Science.gov

Sample records for airborne heavy metal

  1. Airborne foliar transfer of PM bound heavy metals in Cassia siamea: A less common route of heavy metal accumulation.

    PubMed

    Gajbhiye, Triratnesh; Pandey, Sudhir Kumar; Kim, Ki-Hyun; Szulejko, Jan E; Prasad, Satgur

    2016-12-15

    In order to investigate possible foliar transfer of toxic heavy metals, concentrations of Cd, Pb, and Fe were measured in samples of: Cassia siamea leaves (a common tree) Cassia siamea foliar dust, nearby road dust, and soil (Cassia siamea tree roots) at six different sites in/around the Bilaspur industrial area and a control site on the university campus. Bilaspur is located in a subtropical central Indian region. The enrichment factor (EF) values of Pb and Cd, when derived using the crustal and measured soil Fe data as reference, indicated significant anthropogenic contributions to Pb and Cd regional pollution. Based on correlation analysis and scanning electron microscopy (SEM) observations, it was evident that Pb and Cd in foliar part of Cassia siamea were largely from airborne sources. The SEM studies of leaf confirmed that leaf morphology (epidermis, trichome, and stomata) of Cassia siamea helped accumulate the toxic metals from deposited particulate matter (PM). There is a line of evidence that the leaf of Cassia siamea was able to entrap PM in respirable suspended particulate matter (RSPM) range (i.e., both in fine and coarse fractions). The overall results of this study suggest that Cassia siamea can be a potential plant species to control the pollution of PM and PM-bound metals (Pb and Cd) in affected areas.

  2. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    PubMed Central

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-01-01

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range. PMID:26287229

  3. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    PubMed

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  4. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey.

    PubMed

    Hanedar, Asude

    2015-01-01

    In the present study, accumulations of airborne heavy metals in lichen and soil samples were determined on the basis of pollutant source groups by conducting Zinc (Zn), Lead (Pb), Iron (Fe), Copper (Cu), Chromium (Cr), Cadmium (Cd), Arsenic (As), Cobalt (Co) and Manganese (Mn) analyses on a total of 48 samples collected in the periods of May 2014 and August 2014 from 12 sampling points in a heavily industrialized area, a mixed industrial and residential area, an agricultural area and a background area in the Meric-Ergene Basin, and pH and total organic carbon determination was carried out on soil samples. With the obtained data, heavy metal levels were statistically assessed in detail by being associated with each other and with their probable sources; the accumulations found in soil and lichen samples were compared and spatial variances were set forth. Based on the results, it was observed that heavy metal pollution is at high levels particularly in industrialized areas, and that the differences between the cleanest and most polluted levels determined from soil samples for As, Cr, Cd and Pb reach 10 folds. The highest levels of all heavy metals were determined in both the soil and lichen samples collected from the areas in the south-east part of the region, where industrial activities and particularly leather and chemical industries are concentrated. With the comparison of the indication properties of soil and lichen, it was determined that significant and comparable results can be observed in both matrices.

  5. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    PubMed

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2016-11-25

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  6. Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation.

    PubMed

    Latif, Mohd Talib; Baharudin, Nor Hafizah; Velayutham, Puvaneswary; Awang, Normah; Hamdan, Harimah; Mohamad, Ruqyyah; Mokhtar, Mazlin B

    2011-10-01

    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously

  7. Leaves of orange jasmine (Murraya paniculata) as indicators of airborne heavy metal in Bangkok, Thailand.

    PubMed

    Titseesang, Teerawet; Wood, Timothy; Panich, Noppaporn

    2008-10-01

    Orange jasmine (Murraya paniculata) leaves were collected from three different sites in the area of Bangkok and in a remote area as a control site. The leaf samples were digested and the concentrations of Cu, Fe, Pb, Mn, Ni, Cr, and Zn were then quantified by using inductively coupled plasma-atomic emission spectrometry (ICP-AES). All three Bangkok sites were polluted with heavy metals compared with the background site. Fe was found as the highest mean concentration of the metals studied, while Pb was the lowest. There was a high correlation coefficient between metals Cu-Mn, Cu-Zn, Cu-Pb, and Mn-Zn. However, Fe was not correlated with other metals. There was no significant difference in Pb between sites. The significant difference in other metals found in the study could be attributed to different anthropogenic activities between sites. The principal-component analysis (PCA) identified two factors according to the sources of metals making up the anthropogenic (traffic) and natural (soil) sources. Traffic emission was found to be the main source of metal pollution in the atmosphere of Bangkok.

  8. Natural Airborne Dust and Heavy Metals: A Case Study for Kermanshah, Western Iran (2005–2011)

    PubMed Central

    PIRSAHEB, Meghdad; ZINATIZADEH, Aliakbar; KHOSRAVI, Touba; ATAFAR, Zahra; DEZFULINEZHAD, Saeed

    2014-01-01

    Abstract Background Dust pollution has become a serious environmental problem especially in recent decades. The present study aim was the investigation of the levels of PM10 concentration in Kermanshah, western Iran and also measured five important heavy metals (Pb, Cd, As, Hg and Cr) in some samples during 2005 to 2011. Methods A total 2277 samples were collected from air pollution measurement station belonging to the Department of Environment in Kermanshah. Furthermore, four samples were collected during dusty days to determine the selected heavy metals concentration. The samples were analyzed statistically using the SPSS Ver.16 Results The highest seasonal average concentration in spring was recorded in 2008 with 216.63μg/m3, and the maximum values of 267.79 and 249.09μg/m3 were observed in summer and winter in 2009, respectively. The maximum concentration of 127.1μg/m3 was in autumn in 2010. The metals concentration (Pb, Cd, As, Hg and Cr) of samples were 42.32±5.40, 37.45±9.29, 3.51±2.07, 1.88±1.64 and 0μg/g in July, 2009, respectively. Conclusion According to National Ambient Air Quality of USEPA guidelines, the most days with non-standard, warning, emergency and critical conditions were related to 2009 (120 days) while the least polluted days were recorded in 2006 (16 days). There are concerns about the increasing frequency and intensity trend of dust storms in recent years as a result of special condition in neighboring Western countries which it could endanger public health and environment. All measured heavy metals except mercury was higher than the standard level of WHO and USEPA. PMID:26005656

  9. Evaluation of exposure to airborne heavy metals at gun shooting ranges.

    PubMed

    Lach, Karel; Steer, Brian; Gorbunov, Boris; Mička, Vladimír; Muir, Robert B

    2015-04-01

    Aerosols formed during shooting events were studied with various techniques including the wide range size resolving sampling system Nano-ID(®) Select, followed by inductively coupled plasma mass spectrometry chemical analysis, scanning electron microscopy, and fast mobility particle sizing. The total lead mass aerosol concentration ranged from 2.2 to 72 µg m(-3). It was shown that the mass concentration of the most toxic compound lead is much lower than the total mass concentration. The deposition fraction in various compartments of the respiratory system was calculated using the ICRP lung deposition model. It was found that the deposition fraction in the alveolar range varies by a factor >3 for the various aerosols collected, depending on the aerosol size distribution and total aerosol concentration, demonstrating the importance of size resolved sampling in health risk evaluation. The proportion of the total mass of airborne particles deposited in the respiratory tract varies from 34 to 70%, with a median of 55.9%, suggesting the health risk based upon total mass significantly overestimates the accumulated dose and therefore the health risk. A comparison between conventional and so called 'green' ammunition confirmed significant lowering of concentrations of lead and other toxic metals like antimony in the atmosphere of indoor shooting ranges using 'green' ammunition, although higher concentrations of manganese and boron were measured. These metals are likely to be the constituents of new types of primers. They occur predominantly in the size fraction <250 nm of aerosols.

  10. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  11. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  12. Bioindication of a surplus of heavy metals in terrestrial ecosystems.

    PubMed

    Ernst, W H; Verkleij, J A; Vooijs, R

    1983-09-01

    A survey of the methods of boindication of heavy metals in terrestrial ecosystems and their effectiveness for predicting the consequences of environmental stress on organisms is presented. Two main inputs of heavy metals for terrestrial ecosystems have been considered: airborne and soil-borne.Airborne metals can be monitored due to physical adsorption on plant surfaces or due to chemical exchange processes in cell walls. Active biomonitoring widely uses both aspects, however, without predictive values.Meaningful bioindication of soilborne heavy metals can only be achieved by passive monitoring. Due to the different functions of heavy metals in organisms-micronutrients and trace elements-the knowledge of natural background values is important, considering the qualitative aspects of metals in the soil. In exceptional situations morphological and anatomical changes of plant organs will facilitate bioindication; in every case chemical analysis of the concentration of heavy metals is an essential part of the monitoring program.A long-term exposure of organisms to heavy metals will influence the genetic structure of populations. Therefore measurement of heavy metal tolerance of plants has to be a standard procedure in monitoring programs.

  13. Disorders of heavy metals.

    PubMed

    Woimant, France; Trocello, Jean-Marc

    2014-01-01

    Heavy metals and trace elements play an important role in relation to the physiology and pathology of the nervous system. Neurologic diseases related to disorders of metabolism of copper and iron are reviewed. Copper disorders are divided into two classes: ATP7A- or ATP7B-related inherited copper transport disorders (Menkes disease, occipital horn syndrome, ATP7A-related distal motor neuropathy, and Wilson disease) and acquired diseases associated with copper deficiency or copper excess. Iron brain disorders are divided into genetic neurodegeneration with brain iron accumulation (NBIA, neuroferritinopathy, and aceruloplasminemia), genetic systemic iron accumulation with neurologic features (hemochromatosis), and acquired diseases associated with iron excess (superficial siderosis) or iron deficiency (restless leg syndrome). The main features of cadmium, lead, aluminum, mercury, and manganese toxicity are summarized.

  14. Failure Engineered Heavy Metal Penetrators

    DTIC Science & Technology

    1992-12-01

    ARMY RESEARCH LABORATORY Failure Engineered Heavy Metal Penetrators, Phase I, SBIR ARL-CR-5· R. Cavalieri, W. Tiarn, and D. Nicholson prepared...REPORT DATE S. REPORT TYPE AND DATES COVERED December 1992 Final Report-1/1/92 - 7/31/92 4. TITLE AND SUBTITLE FAILURE ENGINEERED HEAVY METAL PENETRATORS

  15. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  16. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  17. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-07-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analyzed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01--0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3% of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation. At three operation condition (nominal output, 70% and 40% respectively) emission factors of heavy metals have been estimated for 35 MW stoker-fired boiler. Ba, Pb, Sb and Zn increased their emission factors and Cr and Mn decreased when output was decreased. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal, other possibilities (metals extraction from the coal, changes of condition in the flame) are rather limited.

