probability that resistivity is above or below a certain threshold within a given depth range, assess model resolution and depth of investigation, or query subsets of models that are consistent with auxiliary datasets. Model assessment and uncertainty analysis is compounded by the large volume of data that are typically acquired for AEM surveys. Here, we discuss the mechanics of a McMC algorithm developed for the analysis of time- or frequency-domain airborne electromagnetic data, along with examples where this algorithm has been used to add new insight into model uncertainty and geological interpretations. Specific aspects of the algorithm that will be discussed include: the trans-dimensional nature of the program, which allows the number of layers to be a free parameter; the capability to assess random and/or systematic data errors as unknown parameters; the use of parallel computing tools to run multiple chains for a single dataset in order to assess convergence, and to analyze many datasets simultaneously; the use of stochastic Newton sampling to optimize sampling efficiency; and the ability to integrate multiple

  13. A Quantitative Survey of Gravity Receptor Function in Mutant Mouse Strains

    PubMed Central

    Johnson, Kenneth R.; Yu, Heping; Erway, Lawrence C.; Alagramam, Kumar N.; Pollak, Natasha; Jones, Timothy A.

    2005-01-01

    The purpose of this research was to identify vestibular deficits in mice using linear vestibular evoked potentials (VsEPs). VsEP thresholds, peak latencies, and peak amplitudes from 24 strains with known genetic mutations and 6 inbred background strains have been analyzed and descriptive statistics generated for each strain. Response parameters from mutant homozygotes were compared with heterozygote and/or background controls, and all strain averages were contrasted to normative ranges. Previous work established average values for normal screening VsEP parameters at +6 dB re: 1.0 g/ms: P1 = 1.3 ms, P2 = 2.2 ms, P3 = 2.8 ms; P1/N1 = 2 μV; P2/N2 = 1.6 μV. Normal thresholds averaged −8 dB re: 1.0 g/ms. Homozygotes of the following recessive mutations had absent VsEPs at the ages tested: Espnje, Atp2b2dfw-2J, Spnb4qv-lnd2J, Spnb4qv-3J, Myo7ash1, Tmiesr, Myo6sv, jc, Pcdh15av-J, Pcdh15av-2J, Pcdh15av-3J, Cdh23v-2J, Sansjs, hr, Kcne1pkr, and Pou3f4del. These results suggest profound gravity receptor deficits for these homozygotes, which is consistent with the structural deficits that have been documented for many of these strains. Homozygotes of Catna2cdf, Grid2ho4J, Wnt1sw, qk, and Mbpshi strains and heterozygotes of Grid2lc had measurable VsEPs, but one or more response parameters differed from the respective control group (heterozygote or background strain) or were outside normal ranges. For example, qk and Mbpshi homozygotes showed significantly prolonged latencies consistent with the abnormal myelin that has been described for these strains. Prolonged latencies may suggest deficits in neural conduction; elevated thresholds suggest reduced sensitivity, and reduced amplitudes may be suggestive for reduced neural synchrony. One mutation, Otx1jv, had all VsEP response parameters within normal limits, an expected finding because the abnormality in Otx1jv is presumably restricted to the lateral semicircular canal. Interestingly, some heterozygote groups also

  14. New results from Nevada: A test of Newton's law using the BREN (Bare Reactor Experiment Nevada) tower and a high density ground gravity survey

    SciTech Connect

    Kammeraad, J.; Kasameyer, P.; Fackler, O.; Felske, D.; Harris, R.; Millett, M.; Mugge, M.; Thomas, J.

    1990-04-01

    We report new results from the LLNL test of Newton's law of gravity being conducted at the Nevada Test Site with a stable 465-m tower and a denser ground gravity survey than any used to date (823 locations within 4 km of the tower). Measurements of gravity at 12 heights on the tower were compared to predictions obtained with our surface gravity data and 60,000 measurements within 300 km provided by the USGS and NOAA. The predictions of gravity on the tower platforms were obtained using two different methods, which gave similar results. The results are consistent with Newton's law; we obtain chi-square = 4.9 with eleven degrees of freedom. We set constraints on the parameters of a hypothesized single Yukawa potential and properly included correlated uncertainties in this analysis. We show that if correlated errors are not included, the resulting constraints on the potential parameters are incorrect and appear to be stronger than in the correct analysis. 10 refs., 3 figs.

  15. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  16. Mapping Ground Water in Three Dimensions - An Analysis of Airborne Geophysical Surveys of the Upper San Pedro River Basin, Cochise County, Southeastern Arizona

    USGS Publications Warehouse

    Wynn, Jeff

    2006-01-01

    This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies

  17. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients.

  18. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  19. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland.

    PubMed

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-06-05

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.

  20. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  1. Initial results of the 2011 Geoid Slope Validation Survey

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    2011-12-01

    The National Oceanic and Atmospheric Administration's (NOAA), National Geodetic Survey (NGS) has embarked on a ten year project called GRAV-D (Gravity for the Redefinition of the American Vertical Datum).The purpose of this project is to replace the current official vertical datum, NAVD 88 (the North American Vertical Datum of 1988) with a geopotential reference system based on a new survey of the gravity field and a gravimetric geoid. As part of GRAV-D, NGS plans to execute a set of "geoid validation surveys" at various locations of the country.These will be surveys designed to independently measure the geoid to provide a check against both the data and theory used to create the final gravimetric geoid which will be used in the geopotential reference system. The first of these surveys, known as the Geoid Slope Validation Survey of 2011 (GSVS11) was executed between July and October, 2011 in the west central region of Texas.The survey took place over a 330 kilometer line running more or less north-south from Austin to Corpus Christi, Texas.Measurements were taken at 220 marks (one per mile) and included static GPS, RTN GPS, geodetic leveling, astro-geodetic deflections of the vertical using the Swiss DIADEM camera, absolute gravity, gravity gradients and LIDAR.This region was chosen for many factors including the availability of GRAV-D airborne gravity over the area, its relatively low elevation (220 meter orthometric height max), its geoid slope (about 130 cm over 300 km), lack of significant topographic relief, lack of large forestation, availability of good roads, clarity of weather and lack of large water crossings. This talk will outline the initial results of the survey, specifically the comparison of various geoid slopes over this region:gravimetric geoid models (with and without airborne gravity), minimally constrained GPS and leveling and from astro-geodetic deflections of the vertical.

  2. Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Elliott, Scott; Simpson, Isobel J.; Blake, Donald R.; Colman, Jonah J.; Dubey, Manvendra K.; Meinardi, Simone; Rowland, F. Sherwood; Shirai, Tomoko; Smith, Felisa A.

    2003-03-01

    Hydrocarbon and halocarbon measurements collected during the second airborne Biomass Burning and Lightning Experiment (BIBLE-B) were subjected to a principal component analysis (PCA), to test the capability for identifying intercorrelated compounds within a large whole air data set. The BIBLE expeditions have sought to quantify and understand the products of burning, electrical discharge, and general atmospheric chemical processes during flights arrayed along the western edge of the Pacific. Principal component analysis was found to offer a compact method for identifying the major modes of composition encountered in the regional whole air data set. Transecting the continental monsoon, urban and industrial tracers (e.g., combustion byproducts, chlorinated methanes and ethanes, xylenes, and longer chain alkanes) dominated the observed variability. Pentane enhancements reflected vehicular emissions. In general, ethyl and propyl nitrate groupings indicated oxidation under nitrogen oxide (NOx) rich conditions and hence city or lightning influences. Over the tropical ocean, methyl nitrate grouped with brominated compounds and sometimes with dimethyl sulfide and methyl iodide. Biomass burning signatures were observed during flights over the Australian continent. Strong indications of wetland anaerobics (methane) or liquefied petroleum gas leakage (propane) were conspicuous by their absence. When all flights were considered together, sources attributable to human activity emerged as the most important. We suggest that factor reductions in general and PCA in particular may soon play a vital role in the analysis of regional whole air data sets, as a complement to more familiar methods.

  3. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  4. Airborne geophysical surveys used to delineate geological features associated with the M5.8 August 23, 2011 earthquake in Louisa County, Virginia

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J. W.; Gilmer, A. K.

    2012-12-01

    The M5.8 August 23, 2011 Louisa County, VA intraplate earthquake was felt by more people than any other in U.S. history not only because of population density, but also because of the associated geology. However, because limited bedrock exposures pose a challenge to geologic mapping efforts and the earthquake hypocenter is located at a depth of ~6 km, many questions remain. Potential field and gamma-ray spectrometry data thus provide key tools for imaging and understanding both shallow and deep subsurface geologic features. In July 2012, the USGS commissioned a high-resolution magnetic, gravity, and radiometric (gamma-ray spectrometry) survey over a 20 km x 25 km area covering the epicenters of the Louisa County earthquake and its aftershocks. The surveys were flown with 200-m line spacing from an altitude of ~120 m above ground, providing up to a 20-fold improvement over regional magnetic and radiometric coverage. Gravity was measured using Sander Geophysics' AIRGrav system, capable of resolving anomalies as narrow as 800 m for the given survey configuration; in most parts of the survey area the spacing of ground stations is ~10-20 stations per 100 km2. Preliminary magnetic and radiometric data show numerous NE-trending linear anomalies within this part of the Appalachian Piedmont Province. These metamorphic and igneous rocks exhibit 200-500 nT magnetic anomalies of width 300-1000 km that are likely to be generated by contrasts between various metavolcanic and metasedimentary rocks such as magnetite-bearing quartzites and felsic to mafic gneisses. Magnetic lows and radiometric highs are observed over several granitoid intrusive bodies such as the Ellisville pluton, the Falmouth Intrusive Suite, and a Paleozoic pegmatite belt. Derivative magnetic maps delineate numerous thin (< 250 m wide) N- NNW-trending linear anomalies, suggesting that Jurassic diabase dikes are much more common in this area than previously mapped. Radiometric data mostly correlate with mapped

  5. Gravity and Magnetic Survey of the Oaxaca-Juarez Terrane Boundary (Oaxaca Fault), Southern Mexico: Evidence for three Half Grabens

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Belmonte-Jimenez, S. I.; Ortega-Gutierrez, F.; Keppie-Moorhouse, J. D.; Martinez-Silva, J.; Martinez-Serrano, R.

    2007-05-01

    A geophysical survey of the Oaxaca Fault boundary between the Oaxaca (Oaxaquia) (Zapoteco) and Juarez (Cuicateco) terranes along the Etla and Zaachila valleys area, southern Mexico shows a series of NW-SE Bouguer and magnetic anomalies with stronger gradients towards the east. The basement from the Oaxaca terrane has a high density (2.8 gr/cm3 ) and magnetic susceptibility of up to 0.0051 cgs units, which contrast with the Juarez basement that has a lower density (2.67 gr/cm3) and a higher magnetic susceptibility (values ranging between 0.0025 to 0.0045 cgs units). The magnetic susceptibility is similar south of the Donaji fault. Interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins with the Etla and Zachila sub-basins located at the northern and southern portions, respectively, separated by a third sub-basin relatively displaced westwards. They are bounded on the east by the steeply W-dipping Oaxaca master fault, and on the west by the gently E-dipping Huitzo-Zimatlan fault. Two interpretations are suggested for the southward continuation of the Oaxaca Fault: 1) it continues southwards at depth with the same strike. Together the Bouguer and total field magnetic anomalies suggest that the Oaxaca fault is continuous from Etla via Oaxaca City and Ocotlán de Morelos probably to Miahuatlán de Porfirio Díaz, and 2) it continues with the same strike but is displaced eastwards ~20 km along a sinistral transfer fault, which forms the northern boundary of the Zaachila sub-basin.

  6. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  7. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand (Deceased), T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to

  8. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  9. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  10. Comparison of ground-based measurements of natural radiation to airborne radiation survey data on transects from coastal California to the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Stoffer, P. W.; Hernández, L.; Messina, P.; Dearaujo, J.; Li, A.; Hicks, A.; White, L.

    2008-12-01

    Natural gamma radiation measurements were collected with a hand-held Geiger counter at nearly 400 locations on two general transects across the southwestern United States. The data are used to provide ground-truth comparison to published airborne radiation surveys of the region. The first transect was collected by high school students in the SF-ROCKS program at San Francisco State University in the summer of 2008 starting in San Francisco. Data were collected across the Sierra Nevada Range on I-80, and across Highway 50 in Nevada, and I-70 in Utah. Data were collected in and around Great Basin, Arches, Capitol Reef, Bryce, and Zion National Parks, and Grand Staircase-Escalante National Monument. A second transect extends from San José, California to Flagstaff, Arizona and includes the Mojave National Reserve, Death Valley region, and locations throughout the Navajo Reservation region in northern Arizona and western New Mexico. Radiation data (with GPS reference) were collected from all the major sedimentary rock formations and igneous rocks of the Colorado Plateau and from many igneous and metamorphic rocks throughout the Great Basin and southern California deserts. Anomalously high localized levels were noted in selected sedimentary units associated with uranium exploration targets in the Colorado Plateau region, and in caverns and rock fissures where radon gas (and accumulation of derivative fission products) are the inferred sources.

  11. Estimating and interpretation of radioactive heat production using airborne gamma-ray survey data of Gabal Arrubushi area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed A. S.

    2016-02-01

    The present work deals with mapping of radioactive heat production from rocks in the Gabal Arrubushi area in the Central Eastern Desert of Egypt based on airborne spectral gamma-ray survey data. The results show that the radioactive heat production in the areas ranges from 0.01 μWm-3 to 5.2 μWm-3. Granites, muscovite and sericite schists in the western part of Gabal Arrubushi area have abnormally high radioactive heat production values from 2.57 μWm-3 to 4.44 μWm-3. Meanwhile, the higher averages of radioactive heat production of these rock units change from 1.21 μWm-3 to 1.5 μWm-3. The intermediate averages of heat production of felsitic mylonite schist, chlorite schist, felsites, amphibolites and Hammamat sediments are below the crustal average value range, i.e., from 0.8 μWm-3 to 1.2 μWm-3. The lowest averages of heat production values are less than 0.8 μWm-3 and found in the following rock units: Wadi sediments, rhyolites, andesites, gabbro and serpentinites.

  12. Recent Advancements in Full Tensor Gravity Gradiometry for Resource Exploration: A Case study from West Africa - Birmian Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Brewster, J.; Mataragio, J.