  18. Selective reduction of heavy metals

    SciTech Connect

    Bjorling, G.

    1984-12-11

    The present invention relates to selective reduction of heavy metals out of finey grained, substantially oxidic material by blowing the oxidic material into a furnace together with an amount of reducing agent required for obtaining desired selectivity while simultaneously heat energy is supplied by a gas heated in a plasma generator, the temperature being adjusted to such a level as to correspond to the oxygen potential at which the desired metals are transformed into a particular, isolatable phase as metal melt, metal vapor, speiss or matte and at which the remaining metals enter into a slag phase and can be isolated as slag melt.

  19. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-04-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analysed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01-0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3 % of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation.

  20. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  1. Heavy metals extraction by microemulsions.

    PubMed

    Dantas, T N Castro; Dantas Neto, A A; Moura, M C P A; Barros Neto, E L; Forte, K R; Leite, R H L

    2003-06-01

    The objective of this study is the heavy metal extraction by microemulsion, using regional vegetable oils as surfactants. Firstly, the main parameters, which have influence in the microemulsion region, such as: nature of cosurfactant, influence of cosurfactant (C)/surfactant (S) ratio and salinity were studied, with the objective of choosing the best extraction system. The extraction/reextraction process by microemulsion consists of two stages. In the first one, the heavy metal ion present in the aqueous phase is extracted by the microemulsion. In a second step, the reextraction process occurs: the microemulsion phase, rich in metal, is acidified and the metal is recovered in a new aqueous phase, with higher concentration. The used system had the following parameters: surfactant-saponified coconut oil; cosurfactant-n-butanol; oil phase-kerosene; C/S ratio=4; salinity-2% (NaCl); temperature of 27+/-1 degrees C; water phase-aqueous solution that varied according to the heavy metal in study (Cr, Cu, Fe, Mn, Ni and Pb). A methodology of experimental planning was used (Scheffé Net) to study the behavior of the extraction in a chosen domain. The extraction was accomplished in one step and yielded extraction percentage higher than 98% for all metals. In the reextraction HCl-8M was used as reextraction agent and the influence of the pH and time were verified. This work showed the great efficiency of the microemulsion, indicating that it is possible to extract selectively the heavy metals from the aqueous phase.

  2. Abatement of Marine Coatings Containing Heavy Metals

    DTIC Science & Technology

    1995-06-01

    in the abatement of heavy metal containing marine coatings. Funding for this...shipyards to be proactive in the area of heavy metal coating systems abatement as current regulations were not "user friendly" in shipboard applications.

  3. The Heavy Metal Subculture and Suicide.

    ERIC Educational Resources Information Center

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  4. Industrial hygiene of selected heavy metals

    SciTech Connect

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  5. Biomolecules for removal of heavy metal.

    PubMed

    Singh, Namita Ashish

    2017-02-23

    Heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to review research work and patents related to adsorption through biomolecules like polysaccharides, polypeptides, lignin etc. and bio-sorption by biological material that are used for heavy metal removal. Biomolecules are cost effective and there have been significant progresses in the remediation of heavy metals but, still there are some problems that need to be rectified for its application at industrial processes.

  6. Heavy metals, islet function and diabetes development.

    PubMed

    Chen, Ya Wen; Yang, Ching Yao; Huang, Chun Fa; Hung, Dong Zong; Leung, Yuk Man; Liu, Shing Hwa

    2009-01-01

    It has long been believed that heavy metals possess many adverse health effects. Uncontrolled industrialization has released heavy metal pollution in the world. Heavy metal pollutants damage organ functions and disrupt physiological homeostasis. Diabetes mellitus is growing in prevalence worldwide. Several studies have indicated that the deficiency and efficiency of some essential trace metals may play a role in the islet function and development of diabetes mellitus. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. In the present work, we review the important roles of heavy metals in islet function and diabetes development in which the in vitro, in vivo or human evidences are associated with exposure to zinc, arsenic, cadmium, mercury and nickel. Through this work, we summarize the evidence which suggests that some heavy metals may play an important role in diabetes mellitus as environmental risk factors.

  7. Heavy metal uptake of Geosiphon pyriforme

    NASA Astrophysics Data System (ADS)

    Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  8. Arbuscular mycorrhiza and heavy metal tolerance.

    PubMed

    Hildebrandt, Ulrich; Regvar, Marjana; Bothe, Hermann

    2007-01-01

    Arbuscular mycorrhizal fungi (AMF) have repeatedly been demonstrated to alleviate heavy metal stress of plants. The current manuscript summarizes results obtained to date on the colonization of plants by AMF in heavy metal soils, the depositions of heavy metals in plant and fungal structures and the potential to use AMF-plant combinations in phytoremediation, with emphasis on pennycresses (Thlaspi ssp.). The focus of this manuscript is to describe and discuss studies on the expression of genes in plants and fungi under heavy metal stress. The summary is followed by data on differential gene expression in extraradical mycelia (ERM) of in vitro cultured Glomus intraradices Sy167 supplemented with different heavy metals (Cd, Cu or Zn). The expression of several genes encoding proteins potentially involved in heavy metal tolerance varied in their response to different heavy metals. Such proteins included a Zn transporter, a metallothionein, a 90 kD heat shock protein and a glutathione S-transferase (all assignments of protein function are putative). Studies on the expression of the selected genes were also performed with roots of Medicago truncatula grown in either a natural, Zn-rich heavy metal "Breinigerberg" soil or in a non-polluted soil supplemented with 100 microM ZnSO(4). The transcript levels of the genes analyzed were enhanced up to eight fold in roots grown in the heavy metal-containing soils. The data obtained demonstrate the heavy metal-dependent expression of different AMF genes in the intra- and extraradical mycelium. The distinct induction of genes coding for proteins possibly involved in the alleviation of damage caused by reactive oxygen species (a 90 kD heat shock protein and a glutathione S-transferase) might indicate that heavy metal-derived oxidative stress is the primary concern of the fungal partner in the symbiosis.

  9. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  10. Heavy Metal, Religiosity, and Suicide Acceptability.

    ERIC Educational Resources Information Center

    Stack, Steven

    1998-01-01

    Reports on data taken from the General Social Survey that found a link between "heavy metal" rock fanship and suicide acceptability. Finds that relationship becomes nonsignificant once level of religiosity is controlled. Heavy metal fans are low in religiosity, which contributes to greater suicide acceptability. (Author/JDM)

  11. Heavy Metal Music and Adolescent Suicidal Risk.

    ERIC Educational Resources Information Center

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  12. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  13. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  14. Removal of heavy metals from waste streams

    SciTech Connect

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.; Gardocki, S.M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water, wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.

  15. Heavy metals and living systems: An overview

    PubMed Central

    Singh, Reena; Gautam, Neetu; Mishra, Anurag; Gupta, Rajiv

    2011-01-01

    Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known. PMID:21713085

  16. Heavy metal removal and recovery using microorganisms

    SciTech Connect

    Wilde, E.W. ); Benemann, J.R. , Pinole, CA )

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  17. Simultaneous removal of nitrate and heavy metals by iron metal.

    PubMed

    Hao, Zhi-Wei; Xu, Xin-Hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-Hui

    2005-05-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.

  18. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Stormwater sampling for colloidal and dissolved metals and organic carbon has been initiated at six outfalls draining locally-designated, nonindustrial land uses in Monmouth County, NJ. Of the heavy metals, only Cu and Zn were found in all samples, mostly in dissolved form. Large...

  19. Prediction of Heavy Metal Uptake by Marsh Plants Based on Chemical Extraction of Heavy Metals from Dredged Material.

    DTIC Science & Technology

    1978-02-01

    A field and laboratory study was conducted to establish the extent of heavy metal absorption and uptake by marsh plant species from dredged material...emphasizes the need for a method to predict heavy metal availability from dredged material to plants. DTPA extraction of heavy metals gave the best correlations with actual heavy metal concentrations in marsh plants.

  20. The heavy metal subculture and suicide.

    PubMed

    Stack, S; Gundlach, J; Reeves, J L

    1994-01-01

    The impact of the heavy metal music subculture on suicide has been the subject of much public debate but little scholarly research. The present paper assesses this relationship with data on heavy metal magazine subscriptions and youth suicide in the 50 states. We find that, controlling for other predictors of suicide, the greater the strength of the metal subculture, the higher the youth suicide rate. The music perhaps nurtures suicidal tendencies already present in the subculture. The model explains 51% of the variance in youth suicide.

  1. Heavy Metal Poisoning and Cardiovascular Disease

    PubMed Central

    Alissa, Eman M.; Ferns, Gordon A.

    2011-01-01

    Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed. PMID:21912545

  2. Community Heavy Metal Exposure, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  3. Transfer of heavy metals through terrestrial food webs: a review.

    PubMed

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  4. Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5

    NASA Astrophysics Data System (ADS)

    Mazziotti Tagliani, Simona; Carnevale, Monica; Armiento, Giovanna; Montereali, Maria Rita; Nardi, Elisa; Inglessis, Marco; Sacco, Fabrizio; Palleschi, Simonetta; Rossi, Barbara; Silvestroni, Leopoldo; Gianfagna, Antonio

    2017-03-01

    To clarify the relationship between airborne particulate exposure and negative impacts on human health, focusing on the heavy metal content alone might not be sufficient. To address this issue, in the present work, mineral allocation and leaching behavior of heavy metals in the PM2.5 were investigated. This work, therefore, provides a novel perspective in the field of urban airborne particle investigation that is not currently found in the literature. Four sampling campaigns were performed in the urban area of Rome (Central Italy) during the winter and summer seasons (February and July 2013 and 2014, respectively). The measured concentrations of the regulated elements of As, Cd, Ni and Pb were consistent with those reported by the local Environmental Agency (ARPA Lazio), but non-regulated heavy metals, including Fe, Cu, Cr and Zn, were also found in PM2.5 and analyzed in detail. As a novelty, heavy metals were associated with the host-identified mineral phases, primarily oxides and alloys, and to a lesser extent, other minerals, such as sulfates, carbonates and silicates. Leaching tests of the collected samples were conducted in a buffered solution mimicking the bodily physiological environment. Despite the highest concentration of heavy metals found during the winter sampling period, all of the elements showed a leaching trend leading to major mobility during the summer period. To explain this result, an interesting comparative analysis between the leaching test behavior and innovative mineral allocation was conducted. Both the heavy metal content and mineral allocation in PM2.5 might contribute to the bioavailability of toxic elements in the pulmonary environment. Hence, for regulatory purposes, the non-linear dependency of heavy metal bioavailability on the total metal content should be taken into account.

  5. Heavy metal, religiosity, and suicide acceptability.

    PubMed

    Stack, S

    1998-01-01

    There has been little work at the national level on the subject of musical subcultures and suicide acceptability. The present work explores the link between "heavy metal" rock fanship and suicide acceptability. Metal fanship is thought to elevate suicide acceptability through such means as exposure to a culture of personal and societal chaos marked by hopelessness, and through its associations with demographic risk factors such as gender, socioeconomic status, and education. Data are taken from the General Social Survey. A link between heavy metal fanship and suicide acceptability is found. However, this relationship becomes nonsignificant once level of religiosity is controlled. Metal fans are low in religiosity, which contributes, in turn, to greater suicide acceptability.

  6. Hydroponics reducing effluent's heavy metals discharge.

    PubMed

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  7. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Sampling has been undertaken to determine the concentrations of heavy metals, both particle-associated and dissolved, in stormwater from several storm sewer outfalls in Monmouth County, NJ. This project is ongoing in concert with coordinated studies of pathogen and nutrient input...

  8. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  9. Heavy metals in the environment

    SciTech Connect

    Storm, G.L.; Fosmire, G.J.; Bellis, E.D.

    1994-05-01

    Concentration (Cd, Pb, Zn, and Cu) in soil and wildlife at the Palmerton zinc smelter site in eastern Pennsylvania were determined 6 yr after zinc smelting was terminated in 1980. Levels of the four metals were higher in litter (01 and 02 horizon) than in soil (A1 horizon), and the metals were at or near levels when the smelters were still in operation. Levels of metals in sod weft highest at sites close to the smelters and decreased as distances from the smelters increased. The relation of decreasing amounts of metals in body tissues with increasing distance from the smelters also held true for amphibians and mammals. An exception to this relation was higher level of Cu in red-lacked salamanders (Plethodon cinereus) captured {approx}17 km downwind than those captured {approx}12 km downwind. Levels of Zn, Pb, and Co in liver, kidney, and muscle tissue of white-footed mice (Peromyscus leucopus) were not different (P >0.05) among sites. Cadmium in kidneys in white-footed mice exceeded 10 mg&& which is reportedly considered an indication of environmental contamination. Levels of Cd in kidneys and liver of white-tailed deer (Odocoileus virginianus) at Palmerton were five times higher than those for white-tailed deer collected 180 km southwest of Palmerton in southcentral Pennsylvania. The abnormal amounts of metals in the tissues of terrestrial vertebrates, and the absence or low abundance of wildlife at Palmerton indicated that ecological processes within 5 km of the smelters were markedly influenced 6 yr after zinc smelting was discontinued. 41 refs., 5 figs., 4 tabs.

  10. How composting affects heavy metal content

    SciTech Connect

    Canarutto, S.; Petruzzelli, G.; Lubrano, L.; Guidi, G.V.

    1991-06-01

    This paper describes ways in which a properly conducted composting process can alter the chemical forms of heavy metals and consequently the quality of the compost. This process is of particular interest in the Italian policy of waste management due to the low level of organic matter in Italian agricultural soils. Results of the studies show that the proper process of compost maturation seems to increase the concentrations of humic acids with respect to those of fulvic acids. These variations in the quantity and quality of humic substances influence the speciation of heavy metals with a large part of the metals complexed and reaching the soil in a less mobile form. The distribution of copper, cadmium, zinc, nickel, lead and chromium among humic fractions is compared in two composting procedures.

  11. Heavy metal fates in laboratory bioretention systems.

    PubMed

    Sun, Xueli; Davis, Allen P

    2007-01-01

    Key to managing heavy metals in bioretention is to understand their fates in bioretention facilities. In this study, pot prototypes filled with bioretention media were built to simulate the conditions of natural growth of plants. Synthetic runoff with different heavy metal loadings (copper, cadmium, lead, and zinc) was periodically applied. Metal accumulations in tissues of grasses -Panicum virgatum, Kentucky-31, and Bromus ciliatus, were investigated after 230d of growth and multiple runoff treatment events. After 183d of periodic runoff application, the concentrations of Zn, Cu, Pb and Cd with low and high loadings had the same trends in the plant tissues, Zn>Cu>Pb>Cd, following the trend of the input metal concentrations. The fates of input metals were 88-97% captured in soil media, 2.0-11.6% not captured by bioretention media, and 0.5-3.3% accumulated in plants. Compared to the metals retained by the soil, the percentages of input metals taken up by plants were relatively low due to the low plant biomass produced in this study. Greater biomass density would be required for the vegetation to have a valuable impact in prolonging the lifetime of a bioretention cell.

  12. Heavy metal removal from sediments by biosurfactants.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  13. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    ERIC Educational Resources Information Center

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  14. Bacterial sorption of heavy metals

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Ferris, F.G.; Beveridge, T.J.; Flemming, C.A.

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, whereas only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasma. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  15. An economic comparison of three heavy lift airborne systems

    NASA Technical Reports Server (NTRS)

    Carson, B. H.

    1975-01-01

    Current state of art trends indicate that a 50-ton payload helicopter could be built by the end of the decade. However, alternative aircraft that employ LTA principles are shown to be more economically attractive, both in terms of investment and operating costs for the ultra-heavy lift role. Costing methodology follows rationale developed by airframe manufacturers, and includes learning curve factors.

  16. Customizable Biopolymers for Heavy Metal Remediation

    NASA Astrophysics Data System (ADS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen, Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen*, Wilfred

    2005-10-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create `artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  17. Remediation processes for heavy metals contaminated soils

    SciTech Connect

    Torma, G.A.; Torma, A.E.; Hsu, Pei-Cheng

    1996-12-31

    This paper provides information on selected technologies available for remediation of metal contaminated soils and industrial effluent solutions. Because some of the industrial sites are contaminated with organics (solvents, gasolines and oils), an effort has been made to introduce the most frequently used cost-effective cleanup methods, such as {open_quotes}bioventing{close_quotes} and {open_quotes}composting.{close_quotes} The microorganisms involved in these processes are capable of degrading organic soil contaminants to environmentally harmless compounds: water and carbon dioxide. Heavy metals and radionuclides contaminated mining and industrial sites can be remediated by using adapted heap and dump leaching technologies, which can be chemical in nature or bio-assisted. The importance of volume reduction by physical separation is discussed. A special attention is devoted to the remediation of soils by leaching (soil washing) to remove heavy metal contaminants, such as chromium, lead, nickel and cadmium. Furthermore, the applicability of biosorption technology in the remediation of heavy metals and radionuclides contaminated industrial waste waters and acidic mining effluent solutions was indicated. 60 refs., 9 figs.

  18. Heavy metals and the origin of life

    NASA Astrophysics Data System (ADS)

    Nriagu, J.

    2003-05-01

    The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

  19. Stabilize heavy metals in soils and sludges

    SciTech Connect

    1995-03-01

    To stabilize heavy metals in soils, sludges, ash from incinerators and power plants, and baghouse dusts, Solucorp Industries (Saddle Brook, N.J.) has developed the Molecular Bonding System (MBS). Using a patented mix of chemical additives, the MBS process bonds highly reactive metal ions to form non-leachable molecules, rendering the metals inert. The chemical reactions are said to be permanent, and for each application, the additive mix is specially formulated to meet site-specific conditions. Recently, the MBS process was accepted into the US Environmental Protection Agency`s Site Demonstration Program as an innovative technology for stabilizing heavy metals. Bench-scale and pilot tests have proven the effectiveness of the MBS process for a wide array of metals, including arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver and zinc. The process is designed for wastes classified as D004 through D011, as well as K-listed wastes associated with metal-plating operations. It can treat waste in drums or in bulk, says the firm, but is not suitable for liquid streams.

  20. Determination of heavy metals in the ambient atmosphere.

    PubMed

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  1. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  2. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  3. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi.

  4. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  5. Modeling heavy metal removal in wetlands

    SciTech Connect

    Lung, W.S.; Light, R.N.

    1994-12-31

    Although the use of wetland ecosystems to purify water has gained increased attention only recently, it has been recognized as a wastewater treatment technique for centuries. While considerable research has occurred to quantify the nutrient (nitrogen and phosphorus) removal mechanisms of wetlands, relatively few investigators have focused on the mechanisms of heavy metal removal and uptake by wetland sediments and plants. The quantification of the assimilative capacity of heavy metals by wetland ecosystems is a critical component in the design and use of wetlands for this purpose. A computer model has been developed to simulate the fate and transport of heavy metals introduced to a wetland ecosystem. Modeled water quality variables include phytoplankton biomass and productivity; macrophyte (Nulumbo lutea) biomass; total phosphorus in the water column; dissolved copper in the water column and sediments; particulate copper in the water column and sediments; and suspended solids. These variables directly affect the calculated rate of copper uptake by macrophytes, and the rate of copper recycling as a function of the decomposition of copper-laden biomass litter. The model was calibrated using total phosphorus and chlorophyll a data from the Old Woman Creek Wetland in Ohio. Verification of the model was achieved using data on the copper content of the macrophyte Nelumbo lutea.

  6. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  7. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  8. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  9. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  10. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  11. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer.

    PubMed

    Yuan, Wenzhen; Yang, Ning; Li, Xiangkai

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  12. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    PubMed Central

    Yuan, Wenzhen; Yang, Ning

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective. PMID:27803929

  13. Facultative hyperaccumulation of heavy metals and metalloids.

    PubMed

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits.

  14. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  15. Visualizing plumes of heavy metals and radionuclides

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Liu, T.; Bryant, S. L.; Hesse, M. A.