    2014-12-01

    Over the years significant progress has been made in understanding the regional geologic models of the Greenstone Belts associated with gold mineralization in the fields of exploration geochemistry, geophysics and data integration. Improved knowledge of the geological models together with advancements in exploration techniques have resulted in the discovery of many near surface, and relatively large gold mines around the world such as the Abitibi, Isua, Barberton, Lake Victoria, Sadiola, and Yatela. However, the search for new deposits becomes more difficult due to the fact that most easily detectable, near surface deposits have been discovered. Many of the remaining deposits tend to be remotely located and deep underground. Effective exploration for new economically viable deposits requires approaches that integrate multiple techniques capable of resolving smaller, deeper and remotely located resources. Gravity surveys have been widely used to map and define geometry and structure of greenstones belts at a regional scale. Structure and hydrothermally altered zones can be mapped, either directly by gravity in weathered environments or inferred in terrains where geological units of different density are offset and/or altered Gravity gradiometry is increasingly becoming a standard method of commercial minerals exploration. Gradiometry presents a significant increase in spatial resolution when compared to previous airborne gravity methods. Airborne full tensor gravity gradiometry surveys have been flown in the past for prospect-level gold exploration in Quebec, Nunavut, Nevada, Brazil, Mali, Zambia and New Zealand and Nevada. The application of airborne gravity gradiometry for prospect-level gold exploration over greenstone belts is discussed in this paper. The high resolution system capability to detect small, high frequency targets is the key for successful results. In addition, this paper presents and discusses data enhancement and 3D inversion results. It is

  13. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.

    PubMed

    Smethurst, M A; Watson, R J; Baranwal, V C; Rudjord, A L; Finne, I

    2017-01-01

    It is estimated that exposure to radon in Norwegian dwellings is responsible for as many as 300 deaths a year due to lung cancer. To address this, the authorities in Norway have developed a national action plan that has the aim of reducing exposure to radon in Norway (Norwegian Ministries, 2010). The plan includes further investigation of the relationship between radon hazard and geological conditions, and development of map-based tools for assessing the large spatial variation in radon hazard levels across Norway. The main focus of the present contribution is to describe how we generate map predictions of radon potential (RP), a measure of radon hazard, from available airborne gamma ray spectrometry (AGRS) surveys in Norway, and what impact these map predictions can be expected to have on radon protection work including land-use planning and targeted surveying. We have compiled 11 contiguous AGRS surveys centred on the most populated part of Norway around Oslo to produce an equivalent uranium map measuring 180 km × 102 km that represents the relative concentrations of radon in the near surface of the ground with a spatial resolution in the 100 s of metres. We find that this map of radon in the ground offers a far more detailed and reliable picture of the distribution of radon in the sub-surface than can be deduced from the available digital geology maps. We tested the performances of digital geology and AGRS data as predictors of RP. We find that digital geology explains approximately 40% of the observed variance in ln RP nationally, while the AGRS data in the Oslo area split into 14 bands explains approximately 70% of the variance in the same parameter. We also notice that there are too few indoor data to characterise all geological settings in Norway which leaves areas in the geology-based RP map in the Oslo area, and elsewhere, unclassified. The AGRS RP map is derived from fewer classes, all characterised by more than 30 indoor measurements, and the

  14. Airborne geophysical surveys in the north-central region of Goias (Brazil): implications for radiometric characterization of tropical soils.

    PubMed

    Guimaraes, Suze Nei P; Hamza, Valiya M; da Silva, Joney Justo

    2013-02-01

    Progress obtained in analysis aerogammaspectrometric and aeromagnetic survey data for the north-central region of the state of Goias (Brazil) are presented. The results obtained have allowed not only determination of the abundances of naturally radioactive elements but also new insights into the processes that determine the radiometric characteristics of the main soil types. There are indications that the radioelement abundances of soils are not only related to their physical properties, but also chemical characteristics of source rocks from which they are derived. For example, oxisol soils derived from the felsic source rocks of the Mara Rosa and Green stone belts have equivalent uranium (eU) values higher than 1.7 ppm, while those derived from source rocks of the relatively more basic Uruaçu Group and sediment sequences of Proterozoic age are characterized by eU contents of less than 1 ppm. Oxisol soils of the Median massif, ultisol soils of the Paranoá, Canastra and Araxá Groups, cambisol soils of the Araí Group and plintosol soils of the Bambuí Group constitute an intermediate class with eU contents in the range of 1-1.3 ppm. Equivalent thorium abundances of soil types display similar trends, the range of variation being 4-16 ppm. Potassium abundances on the other hand are rather uniform with values in the range of 1-1.3%, the only exception being the sedimentary sequences of Proterozoic age, which has a mean value of 0.7%. These observations have been considered as indicative of characteristic features of tropical soils in the study area. In this context, we point out the possibility of using results of aerogammaspectrometry surveys as a convenient complementary tool in identifying geochemical zoning of soils in tropical environments. The ratios of eU/K are found to fall in the range of 1-1.7, which is typical of common soils. The ratios of eTh/K exhibit a relatively wide interval, with values in the range of 4-16. The ratios of eTh/eU are found to have

  15. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: an example in California.

    PubMed

    Wollenberg, H A; Revzan, K L; Smith, A R

    1994-01-01

    We examined the applicability of radioelement data from the National Aerial Radiometric Reconnaissance, an element of the National Uranium Resource Evaluation, to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of uranium, thorium, and potassium concentrations with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends, with low values of 25-30 nGy h-1 in the northernmost 1 x 2 degrees quadrangles between 41 and 42 degrees N to high values of 75-100 nGy h-1 in southeastern California. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy h-1, respectively. These are intermediate between a population-weighted global average of 51 nGy h-1 reported in 1982 by UNSCEAR and a weighted continental average of 70 nGy h-1, based on the global distribution of rock types. The concurrence of lithologically and aeroradiometrically determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the National Aerial Radiometric Reconnaissance data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters.

  16. Modeling Gravity Data From a Recent (2009-2010) Survey Across the Border Ranges Fault System, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G. M.; Eslick, B. E.; Jones, S.

    2010-12-01

    We have collected ~1,000 gravity observations within the Anchorage and Kenai Peninsula regions to better determine the structural geometry of the Border Ranges fault system (BRFS). The BRFS is characterized by a strong gradient between the deep low (~-130 mGal) of the Cook Inlet Basin and the gravity high of -10 mGal associated with the western range front of the Chugach Mountains. On the Kenai Peninsula the gravity field remains high across the Chugach Mountains, but in the Anchorage region it decreases, possibly due to the presence of the Eagle River thrust sheet. We have begun 2.5-D forward modeling of the combined new and existing gravity data using densities constrained by density logs, hand samples, seismic velocities and Nettleton’s density inversion method. Our preliminary results suggest the main fault of the BRFS dips steeply (60 to 70 degrees) toward the west. Many subsidiary buried faults are also apparent. Our ultimate goal is to test several plausible models of structure along the BRFS by implementing a novel 3-D inversion scheme that directly models known geology, and revises a priori uncertainties on the geologic model to let us compare alternative interpretations.

  17. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, B, C, and D, Colorado. Volume I. Detail area. Final report

    SciTech Connect

    Not Available

    1983-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the Durango A, Durango B, Durango C, and Durango D Detail Areas of southwestern Colorado. The Durango A Detail Area is within the coverage of the Needle Mountains and Silverton 15' map sheets, and the Pole Creek Mountain, Rio Grande Pyramid, Emerald Lake, Granite Peak, Vallecito Reservoir, and Lemon Reservoir 7.5' map sheets of the National Topographic Map Series (NTMS). The Durango B Detail Area is within the coverage of the Silverton 15' map sheet and the Wetterhorn Peak, Uncompahgre Peak, Lake City, Redcloud Peak, Lake San Cristobal, Pole Creek Mountain, and Finger Mesa 7.5' map sheets of the NTMS. The Durango C Detail Area is within the coverage of the Platoro and Wolf Creek Pass 15' map sheets of the NTMS. The Durango D Detail Area is within the coverage of the Granite Lake, Cimarrona Peak, Bear Mountain, and Oakbrush Ridge 7.5' map sheets of the NTMS. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, gridded, and contoured to produce maps of the radiometric variables, uranium, potassium, and thorium; their ratios; and the residual magnetic field. These maps have been analyzed in order to produce a multi-variant analysis contour map based on the radiometric response of the individual geological units. A geochemical analysis has been performed, using the radiometric and magnetic contour maps, the multi-variant analysis map, and factor analysis techniques, to produce a geochemical analysis map for the area.

  18. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  19. Fast 3-D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi

    2017-01-01

    A novel fast and accurate algorithm is developed for large-scale 3-D gravity and magnetic modeling problems. An unstructured grid discretization is used to approximate sources with arbitrary mass and magnetization distributions. A novel adaptive multilevel fast multipole (AMFM) method is developed to reduce the modeling time. An observation octree is constructed on a set of arbitrarily distributed observation sites, while a source octree is constructed on a source tetrahedral grid. A novel characteristic is the independence between the observation octree and the source octree, which simplifies the implementation of different survey configurations such as airborne and ground surveys. Two synthetic models, a cubic model and a half-space model with mountain-valley topography, are tested. As compared to analytical solutions of gravity and magnetic signals, excellent agreements of the solutions verify the accuracy of our AMFM algorithm. Finally, our AMFM method is used to calculate the terrain effect on an airborne gravity data set for a realistic topography model represented by a triangular surface retrieved from a digital elevation model. Using 16 threads, more than 5800 billion interactions between 1,002,001 observation points and 5,839,830 tetrahedral elements are computed in 453.6 s. A traditional first-order Gaussian quadrature approach requires 3.77 days. Hence, our new AMFM algorithm not only can quickly compute the gravity and magnetic signals for complicated problems but also can substantially accelerate the solution of 3-D inversion problems.

  20. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  1. Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Fleury, Jules; Anthony, Edward J.; Gardel, Antoine; Dussouillez, Philippe

    2016-05-01

    The field of photogrammetry has seen significant new developments essentially related to the emergence of new computer-based applications that have fostered the growth of the workflow technique called Structure-from-Motion (SfM). Low-cost, user-friendly SfM photogrammetry offers interesting new perspectives in coastal and other fields of geomorphology requiring high-resolution topographic data. The technique enables the construction of topographic products such as digital surface models (DSMs) and orthophotographs, and combines the advantages of the reproducibility of GPS surveys and the high density and accuracy of airborne LiDAR, but at very advantageous cost compared to the latter. Three SfM-based photogrammetric experiments were conducted on the embayed beach of Montjoly in Cayenne, French Guiana, between October 2013 and 2014, in order to map morphological changes and quantify sediment budgets. The beach is affected by a process of rotation induced by the alongshore migration of mud banks from the mouths of the Amazon River that generate spatial and temporal changes in wave refraction and incident wave angles, thus generating the reversals in longshore drift that characterise this process. Sub-vertical aerial photographs of the beach were acquired from a microlight aircraft that flew alongshore at low elevation (275 m). The flight plan included several parallel flight axes with an overlap of 85% between pictures in the lengthwise direction and 50% between paths. Targets of 40 × 40 cm, georeferenced by RTK-DGPS, were placed on the beach, spaced 100 m apart. These targets served in optimizing the model and in producing georeferenced 3D products. RTK-GPS measurements of random points and cross-shore profiles were used to validate the photogrammetry results and assess their accuracy. We produced dense point clouds with 150 to 200 points/m², from which we generated DSMs and orthophotos with respective resolutions of 10 cm and 5 cm. Compared to the GPS control

  2. High-resolution digital elevation model of lower Cowlitz and Toutle Rivers, adjacent to Mount St. Helens, Washington, based on an airborne lidar survey of October 2007

    USGS Publications Warehouse

    Mosbrucker, Adam

    2015-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at

  3. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    USGS Publications Warehouse

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  4. Porous gravity currents: A survey to determine the joint influence of fluid rheology and variations of medium properties

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Longo, Sandro; Chiapponi, Luca; Di Federico, Vittorio

    2016-06-01

    We develop a model to grasp the combined effect of rheology and spatial stratifications on two-dimensional non-Newtonian gravity-driven flow in porous media. We consider a power-law constitutive equation for the fluid, and a monomial variation of permeability and porosity along the vertical direction (transverse to the flow) or horizontal direction (parallel to the flow). Under these assumptions, similarity solutions are derived in semi-analytical form for thin gravity currents injected into a two-dimensional porous medium and having constant or time-varying volume. The extent and shape of the porous domain affected by the injection is significantly influenced by the interplay of model parameters. These describe the fluid (flow behaviour index n), the spatial heterogeneity (coefficients β, γ, δ, ω for variations of permeability and porosity in the horizontal or vertical direction), and the type of release (volume exponent α). Theoretical results are validated against two sets of experiments with α = 1 (constant inflow) conducted with a stratified porous medium (simulated by superimposing layers of glass beads of different diameter) and a Hele-Shaw analogue for power-law fluid flow, respectively. In the latter case, a recently established Hele-Shaw analogy is extended to the variation of properties parallel to the flow direction. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current front and the current profile.

  5. Ground Gravity, Magnetic and Electromagnetic Surveys on a Crater on Basalt of Bajada del Diablo Astrobleme-Strewn Field

    NASA Astrophysics Data System (ADS)

    Acevedo, R. D.; Prezzi, C.; Orgeira, M. J.; Rocca, M.; Martínez, O.; Ponce, J. F.; Corbella, H.; Rabassa, J.; González-Guillot, M.; Subías, I.

    2014-09-01

    With the aim of further investigate the circular structures from Bajada del Diablo, we carried out geophysics surveys and we conclude that the geophysical features could be satisfactorily explained assuming an extra-terrestrial projectile impact.

  6. Recent Advances in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Chaykov, Spasen

    2016-03-01

    In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.

  7. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  8. Understanding the thermal and tectonic evolution of Marie Byrd Land from a reanalysis of airborne geophysical data in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Quartini, E.; Powell, E. M.; Richter, T.; Damiani, T.; Burris, S. G.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The West Antarctic Rift System (WARS) is a region characterized by a significant topographic range, a complex tectonic history, and active subglacial volcanism. Those elements exert a large influence on the stability of the West Antarctic Ice Sheet, which flows within the cradle-shaped rift system and is currently grounded well below sea level. This potentially unstable configuration is the motivation for gaining a better understanding of the ice sheet boundary conditions dictated by rift evolution and how they impact the ice flow. In this study we focus on characterizing the distribution of and transition between sedimentary basins and inferred geothermal heat flux from the flanks to the floor of the rift system. We do so through analysis of gravity data both for sources within the deep lithosphere and near surface targets in the crust. A compilation of gravity datasets over West and Central Antarctica and the analysis thereof is presented. In particular we use gravity data collected during several airborne geophysical surveys: CASERTZ (1994-1997), SOAR/WMB (1997-1998), AGASEA (2004-2005), ICEBRIDGE (2008-2011), and GIMBLE (2012-2013). New processing and data reduction methodologies are applied to the older gravity surveys to improve the high frequency signal content and to make these surveys compatible with modern works (i.e. AGASEA, ICEBRIDGE, GIMBLE). The high frequency signal provides better resolution of small-scale features within survey blocks but long-wavelength integrity is retained by registering the airborne free-air disturbance within those blocks to the gravity disturbance derived from the GOCE global satellite gravity field. This allows for consistent long wavelength interpretation across the merged surveys and provides improved gravity analysis of the deep lithosphere while retaining the capacity to study smaller scale features. A crustal model for the area is produced using the Bouguer anomaly and spectral analyses of the Bouguer anomaly and free

  9. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohong; Forsberg, Rene

    2007-03-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions with other conventional GPS solutions, as well as with independent data by comparison of airborne laser data with “ground truth” heights. The comparisons involve two flights: A July 5, 2003, airborne laser flight line across the North Atlantic from Iceland to Scotland, and a May 24, 2004, flight in an area of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights generally showing decimeter-level agreement. For the comparison with the independent ICESat- and LIDAR-derived “ground truth” of ocean or sea-ice heights, the statistics of comparison show a typical fit of around 10 cm RMS in the North Atlantic, and 30 cm in the sea-ice region north of Greenland. Part of the latter 30 cm error is likely due to errors in the airborne LIDAR measurement and calibration, as well as errors in the “ground truth” ocean surfaces due to drifting sea-ice. Nevertheless, the potential of the PPP method for generating 10 cm level kinematic height positioning over long baselines is illustrated.