    2015-12-01

    The understanding of the transport behaviors in porous media resides on the ability to reproduce fundamental phenomena in a lab setting. Experiments with quasi 2D tanks filled with beads are performed to study physical phenomena induced by chemical and fluid dynamic processes. When an alkaline solution containing heavy metals or radionuclides invades a low pH region, mixing due to longitudinal dispersion induces destabilization of the front forming a fast travelling pulse [1]. When the two fluids travel in parallel, instead, mixing induced by transverse dispersion creates a continuous leakage from the alkaline region into the acidic one forming a fast travelling plume [2] (Figure 1). Impact of these phenomena are on aquifers upon leaking of alkaline fluids, rich in heavy metals and radionuclides, from waste storage sites. Here, we report the results from a study where experiments with a quasi 2D tank are performed to analyze the effect of transverse mixing on strontium (Sr2+) transport. To visualize the leaking plume, a fluorescent dye (Fura-2) is added the acidic solution, which has been widely used in biomedical applications [3]. It is the aim of this work to optimize its application under the conditions relevant to this work. Spectrometric measurements of absorption and fluorescence show sensitivity of the dye to the presence of Sr2+ throughout a broad range of pH and Sr2+ concentration (Figure 2). In the absence of Sr2+, no significant absorption and fluorescence was measured, but as Sr2+ was added the relevant peaks increase significantly and sample dilution of tenfold was required to remain within the measuring threshold. These results show a strong sensitivity of the dye to the cation opening the opportunity to use Fura-2 as a tool to visualize heavy metals and radionuclides plumes. References[1] Prigiobbe et al. (2012) GRL 39, L18401. [2] Prigiobbe and Hesse (2015) in preparation. [3] Xu-Friedman and Regehr (2000) J. Neurosci. 20(12) 4414-4422.

  16. Heavy metal music and reckless behavior among adolescents.

    PubMed

    Arnett, J

    1991-12-01

    Adolescents who liked heavy metal music were compared to those who did not on a variety of outcome variables, particularly focusing on reckless behavior. Boys who liked heavy metal music reported a higher rate of a wide range of reckless behavior, including driving behavior, sexual behavior, and drug use. They were also less satisfied with their family relationships. Girls who liked heavy metal music were more reckless in the areas of shoplifting, vandalism, sexual behavior, and drug use, and reported lower self-esteem. Both boys and girls who liked heavy metal music were higher in sensation seeking and more self-assured with regard to sexuality and dating. In regression analyses, the relation between reckless behavior and liking heavy metal music was sustained for five out of twelve variables concerning reckless behavior, including three of four among girls, when sensation seeking and family relationships were entered into the equation before liking or not liking heavy metal music.

  17. Heavy metal pumps in plants. 1998 annual progress report

    SciTech Connect

    Harper, J.F.

    1998-06-01

    'The purpose of the proposed DOE research is to determine the function of AMA1, a novel heavy metal pump identified in a model plant system, Arabidopsis. Heavy metal pumps belong to a superfamily of P-type ATPases which include the plasma membrane Na/K-ATPase in animals and the plasma membrane H + ATPase in plants and fungi. Heavy metal pumps have been implicated in heavy metal resistance (e.g., cadmium) and regulation of essential micronutrients (e.g., copper). Although several heavy metal pumps have now been identified in plants, their isoform specific functions have not been investigated. The results suggest that AMA1 is a molydenum uptake pump. The authors are exploring the possibility to engineer the ion specificity of these pumps to take up other heavy metals from the soil. This report summarizes work after 2 years of a 3 year project.'

  18. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment.

  19. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.

    PubMed

    Miransari, Mohammad

    2011-01-01

    Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.

  20. Removal of dissolved heavy metals and radionuclides by microbial spores

    SciTech Connect

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-11-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides {sup 85}strontium and {sup 197}cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs.

  1. Heavy metals in the cell nucleus - role in pathogenesis.

    PubMed

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  2. [Underlying mechanisms of the heavy metal tolerance of mycorrhizal fungi].

    PubMed

    Chen, Bao-Dong; Sun, Yu-Qing; Zhang, Xin; Wu, Song-Lin

    2015-03-01

    Mycorrhizal fungi are ubiquitous in natural ecosystems and can form symbiotic associations with the majority of terrestrial plants. They can be detected even in heavy metal-contaminated soils, while some fungal strains show strong heavy metal tolerance and could potentially be used in bioremediation of contaminated soils. We reviewed current research progresses in the underlying mechanisms of heavy metal tolerance of mycorrhizal fungi, with focuses on habitat selection, physiological adaptation and functional genes. Future research perspectives were proposed to promote the basic research and development of mycorrhizal technology for remediation of heavy metal-contaminated soils.

  3. Peltier effect in normal metal-insulator-heavy fermion metal junctions

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Rowe, D. M.; Kuznetsov, V. L.; Kuznetsova, L. A.; Min, Gao

    2003-04-01

    A theoretical study has been undertaken of the Peltier effect in normal metal-insulator-heavy fermion metal junctions. The results indicate that, at temperatures below the Kondo temperature, such junctions can be used as electronic microrefrigerators to cool the normal metal electrode and are several times more efficient in cooling than the normal metal-heavy fermion metal junctions.

  4. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  5. Magnesium oxide for improved heavy metals removal

    SciTech Connect

    Schiller, J.E.; Khalafalla, S.E.

    1984-01-01

    To improve technology for treating process water, US Bureau of Mines research has shown that magnesium oxide (MgO) has many advantages over lime or caustic soda for precipitating heavy metals. Sludge produced by MgO occupies only 0.2-0.3 times as much volume as the precipitate made using a soluble base. While a settled, lime-formed precipitate is easily resuspended, the MgO-metal hydroxide sludge becomes cemented together on standing. Settling of the metal hydroxides from a dilute suspension is more complete than precipitates formed with other bases. Virtually any metal that can be precipitated by raising the pH can be treated using MgO. A three-fold to four-fold stoichiometric excess of solid reagent is added. The mixture is reacted for five to 10 minutes. Polymer is added, and settling or filtration completes the process. Because of the greater cost of MgO compared with lime, large-scale practice of this technology will probably be limited to water containing 50 mg/L (3 gr per gal) or less of dissolved metals. For such dilute solutions, chemicals are not a large fraction of total treatment costs, so more desirable sludge properties might justify higher chemical expenses. While the MgO process is technically suitable for widespread application, the extent to which it is adopted will probably be determined by a trade-off between the greater cost of MgO compared with lime and the superior properties of the precipitates and their corresponding ultimate disposal costs.

  6. Emissions of heavy metals into river basins of Germany.

    PubMed

    Scherer, U; Fuchs, S; Behrendt, H; Hillenbrand, T

    2003-01-01

    The input of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) into the large river basins of Germany via various point and diffuse pathways were estimated for the period of 1985 through 2000. To quantify the emissions via point sources a nationwide survey on heavy metal data of municipal wastewater treatment plants and industrial direct discharges was carried out. The input via diffuse pathways was calculated using an adapted version of the model MONERIS. This model accounts for the significant transport processes, and it includes a Geographical Information System (GIS) that provides digital maps as well as extensive statistical information. For a comparison of the calculated heavy metal emission with the measured heavy metal load at monitoring stations the losses of heavy metals due to retention processes within the river systems have to be considered. Therefore heavy metal retention was calculated according to the retention functions given by Vink and Behrendt. For the large river basins a good correspondence could be found between estimated and measured heavy metal loads in rivers. The total emission into the North Sea decreased for each metal during the period of 1986 to 2000. The reduction varies between 87% for Hg and 41% for Ni mainly caused by the decline via point sources. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. The most important diffuse emission pathways are "paved urban areas" and "erosion".

  7. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  8. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  9. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  10. Toxic heavy metals: materials cycle optimization.

    PubMed Central

    Ayres, R U

    1992-01-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies. PMID:11607259

  11. Hydroponic phytoremediation of heavy metals and radionuclides

    SciTech Connect

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  12. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  13. Heavy Metals Resisting Gravity in White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Gamrath, S.; Quinet, P.; Hoyer, D.; Werner, K.; Kruk, J. W.

    2017-03-01

    Spectral lines of heavy metals, identified in high-resolution ultraviolet spectra of the DO-type white dwarf RX J0503.9–2854 (RE 0503–289), allow precise abundance determinations of these species by means of advanced non-local thermodynamic equilibrium stellar-atmosphere models – provided that reliable atomic data is available. Such analyses of Zn (atomic number Z = 30), Ga (31), Ge (32), As (33), Mo (42), Kr (36), Zr (40), Xe (54), and Ba (56) have recently shown that, without exception, their abundances are unexpectedly strongly supersolar (up to about 5 dex). This is much higher than predicted by recent asymptotic giant branch nucleosynthesis calculations. Thus, the interplay of gravitational settling and radiative levitation may play an important role for their photospheric prominence.

  14. Heavy Metal Music and Adolescent Suicidality: An Empirical Investigation.

    ERIC Educational Resources Information Center

    Scheel, Karen R.; Westefeld, John S.

    1999-01-01

    Investigates the relationship between preference for heavy metal music and vulnerability to suicide among high school students. Results indicate that preference for heavy metal music among adolescents may be sign of increased suicidal vulnerability, but also suggests that the source of the problem may lie more in personal and familial…

  15. Species sensitivity analysis of heavy metals to freshwater organisms.

    PubMed

    Xin, Zheng; Wenchao, Zang; Zhenguang, Yan; Yiguo, Hong; Zhengtao, Liu; Xianliang, Yi; Xiaonan, Wang; Tingting, Liu; Liming, Zhou

    2015-10-01

    Acute toxicity data of six heavy metals [Cu, Hg, Cd, Cr(VI), Pb, Zn] to aquatic organisms were collected and screened. Species sensitivity distributions (SSD) curves of vertebrate and invertebrate were constructed by log-logistic model separately. The comprehensive comparisons of the sensitivities of different trophic species to six typical heavy metals were performed. The results indicated invertebrate taxa to each heavy metal exhibited higher sensitivity than vertebrates. However, with respect to the same taxa species, Cu had the most adverse effect on vertebrate, followed by Hg, Cd, Zn and Cr. When datasets from all species were included, Cu and Hg were still more toxic than the others. In particular, the toxicities of Pb to vertebrate and fish were complicated as the SSD curves of Pb intersected with those of other heavy metals, while the SSD curves of Pb constructed by total species no longer crossed with others. The hazardous concentrations for 5 % of the species (HC5) affected were derived to determine the concentration protecting 95 % of species. The HC5 values of the six heavy metals were in the descending order: Zn > Pb > Cr > Cd > Hg > Cu, indicating toxicities in opposite order. Moreover, potential affected fractions were calculated to assess the ecological risks of different heavy metals at certain concentrations of the selected heavy metals. Evaluations of sensitivities of the species at various trophic levels and toxicity analysis of heavy metals are necessary prior to derivation of water quality criteria and the further environmental protection.