  10. The Lunar Scout Program: An international program to survey the Moon from orbit for geochemistry, mineralogy, imagery, geodesy, and gravity

    NASA Technical Reports Server (NTRS)

    Morrison, Donald A. (Editor)

    1994-01-01

    The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.

  11. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  12. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  13. Accuracies of Positioning and Geodata Using Helicopters for Geodetic and Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    Bielenberg, O.; Meyer, U.; Vasterling, M.

    2010-12-01

    : Helicopters are frequently used for airborne surveys in geodesy and geophysics. The range of accuracies needed for proper data reconstruction is wide spread from some meters for airborne magnetics to centimeters for laser scanner measurements. This study lists up to date methods of online and offline positioning, discusses their accuracies that may be achieved and relates them to different geodetic as geophysical surveys in different types of terrain. The goal is to match helicopter positioning methods with the given survey task to optimize results and work efficiency. Some fundamental studies have been conducted on helicopter work during the DESIRE (Dead Sea Integrated Research) project in Israel and Jordan which have been continued in Germany. These studies include the impact of vibrations on INS, IMU and gravity meter systems as well as the choice of antenna locations on the shell of the helicopter.

  14. Constraining f (R ) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawii-Telescope Lensing Survey

    NASA Astrophysics Data System (ADS)

    Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui

    2016-07-01

    In this Letter, we report the observational constraints on the Hu-Sawicki f (R ) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |fR 0| for n =1 . The 95% C.L. is log10|fR 0|<-4.82 given WMAP9 priors on (Ωm , As ). With Planck15 priors, the corresponding result is log10|fR 0|<-5.16 .

  15. Constraining f(R) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawaii-Telescope Lensing Survey.

    PubMed

    Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui

    2016-07-29

    In this Letter, we report the observational constraints on the Hu-Sawicki f(R) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |f_{R0}| for n=1. The 95% C.L. is log_{10}|f_{R0}|<-4.82 given WMAP9 priors on (Ω_{m}, A_{s}). With Planck15 priors, the corresponding result is log_{10}|f_{R0}|<-5.16.

  16. Quantum gravity.

    NASA Astrophysics Data System (ADS)

    Maślanka, K.

    A model of reality based on quantum fields, but with a classical treatment of gravity, is inconsistent. Finding a solution has proved extremely difficult, possibly due to the beauty and conceptual simplicity of general relativity. There is a variety of approaches to a consistent theory of quntum gravity. At present, it seems that superstring theory is the most promising candidate.

  17. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  18. CO2 degassing in the Hartoušov mofette area, western Eger Rift, imaged by CO2 mapping and geoelectrical and gravity surveys

    NASA Astrophysics Data System (ADS)

    Nickschick, Tobias; Kämpf, Horst; Flechsig, Christina; Mrlina, Jan; Heinicke, Jens

    2015-11-01

    Strong, subcontinental mantle-dominated CO2 degassing occurs in the Hartoušov and Bublák mofette fields in the western Eger Rift. The combination of CO2 gas flux and soil gas measurements as well as gravity and geoelectric surveys provides insight into the surface and subsurface of this unique mofette area. CO2 soil gas and gas flux measurements reveal that large amounts of carbon dioxide are released via channels with diameters below 1 m. Carbon dioxide emissions of several tens and up to more than 100 kg day-1 are ejected via these small seeps. Measurements with small spacings are necessary to account for the point like, focused gas discharge in the lesser degassing surrounding. We estimate that between 23 and 97 tons of CO2 are released over an area of about 350,000 m2 each day in the Hartoušov mofette field. The application of widely used geostatistical tools leads to estimations of the CO2 discharge with very high standard deviations due to the strong positive skewness of the data distribution. Geophysical investigations via electrical resistivity tomography and gravity measurements were carried out over areas of strong seepage and reveal distinct anomalies in the subsurface below mofettes, indicating rock and sediment alterations and/or sediment transport by pressurised, ascending CO2 and water mobilised by it. This study reveals that the gas emanations only occur west of a morphological step which is related to a N-S-oriented fault zone, the Počatky-Plesná fault zone. The results of CO2 mapping and the geophysical studies can track the course of this fault zone in this area. Our results fit into a tectonic model in which the mofette fields are in the centres of two independent pull-apart basin-like structures. We hypothesise that the sinistral strike-slip movement of the Počatky-Plesná fault zone leads to a pull-apart basin-like opening, at which the strong, mantle-derived CO2 degassing occurs nowadays. Since the Hartoušov and Bublák mofette fields

  19. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  20. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  1. Planar electrostatic gradiometer for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Christophe, B.; Lebat, V.; Boulanger, D.

    2011-12-01

    The knowledge of the gravity field of the Earth has been considerably improved for the last decades, thanks to satellites, in particular, both for gravity measurements and positioning. Gravity, and especially gravity gradiometry data are then of great interest to the study of the structure of the continental margins. Space gravity measurements, in particular with the GOCE satellite in orbit since 2009, provide an absolute gravity reference and should contribute to estimate the systematic effects that would affect the surface datasets. But the spatial resolution of those data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the littoral area. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, by adapting them to an airborne environment, using a planar configuration for the gradiometer and designing and building a dedicated stabilized platform controlled by the common mode outputs of the instrument itself similarly to the drag free control of the GOCE satellite. The mains interests of the planar configuration are: - its definition, optimized for levitation in the Earth's gravity field ; - its intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth ; - its compactness, ensuring an excellent dimensional stability, a better thermal homogeneity and making the realization of the decoupling platform easier. The performance objective is 0.1 Eötvös. This lowered performance level with respect to a one hundred times better GOCE-type instrument, takes into account the difficulty of measurements

  2. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  3. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  4. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  5. Nutrition Survey of Two Consecutive Training Cycles of the Airborne Training BN, CO. ’G’, Fort Benning, Georgia, October-November 1953

    DTIC Science & Technology

    The primary purpose of this survey was to determine (a) the total food consumption from all sources by these trainees, (b) the nutrient composition...a comparison of the various methods of computing food consumption and food losses.

  6. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico.

    PubMed

    Kinsland, G L; Hurtado, M; Pope, K O

    2000-04-15

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  7. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Kinsland, G. L.; Hurtado, M.; Pope, K. O.; Ocampo, A. C. (Principal Investigator)

    2000-01-01

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  8. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  9. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  10. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  11. Advances and perspectives in bathymetry by airborne lidar

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  12. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  13. Compliance with Standard Guidelines for the Prevention of Occupational Transmission of Bloodborne and Airborne Pathogens: A Survey of Postanesthesia Nursing Practice.

    ERIC Educational Resources Information Center

    Tait, Alan R.; Voepel-Lewis, Terri; Tuttle, Dale B.; Malviya, Shobha

    2000-01-01

    A survey of 34 nurses found that 81% always complied with guidelines for caring for patients with human immunodeficiency virus or hepatitis B; only 31% complied when patients were low risk. Reasons for noncompliance were "no anticipated blood contact" (53%) or "too busy" (25%). (SK)

  14. Airborne Laser/GPS Mapping of Beaches

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Swift, R. N.; Fredrick, E. B.; Manizade, S. S.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark

    1999-01-01

    Results are presented from topographic surveys of the Assateague National Seashore Park using recently developed airborne laser and Global Positioning System (GPS) technology. During November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the NASA Goddard Space Flight Center's Wallops Flight Facility conducted surveys as a part of technology enhancement activities or warm-up missions prior to conducting elevation measurements of the Greenland Ice Sheet as part of NASA's Global Climate Change program. The resulting data are compared to surface surveys using standard techniques. The goal of these projects is to make these measurements to an accuracy of 10 cm. The measurements were made from NASA's 4-engine P-3 Orion aircraft using the Airborne Topographic Mapper (ATM), a scanning laser system. The necessary high accuracy vertical as well as horizontal positioning are provided by Global Positioning System (GPS) receivers located both on board the aircraft and at a fixed site at Wallops Island.

  15. Greenland Ice sheet mass balance from satellite and airborne altimetry

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Bevis, M. G.; Wahr, J. M.; Wouters, B.; Sasgen, I.; van Dam, T. M.; van den Broeke, M. R.; Hanna, E.; Huybrechts, P.; Kjaer, K.; Korsgaard, N. J.; Bjork, A. A.; Kjeldsen, K. K.

    2013-12-01

    Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively short distances. Hence, high spatial resolution data are required to accurately estimate volume changes. Here, we estimate ice volume change rate of the Greenland ice sheet using data from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter during 2003-2009 and CryoSat-2 data during 2010-2012. To improve the volume change estimate we supplement the ICESat and CryoSat data with altimeter surveys from NASA's Airborne Topographic Mapper (ATM) during 2003-2012 and NASA's Land, Vegetation and Ice Sensor (LVIS) during 2007-2012. The Airborne data are mainly concentrated along the ice margin and therefore significantly improve the estimate of the total volume change. Furthermore, we divide the GrIS into six major drainage basins and provide volume loss estimates during 2003-2006, 2006-2009 and 2009-2012 for each basin and separate between melt induced and dynamic ice loss. In order to separate dynamic ice loss from melt processes, we use SMB values from the Regional Atmospheric Climate Model (RACMO2) and SMB values from a positive degree day runoff retention model (Janssens & Huybrechts 2000, Hanna et al. 2011 JGR, updated for this study). Our results show increasing SMB ice loss over the last decade, while dynamic ice loss increased during 2003-2009, but has since been decreasing. Finally, we assess the estimated mass loss using GPS observations from stations located along the edge of the GrIS and measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity mission. Hanna, E., et al. (2011), Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing, J. Geophys. Res

  16. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    SciTech Connect

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.

  17. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  18. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  19. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  20. Systematic Analysis of Resolution and Uncertainties in Gravity Interpretation of Bathymetry Beneath Floating Ice

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Elieff, S. H.; Bell, R. E.

    2011-12-01

    Airborne geophysical surveys in West Antarctica and Greenland carried out during Operation IceBridge (OIB) utilized the Sander Geophysics AIRGrav gravimeter, which collects high quality data during low-altitude, draped flights. This data has been used to determine bathymetry beneath ice shelves and floating ice tongues (e.g., Tinto et al, 2010, Cochran et al, 2010). This paper systematically investigates uncertainties arising from survey, instrumental and geologic constraints in this type of study and the resulting resolution of the bathymetry model. Gravity line data is low-pass filtered with time-based filters to remove high frequency noise. The spatial filter length is dependent on aircraft speed. For parameters used in OIB (70-140 s filters and 270-290 knots), spatial filter half-wavelengths are ~5-10 km. The half-wavelength does not define a lower limit to the width of feature that can be detected, but shorter wavelength features may appear wider with a lower amplitude. Resolution can be improved either by using a shorter filter or by flying slower. Both involve tradeoffs; a shorter filter allows more noise and slower speeds result in less coverage. These filters are applied along tracks, rather than in a region surrounding a measurement. In areas of large gravity relief, tracks in different directions can sample a very different range of gravity values within the length of the filter. We show that this can lead to crossover mismatches of >5 mGal, complicating interpretation. For dense surveys, gridding the data and then sampling the grid at the measurement points can minimize this effect. Resolution is also affected by the elevation of survey flights. For a distributed mass, the gravity amplitude decreases with distance and short-wavelength components attenuate faster. This is not a serious issue for OIB, which flew draped flights <500 m above the ice surface, but is a serious factor for gravimeters that require a constant elevation above the highest

  1. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    Intelligence Agency (NGA) (Pavlis et al., 2008) and the DTU10 (Andersen, 2010) who represents the best up-to-date global gravity models (including surface gravity measurements from land, marine and airborne surveys as well as gravity and altimetry satellite measurements). The surface free-air anomaly is computed at the Earth's surface in the context of Molodensky theory and includes corrections from the mass of the atmosphere. The way gravity anomalies are computed on a worldwide basis slightly differs from the classical usage, but meets modern concerns which tend to take into account of the real Earth. The resulting anomaly maps and grids will be distributed for scientific and education purposes by the Commission for the Geological Map of the World (CGMW) (http://ccgm.free.fr) and by the Bureau Gravimetrique International (BGI) (http://bgi.omp.obs-mip.fr). Upgraded versions might be done as soon as new global gravity model will be available (including satellite GOCE data for instance). Institutions who are interested to contribute with new datasets of surface gravity measurements (i.e. ground, marine or airborne gravity data) are also invited to contact BGI bgi@cnes.fr.

  2. Airborne electromagnetics (EM) as a three-dimensional aquifer-mapping tool

    USGS Publications Warehouse

    Wynn, Jeff; Pool, Don; Bultman, Mark; Gettings, Mark; Lemieux, Jean

    2000-01-01

    The San Pedro River in southeastern Arizona hosts a major migratory bird flyway, and was declared a Riparian Conservation Area by Congress in 1988. Recharge of the adjacent Upper San Pedro Valley aquifer was thought to come primarily from the Huachuca Mountains, but the U. S. Army Garrison of Fort Huachuca and neighboring city of Sierra Vista have been tapping this aquifer for many decades, giving rise to claims that they jointly threatened the integrity of the Riparian Conservation Area. For this reason, the U. S. Army funded two airborne geophysical surveys over the Upper San Pedro Valley (see figure 1), and these have provided us valuable information on the aquifer and the complex basement structure underlying the modern San Pedro Valley. Euler deconvolution performed on the airborne magnetic data has provided a depth-to-basement map that is substantially more complex than a map obtained earlier from gravity data, as would be expected from the higher-resolution magnetic data. However, we found the output of the Euler deconvolution to have "geologic noise" in certain areas, interpreted to be post-Basin-and-Range Tertiary volcanic flows in the sedimentary column above the basement but below the ground surface.

  3. Model selection for modified gravity.

    PubMed

    Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N

    2011-12-28

    In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity.

  4. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  5. Stochastic gravity

    NASA Astrophysics Data System (ADS)

    Ross, D. K.; Moreau, William

    1995-08-01

    We investigate stochastic gravity as a potentially fruitful avenue for studying quantum effects in gravity. Following the approach of stochastic electrodynamics ( sed), as a representation of the quantum gravity vacuum we construct a classical state of isotropic random gravitational radiation, expressed as a spin-2 field,h µυ (x), composed of plane waves of random phase on a flat spacetime manifold. Requiring Lorentz invariance leads to the result that the spectral composition function of the gravitational radiation,h(ω), must be proportional to 1/ω 2. The proportionality constant is determined by the Planck condition that the energy density consist ofħω/2 per normal mode, and this condition sets the amplitude scale of the random gravitational radiation at the order of the Planck length, giving a spectral composition functionh(ω) =√16πc 2Lp/ω2. As an application of stochastic gravity, we investigate the Davies-Unruh effect. We calculate the two-point correlation function (R iojo(Oτ-δτ/2)R kolo(O,τ+δτ/2)) of the measureable geodesic deviation tensor field,R iojo, for two situations: (i) at a point detector uniformly accelerating through the random gravitational radiation, and (ii) at an inertial detector in a heat bath of the random radiation at a finite temperature. We find that the two correlation functions agree to first order inaδτ/c provided that the temperature and acceleration satisfy the relationkT=ħa/2πc.

  6. Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.

    2015-12-01

    Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical

  7. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  8. Evaluation of low- and medium-cost IMUs for airborne gravimetry with UAVs

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Bastos, M. L.; Geng, Y.; Yan, W.

    2011-12-01

    The use of Unmanned Aerial Vehicles (UAVs) has increased in a large number of fields and is proving to be a good alternative to aerial surveys with traditional (manned) aircraft. In the scope of the PITVANT (Projecto de Investigação e Tecnologia em Veículos Aéreos Não-Tripulados) project, a research project funded by the Portuguese Ministry of Defence that aims at the development and demonstration of tools and technologies for UAVs, the Astronomical Observatory of the Faculty of Sciences of the University of Porto is investigating the use of UAVs for regional airborne gravimetry. The goal is to implement a so-called strapdown gravimetry system, based on the integrated use of GNSS and a low- to medium-cost IMU (Inertial Measurement Unit) that can be setup on board the UAVs developed within PITVANT. Two basic approaches exist in strapdown GNSS/IMU gravimetry: - to compute gravity disturbances directly from the combination of GNSS derived accelerations with accelerations measured by the IMU (the accelerometry approach); - to estimate the gravity disturbances as part of an inertial navigation solution using an (extended) Kalman filter (the inertial navigation approach). Because of the limitation of low- to medium-cost inertial systems the latter approach was used here. This method has proven to be effective in previous studies with this type of GNSS/IMU systems. To define the final system architecture, the performance of several different inertial systems was recently tested during an airborne survey with a regular aircraft, i.e. a CASA C212 from the Portuguese Air Force (PAF). Among the systems on board were a medium-cost Litton LN-200 and a low-cost Crossbow AHRS440, combined with a single GNSS receiver. Different Kalman filter configurations and GNSS processing options were investigated for each of the systems. The main goal was to assess the limits of the integrated GNSS/IMU systems to sense the gravity field (scalar gravimetry) and to evaluate their use and

  9. Gravity survey and interpretation of Fort Irwin and vicinity, Mojave Desert, California: Chapter H in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Jachens, Robert C.; Langenheim, V.E.; Buesch, David C.

    2014-01-01

    In support of a hydrogeologic study of the groundwater resources on Fort Irwin, we have combined new gravity data with preexisting measurements to produce an isostatic residual gravity map, which we then separated into two components reflecting (1) the density distribution in the pre-Cenozoic basement complex and (2) the distribution of low-density Cenozoic volcanic and sedimentary deposits that lie on top of the basement complex. The second component was inverted to estimate the three-dimensional distribution of Cenozoic deposits by using constraints from geology, drillholes, and time-domain electromagnetic soundings. In most of the base, the Cenozoic deposits are no more than 300 m thick, except in the basins with more than 500 m of fill beneath Coyote Lake, Red Pass Lake, west of Nelson Lake, west of Superior Lake, Bicycle Lake, and in the vicinity of Nelson Lake.

  10. Geoid Determination At Coastal Areas From Satellite and Airborne Altimetry

    NASA Astrophysics Data System (ADS)

    Leite, F. B.; Bastos, L.; Fernandes, M. J.

    During the last ten years, the data from various satellite altimetry missions had a great impact in the definition of the sea surface topography and the Earth gravity field. How- ever, despite of its continuity, global covering and increasing accuracy, the use of satel- lite altimetry is mainly maximised in the open oceans. In the coastal and islands zones, where tidal dynamics and oceans currents have a special interest for several regional studies, the lower accuracy of these data limits the potentialities and applications of this technique. Although significant data recovery and accuracy improvement can be obtained in satellite data by applying appropriate filtering and interpolation methods, at these land/ocean transition zones, satellite altimetry information can benefit from the complementary information given by airborne altimetry/gravimetry data. As a consequence of the recent advances in GPS/INS integration for positioning and orientation of airborne sensors, it is now possible to obtain good quality airborne al- timetry data in coastal and island areas. Merging this information with satellite al- timetry, and also with existing marine gravity data, allows an accurate definition of the geoid in zones where satellite data are unavailable or are poor in quality and accu- racy. This study aims at the determination of a high accuracy regional geoid using free air anomalies derived by inversion of satellite and airborne altimetry data. The data sets used were ERS and TOPEX/POSEIDON altimeter data and airborne laser altimeter measurements collected during an observation campaign that took place in the Azores region, in 1997, in the scope of the European project AGMASCO. This paper outlines the evaluation and the impact of the results obtained and points out the main limitations and possibilities for further improvements in the use of satellite and airborne altimeter data for regional geoid mapping in coastal and island regions.

  11. Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: Petrogenesis and relationship to mantle diapirism

    NASA Astrophysics Data System (ADS)

    Clénet, Harold; Ceuleneer, Georges; Pinet, Patrick; Abily, Bénédicte; Daydou, Yves; Harris, Esther; Amri, Isma; Dantas, Céline

    2010-02-01

    Using the HyMap instrument, we have acquired visible and near infrared hyperspectral data over the Maqsad area of the Oman ophiolite (~ 15 × 60 km). This survey allowed us to identify and map the distribution of clinopyroxene-rich cumulates (inter-layered clinopyroxenites and wehrlites) whose occurrence was previously undocumented in this area. The cumulates reach several hundred meters in thickness and crop out at distances exceeding 15 km on both sides of the Maqsad former spreading centre. They occur either in mantle harzburgites, as km-sized layered intrusions surrounded by fields of pegmatitic dykes consisting of orthopyroxene-rich pyroxenite and gabbronorites, or at the base of the crustal section where they are conformably overlain by cumulate gabbros. These ultramafic cumulates crystallized from silica- and Mg-rich melts derived from a refractory mantle source (e.g. high Cr#, low [Al 2O 3], low [TiO 2]). These melts are close to high-Ca boninites, although, strictly speaking, not perfect equivalents of present-day, supra-subduction zone, boninites. Chemical stratigraphy reveals cycles of replenishment, mixing and fractional crystallization from primitive (high Mg#) melts, typical of open magma chambers and migration of inter-cumulus melts. The TiO 2 content of clinopyroxene is always low (≤ 0.2 wt.%) but quite variable compared to the associated pegmatites that are all derived from a source ultra-depleted in high field strength elements (HFSE). This variability is not caused by fractional crystallization alone, and is best explained by hybridization between the ultra-depleted melts (parent melts of the pegmatites) and the less depleted mid-ocean ridge basalts (MORB) parent of the dunitic-troctolitic-gabbroic cumulates making up the crustal section above the Maqsad diapir. We propose that, following a period of magma-starved spreading, the Maqsad mantle diapir, impregnated with tholeiitic melts of MORB affinity, reached shallow depths beneath the ocean

  12. Close-range airborne photogrammetry: an effective tool for high-resolution sandy beach morphometric surveys. Examples from embayed beaches in French Guyana.

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Fleury, Jules; Anthony, Edward; Gardel, Antoine; Dussouillez, Philippe

    2015-04-01

    have a mean vertical accuracy less than +/- 5 cm compared to the GPS control points, with a maximum of 20 cm in marginal sectors near vegetation and in the swash zone in low-water conditions. To our knowledge, this is the first time a poorly textured surface composed of sand is reconstructed by photogrammetry, contrast in the studied object being necessary for this method. Our highly accurate photo resolution and pre-processing permitted imaging enough texture to proceed. Morphological features in the upper surf zone such as rip channels, and subaerial features, such as erosion scarps and aeolian forms, clearly appear. The comparison between the DSM validates the estimation of sediment transfers and the rotation process on this beach, unlike traditional beach monitoring with GPS, which involves large uncertainty linked to sparse point acquisition. It can be claimed that photogrammetry is low-cost, user-friendly, and offers new perspectives for non-specialist users in geomorphology and other fields recquiring high-resolution topographic data. It combines the advantages of the reproducibility of GPS topographic surveys and the high density and accuracy of LIDAR, but at very advantageous cost compared to the latter.

  13. Gravity analyses for the crustal structure and subglacial geology of West Antarctica, particularly beneath Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Diehl, Theresa Marie

    The West Antarctic Ice Sheet (WAIS) is mostly grounded in broad, deep basins (down to 2.5 km below sea level) that are stretched between five crustal blocks. The geometry of the bedrock, being mostly below sea level, induces a fundamental instability in the WAIS through the possibility of runaway grounding line retreat. The crustal environment of the WAIS further influences the ice sheet's fast flow through conditions at the ice-bedrock boundary. This study focuses on understanding the WAIS by examining the subglacial geology (such as volcanoes and sedimentary basins) at the ice-bedrock boundary and the continent's deeper crustal structure- primarily using airborne gravity anomalies. The keystone of this study is a 2004-2005 aerogeophysical survey over one of the most negative mass balance glaciers on the continent: Thwaites Glacier (TG). The gravity anomalies derived from this dataset- as well as gravity-based modeling and spectral crustal boundary depth estimates- reveal a heterogeneous crustal environment beneath the glacier. The widespread Mesozoic rifting observed in the Ross Sea Embayment (RSE) of West Antarctica extends beneath TG, where the crust is ˜27 km thick and cool. Adjacent to TG, spectrally-derived shallow Moho depths for the Marie Byrd Land (MBL) crustal block can be explained by thermal support from warm mantle. I assemble here new compilations of free-air and Bouguer gravity anomalies across West Antarctica (from both airborne and satellite datasets) and re-interpret the extents of West Antarctic crustal block and their boundaries with the rift system. Airy isostatic gravity anomalies reveal that TG is relatively sediment starved, in contrast to the sediment-rich RSE. TG's fast flow velocities could be sustained in this sediment poor environment if higher heat flux in MBL was providing an ample source of subglacial melt water to the glacier. The isostatic anomalies also indicate that TG's outlet rests on a bedrock sill that will impede future

  14. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  15. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  16. Airborne investigation of bathymetric sills in Godthåbsfjord, Greenland - results from IcePOD and Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Cochran, J. R.; Boghosian, A.; Porter, D. F.

    2013-12-01

    The bathymetry of Greenlandic fjords is an important boundary condition for understanding circulation within the fjord. This in turn is crucial to the understanding of ocean-ice interactions at the margins of the Greenland ice sheet. Marine-based surveys have identified sills at the heads of many of these fjords, and demonstrated their importance to the circulation patterns within the fjords themselves. The inaccessibility of much of the Greenland fjord system leaves many regions poorly surveyed, with important data gaps remaining in the interior of the fjords. Airborne surveys provide a valuable platform for the study of fjord dynamics by offering wide coverage and the ability to survey otherwise inaccessible regions of fjords. In this study we combine results from Operation IceBridge gravity surveys with visible and infrared imagery from the IcePOD project to investigate circulation, transport, and mixing in Godthåbsfjord, Greenland, at the calving front of Kangiata Nunâta Sermia. The bathymetry of this fjord has been well mapped, but information is sparse from the inner 13 km where the fjord is filled with icebergs. Gravity data show a 4 mGal positive anomaly 10 km from the calving front. Models constrained by the gravity anomaly over a known sill further up the fjord give this newly identified sill a predicted depth of approximately 100 m. IcePOD is a multi-instrument pod flown on an LC130 operated by the New York Air National Guard. During test flights in the summer of 2013 multiple passes were made of the inner, iceberg-filled part of Godthåbsfjord with both visible and infra-red cameras. Here we compare the movement of ice within the fjord with modelled bathymetry from IceBridge to investigate the circulation of the inner part of the fjord.

  17. Network gravity

    NASA Astrophysics Data System (ADS)

    Lombard, John

    2017-01-01

    We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a term playing the role of a positive definite cosmological constant as a regulator for nondegenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in developing the program.

  18. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  19. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  20. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  1. Gravity survey and regional geology of the Prince William Sound epicentral region, Alaska: Chapter C in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.

    1966-01-01

    Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit of dense-average 2.87 g per cm3 (grams per cubic centimeter) pillow basalt and greenstone intercalated with sedimentary rocks and an upper unit of lithologically variable sandstone interbedded with siltstone or argillite. Densities of the clastic rocks in both the Valdez and Orca Groups average about 2.69 g per cm3. Granitic rocks of relatively low density (2.62 g per cm3) cut the Valdez and Orca Groups at several localities. Both the Valdez and the Orca Groups were complexly folded and extensively faulted during at least three major episodes of deformation: an early period of Cretaceous or early Tertiary orogeny, a second orogeny that probably culminated in late Eocene or early Oligocene time and was accompanied or closely followed by emplacement of granitic batholiths, and a third episode of deformation that began in late Cenozoic time and continued intermittently to the present. About 500 gravity stations were established in the Prince William Sound region in conjunction with postearthquake geologic investigations. Simple Bouguer anomaly contours trend approximately parallel to the arcuate geologic structure around the sound. Bouguer anomalies decrease northward from +40 mgal (milligals) at the southwestern end of Montague Island to -70 mgal at College and Harriman Fiords. Most of this change may be interpreted as a regional gradient caused by thickening of the continental crust. Superimposed on the gradient is a prominent gravity high of as much as 65 mgal that extends from Elrington Island on the southwest, across Knight and Glacier Islands to the Ellamar Peninsula

  2. Airborne UXO Surveys Using the MTADS

    DTIC Science & Technology

    2007-11-02

    GPS navigation, employing the latest real time kinematic ( RTK ) technology, which provides a real-time position update (at 20 Hz) with an accuracy in...Sensitivity 0.01 nT Sensor Data Rate 100 Hz GPS Navigation Data Rate 20 Hz GPS Sensor Position Accuracy 5 cm Data Acquisition System (DAQ) Compatible with...satellite clock time is used to time-stamp both position and sensor data information for later correlation. Dual GPS antennas (Trimble Zephyrs), deployed on

  3. Airborne Multi-Spectral Minefield Survey

    DTIC Science & Technology

    2005-05-01

    Quality Control . An important methodological aspect of the selected approach is the pyramidal information structure, which is reflected in the use of...the image interpreter to manually assign ground control points. After AGM processing for each individual image the results are stored in GEOTIFF file...comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 01 MAY 2005 2. REPORT TYPE N/A

  4. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  5. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  6. An Examination of Corrections for High Altitude, High Speed Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Preaux, S. A.; Diehl, T. M.; Childers, V. A.