  16. Heavy metals alter the potency of medicinal plants.

    PubMed

    Nasim, Sekh Abdul; Dhir, Bhupinder

    2010-01-01

    There has been increased use of herbal drugs in recent years. Because of increasing demand and wider use, it is essential that the quality of plant-based drugs should be assured prior to use. When heavy metals contaminate the plants from which herbal drugs are derived, they affect both plant growth characteristics and production of secondary plant metabolites. Plants exposed to heavy metal stress show changes in production of secondary metabolites. High levels of heavy metal contamination in medicinal or other plants may suppress secondary metabolite production. Alternatively, the presence of heavy metals in medicinal plants may stimulate production of bioactive compounds in many plant species. Moreover, some research results suggest that heavy metals may play an important role in triggering plant genes to alter the titers or nature of secondary plant metabolites, although the exact mechanism by which this happens remains unclear. Oxidative stress induced by heavy metals triggers signaling pathways that affect production of specific plant metabolites. In particular, reactive oxygen species (ROS), generated during heavy metal stress, may cause lipid peroxidation that stimulates formation of highly active signaling compounds capable of triggering production of bioactive compounds (secondary metabolites) that enhances the medicinal value of the plant. As usual, further research is needed to clarify the mechanism by which heavy metals induce responses that result in enhanced secondary metabolite production.

  17. Heavy Metal Music and Reckless Behavior among Adolescents.

    ERIC Educational Resources Information Center

    Arnett, Jeffrey

    1991-01-01

    Fifty-four male and 30 female adolescents who like heavy metal music were compared on various outcome variables to 56 male and 105 female peers who do not like it. Those who like heavy metal report a wider range of reckless behavior than those who do not like it. (SLD)

  18. Heavy Metal Toxicity in Bioremediation: Microbial Cultures and Microscopy.

    DTIC Science & Technology

    1997-12-01

    This research employed a variety of microscopy and spread plating techniques to observe the effects of heavy metal treatments on a toluene-selected...of bacteria and offered new techniques for potential heavy metal toxicity measurements as well as differentiation methods.

  19. A Process for Making Bulk Heavy Metal Fluoride Glasses.

    DTIC Science & Technology

    This invention relates to the preparation of glasses, and, in particular, relates to the preparation of heavy metal fluoride glasses with...reproducible high optical qualities. Considerable effort has been expended to develop heavy metal fluoride glasses ( HMFG ) as a viable family of infrared

  20. Heavy metal retention of different roadside soils

    NASA Astrophysics Data System (ADS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  1. Removal of heavy metal ions from wastewaters: a review.

    PubMed

    Fu, Fenglian; Wang, Qi

    2011-03-01

    Heavy metal pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation-flocculation, flotation and electrochemical methods. About 185 published studies (1988-2010) are reviewed in this paper. It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.

  2. Dietary heavy metal uptake by the least shrew, Cryptotis parva

    SciTech Connect

    Brueske, C.C.; Barrett, G.W. )

    1991-12-01

    Heavy metals from sewage sludge have been reported to concentrate in producers, in primary consumers, and in detritivores. Little research, however, has focused on the uptake of heavy metals from sewage sludge by secondary consumers. The Family Soricidae represents an ideal mammalian taxonomic group to investigate rates of heavy metal transfer between primary and secondary consumers. The least shrew (Cryptotis parva) was used to evaluate the accumulation of heavy metals while maintained on a diet of earthworms collected from long-term sludge-treated old-field communities. This secondary consumer is distributed widely through the eastern United States and its natural diet includes earthworms which makes it a potentially good indicator of heavy metal transfer in areas treated with municipal sludge.

  3. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  4. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.

  5. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9.

  6. Heavy metals in Tuskegee Lake crayfish

    SciTech Connect

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrations of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.

  7. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  8. Biomedical implications of heavy metals induced imbalances in redox systems.

    PubMed

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  9. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  10. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  11. Bismuth film electrodes for heavy metals determination

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  12. Heavy metal pollution of ambient air in Nagpur City.

    PubMed

    Chaudhari, Pramod R; Gupta, Rakhi; Gajghate, Daulat Ghilagi; Wate, Satish R

    2012-04-01

    Heavy metals released from different sources in urban environment get adsorbed on respirable particulate matter less than 10 μm in size (PM(10)) and are important from public health point of view causing morbidity and mortality. Therefore, the ambient air quality monitoring was carried out to study the temporal and special pattern in the distribution of PM(10) and associated heavy metal content in the atmosphere of Nagpur, Maharashtra State, India during 2001 as well as in 2006. PM(10) fraction was observed to exceed the stipulated standards in both years. It was also observed that minimum range of PM(10) was observed to be increased in 2006 indicating increase in human activity during nighttime also. Six heavy metals were analyzed and were observed to occur in the order Zn > Fe > Pb > Ni > Cd > Cr in 2006, similar to the trend in other metro cities in India. Lead and Nickel were observed to be within the stipulated standards. Poor correlation coefficient (R(2)) between lead and PM(10) indicated that automobile exhaust is not the source of metals to air pollution. Commercial and industrial activity as well as geological composition may be the potential sources of heavy metal pollution. Total load of heavy metals was found to be increased in 2006 with prominent increase in zinc, lead, and nickel in the environment. Public health impacts of heavy metals as well as certain preventive measures to mitigate the impact of heavy metals on public health are also summarized.

  13. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    PubMed

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment.

  14. Optical methods for the detection of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Uglov, A. N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A. D.; Beletskaya, I. P.

    2014-03-01

    The review covers an important area of the modern chemistry, namely, the detection of heavy metal ions using optical molecular detectors. The role of this method in metal ion detection and the physicochemical grounds of operation of chemosensors are discussed, and examples of detection of most abundant heavy metal ions and synthetic approaches to molecular detectors are presented. The immobilization of molecular detectors on solid substrates for the design of analytical sensor devices is described. The bibliography includes 178 references.

  15. [Application of ICP-MS to determination of heavy metal content of heavy metals in two kinds of N fertilizer].

    PubMed

    Rui, Yu-kui; Shen, Jian-bo; Zhang, Fu-suo

    2008-10-01

    Environmental safety has been the focus worldwide, where involved are the pollutions of heavy metals, pesticides and persistent organic pollutants. Fertilizer has become one of the polluting sources of heavy metals, which are very deleterious to human health and environmental safety. Heavy metals are difficult to metabolize in human body and very harmful, so research on the pollution of heavy metals is considered increasingly important. The pollution sources of heavy metals include waste residue, waste water and exhaust gas from industry and automobile, and garbage from human life. The heavy metals in fertilizer can endanger the human body by the crop containing heavy metals. Two kinds of nitrogen fertilizer were analyzed in terms of the content of heavy metals by ICP-MS, and the results showed that the content of 10 kinds of heavy metals (Al, Ti, Cr, Ni, Cu, Zn, As, Cd, Hg and Pb) in (NH4)2SO4 was 1345.13, 35.12, 2539.27, 287.26, 674.05, 270.79, 42.54, 22.13, 27.20 and 123.87 ng x g(-1) respectively; and in CO(NH2)2 it is 71.59, 5.36, 1167.71, 188.60, 7.46, 64.45, 10.55, 0.00, 0.09 and 3.71 ng x g(-1) respectively. All the data showed that CO(NH2)2 contained much less heavy metals than (NH4)2SO4, so we should select CO(NH2)2 as the nitrogen fertilizer in agricultural production.

  16. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  17. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium.

    PubMed

    Xu, Piao; Liu, Liang; Zeng, Guangming; Huang, Danlian; Lai, Cui; Zhao, Meihua; Huang, Chao; Li, Ningjie; Wei, Zhen; Wu, Haipeng; Zhang, Chen; Lai, Mingyong; He, Yibin

    2014-01-01

    Phanerochaete chrysosporium are known to be vital hyperaccumulation species for heavy metal removal with admirable intracellular bioaccumulation capacity. This study analyzes the heavy metal-induced glutathione (GSH) accumulation and the regulation at the intracellular heavy metal level in P. chrysosporium. P. chrysosporium accumulated high levels of GSH, accompanied with high intracellular concentrations of Pb and Cd. Pb bioaccumulation lead to a narrow range of fluctuation in GSH accumulation (0.72-0.84 μmol), while GSH plummeted under Cd exposure at the maximum value of 0.37 μmol. Good correlations between time-course GSH depletion and Cd bioaccumulation were determined (R (2) > 0.87), while no significant correlations have been found between GSH variation and Pb bioaccumulation (R (2) < 0.38). Significantly, concentration-dependent molar ratios of Pb/GSH ranging from 0.10 to 0.18 were observed, while molar ratios of Cd/GSH were at the scope of 1.53-3.32, confirming the dominant role of GSH in Cd chelation. The study also demonstrated that P. chrysosporium showed considerable hypertolerance to Pb ions, accompanied with demand-driven stimulation in GSH synthesis and unconspicuous generation of reactive oxygen stress. GSH plummeted dramatically response to Cd exposure, due to the strong affinity of GSH to Cd and the involvement of GSH in Cd detoxification mechanism mainly as Cd chelators. Investigations into GSH metabolism and its role in ameliorating metal toxicity can offer important information on the application of the microorganism for wastewater treatment.

  18. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  19. Microalgae - A promising tool for heavy metal remediation.

    PubMed

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae.

  20. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  1. Improving crop tolerance to heavy metal stress by polyamine application.

    PubMed

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated.