    2009-12-01

    Standard corrections for airborne gravimetry are optimized for low altitude, low speed surveys. They are shown to have multi-mgal errors at the high altitude and high speed of the surveys for the GRAV-D project. Higher order methods for computing the Eötvös, free air and off-level corrections are investigated. The first and second order approximations for the Eötvös correction from Harlan (1968) have differences up to 6 mgal, depending on latitude, and include assumptions about Earth shape that are undesirable in a geodetic application. Similarly, first and second order approximations for the free air correction (Hackney and Featherstone 2003) differ by up to 20 mgal and contain assumptions about Earth shape. Including more sophisticated downward continuation when incorporating data into a geoid model may be preferable to applying a free air correction. Finally, an exact analytical method of correcting for aircraft motion and orientation is proposed which takes advantage of the GPS reference system to avoid Earth shape assumptions, eliminate approximations and yield vector gravity.

  7. Airborne Bacterial Diversity from the Low Atmosphere of Greater Mexico City.

    PubMed

    García-Mena, Jaime; Murugesan, Selvasankar; Pérez-Muñoz, Ashael Alfredo; García-Espitia, Matilde; Maya, Otoniel; Jacinto-Montiel, Monserrat; Monsalvo-Ponce, Giselle; Piña-Escobedo, Alberto; Domínguez-Malfavón, Lilianha; Gómez-Ramírez, Marlenne; Cervantes-González, Elsa; Núñez-Cardona, María Teresa

    2016-07-01

    Greater Mexico City is one of the largest urban centers in the world, with an estimated population by 2010 of more than 20 million inhabitants. In urban areas like this, biological material is present at all atmospheric levels including live bacteria. We sampled the low atmosphere in several surveys at different points by the gravity method on LB and blood agar media during winter, spring, summer, and autumn seasons in the years 2008, 2010, 2011, and 2012. The colonial phenotype on blood agar showed α, β, and γ hemolytic activities among the live collected bacteria. Genomic DNA was extracted and convenient V3 hypervariable region libraries of 16S rDNA gene were high-throughput sequenced. From the data analysis, Firmicutes, Proteobacteria, and Actinobacteria were the more abundant phyla in all surveys, while the genera from the family Enterobacteriaceae, in addition to Bacillus spp., Pseudomonas spp., Acinetobacter spp., Erwinia spp., Gluconacetobacter spp., Proteus spp., Exiguobacterium spp., and Staphylococcus spp. were also abundant. From this study, we conclude that it is possible to detect live airborne nonspore-forming bacteria in the low atmosphere of GMC, associated to the microbial cloud of its inhabitants.

  8. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  9. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  10. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  11. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  12. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  13. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  14. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  15. Air-borne fungi in the air of Barcelona (Spain). IV. Various isolated genera.

    PubMed

    Calvo, M A; Guarro, J; Suarez, G; Ramírez, C

    1980-07-01

    During a two-year survey on the air-borne fungi in the atmosphere of Barcelona (Spain), the following genera were isolated in decreasing order: Aureobasidium, Rhizopus, Mucor, Arthrinium, Phoma, Fusarium, Trichoderma, and Botrytis.

  16. Low-gravity experiments in critical phenomena

    NASA Technical Reports Server (NTRS)

    Moldover, Michael R.

    1986-01-01

    Studies of anomalous thermodynamic, transport, and structural phenomena in multibody systems near critical points are reviewed. The nomenclature used to describe critical points is explained; theoretical predictions of the thermodynamic properties of bulk systems are presented; and experimental tests of these predictions systems are discussed, considering equilibration and gravity effects in fluid systems and emphasizing the value of experiments conducted in a reduced-gravity environment. Several such experiments are described, and the available academic-research opportunities are briefly surveyed.

  17. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  18. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  19. Fluid/gravity correspondence for massive gravity

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Huang, Yong-Chang

    2016-11-01

    In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.

  20. 3-D Marine gravity gradiometry: Examples of exploration applications in the Gulf of Mexico

    SciTech Connect

    Bell, R.E.; Pratson, L.F.; Anderson, R.N. )

    1996-01-01

    Gravity gradiometry has the potential to become a powerful exploration tool with enhanced resolution relative to classic marine gravity. The improved resolution of gravity gradiometry for exploration applications is equivalent to the improvement 3-D seismics provided over 2-D seismics. Over the last 2 years, gravity gradiometry acquired over exploration targets has been acquired with the Bell Aerospace gravity Gradiometry Survey System (GSS). The GSS is a formerly classified gravity sensing system that contains the world's only moving base gravity gradiometer. The system measures both gravitational acceleration and gravity gradients, yielding six measurements that define the local gravity field and its gradients in three dimension. This paper will present an overview of gravity gradiometry applications illustrated with actual data from the Gulf of Mexico. Exploration examples of high-resolution gravity gradiometry use include enhancement of seismic interpretations, identification of sub-salt sediment fairways and exact location of salt body boundaries.

  1. 3-D Marine gravity gradiometry: Examples of exploration applications in the Gulf of Mexico

    SciTech Connect

    Bell, R.E.; Pratson, L.F.; Anderson, R.N.

    1996-12-31

    Gravity gradiometry has the potential to become a powerful exploration tool with enhanced resolution relative to classic marine gravity. The improved resolution of gravity gradiometry for exploration applications is equivalent to the improvement 3-D seismics provided over 2-D seismics. Over the last 2 years, gravity gradiometry acquired over exploration targets has been acquired with the Bell Aerospace gravity Gradiometry Survey System (GSS). The GSS is a formerly classified gravity sensing system that contains the world`s only moving base gravity gradiometer. The system measures both gravitational acceleration and gravity gradients, yielding six measurements that define the local gravity field and its gradients in three dimension. This paper will present an overview of gravity gradiometry applications illustrated with actual data from the Gulf of Mexico. Exploration examples of high-resolution gravity gradiometry use include enhancement of seismic interpretations, identification of sub-salt sediment fairways and exact location of salt body boundaries.

  2. Airborne Electromagnetic Mapping of Subsurface Permafrost

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.

    2011-12-01

    Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical

  3. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  4. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  5. SGA-WZ: a new strapdown airborne gravimeter.

    PubMed

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  6. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity

  7. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  8. Detecting inertial effects with airborne matter-wave interferometry

    PubMed Central

    Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658

  9. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  10. Airborne bathymetric charting using pulsed blue-green lasers.

    PubMed

    Kim, H H

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 +/- 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m(-1). A2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  11. Airborne gamma spectrometry--towards integration of European operational capability.

    PubMed

    Toivonen, Harri

    2004-01-01

    Airborne gamma spectrometry is an excellent tool for finding out in a timely manner the extent and magnitude of the dispersion of radioactive materials resulting from a nuclear disaster. To utilise existing European airborne monitoring capabilities for multilateral assistance in an accident is a complex administrative and technical matter. Several international exercises have been organised demonstrating the capability to cooperate. However, efficient mutual assistance between European countries requires conceptual work, standards and harmonisation of software. A unified radiological vocabulary and data exchange format in XML need to be developed. A comprehensive database is essential for data assimilation. An operations centre is needed for management and planning of surveys.

  12. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  13. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  14. A gravity survey of parts of quadrangles 26E, 26F, 27E, and 27F, northeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Miller, C.H.; Showail, A.A.; Kane, M.F.; Khoja, I.A.; Al Ghandi, S. A.

    1989-01-01

    The greatest complete Bouguer anomaly is associated with basaltic lava flows located in the northeastern part of the survey area. The thickness of the basalt in outcrop does not account for the anomalies with the highest amplitudes, but the latter may be due to the presence of a basalt-filled vent. Those anomalies that are present do not define the basalt flows well, but the largest free-air anomaly occurs over the southwestern margin of the Salma Caldera, located about 15 km from the basalt flows. The source of the free-air anomaly is unknown, but it may be related to another hidden basaltic vent.

  15. Urine specific gravity test

    MedlinePlus

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  16. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  17. Low Gravity Improves Welds

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.

    1993-01-01

    Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.

  18. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  19. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  20. Precision gravity networks at Lassen Peak and Mount Shasta, California

    USGS Publications Warehouse

    Jachens, Robert C.; Dzurisin, Daniel; Elder, W.P.; Saltus, R.W.

    1983-01-01

    Reoccupiable precision gravity networks for the purpose of monitoring volcanic activity were established in the vicinity of Lassen Peak and Mt. Shasta. Base-line measurements were made during the summer of 1981, nearly coincident in time with other base-line geodetic measurements. The gravity surveys yielded gravity values at network stations relative to local bases with typical uncertainties of 0.007 mGal (1 computed standard error).

  1. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  2. Hiding neutrino mass in modified gravity cosmologies

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  3. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  4. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  5. A combined magnetometry and gravity study across Zagros orogeny in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Oskooi, Behrooz

    2015-11-01

    In this work, the structural geology and the tectonic conditions of the Zagros orogeny along the route of Qom to Kermanshah cities were investigated using the combined geophysical methods of the airborne magnetometry and the ground-based gravity data. Airborne magnetometry data of Iran with a line space of survey, 7.5 km, were used to model the magnetic susceptibility property along the route. At first, the airborne magnetic data were stably 500-m downward continued to the ground surface in order to enhance minor changes of the Earth's magnetic field over the studied region. Afterward, 3D inverse modeling of the magnetic data was implemented to the downward continued data, and subsequently the section of magnetic susceptibility variation along the desired route was extracted and imaged at depth. The acquired model could appropriately predict the observed magnetic data, showing low misfit values between the observation and the predicted data. The analytic signal filter was applied to the reduced-to-pole (RTP) magnetic data leading to the determination of the active and probable hidden faults in the structural zones of the Zagros, such as Sanandaj-Sirjan, Central Domain (CD) and Urumieh-Dokhtar based upon the generated peaks along the profile of analytic signal filter. In addition, the density variations of the subsurface geological layers were determined by 3D inverting of the ground-based gravity data over the whole study area, and extracting this property along the route. The joint models of magnetic susceptibility and density variation could appropriately localize the traces of faults along with the geologically and tectonically structural boundaries in the region. The locations of faults correspond well to the variation of geophysical parameters on the inverted sections. Probable direction, slope and extension at depth of these faults were also determined on the sections, indicating a high tectonized zone of the Sanandaj-Sirjan Zone (SSZ) parallel to the zone of

  6. Gravity and magnetic anomalies used to delineate geologic features associated with earthquakes and aftershocks in the central Virginia seismic zone

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.

    2013-12-01

    Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the

  7. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  8. Quantization of emergent gravity

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  9. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  11. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  12. Gravity Signature of the Teague Ring Impact Structure, Western Australia

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1998-01-01

    As part of a multidisciplinary effort to better define the nature of the Teague Ring structure and to understand specifics about the crustal structure, a GPS controlled gravity survey of the feature was undertaken in the austral winter of 1996.

  13. Einstein gravity, massive gravity, multi-gravity and nonlinear realizations

    NASA Astrophysics Data System (ADS)

    Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark

    2015-07-01

    The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.

  14. How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit - A case study from the Quadrilátero Ferrífero (Brazil)

    NASA Astrophysics Data System (ADS)

    Carlos, Dionísio U.; Uieda, Leonardo; Barbosa, Valeria C. F.

    2016-07-01

    Airborne gravity gradiometry data have been recently used in mining surveys to map the 3D geometry of ore deposits. This task can be achieved by different gravity-gradient inversion methods, many of which use a voxel-based discretization of the Earth's subsurface. To produce a unique and stable solution, an inversion method introduces particular constraints. One constraining inversion introduces a depth-weighting function in the first-order Tikhonov regularization imposing a smoothing on the density-contrast distributions that are not restricted to near-surface regions. Another gravity-gradient inversion, the method of planting anomalous densities, imposes compactness and sharp boundaries on the density-contrast distributions. We used these two inversion methods to invert the airborne gravity-gradient data over the iron-ore deposit at the southern flank of the Gandarela syncline in Quadrilátero Ferrífero (Brazil). Because these methods differ from each other in the particular constraint used, the estimated 3D density-contrast distributions reveal different geologic features of ore deposit. The depth-weighting smoothing inversion reveals variable dip directions along the strike of the retrieved iron-ore body. The planting anomalous density inversion estimates a compact iron-ore mass with a single density contrast, which reveals a variable volume of the iron ore along its strike increasing towards the hinge zone of the Gandarela syncline which is the zone of maximum compression. The combination of the geologic features inferred from each estimate leads to a synergistic effect, revealing that the iron-ore deposit is strongly controlled by the Gandarela syncline.

  15. Airborne gamma-ray spectrometry in uranium exploration

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, S. S.

    1992-07-01

    Uranium exploration is of paramount importance to India to maximize the indigeneous resources to meet the ever increasing demand for energy. Comprehensive regional and local zones of uranium mineralization are needed to be resolved. Such data comprise information on radioactivity in various energy ranges and on lithological knowledge. Airborne gamma-ray spectrometric techniques are particularly suited to provide spatial information. This review briefly discusses the conventional data presentation, statistically significant maps and the schemes suitable for classification of mineralized zones. A brief introduction is provided to airborne gamma-ray data, their acquisition, analysis, processing and interpretation to bring out their role in designing suitable models of uranium resources. State-of-the-art in uranium exploration covers radiometric mapping through airborne gamma-ray surveys. Through the examples of the Indian work done during this decade, the state-of-the-art and its usefulness in the country has been illustrated. It is concluded that the high sensitivity airborne gamma-ray spectrometric surveys coupled with modern methods of data analysis can further narrow down the targets.

  16. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  17. Rapid approximate inversion of airborne TEM

    NASA Astrophysics Data System (ADS)

    Fullagar, Peter K.; Pears, Glenn A.; Reid, James E.; Schaa, Ralf

    2015-11-01

    Rapid interpretation of large airborne transient electromagnetic (ATEM) datasets is highly desirable for timely decision-making in exploration. Full solution 3D inversion of entire airborne electromagnetic (AEM) surveys is often still not feasible on current day PCs. Therefore, two algorithms to perform rapid approximate 3D interpretation of AEM have been developed. The loss of rigour may be of little consequence if the objective of the AEM survey is regional reconnaissance. Data coverage is often quasi-2D rather than truly 3D in such cases, belying the need for `exact' 3D inversion. Incorporation of geological constraints reduces the non-uniqueness of 3D AEM inversion. Integrated interpretation can be achieved most readily when inversion is applied to a geological model, attributed with lithology as well as conductivity. Geological models also offer several practical advantages over pure property models during inversion. In particular, they permit adjustment of geological boundaries. In addition, optimal conductivities can be determined for homogeneous units. Both algorithms described here can operate on geological models; however, they can also perform `unconstrained' inversion if the geological context is unknown. VPem1D performs 1D inversion at each ATEM data location above a 3D model. Interpretation of cover thickness is a natural application; this is illustrated via application to Spectrem data from central Australia. VPem3D performs 3D inversion on time-integrated (resistive limit) data. Conversion to resistive limits delivers a massive increase in speed since the TEM inverse problem reduces to a quasi-magnetic problem. The time evolution of the decay is lost during the conversion, but the information can be largely recovered by constructing a starting model from conductivity depth images (CDIs) or 1D inversions combined with geological constraints if available. The efficacy of the approach is demonstrated on Spectrem data from Brazil. Both separately and in

  18. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.