  2. Assessment of airborne heavy metal pollution by aboveground plant parts.

    PubMed

    Rossini Oliva, S; Mingorance, M D

    2006-10-01

    Italian stone pine (Pinus pinea L.) and oleander (Nerium oleander L.) leaves, bark and wood samples were collected at different sites around an industrial area (Huelva, SW Spain) and compared with samples of the same species from a background site. Samples were analysed with respect to the following pollutants: Al, Ba, Cr, Cu, Fe and Pb by ICP-AES. The suitability of different plant parts as biomonitors of pollution was investigated. In pine samples from the polluted sites the ratio of concentrations between bark and wood was high for Al, Ba, Cu and Fe, whereas no differences were found in samples from the unpolluted area. No differences were detected in oleander for the same ratio. In the oleander species, the ratio between leaves and wood concentration allowed to distinguish between control and polluted sites. The ratio of the concentration between leaves and wood was elevated for Al, Ba and Fe in pine samples from the polluted sites. The ratio of the concentration in bark or leaves to their concentration in wood might be useful to detect inorganic atmospheric pollutants.

  3. Heavy metal music and adolescent suicidality: an empirical investigation.

    PubMed

    Scheel, K R; Westefeld, J S

    1999-01-01

    This study investigated the relationship between preference for heavy metal music and vulnerability to suicide among 121 high school students. Heavy metal fans had less strong reasons for living (especially male fans) and had more thoughts of suicide (especially female fans). For a large majority, listening to music (all types) had a positive effect on mood. Overall, the results indicate that preference for heavy metal music among adolescents may be a "red flag" for increased suicidal vulnerability, but also suggest that the source of the problem may lie more in personal and familial characteristics than in any direct effects of the music. Implications for intervention and for future research are discussed.

  4. Adsorption behavior of heavy metals on biomaterials.

    PubMed

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-08

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples.

  5. Heavy metal concentrations in a lichen of Mt. Rainier and Olympic National Parks, Washington, USA

    SciTech Connect

    Frenzel, R.W.; Witmer, G.W.; Starkey, E.E. )

    1990-01-01

    It is commonly assumed that the larger National Parks in the United States are pristine places which can provide baseline environmental conditions for comparisons with more developed areas. However, recently it has been recognized that many National Pars are threatened by atmospheric pollution. Until 1985, a copper smelter at Tacoma, Washington, 50 km northwest of Mount Rainier National Park, Washington emitted 30 tons of lead annually, along with high levels of arsenic and other metals. Other nearby sources of airborne heavy metals include a coal-fired generating plant at Centralia, 80 km west of the Park, and automobiles within the Seattle-Tacoma metropolitan area 50-100 km to the northwest. Heavy metals are a potential threat because they may effect ecosystems by decreasing nutrient cycling rates and impairing overall productivity. The objective of this study was to test the hypothesis that an arboreal lichen (Alectoria sarmentosa) within Mt. Rainier National Park contained elevated levels of heavy metals from these sources. This lichen species was chosen because it is common throughout forested areas of the region. Olympic National Park was selected as an experimental control area because it is located on the relatively undeveloped Olympic Penisula west of Seattle-Tacoma.

  6. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  7. Estimation of heavy metal transformations in municipal solid waste.

    PubMed

    Flyhammar, P

    1997-05-30

    The behaviour of heavy metals bound to municipal solid waste (MSW) and exposed to 2 decades of anaerobic waste stabilization processes have been estimated. Heavy metal solid forms in a waste degradation residue have been compared with a reconstructed waste similar to that initially disposed of in 1973. The initial waste was composed of a mixture of shredded MSW (95% dry wt.) and anaerobic sewage sludge (5% dry wt.). A sequential chemical extraction method has been used to fractionate the heavy metals into five categories of available and reactive solid forms. The results imply that these forms can be ascribed to approximately 30% of the total content of the heavy metals in the degraded waste and the portion of heavy metals bound to oxidizable solid forms seems to be higher in the degraded than the fresh MSW. The bulk of the remaining heavy metals are assumed to be less available and bound into resistant lattice structures, such as metal and polymer items. A comparison between fractionation patterns of the waste in this study and of a few sediments collected from different environments imply similarities between the fresh MSW and an oxic sediment from one site and the sewage sludge and anoxic sediments from another site. Fractionation patterns of the degraded waste are found to be quite similar to those of the anoxic sediments, except for Pb, Ni and Cd which are more similar to fresh MSW.

  8. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    PubMed

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  9. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops.

  10. Contamination of Polish national parks with heavy metals.

    PubMed

    Staszewski, Tomasz; Łukasik, Włodzimierz; Kubiesa, Piotr

    2012-07-01

    The paper presents results of screening analysis of all Polish national parks (23) contamination with Cd, Cu, Pb and Zn on the basis of a three-level characteristic of heavy metal presence in Norway spruce stands: accumulation on the needle surface, concentration of heavy metals in spruce needles and concentration of bioavailable heavy metals in the soil. Based on the obtained results, the classification of forest ecosystem hazard in national parks with heavy metals was made using synthetic indicators. It was found out that Babiogórski, Magurski, Ojcowski and Gorczański National Parks, located in the southern part of the country, were the most polluted with heavy metals. It is probably due to a higher industrial activity in this part of Poland and the transboundary transport of air pollutants. A little lower level of pollution was observed in Kampinoski National Park located in the middle of the country. The concentration of heavy metals found in needles from national parks does not seem to be harmful for the health status of the trees. Statistically significant correlation between all parameters, which was found for cadmium--the most mobile of the analysed elements--shows that this metal can be proposed as a marker to reflect present effect of industrial emission on forests.

  11. Heavy metals in livers and kidneys of goats in Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Datiri, B.C.

    1995-10-01

    The popularity of goat farming is increasing in the southeastern region of the United States. Baseline values of Hg, Pb, and Cd are not available in goat tissues in the United States. These values are needed when monitoring food for heavy metal contamination which may be associated with urbanization and industrialization. Due to human activities or anthropogenic sources of metals in the environment, high concentrations of these metals have been observed in herbage and animal tissues. It has also been reported that toxic heavy metals are concentrated mostly in kidneys and livers of animals. The risk of exposure of humans to heavy metals contained in edible organs of animals has received widespread concern. The objectives of this study were to (i) measure the levels of Hg,Pb, and Cd in livers and kidneys of goats; and (ii) determine whether accumulation of these metals is related to age and/or sex. 20 refs., 3 tabs.

  12. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed.

  13. View of interior detail; in kitchen; builtiniron and heavy metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of interior detail; in kitchen; built-in-iron and heavy metal clock. - Mare Island Naval Shipyard, Quarters P, Walnut Avenue, northwest corner of Walnut Avenue & Fifth Street, Vallejo, Solano County, CA

  14. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    EPA Science Inventory

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  15. NMR microscopy of heavy metal absorption in calcium alginate beads

    SciTech Connect

    Nestle, N.; Kimmich, R.

    1996-01-01

    In recent years, heavy metal uptake by biopolymer gels, such as Cal-Alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibrium absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 {mu}m or even better. 14 refs., 10 figs.

  16. Heavy metals testing in active pharmaceutical ingredients: an alternate approach.

    PubMed

    Raghuram, P; Soma Raju, I V; Sriramulu, J

    2010-01-01

    The principle of the pharmacopoeial heavy metals test is detection and estimation of the metallic impurities colored by sulfide ion by comparison against lead standard. The test suffers from a loss of analytes upon ashing and from having varied responses for various metals. An inductively coupled plasma-optical emission spectroscopy (ICP-OES) for estimating 23 metals in active pharmaceutical ingredients is being proposed. The method covers the metals listed in USP, Ph. Eur and EMEA guidance on "Residues of Metal Catalysts or Metal Reagents".

  17. Combined toxicity of heavy metal mixtures in liver cells.

    PubMed

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Variation in dry grassland communities along a heavy metals gradient.

    PubMed

    Woch, Marcin W; Kapusta, Paweł; Stefanowicz, Anna M

    2016-01-01

    The aim of this study was to investigate the variation in plant communities growing on metal-enriched sites created by historical Zn–Pb mining. The study sites were 65 small heaps of waste rock covered by grassland vegetation and scattered mostly over agricultural land of southern Poland. The sites were described in terms of plant coverage, species richness and composition, and the composition of plant traits. They were classified using phytosociological methods and detrended correspondence analysis. Identified plant communities were compared for vegetation parameters and habitat properties (soil characteristics, distance from the forest) by analysis of variance. The variation in plant community parameters was explained by multiple regression, in which the predictors were properties of the habitat selected on the basis of factor analysis. Grasslands that developed at low and high concentrations of heavy metals in soil were similar to some extent: they were composed on average of 17–20 species (per 4 m(2)), and their total coverage exceeded 90%. The species composition changed substantially with increasing contamination with heavy metals; metal-sensitive species withdrew, while the metal-tolerant became more abundant. Other important predictors of community structure were: proximity to the forest (responsible for the encroachment of competitive forest species and ruderals), and the thickness of the surface soil (shallow soil favored the formation of the heavy metal grassland). The heavy metal grassland was closely related to the dry calcareous grasslands. The former was an earlier succession stage of the latter at low contamination with heavy metals.

  19. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

  20. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  1. Heavy metal music and drug abuse in adolescents.

    PubMed

    King, P

    1988-04-01

    A large number of adolescents in a psychiatric population, particularly those who are chemically dependent, prefer to listen to heavy metal music. Young people who do not identify with traditional values may find simple but unconventional answers to complex problems in the lyrics of this type of music. While a clearcut relationship cannot be established between heavy metal music and destructive behavior, evidence shows that such music promotes and supports patterns of drug abuse, promiscuous sexual activity, and violence.

  2. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  3. Staining of Tissue Sections for Electron Microscopy with Heavy Metals

    PubMed Central

    Watson, Michael L.

    1958-01-01

    Heavy metals may be incorporated from solution into tissue sections for electron microscopy. The resulting increase in density of the tissue provides greatly enhanced contrast with minimal distortion. Relative densities of various structures are found to depend on the heavy metal ions present and on the conditions of staining. Certain hitherto unobserved details are revealed and some sort of specificity exists, although the factors involved are not yet understood. PMID:13563554

  4. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights.

  5. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  6. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  7. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil.

    PubMed

    Jiang, Chun-yu; Sheng, Xia-fang; Qian, Meng; Wang, Qing-ya

    2008-05-01

    A heavy metal-resistant bacterial strain was isolated from heavy metal-contaminated soils and identified as Burkholderia sp. J62 based on the 16S rDNA gene sequence analysis. The heavy metal- and antibiotic resistance, heavy metal solubilization of the isolate were investigated. The isolate was also evaluated for promoting plant growth and Pb and Cd uptakes of the plants from heavy metal-contaminated soils in pot experiments. The isolate was found to exhibit different multiple heavy metal and antibiotic resistance characteristics. Atomic absorption spectrometer analysis showed increased bacterial solubilization of lead and cadmium in solution culture and in soils. The isolate produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. The isolate also solubilized inorganic phosphate. Inoculation with the isolate was found to significantly (p<0.05) increase the biomass of maize and tomato plants. Increase in tissue Pb and Cd contents varied from 38% to 192% and from 5% to 191% in inoculated plants growing in heavy metal-contaminated soils compared to the uninoculated control, respectively. These results show that heavy metal-solubilizing and plant growth promoting bacteria are important for plant growth and heavy metal uptake which may provide a new microbial enhanced-phytoremediation of metal-polluted soils.

  8. Heavy metal music meets complexity and sustainability science.

    PubMed

    Angeler, David G

    2016-01-01

    This paper builds a bridge between heavy metal music, complexity theory and sustainability science to show the potential of the (auditory) arts to inform different aspects of complex systems of people and nature. The links are described along different dimensions. This first dimension focuses on the scientific aspect of heavy metal. It uses complex adaptive systems theory to show that the rapid diversification and evolution of heavy metal into multiple subgenres leads to a self-organizing and resilient socio-musicological system. The second dimension builds on the recent use of heavy metal as a critical thinking model and educational tool, emphasizing the artistic component of heavy metal and its potential to increase people's awareness of environmental sustainability challenges. The relationships between metal, complexity theory and sustainability are first discussed independently to specifically show mechanistic links and the reciprocal potential to inform one domain (science) by the other (metal) within these dimensions. The paper concludes by highlighting that these dimensions entrain each other within a broader social-cultural-environmental system that cannot be explained simply by the sum of independent, individual dimensions. Such a unified view embraces the inherent complexity with which systems of people and nature interact. These lines of exploration suggest that the arts and the sciences form a logical partnership. Such a partnership might help in endeavors to envision, understand and cope with the broad ramifications of sustainability challenges in times of rapid social, cultural, and environmental change.

  9. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  10. Phytoremediation of heavy metals--concepts and applications.

    PubMed

    Ali, Hazrat; Khan, Ezzat; Sajad, Muhammad Anwar

    2013-05-01

    The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals.

  11. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  12. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  13. Biomonitoring heavy metal contaminations by moss visible parameters.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface.

  14. Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood.

    PubMed

    Decker, Paul; Cohen, Beverly; Butala, John H; Gordon, Terry

    2002-01-01

    Chemical pesticide treatment enables relatively nonresistant woods to be used in outdoor construction projects. The most prevalent procedure used to protect these woods is pressure treatment with chromium, copper, and arsenic (CCA). This pilot study examined the airborne concentration and particle size distribution of wood particles, chromium, copper, and arsenic at both outdoor (measured over the whole work day) and indoor (measured during the performance of specific tasks) work sites. At the outdoor residential deck construction sites, the arithmetic mean total dust concentration, measured using personal filter cassette samplers, was 0.57 mg/m3. The mass median aerodynamic diameter (da) of the outdoor wood dust was greater than 20 microm. Indoor wood dust concentrations were significantly greater than those measured outdoor and were job category-dependent. The highest mean breathing zone dust concentration, 49.0 mg/m3, was measured at the indoor sanding operation. Personal impactor sampling demonstrated that the mean total airborne concentration of arsenic, but not chromium or copper, was consistently above recommended occupational exposure levels at the indoor work site, and occasionally at the outdoor work sites. At the indoor sanding operation, the mean total chromium, copper, and arsenic concentrations were 345, 170, and 342 microg/m3, respectively. Thus, significant exposure to airborne heavy metals can occur as a result of indoor and outdoor exposure to CCA pressure-treated wood dust. Therefore, current standards for wood dust may not adequately protect workers from the heavy metals commonly used in CCA pressure-treated wood.

  15. Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process.

    DTIC Science & Technology

    1976-08-01

    parameters to heavy metal removal in the activated sludge waste treatment process. The heavy metals studied were chromium and silver. Analyses...performed on the influent, mixed liquor, return sludge, and effluent included heavy metal concentration, pH, dissolved oxygen, temperature, suspended solids...related to heavy metal removal. Nitrification is only indirectly related. A theory for the mechanisms contributing to heavy metal removal is developed.

  16. Heavy metals removal from automobile shredder residues (ASR).

    PubMed

    Kurose, Keisuke; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa

    2006-10-11

    The fate of heavy metals during a separation process for automobile shredder residues (ASR) was investigated. A washing method to remove heavy metals from the ASR was also investigated. Although the separation process was not designed for removal of heavy metals, but for the recovery of reusable materials, the heavy metal content in the ASR was efficiently decreased. The concentrations of Pb, Cr and Cd in ASR were effectively reduced by a nonferrous metals removal process, and the As concentration was reduced by the removal of light dusts during the separation process. Five heavy metals (As, Se, Pb, Cr, Cd) remaining in the ASR after the separation process satisfied the content criteria of the Environmental Quality Standards for Soil (EQSS), while the concentrations of As, Se, Pb in the leachate from the remaining ASR did not satisfy the elution criteria of the EQSS. After additional washing of the remaining ASR with a pH 1 acid buffer solution, the As, Se, and Pb concentrations satisfied the EQSS for elution. These results indicate that an ASR residue can be safely recycled after a separation process, followed by washing at acidic pH.

  17. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.

    PubMed

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity.

  18. Multivariate analysis of heavy metals concentrations in river estuary.

    PubMed

    Alkarkhi, Abbas F M; Ahmad, Anees; Ismail, Norli; Easa, Azhar Mat

    2008-08-01

    Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.

  19. Physiological sensitivity of freshwater macroinvertebrates to heavy metals.

    PubMed

    Malaj, Egina; Grote, Matthias; Schäfer, Ralf B; Brack, Werner; von der Ohe, Peter Carsten

    2012-08-01

    Macroinvertebrate species traits, such as physiological sensitivity, have successfully been introduced in trait-based bioassessment approaches and are important predictors of species sensitivity in the field. The authors ranked macroinvertebrate species according to their physiological sensitivity to heavy metals using toxicity data from acute laboratory assays. Rankings for each of the heavy metals, Cd, Cu, Cr, Ni, Pb, Zn, and Hg, were standardized based on all available species data. Rankings for different heavy metals on the species level showed no significant difference between compounds and were reasonably well correlated pairwise (0.50heavy metal ranking was developed, which assigns a single physiological sensitivity value (S(metal) ) to macroinvertebrate taxa. Considering the high variation, especially for higher taxonomic levels, that is, in the order level, it is recommended to use S values of the genus or species level for meaningful analyses. In terms of taxonomic ranking, crustaceans were overall the most sensitive taxonomic group, whereas insects were generally the most tolerant group. Species in the order of Cladocera were three orders of magnitude more sensitive than insects of the order of Trichoptera. By contrast, mollusks covered a wide range of sensitivities, with bivalves being on average one order of magnitude more sensitive than gastropods. The authors concluded that physiological sensitivity represents a promising trait for trait-based risk assessment that together with other demographic and recolonization traits may help to identify the effects of heavy metal pollution in aquatic ecosystems.

  20. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  1. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  2. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

    PubMed Central

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  3. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  4. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  5. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions.

  6. Heavy metal capture and accumulation in bioretention media.

    PubMed

    Li, Houng; Davis, Allen P

    2008-07-15

    Heavy metal capture and accumulation in bioretention media were investigated through the use of a one-dimensional filtration equation for particulate metals, advection/dispersion/adsorption transport equations for dissolved metals, and sequential extractions. Predicted spatial profiles and partitioning patterns of captured metals were compared to data derived from a bioretention cell in the District of Columbia. Zinc, lead, and copper profiles showed a high surface accumulation, significantly decreasing with the media depth. Surface street particle-enriched areas had the highest heavy metal levels, demonstrating a close relationship between capture of metals and runoff particles. Sequential extractions suggested that most captured metals were of anthropogenic origin. Soluble-exchangeable bound metals from the sequential extraction correlated well with predicted aqueous dissolved metals; the more strongly associated metal fractions correlated with modeled runoff and media particulate metals. A simple risk evaluation indicated thatlead isthe limiting metal in bioretention accumulation. On the basis of information collected in this study, a shallow bioretention cell design is suggested for systems with a focus on metal capture.

  7. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    SciTech Connect

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  8. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  9. Heavy metals in the volcanic environment and thyroid cancer.

    PubMed

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2016-10-26

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  10. Heavy metals in composts of separated municipal wastes

    SciTech Connect

    Liao, W.P.; Huang, W.C.; Fan, W.H.; Hsu, C.C.

    1997-12-31

    This study is to examine the influence of the metal components on the contents of heavy metals in composts of Municipal Solid Wastes (MSW). Fresh MSW used in composting was obtained from the city landfill of Taichung in Taiwan. Compost 1 was from as-collected MSW; Compost 2 was from degradable fraction in MSW; Compost 3 was from MSW without metal. The results show that the total concentration of zinc is the highest among the five heavy metals examined. Paper wastes are main sources of lead and copper with average concentrations of 18.53 mg/kg and 26.92 mg/kg of compost on dry weight. The contents of nickel and cadmium are relatively low. The total concentrations of the five heavy metals in composts increase by typical ratios between 1.72 and 2.58 for Composts 2 and 3, but 3.16 to 4.69 for Compost 1. The increase of concentration around a ratio of 2.0 is due to the loss of degraded organic matter. For the ratios above 2.0, fractions of some heavy metals have corroded from the surfaces of metal components into the Compost 1 in the early phase of acidic fermentation.

  11. Heavy metal bioaccumulation and toxicity with special reference to microalgae

    NASA Astrophysics Data System (ADS)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng

    2008-02-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  12. Perspectives in endocrine toxicity of heavy metals--a review.