  19. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    time cosmology and the big bang, as well as TeV-scale gravity models testable at the Large Hadron Collider. On different grounds, Monte-Carlo studies of the gravitational partition function based on the discrete causal dynamical triangulations approach provide an a priori independent avenue towards unveiling the non-perturbative features of gravity. As a highlight, detailed simulations established that the phase diagram underlying causal dynamical triangulations contains a phase where the triangulations naturally give rise to four-dimensional, macroscopic universes. Moreover, there are indications for a second-order phase transition that naturally forms the discrete analog of the non-Gaussian fixed point seen in the continuum computations. Thus there is a good chance that the discrete and continuum computations will converge to the same fundamental physics. This focus issue collects a series of papers that outline the current frontiers of the gravitational asymptotic safety program. We hope that readers get an impression of the depth and variety of this research area as well as our excitement about the new and ongoing developments. References [1] Weinberg S 1979 General Relativity, an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)

  20. Airborne Laser/GPS Mapping of Assateague National Seashore Beach

    NASA Technical Reports Server (NTRS)

    Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark; Hulslander, William

    1997-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  1. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    USGS Publications Warehouse

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  2. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  3. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  4. Modeling void abundance in modified gravity

    NASA Astrophysics Data System (ADS)

    Voivodic, Rodrigo; Lima, Marcos; Llinares, Claudio; Mota, David F.

    2017-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f (R ) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of void and halo statistics including their abundances, profiles and correlations should be effective in distinguishing modified gravity models that display different screening mechanisms.

  5. Lunar gravity - Apollo 17

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Wimberly, R. N.; Wollenhaupt, W. R.

    1974-01-01

    Gravity results are displayed as a band of contours about 60 km wide spanning 140 deg of frontside longitude. The contours traverse Grimaldi, Mare Procellarum, Copernicus, Apennines, Mare Serenitatis, Littrow, and Mare Crisium. Redundant gravity areas previously mapped by Apollos 14, 15, 16, and the Apollo subsatellites are tabulated and show excellent consistency. Modeling of Grimaldi reveals a loading greater than the known mascons and thus makes Grimaldi the smallest known mascon feature. Copernicus' gravity profile is best modeled with a mass defect for the basin and a mass excess for the rim. Mare Serenitatis has an irregular mass distribution with central gravity highs shifted approximately 3 deg in latitude.

  6. Tuned borehole gravity gradiometer

    SciTech Connect

    Lautzenhiser, T.V.; Nekut, A.G. Jr.

    1986-04-15

    A tuned borehole gravity gradiometer is described for detecting variations in gravity gradient which consists of: a suspended dipole mass system having symmetrically distributed dipole masses and suspension means for suspending the dipole masses such that the gravity gradient to be measured produces an angular displacement about a rotation axis of the dipole mass system from a reference position; and tuning means with the dipole mass system for selectively varying the sensitivity to angular displacements with respect to the rotation axis of the dipole mass system to variations in gravity gradient, wherein the tuning means includes means for selectively varying the metacentric height of the dipole mass system.

  7. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  8. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic

  9. Short-Term Temporal Variability in Airborne Bacterial and Fungal Populations▿

    PubMed Central

    Fierer, Noah; Liu, Zongzhi; Rodríguez-Hernández, Mari; Knight, Rob; Henn, Matthew; Hernandez, Mark T.

    2008-01-01

    Airborne microorganisms have been studied for centuries, but the majority of this research has relied on cultivation-dependent surveys that may not capture all of the microbial diversity in the atmosphere. As a result, our understanding of airborne microbial ecology is limited despite the relevance of airborne microbes to human health, various ecosystem functions, and environmental quality. Cultivation-independent surveys of small-subunit rRNA genes were conducted in order to identify the types of airborne bacteria and fungi found at a single site (Boulder, CO) and the temporal variability in the microbial assemblages over an 8-day period. We found that the air samples were dominated by ascomycete fungi of the Hypocreales order and a diverse array of bacteria, including members of the proteobacterial and Cytophaga-Flavobacterium-Bacteroides groups that are commonly found in comparable culture-independent surveys of airborne bacteria. Bacterium/fungus ratios varied by 2 orders of magnitude over the sampling period, and we observed large shifts in the phylogenetic diversity of bacteria present in the air samples collected on different dates, shifts that were not likely to be related to local meteorological conditions. We observed more phylogenetic similarity between bacteria collected from geographically distant sites than between bacteria collected from the same site on different days. These results suggest that outdoor air may harbor similar types of bacteria regardless of location and that the short-term temporal variability in airborne bacterial assemblages can be very large. PMID:17981945

  10. Evaluation of the new gravity control in Poland

    NASA Astrophysics Data System (ADS)

    Sękowski, M.; Dykowski, P.; Krynski, J. S.

    2015-12-01

    The new gravity control in Poland is based on absolute gravity measurements. It consists of 28 fundamental stations and 168 base stations. Fundamental stations are located in laboratories; they are to be surveyed in 2014 with the FG5-230 of the Warsaw University of Technology. Base stations are monumented field stations; they were surveyed in 2012 and 2013 with the A10-020 gravimeter. They are the subject of the paper. Besides absolute gravity measurements the vertical gravity gradient was precisely determined at all 168 base stations. Inconsistency of the determined vertical gravity gradients with respect to the normal ones has been presented. 77 base stations are also the stations of the previous gravity (POGK98) established in 90. of 20 century. Differences between newly determined gravity at those stations with those of POGK98 were evaluated. Alongside the establishment of the base stations of the gravity control multiple additional activities were performed to assure and provide the proper gravity reference level. They concerned regular gravity measurements on monthly basis with the A10-020 at three sites in Borowa Gora Geodetic-Geophysical Observatory, calibrations of metrological parameters of the A10-020 gravimeter and scale factor calibrations of LCR gravimeters, participation with the A10-020 in the international (ECAG2011, ICAG2013) and regional comparison campaigns of absolute gravimeters, and local comparisons of the A10-020 with the FG5-230. The summary of the work performed during the establishment of the gravity control is best described by total uncertainty budget for the A10-020 gravimeter determined on each of the 168 gravity stations.

  11. Observational constraints on exponential gravity

    SciTech Connect

    Yang, Louis; Lee, Chung-Chi; Luo, Ling-Wei; Geng, Chao-Qiang

    2010-11-15

    We study the observational constraints on the exponential gravity model of f(R)=-{beta}R{sub s}(1-e{sup -R/R}{sub s}). We use the latest observational data including Supernova Cosmology Project Union2 compilation, Two-Degree Field Galaxy Redshift Survey, Sloan Digital Sky Survey Data Release 7, and Seven-Year Wilkinson Microwave Anisotropy Probe in our analysis. From these observations, we obtain a lower bound on the model parameter {beta} at 1.27 (95% C.L.) but no appreciable upper bound. The constraint on the present matter density parameter is 0.245<{Omega}{sub m}{sup 0}<0.311 (95% C.L.). We also find out the best-fit value of model parameters on several cases.

  12. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  13. ATHLETE: Low Gravity Testbed

    NASA Technical Reports Server (NTRS)

    Qi, Jay Y.

    2011-01-01

    The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a vehicle concept developed at Jet Propulsion Laboratory as a multipurpose robot for exploration. Currently, the ATHLETE team is working on creating a low gravity testbed to physically simulate ATHLETE landing on an asteroid. Several projects were worked on this summer to support the low gravity testbed.

  14. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  15. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  16. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  17. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  18. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  19. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  20. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  1. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  2. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  3. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  4. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  5. Exploring Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2014-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity

  6. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  7. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  8. The use of airborne geophysics for levee classification and assessment

    NASA Astrophysics Data System (ADS)

    Dunbar, Joseph B.

    2011-12-01

    This research is the first known application into using airborne geophysical methods to evaluate and classify levees. This research is an important step toward developing new technologies and methods to rapidly screen and evaluate earthen flood control levees for safety against flooding. An investigation of airborne geophysical methods was conducted on levees in the lower Rio Grande Valley and involved electromagnetic induction, magnetometer, and LiDAR surveys of the levee system. Airborne EM signatures were analyzed by geologic mapping of floodplain depositional environments, examination of published soils data, and drilling of borings. A geographic information system was developed to manage the various data sets and evaluate historic land use changes and development of the flood control systems to better understand the signatures using airborne methods. This research presents information about the historic basis for evaluating and classifying levees, which is based primarily on the federal perspective and flood control experiences in the lower Mississippi River Valley, where national floodplain engineering methods and standards were developed. This research examines the evolution of today's flood control policy, and the development of engineering assessment procedures, and the application of geophysical methods to provide critical information about levee failure mechanisms and assessment of flood control systems. This research demonstrates that topographic base maps and Sengpiel sections showing the results of electrical conductivity or resistivity surveys at different frequencies along the levee corridor provide accurate and valuable information to determine the composition of floodplain soils and the foundation stratigraphy to assess modes of levee failure, to aid in the placement of borings to obtain material properties of the levee and foundation, and to determine the extent of levee reaches with similar properties for the engineering analysis. The main

  9. Testing gravity with EG: mapping theory onto observations

    NASA Astrophysics Data System (ADS)

    Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine

    2015-12-01

    We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.

  10. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  11. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  12. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  13. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  14. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  15. Data management based on geocoding index and adaptive visualization for airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Zhi, Xiaodong

    2008-10-01

    With more surveying practice and deeper application, data post-process for airborne LiDAR system has been extracted lots of attention in data accuracy, post-process, fusion, modeling, automation and visualization. However, post-process and flexible visualization were found to be the bottle-neck which limits the LiDAR data usage for industrial applications. The cause of above bottle-neck problems is great capacity for LiDAR system. Thus in article a geocoding index based multivariate data management and adaptive visualization will be studied for based on the feature of airborne LiDAR's data to improve automatization of post-process and surveying efficiency.

  16. Ocean Melting Greenland (OMG) bathymetric survey of northwest Greenland and implications for the recent evolution of its glaciers

    NASA Astrophysics Data System (ADS)

    Wood, M.; Rignot, E. J.; Willis, J. K.; Fenty, I. G.

    2015-12-01

    Oceans Melting Greenland (OMG) is a five-year Earth Ventures Suborbital Mission funded by NASA to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet, which includes measurements of seafloor bathymetry from multibeam surveys and airborne gravity, glacier surface elevation from high-frequency radar interferometry, and temperature/salinity/depth from vessels and airborne-dropped probes. Here, we describe the results of the 2016 bathymetry survey of northwest Greenland that took place in the summer of 2015: july 22-August 19 and Sept 2-Sept 16 spanning from Ilulissat to Thule AFB in north Greenland, and to be complemented by a survey of southeast Greenland in 2016. We deployed a multibeam Reson 7160 with 512 beams installed on the hull of the Cape Race vessel, with enhanced capabilities for fjord wall and ice face mapping. The survey tracks were optimized based on the IBCAO3 database, recent cruises, airborne gravity data collected by NASA Operation IceBridge which indicated the presence of troughs, bed topography mapped inland using a mass conservation approach, the spatial distribution of ice discharge to locate the largest outlets and maximizing the number of major fjords sampled during the survey, with the goal to identify all troughs that are major pathways for subsurface ocean heat, and constrain as many glacier ice front thickness as permitted by time and the practicality of navigating the ice-choked fjords. The data reveal many deep, U-shaped, submarine valleys connected to the glaciers, intercut with sills and over deepened in narrower passages where former glaciers and ice streams merged into larger units; as well as fjords ending in shallow plateaus with glaciers in retreated positions. The presence of warm, salty water of Atlantic origin (AW) in the fjords is documented using CTD. Some glaciers sit on shallow plateaus in cold, fresh polar waters (PW) at the end of deep fjords, while others are deeper and standing in

  17. Phenomenological Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Kimberly, Dagny; Magueijo, Joa~O.

    2005-08-01

    These notes summarize a set of lectures on phenomenological quantum gravity which one of us delivered and the other attended with great diligence. They cover an assortment of topics on the border between theoretical quantum gravity and observational anomalies. Specifically, we review non-linear relativity in its relation to loop quantum gravity and high energy cosmic rays. Although we follow a pedagogic approach we include an open section on unsolved problems, presented as exercises for the student. We also review varying constant models: the Brans-Dicke theory, the Bekenstein varying α model, and several more radical ideas. We show how they make contact with strange high-redshift data, and perhaps other cosmological puzzles. We conclude with a few remaining observational puzzles which have failed to make contact with quantum gravity, but who knows... We would like to thank Mario Novello for organizing an excellent school in Mangaratiba, in direct competition with a very fine beach indeed.

  18. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The following subject areas are covered: (1) thermal control issues; (2) attitude control sybsystem; (3) configuration constraints; (4) payload; (5) acceleration requirements on Variable Gravity Laboratory (VGL); and (6) VGL configuration highlights.

  19. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  20. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  1. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  2. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  3. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    NASA Astrophysics Data System (ADS)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  4. Effects of gravity data quality and spacing on the accuracy of the geoid in South Korea

    NASA Astrophysics Data System (ADS)

    Hong, C.-K.; Kwon, J. H.; Lee, B. M.; Lee, J.; Choi, Y. S.; Lee, S.-B.

    2009-07-01

    The effects of gravity data quality and spacing on the accuracy of the computed geoid are analyzed. The analysis is performed using simulated gravity data that accommodate the real gravity signal in South Korea. The reference geoid is generated using both simulated gravity data and digital terrain models (DTM), assuming that both data sets are errorless. By artificially controlling the gravity data quality and spacing, we are able to calculate and analyze the geoid errors. The results show that the current distribution of real gravity data in South Korea causes geoid errors, with the standard deviation being as much as 8 cm, and that these geoid errors are mainly caused by the distribution of gravity data rather than by the noise in the data. Areas showing large geoid errors are also clearly identified; these areas should be subjected to supplementary gravity surveying at data spacing smaller than 2 km to achieve a 5-cm level of geoid accuracy.

  5. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  6. Time dependent corrections to absolute gravity determinations in the establishment of modern gravity control

    NASA Astrophysics Data System (ADS)

    Dykowski, Przemyslaw; Krynski, Jan

    2015-04-01

    The establishment of modern gravity control with the use of exclusively absolute method of gravity determination has significant advantages as compared to the one established mostly with relative gravity measurements (e.g. accuracy, time efficiency). The newly modernized gravity control in Poland consists of 28 fundamental stations (laboratory) and 168 base stations (PBOG14 - located in the field). Gravity at the fundamental stations was surveyed with the FG5-230 gravimeter of the Warsaw University of Technology, and at the base stations - with the A10-020 gravimeter of the Institute of Geodesy and Cartography, Warsaw. This work concerns absolute gravity determinations at the base stations. Although free of common relative measurement errors (e.g. instrumental drift) and effects of network adjustment, absolute gravity determinations for the establishment of gravity control require advanced corrections due to time dependent factors, i.e. tidal and ocean loading corrections, atmospheric corrections and hydrological corrections that were not taken into account when establishing the previous gravity control in Poland. Currently available services and software allow to determine high accuracy and high temporal resolution corrections for atmospheric (based on digital weather models, e.g. ECMWF) and hydrological (based on hydrological models, e.g. GLDAS/Noah) gravitational and loading effects. These corrections are mostly used for processing observations with Superconducting Gravimeters in the Global Geodynamics Project. For the area of Poland the atmospheric correction based on weather models can differ from standard atmospheric correction by even ±2 µGal. The hydrological model shows the annual variability of ±8 µGal. In addition the standard tidal correction may differ from the one obtained from the local tidal model (based on tidal observations). Such difference at Borowa Gora Observatory reaches the level of ±1.5 µGal. Overall the sum of atmospheric and

  7. What Is Gravity?

    ERIC Educational Resources Information Center

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  8. Hydrogeologic Framework of the Upper Santa Cruz Basin (Arizona and Sonora) using Well Logs, Geologic Mapping, Gravity, Magnetics, and Electromagnetics

    NASA Astrophysics Data System (ADS)

    Callegary, J. B.; Page, W. R.; Megdal, S.; Gray, F.; Scott, C. A.; Berry, M.; Rangel, M.; Oroz Ramos, L.; Menges, C. M.; Jones, A.

    2011-12-01

    In 2006, the U.S. Congress passed the U.S.-Mexico Transboundary Aquifer Assessment Act which provides a framework for study of aquifers shared by the United States and Mexico. The aquifer of the Upper Santa Cruz Basin was chosen as one of four priority aquifers for several reasons, including water scarcity, a population greater than 300,000, groundwater as the sole source of water for human use, and a riparian corridor that is of regional significance for migratory birds and other animals. Several new mines are also being proposed for this area which may affect water quality and availability. To date, a number of studies have been carried out by a binational team composed of the U.S. Geological Survey, the Mexican National Water Commission, and the Universities of Arizona and Sonora. Construction of a cross-border hydrogeologic framework model of the basin between Amado, Arizona and its southern boundary in Sonora is currently a high priority. The relatively narrow Santa Cruz valley is a structural basin that did not experience the same degree of late Cenozoic lateral extension and consequent deepening as found in other basin-and-range alluvial basins, such as the Tucson basin, where basin depth exceeds 3000 meters. This implies that storage may be much less than that found in other basin-and-range aquifers. To investigate the geometry of the basin and facies changes within the alluvium, a database of over one thousand well logs has been developed, geologic mapping and transient electromagnetic (TEM) surveys have been carried out, and information from previous electromagnetic, magnetic, and gravity studies is being incorporated into the hydrogeologic framework. Initial geophysical surveys and analyses have focused on the portion of the basin west of Nogales, Arizona, because it supplies approximately 50% of that city's water. Previous gravity and magnetic modeling indicate that this area is a narrow, fault-controlled half graben. Preliminary modeling of airborne

  9. Enhanced analysis methods to derive the spatial distribution of 131I deposition on the ground by airborne surveys at an early stage after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E; Reed, Michael S; Blumenthal, Daniel J

    2013-08-01

    This paper applies both new and well tested analysis methods to aerial radiological surveys to extract the I ground concentrations present after the March 2011 Fukushima Daiichi nuclear power plant (NPP) accident. The analysis provides a complete map of I deposition, an important quantity incalculable at the time of the accident due to the short half-life of I and the complexity of the analysis. A map of I deposition is the first step in conducting internal exposure assessments, population dose reconstruction, and follow-up epidemiological studies. The short half-life of I necessitates the use of aerial radiological surveys to cover the large area quickly, thoroughly, and safely. Teams from the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) performed aerial radiological surveys to provide initial maps of the dispersal of radioactive material in Japan. This work reports on analyses performed on a subset of the initial survey data by a joint Japan-U.S. collaboration to determine I ground concentrations. The analytical results show a high concentration of I northwest of the NPP, consistent with the previously reported radioactive cesium deposition, but also shows a significant I concentration south of the plant, which was not observed in the original cesium analysis. The difference in the radioactive iodine and cesium patterns is possibly the result of differences in the ways these materials settle out of the air.

  10. The planar electrostatic gradiometer GREMLIT for airborne geodesy and its dedicated controlled platform

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Christophe, Bruno; Huynh, Phuong-Anh; Lebat, Vincent; Perrot, Eddy

    2015-04-01

    Thanks to global positioning satellites constellations and to recent space gravity missions, the knowledge of the gravity field of the Earth has been considerably improved this last decade. Nevertheless these gravity data do not address spatial resolution shorter than 90 km and airborne gravity data collection will be of the highest interest to complete them at the short wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like for example land/sea transition. Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is composed of a double planar electrostatic gradiometer with eight proof-masses in a cubic configuration, the GREMLIT instrument is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support 1g ± 1g along the vertical axis. In addition to be well suited to sustain the proof-mass levitation in the Earth's gravity field, the planar configuration of each accelerometer also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. Realistic simulations, based on actual data and recorded environmental aircraft perturbations, demonstrate that a performance better or equal to one Eötvös can be obtained at least along the two horizontal components of the gravity gradient. If the performance of the electrostatic gradiometer is well assessed through the experience of the space accelerometers, the overall performance has also to take into account the estimated

  11. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  12. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  13. Degeneracies in parametrized modified gravity models

    SciTech Connect

    Hojjati, Alireza

    2013-01-01

    We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.

  14. Coupled Gravity and Elevation Measurement of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Baumgartner, F.

    2005-01-01

    During June 2003, we measured surface gravity at six locations about a glaciological measurement site located on the South-central Greenland Ice. We operated a GPS unit for 90 minutes at each site -the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. Two gravimeters were used simultaneously at each site. Measurements were repeated at each site with at time lapse of at least 50 minutes. We measured snow physical properties in two shallow pits The same measurement sites were occupied in 1981 and all were part of a hexagonal network of geodetic and glaciological measurements established by The Ohio State University in 1980. Additional gravity observations were acquired at three of the sites in 1993 and 1995. Gravity data were collected in conjunction with Doppler satellite measurements of position and elevation in 1981 and global positioning system measurements subsequently. The use of satellite navigation techniques permitted reoccupation of the same sites in each year to within a few 10 s of meters or better. After detrending the gravity data, making adjustments for tides and removing the residual effects of local spatial gradients in gravity, we observe an average secular decrease in gravity of about 0.01 milligal/year, but with tenths of milligal variations about the mean trend. The trend is consistent with a nearly linear increase in surface elevation of between 7 to 10 c d y r (depending on location) as measured by repeated airborne laser altimeter, surface Doppler satellite and GPS elevation measurements. Differences between the residual gravity anomalies after free air correction may be attributable to local mass changes. This project is a collaboration between the Byrd Polar Research Center of the Ohio State University and the Arctic

  15. Exposure to airborne asbestos in buildings

    SciTech Connect

    Lee, R.J.; Van Orden, D.R.; Corn, M.; Crump, K.S. )

    1992-08-01

    The concentration of airborne asbestos in buildings and its implication for the health of building occupants is a major public health issue. A total of 2892 air samples from 315 public, commercial, residential, school, and university buildings has been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result of exposure to the presence of asbestos containing materials (ACM). The average concentration of all asbestos structures was 0.02 structures/ml (s/ml) and the average concentration of asbestos greater than or equal to 5 microns long was 0.00013 fibers/ml (f/ml). The concentration of asbestos was higher in schools than in other buildings. In 48% of indoor samples and 75% of outdoor samples, no asbestos fibers were detected. The observed airborne concentration in 74% of the indoor samples and 96% of the outdoor samples is below the Asbestos Hazard Emergency Response Act clearance level of 0.01 s/ml. Finally, using those fibers which could be seen optically, all indoor samples and all outdoor samples are below the Occupational Safety and Health Administration permissible exposure level of 0.1 f/ml for fibers greater than or equal to 5 microns in length. These results provide substantive verification of the findings of the U.S. Environmental Protection Agency public building study which found very low ambient concentrations of asbestos fibers in buildings with ACM, irrespective of the condition of the material in the buildings.

  16. Champ Accelerometer: Evaluation and Contribution To The Gravity Mission

    NASA Astrophysics Data System (ADS)

    Perosanz, F.; Loyer, S.; Bruinsma, S.; Tamagnan, D.; Lemoine, J. M.; Biancale, R.; Fayard, T.; Vales, N.; Touboul, P.

    The STAR accelerometer on-board the German CHAMP satellite delivers non- gravitational accelerations with an unprecedented resolution. This study presents the global evaluation of the instrument in terms of continuous measurement and "House Keeping" parameters surveying, a posteriori calibration strategy and results and mis- function analysis and correction. In addition the contribution of the STAR accelerom- eter to dynamic orbit computation and gravity modelling is evaluated. Different orbit fit solutions and geoid models resulting from gravity field test models are compared.

  17. Improved configuration of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Lebat, V.; Christophe, B.; Douch, K.; Panet, I.

    2013-12-01

    The knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to recent space gravity missions. However these gravity data do not adresse spatial resolution shorter than 90 km. Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is more particularly developed to complete them at the short wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like for example land/sea transition. Built using a double planar electrostatic gradiometer with eight proof-masses in a cubic configuration, the GREMLIT instrument is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support 1g × 1g along the vertical axis. In addition to be well suited to sustain the proof-mass levitation in the Earth's gravity field, the planar configuration of each accelerometer also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. Taking into account the estimated performance of the platform and associated with its additional attitude and angular rate sensors, the gradiometer differential measurements along the two horizontal axes provide the necessary information to extract 5 of the 6 components of the gravity gradient tensor at the location of the instrument with a performance objective between 0.1 and 1 Eötvös along the two Txx and Tyy horizontal components. The last vertical Tzz component of the gravity gradient

  18. Interest of a combined electrostatic/cold atoms gradiometers configuration for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Christophe, Bruno; Douch, Karim; Panet, Isabelle; Bresson, Alexandre

    2014-05-01

    During these two last decades, the knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to recent space gravity missions. However these gravity data do not address spatial resolution shorter than 90 km. Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is more particularly developed to complete them at the short wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like for example land/sea transition. Built using a double planar electrostatic gradiometer with eight proof-masses in a cubic configuration, the GREMLIT instrument is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support 1g ± 1g along the vertical axis. In addition to be well suited to sustain the proof-mass levitation in the Earth's gravity field, the planar configuration of each accelerometer also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. Taking into account the estimated performance of the platform and associated with its additional attitude and angular rate sensors, the gradiometer differential measurements along the two horizontal axes provide the necessary information to extract 5 of the 6 components of the gravity gradient tensor at the location of the instrument with a performance objective better than 1 Eötvös along the two Txx and Tyy horizontal components. The last vertical Tzz component

  19. Airborne EM for mine infrastructure planning

    NASA Astrophysics Data System (ADS)

    Wijns, Chris

    2016-08-01

    Airborne electromagnetic (AEM) surveys with near-surface vertical resolution provide rapid and comprehensive coverage of a mine site ahead of infrastructure planning. In environments of sufficient electrical conductivity contrast, the data will map variations in the depth to bedrock, providing guidance for expected excavation depths for solid building foundations, or mine pre-strip volumes. Continuous coverage overcomes the severe areal limitation of relying only on drilling and test pits. An AEM survey in northern Finland illustrates the success of this approach for guiding the placement of a mine crusher and related infrastructure. The cost of the EM data collection and interpretation is insignificant in comparison to the US$300 million capital cost of the mine infrastructure. This environment of shallow glacial cover challenges the limits of AEM resolution, yet analysis of subsequently collected three-dimensional (3D) surface seismic data and actual pre-strip excavation depths reinforces the predictive, but qualitative, mapping capability of the AEM. It also highlights the need to tune the modelling via petrophysics for the specific goal of the investigation, and exposes the limitations of visual drill core logging.

  20. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  1. Superconducting gravity gradiometers for underground target recognition. Final report

    SciTech Connect

    Adriaans, M.J.

    1998-01-01

    One of the most formidable intelligence challenges existing in the non-proliferation community is the detection of buried targets. The physical parameter that all buried targets share, whether the target is buried armaments, a tunnel or a bunker, is mass. In the case of buried armaments, there is an excess mass (higher density) compared to the surrounding area; for a tunnel or bunker, the mass is missing. In either case, this difference in mass generates a distinct gravitational signature. The Superconducting Gravity Gradiometer project at Sandia worked toward developing an airborne device for the detection of these underground structures.

  2. Gravity Monitoring of the Weber River Aquifer Storage Project

    NASA Astrophysics Data System (ADS)

    Gettings, P.; Hurlow, H.; Chapman, D. S.; Harris, R. N.

    2004-12-01

    Repeated precision gravity measurements provide an economical way to track aquifer storage changes through time. In early 2004, the Weber River Water Conservancy District in northern Utah began an aquifer storage and recovery pilot project by infiltrating river water into a depleted aquifer. We are tracking the infiltrated water by measuring gravity changes over the aquifer through time. A network of 28 stations around the infiltration location was established, with an additional station in the nearby mountains for a stable reference. Gravity surveys are conducted at approximately two week intervals; monthly rapid-static GPS campaigns monitor ground deformation across the network. Gravity monitoring commenced in Feburary 2004, to establish a baseline before infiltration and investigate the magnitudes of natural signals and measurment noise. Infiltration commenced six weeks after the start of monitoring and by early July 2004, nearly 750 000 m3 of water were infiltrated; gravity changes at the infiltration site reached a peak of ˜100 μ Gal. Gaussian integration of the peak gravity signal is consistent with the total volume of infiltrated water. Continued monitoring during infiltration tracked the horizontal migration of infiltration water south and west of the site, consistent with known hydraulic gradients. Infiltration ended in July 2004 and gravity measurements show a declining recharge mound, with the peak decreasing to ˜60 μ Gal one month later. The spatial and temporal changes in gravity will be used to refine and enhance reservoir modeling around the infiltration site.

  3. Assessing and Correcting Topographic Effects on Forest Canopy Height Retrieval Using Airborne LiDAR Data

    PubMed Central

    Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun

    2015-01-01

    Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively. PMID:26016907

  4. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.

    PubMed

    Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun

    2015-05-26

    Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively.

  5. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  6. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  7. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  8. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  9. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  10. Regional and local controls on mineralization and pluton emplacement in the Bondy gneiss complex, Grenville Province, Canada interpreted from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Dufréchou, G.; Harris, L. B.; Corriveau, L.; Antonoff, V.

    2015-05-01

    The Bondy gneiss complex in the Grenville Province of Southwest Quebec hosts a mineralized iron oxide- and copper-rich hydrothermal system. The northern part of the complex overlies the lithospheric-scale Mont-Laurier lineament and is cut by the regional Mont-Laurier South shear zone interpreted from Bouguer gravity. A sinistral 6 km wide strike-slip corridor defined by several second-order shears (the Mont-Laurier South shear zone) in the complex was identified from geophysical data, including a new high-resolution airborne magnetic survey, and field observations. The spatial association of a metamorphosed alteration system, several pre- to post-metamorphic mineralized zones and mafic intrusions within the Mont-Laurier South shear zone suggests that (i) underlying basement structures controlled hydrothermal fluid migration during the formation of epithermal-IOCG mineralization and associated alteration system before ca. 1.2 Ga high-grade metamorphism and penetrative ductile deformation in the complex; (ii) post-metamorphic reactivation allowed magma ascent and pluton emplacement in the complex and adjacent supracrustal rocks within dilatational sites; and (iii) brittle-ductile shears that postdate high-grade metamorphism provided channel ways for fluid migration associated with magnetite-related mineralization. Although the complex does not host an economic mineral deposit, the role between structures at different levels and the combination of gravity and aeromagnetics at different scales provides an example of an approach for mineral exploration in similar high grade gneiss terrains.

  11. Radiometric, magnetic, and gravity study of the Quixadá batholith, central Ceará domain (NE Brazil): evidence for Pan-African/Brasiliano extension-controlled emplacement

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Mariano Gomes Castelo Branco, Raimundo; Martins, Guttenberg; Araújo de Castro, Neivaldo

    2002-10-01

    A geophysical survey was conducted in the central Ceará domain of the Borborema Province (NE Brazil). The aim of this investigation was to find geophysical evidence for the emplacement of the Quixadá batholith, which is a granitic body probably situated in the local extensional site in the oblique collisional regime of the Pan-African/Brasiliano collage. Remote sensing and airborne geophysical data provided information on the regional deformation that affected the intrusion and surrounding country rocks. In addition, a gravity study was used to determine the three-dimensional geometry and constrain the emplacement model of the Quixadá granite at depth. The trajectories of structural and magnetic lineaments suggest that the regional deformation is strongly influenced by dextral transcurrent movements of the major shear zones. The batholith, which shows an unusual positive gravity anomaly and a low U counts, displays a subhorizontal floor with several gently dipping areas, which are interpreted as magma feeder channels. The 2300 m thick root zones are roughly aligned with NE-SW-trending shear zones. Finally, the internal architecture of the pluton suggests that the Quixadá batholith was emplaced in a dilational shear zone tip area at the north end of Quixeramobim shear zone.

  12. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  13. Up-dated configuration of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Douch, Karim; Christophe, Bruno; Panet, Isabelle; Boulanger, Damien; Lebat, Vincent

    2013-04-01

    The knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to space gravity measurements from recent GRACE and GOCE missions. But the spatial resolution of those gravity data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like in high mountain or coastal areas. Taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is more particularly developed to cover the land/sea transition zone with a uniform precision, and a spatial resolution expected higher than from classical airborne gravimetry. Built using a configuration with eight planar proof-masses at the corners of a cube, the gradiometer is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support between +2.5 g and 0 g along the vertical axis. The gradiometer differential measurements along the two horizontal axes provide the necessary information to extract the six components of the gravity gradient tensor at the location of the instrument. Well suited to sustain the proof-mass levitation in the Earth's gravity field, the planar configuration of each accelerometer also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. The compactness of the gradiometer

  14. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  15. Newberry Combined Gravity 2016

    SciTech Connect

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  16. Gravity investigation of a Niagaran reef

    SciTech Connect

    Bolla, W.O.; Noel, J.A.

    1983-09-01

    North Ridge and West Ridge, two isolated hills north of Cary, Ohio, in Wyandott County, were described by Winchell more than 100 years ago. About 75 years later, Cummings designated the ridges as being underlain by Niagaran reefs after studying exposures in several small quarries. The extensive exposures in the large quarries subsequently operated in North Ridge left little doubt that this ridge is underlain by a Niagaran reef. West Ridge is analogous in size, shape, orientation, and topographic expression. From the similarities, coupled with Cummings' earlier studies, it is assumed that West Ridge is also a Niagaran reef. A gravity survey, using a LaCoste-Romberg gravity meter, was conducted over West Ridge. The survey was several traverses consisting of 423 stations with station spacing along the traverses of 200 ft (61 m). Elevations were determined by transit surveys, and densities were measured in the laboratory from samples collected in the reef and enclosing rocks exposed in the Wyandott Dolomite Co. quarry on North Ridge. The thickness of the glacial drift was determined from all available water well records. The gravity profiles were analyzed using the Talwani Method. The theoretical profiles were computed using parameters which simulated the size, shape, and density of the reef exposed in the quarries on North Ridge. The field gravity profiles over West Ridge matched the theoretical closely with only 0.008 mgal difference. A cross section constructed from electric logs shows the stratigraphy of the area. A structure contour map of the bed rock reveals that West Ridge is a bedrock-controlled topogrpahic feature, and that its size and shape, although modified by glacial erosion, are similar to other Niagaran reefs in northwestern Ohio.

  17. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    comprised three airborne campaigns in Greenland from April to June 2012 separated by roughly one month and preliminary results showed the instrument capability to detect ice motion. CryoVEx 2012 was a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat. The aim of this large-scale Arctic campaign was to record sea-ice thickness and conditions of the ice exactly below the CryoSat-2 path. A range of sensors installed on different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Preliminary results reveal the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allow for the estimation of actual sea ice thickness. In support of two currently operating EE Missions: SMOS (Soil Moisture and Ocean Salinity) and GOCE (Gravity field and steady-state Ocean Circulation Explorer), DOMECair airborne campaign will take place in Antarctica, in the Dome C region during the middle of January 2013. The two main objectives are to quantify and document the spatial variability in the DOME C area, important to establish long-term cross-calibrated multi-mission L-band measurement time-series (SMOS) and fill in the gap in the high-quality gravity anomaly maps in Antarctica since airborne gravity measurements are sparse (GOCE). Key airborne instruments in the campaign are EMIRAD-2 L-band radiometer, designed and operated by DTU and a gravimeter from AWI. ESA campaigns have been fundamental and an essential part in the preparation of new Earth Observation missions, as well as in the independent validation of their measurements and quantification of error sources. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the

  18. Marine Gravity Measurements at the Subduction Zone offshore Central Chile

    NASA Astrophysics Data System (ADS)

    Heyde, I.; Kopp, H.; Reichert, C.

    2003-12-01

    Gravity measurements were carried out during RV SONNE cruise SO-161 (SPOC) in late 2001 between 28° S and 44° S offshore Central Chile along a total length of about 17500 km. The mean accuracy of the data measured with the seagravimeter system KSS31M of BGR is better than 1 mGal. Further foreign marine gravity data were not included due to their considerable lower accuracy. Additional marine gravity data derived from satellite altimetry are needed to augment our data from the survey area. The SPOC data set was compared with 3 different satellite gravity data compilations. The data set with the best statistical results for the gravity differences was used for further gravity map compilations. The map of the freeair gravity is dominated by the anomalies of the main topographic features in the survey area. In the W the oceanic crust of the subducting Nazca Plate is characterized by weak positve gravity anomalies. Landward the anomalies decrease rapidly to less than minus 150 mGal in the Chilean trench. Further towards the coast extends a broad zone of alternating positve and negative freeair gravity anomalies. These could be interpreted either in terms of morphology of the continental slope or heterogeneous density distribution in the upper crust. Additionally Bouguer gravity anomalies were calculated. The anomalies on the Nazca Plate are strongly positive with a clear south - north trending increase of values, which reflect the increasing age of the oceanic crust. The effect of isostatic compensation was calculated assuming Vening-Meinesz models with different parameters. The gravity effect of the isostatic compensation root was eliminated from the Bouguer gravity anomalies and serves as a residual field. The interpretation of isostatic residual fields in this complicated tectonic environment leads to the detection of a series of offshore basins. In the N and the centre of the survey area the distribution of the profiles is rather uniform. For these areas 3D

  19. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  20. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  1. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph [Kavli Institute for Theoretical Physics

    2016-07-12

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  2. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  3. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  4. Airborne Warning and Control Radar Career Ladder, AFSC 328X2.

    DTIC Science & Technology

    1984-11-01

    difficulty, the simulator approach is appropriate for both ground and airborne personnel. Electronics principles instruction may be an area of training where...interrogation systems. The course includes 18 weeks of electronics principles training. Basic resident training is conducted without the benefit of actual mission...training in electronics principles . The Occupational Measurement Center recently completed a survey of electronics principles required across several

  5. Airborne Electromagnetic Sounding of Sea Ice Thickness and Sub-Ice Bathymetry,

    DTIC Science & Technology

    1987-12-01

    the ground using techniques which are standard for mineral exploration surveys. Phasing en- sures that the signal used as a time reference in...been developed, because standard airborne electromagnetic calibration techniques used for mineral exploration proved inadequate for sea ice thickness

  6. Use of airborne electromagnetic methods for resource mapping

    NASA Astrophysics Data System (ADS)

    Palacky, G. J.

    1993-11-01

    Airborne electromagnetic (AEM) methods complement spaceborne remote sensing techniques. AEM surveys carried out from low flying aircraft are capable of detecting geological structures not visible on the surface. The flight height of AEM systems above the ground ranges from 30 to 120 m. Most systems generate primary EM fields by using a loop transmitter; conducting coils are used as antenna to measure the secondary magnetic field caused by conductive inhomogeneities in the ground. The frequency used in AEM surveys (100 Hz to 50 kHz) allows ground penetration in excess of 100 m. At present, two types of AEM systems are widely used: helicopter, frequency-domain, and fixed-wing, towed-bird, time-domain. The most common survey products are apparent conductivity maps. AEM methods are extensively used in prospecting for base and precious metal deposits, kimberlites, uranium, and also in geological mapping, groundwater exploration and environmental investigations.

  7. Topography and Vegetation Characterization using Dual-Wavelength Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.; Bradford, B.; Magruder, L. A.

    2014-12-01

    Monitoring Earth surface dynamics at an ever increasing resolution has helped to support the characterization of local topography, including vegetated and urban environments. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to characterize vegetation and landscapes as it provides detailed three-dimensional spatial data with multiple elevation recordings for each laser pulse. The full waveform LIDAR receiver is unique in this aspect as it can capture and record the complete temporal history of the reflected signal, which contains detailed information about the structure of the objects and ground surfaces illuminated by the beam. This study examines the utility of co-collected, dual-wavelength, full waveform LIDAR data to characterize vegetation and landscapes through the extraction of waveform features, including total waveform energy, canopy energy distribution, and foliage penetration metrics. Assessments are performed using data collected in May 2014 over Monterey, CA, including the Naval Postgraduate School campus area as well as the Point Lobos State Natural Reserve situated on the Monterey coast. The surveys were performed with the Chiroptera dual-laser LIDAR mapping system from Airborne Hydrography AB (AHAB), which can collect both green (515nm) and near infrared (1064nm) waveforms simultaneously. Making use of the dual waveforms allows for detailed characterization of the vegetation and landscape not previously possible with airborne LIDAR.

  8. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  9. Our World: Gravity in Space

    NASA Video Gallery

    What is gravity? Find out about the balance between gravity and inertia that keeps the International Space Station in orbit. Learn why astronauts "float" in space and how the space shuttle has to s...

  10. Monitoring radioactive plumes by airborne gamma-ray spectrometry

    SciTech Connect

    Grasty, R.L.; Hovgaard, J.; Multala, J.

    1996-06-01

    Airborne gamma-ray spectrometer surveys using large volume sodium-iodide detectors are routinely flown throughout the world for mineral exploration and geological mapping. Techniques have now been developed to detect and map man-made sources of radiation. In Canada, airborne gamma-rays surveys have been flown around nuclear reactors to map {sup 41}Ar plumes from nuclear reactors and to calculate the dose rate at ground level. In May 1986, the Finnish Geological survey aircraft flew through a radioactive plume from the Chernobyl nuclear accident. As the aircraft flew through the plume, the aircraft became increasingly contaminated. By measuring the final aircraft contamination, the activity of the plume could be separated from the contamination due to the aircraft. Within 1 h of encountering the plume, the aircraft activity was comparable to the maximum levels found in the plume. From an analysis of the gamma-ray spectra, the concentration of {sup 131}I and {sup 140}La within the plume were calculated as a function of time.

  11. A proof of concept: Airborne LIDAR-measured ellipsoidal heights of a lake surface correspond to a local geoid model

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Ressl, Camillo; Timár, Gábor; Weber, Robert; Székely, Balázs; Briese, Christian; Pfeifer, Norbert

    2013-04-01

    The geoid is the theoretical model of the Earth, defined as an equipotential surface. Typically it corresponds to a mean ocean surface and is extended through the continents. Elevations are measured above "sea level" based on the fact that the surface of water in equilibrium closely follows this equipotential surface. On dry land, the geoid can be determined from gravimetric measurements, and interpolation methods are used to represent variations of gravity in a regular grid model. For practical reasons, these are represented as geoid undulation, which is the difference of the ellipsoidal height and the height of the equipotential surface. In his work Principia, Isaac Newton proposed the thought experiment of connecting the North Pole and the Equator through a "canal" filled with water in order to determine gravitational flattening of the Earth. It was also Newton's idea to use the level of water in a global network of canals and wells to survey the geoid. Of course, these experiments are impossible at a global scale, but a sufficiently large lake and an accurate method for measuring elevation independently from the geoid can be used to prove the concept. Our objective was to measure the ellipsoidal water surface elevation of Lake Balaton in Hungary with high spatial resolution and accuracy and compare these measurements with the gravimetrically determined local geoid model. Airborne laser scanning (ALS, also known as airborne LIDAR) is a remote sensing technique capable of delivering a large number of points with elevations and horizontal positions accurate to a few centimetres. Laser pulses are emitted in a scan pattern from an airborne sensor, and are reflected from the illuminated terrain (or water) surface. Based on the position and orientation of the aircraft (typically observed by GNSS and an inertial navigation system), the scan angle and the travel time of the laser pulse, the exact position of each measurement point is calculated. In this particular case

  12. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  13. Statistical origin of gravity

    SciTech Connect

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2010-06-15

    Starting from the definition of entropy used in statistical mechanics we show that it is proportional to the gravity action. For a stationary black hole this entropy is expressed as S=E/2T, where T is the Hawking temperature and E is shown to be the Komar energy. This relation is also compatible with the generalized Smarr formula for mass.

  14. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  15. A Trick of Gravity

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  16. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  17. Hawaii Gravity Model

    SciTech Connect

    Nicole Lautze

    2015-12-15

    Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.

  18. Gravity and crustal structure

    NASA Technical Reports Server (NTRS)

    Bowin, C. O.

    1976-01-01

    Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.

  19. Spaceborne Gravity Gradiometers

    NASA Technical Reports Server (NTRS)

    Wells, W. C. (Editor)

    1984-01-01

    The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.

  20. Topological induced gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    We propose a topological model of induced gravity (pregeometry) where both Newton’s coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the Friedmann-Robertson-Walker (FRW) universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological quantum-field theory (TQFT).

  1. Revamped braneworld gravity

    SciTech Connect

    Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph

    2006-03-15

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.

  2. Revamped braneworld gravity

    SciTech Connect

    Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2005-11-01

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.