    PubMed

    Rana, S V S

    2014-07-01

    An attempt has been made to review the endocrine/hormonal implications of a few environmentally significant metals, viz, lead, mercury, cadmium, copper, arsenic and nickel, in man and animals. Special emphasis has been given to the adrenals, thyroid, testis, ovary and pancreas. Toxic metals can cause structural and functional changes in the adrenal glands. Their effects on steroidogenesis have been reviewed. It has been reported that thyroid hormone kinetics are affected by a number of metallic compounds. Occupational exposure to a few of these metals can cause testicular injury and sex hormone disturbances. Protective effects of a few antioxidants on their reproductive toxicity have also been discussed. Information gathered on female reproductive toxicity of heavy metals shows that exposure to these metals can lead to disturbances in reproductive performance in exposed subjects. Certain metals can cause injury to the endocrine pancreas. Exposure to them can cause diabetes mellitus and disturb insulin homeostasis. The need to develop molecular markers of endocrine toxicity of heavy metals has been suggested. Overall information described in this review is expected to be helpful in planning future studies on endocrine toxicity of heavy metals.

  13. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  14. New trends in removing heavy metals from wastewater.

    PubMed

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.

  15. Heavy metal content of combustible municipal solid waste in Denmark.

    PubMed

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  16. Heavy metal contamination in the Western Indian Ocean (a review)

    NASA Astrophysics Data System (ADS)

    Mamboya, F. A.; Pratap, H. B.; Björk, M.

    2003-05-01

    Western Indian Ocean Coast has many potential marine ecosystems such as mangrove, seagrass meadows, macroalgae, and coral reefs. It is largely unspoiled environment however, tourism and population growth in coastal urban centres, industrialization, are presenting a risk of pollutants input to the marine environment of the Western Indian Ocean. Mining, shipping and agricultural activities also input contaminants into the marine environment via runoff, vessel operations and accidental spillage. Heavy metals are among the pollutants that are expected to increase in the marine environment of the Western Indian Ocean. The increase in heavy metal pollution can pose a serious health problem to marine organism and human through food chain. This paper reviews studies on heavy metal contamination in the Western Indian Ocean. It covers heavy metal studies in the sediments, biota, particulates and seawater collected in different sites. In comparison to other regions, only few studies have been conducted in the Western Indian Ocean and are localized in some certain areas. Most of these studies were conducted in Kenyan and Tanzanian coasts while few of them were conducted in Mauritius, Somalia and Reunion. No standard or common method has been reported for the analysis or monitoring of heavy metals in the Western Indian Ocean.

  17. Heavy Metals in Seafood and Farm Produce from Uyo, Nigeria

    PubMed Central

    Orisakwe, Orish E.; Mbagwu, Herbert O. C.; Ajaezi, Godwin C.; Edet, Ukeme W.; Uwana, Patrick U.

    2015-01-01

    Objectives: This study aimed to obtain representative data on the levels of heavy metals in seafood and farm produce consumed by the general population in Uyo, Akwa Ibom State, Nigeria, a region known for the exploration and exploitation of crude oil. Methods: In May 2012, 25 food items, including common types of seafood, cereals, root crops and vegetables, were purchased in Uyo or collected from farmland in the region. Dried samples were ground, digested and centrifuged. Levels of heavy metals (lead, cadmium, nickel, cobalt and chromium) were analysed using an atomic absorption spectrophotometer. Average daily intake and target hazard quotients (THQ) were estimated. Results: Eight food items (millet, maize, periwinkle, crayfish, stock fish, sabina fish, bonga fish and pumpkin leaf) had THQ values over 1.0 for cadmium, indicating a potential health risk in their consumption. All other heavy metals had THQ values below 1.0, indicating insignificant health risks. The total THQ for the heavy metals ranged from 0.389 to 2.986. There were 14 items with total THQ values greater than 1.0, indicating potential health risks in their consumption. Conclusion: The regular consumption of certain types of farm produce and seafood available in Uyo, Akwa Ibom State, Nigeria, is likely adding to the body burden of heavy metals among those living in this region. PMID:26052462

  18. Effect of heavy metals on germination of seeds

    PubMed Central

    Sethy, Sunil Kumar; Ghosh, Shyamasree

    2013-01-01

    With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress. PMID:24082715

  19. Sequential extraction of heavy metals during composting of sewage sludge.

    PubMed

    Amir, Soumia; Hafidi, Mohamed; Merlina, Georges; Revel, Jean-Claude

    2005-05-01

    The major limitation of soil application of sewage sludge compost is the total heavy metal contents and their bioavailability to the soil-plant system. This study was conducted to determine the heavy metal speciation and the influence of changing the physico-chemical properties of the medium in the course of composting on the concentrations, bioavailability or chemical forms of Cu, Zn, Pb and Ni in sewage sludge. Principal physical and chemical properties and FTIR spectroscopical characterization of sludge compost during treatment show the stability and maturity of end product. The total metal contents in the final compost were much lower than the limit values of composts to be used as good soil fertilizer. Furthermore, it was observed by using a sequential extraction procedure in sludge compost at different steps of treatment, that a large proportion of the heavy metals were associated to the residual fraction (70-80%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of metals bound to bioavailable fractions X-(KNO3+H2O). Heavy metal distribution and bioavailability show some changes during composting depending on the metal itself and the physico-chemical properties of the medium. Bioavailable fractions of all elements tend to decrease except Ni-H2O. Zn and mainly Cu present more affinity to organic and carbonate fractions. In contrast, Pb is usually preferentially bound to sulfide forms X-HNO3. Nickel shows a significant decrease of organic form. Significant degrees of correlation were found between heavy metal fractions and changes of some selected variables (e.g. pH, ash, organic matter, humic substance) during the course of composting. Mobile fractions of metals are poorly predictable from the total content. The R2 value was significantly increased by the inclusion of other variables such as the amount of organic matter (OM) and pH.

  20. Cocoa shells for heavy metal removal from acidic solutions.

    PubMed

    Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

    2003-12-01

    The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.

  1. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  2. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    PubMed

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  3. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    circuit without trans- ferring hear from a metallic resistance element. Contaminated soils may be accepted directly with little or (to pretreatment ...with metals has been demon-- strated. No pretreatment for organics destruction would be required. The system can also readily handle liquid wastes and...applications as a pretreatment /recovery step. J 38 0458Bi 3.7.3 Long term stability/performance. The process would remove metals from the soil. Therefore, if

  4. The environmental impact of gold mines: pollution by heavy metals

    NASA Astrophysics Data System (ADS)

    Abdul-Wahab, Sabah Ahmed; Marikar, Fouzul Ameer

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  5. Beneficial effect of sesame oil on heavy metal toxicity.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment.

  6. Dustfall Heavy Metal Pollution During Winter in North China.

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  7. Baker's yeast assay procedure for testing heavy metal toxicity

    SciTech Connect

    Bitton, G.; Koopman, B.; Wang, H.D.

    1984-01-01

    Baker's yeast (Saccharomyces cerevisiae) is microorganism which is commercially available and sold as packaged dry pellets in any food store at low cost. Studies have been undertaken on the effects of organic xenobiotics as well as heavy metals on yeast metabolism. This type of study has been generally useful in examining the mechanism(s) of chemical toxicity. However, a rapid and quantitative toxicity test using S. cerevisiae as the test organism has not been developed. The purpose of this study was to develop a toxicity assay for heavy metals, using commercial dry yeast as the test microorganism. This rapid and simple procedure is based on the reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) to INT-formazan by the yeast electron transport system. The scoring of active cells following exposure to heavy metals was undertaken according to the MINT (malachite green-INT) method developed by Bitton and Koopman.

  8. Heavy metals intake by cultured mushrooms growing in model system.

    PubMed

    Ozcan, Mehmet Musa; Dursun, Nesim; Al Juhaimi, Fahad Y

    2013-10-01

    Micro element and heavy metal contents of mushrooms were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). It was seen an increase in the heavy metal contents (except Cu and Zn) of the mushrooms until the second dose. A decrease was seen in heavy metal intake of the mushroom in the application of the third dose. The highest accumulation occurred from the upper soils treated with the second dose. Amounts of Cd, Cr, Cu, Pb and Zn, which were accumulated in the mushroom after the application of this dose, were detected as 5.7, 23.1, 75.7, 62.8 and 99.3 ppm, respectively.

  9. Heavy metals in canned tuna from Italian markets.

    PubMed

    Russo, R; Lo Voi, A; De Simone, A; Serpe, F P; Anastasio, A; Pepe, T; Cacace, D; Severino, L

    2013-02-01

    Fish is a good source of nutrients for humans but can pose a risk to human health because of the possible presence of some xenobiotics such as heavy metals and persistent organic contaminants. Constant monitoring is needed to minimize health risks and ensure product quality and consumer safety. The aim of the present study was to use atomic absorption spectrometry to determine the concentrations of some heavy metals (Hg, Pb, and Cd) in tuna packaged in different kinds of packages (cans or glass) in various countries (Italy and elsewhere). Concentrations of Cd and Hg were within the limits set by European Commission Regulation (EC) No 1881/2006 and in many samples were below the detection limit. Pb concentrations exceeded European limits in 9.8% of the analyzed samples. These results are reassuring in terms of food safety but highlighted the need to constantly monitor the concentrations of heavy metals in fish products that could endanger consumer health.

  10. Separation Characteristics of Heavy Metal Compounds by Hot Gas Cleaning System

    SciTech Connect

    Sakano, T.; Kanaoka, C.; Furuuchi, M.; Yang, K-S.; Hata, M.

    2002-09-20

    The purpose of this research is the basic study for the development of separation technology of heavy metal compounds from hot flue gas. While the hot flue gas containing heavy metals from a melting furnace of industrial waste passes through the high temperature dust collector which can be varied the operating temperature. The heavy metals can be separated due to different boiling point of each heavy metal. On the basis of this concept, the concentration of heavy metals in the flue gas were sampled and measured at inlet, outlet of the ceramic filter housing in the actual industrial waste processing system. Speciation of heavy metals in collected ashes was clarified by separating heavy metals according to compounds using their elution characteristics. Moreover, equilibrium analysis was performed to determine the effect of temperature, flue gases conditions on heavy metals speciation, and it was compared with experimental data. From these results, we discussed about separation performance of heavy metal compounds by hot gas cleaning.

  11. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge.

    PubMed

    Yuan, Xingzhong; Huang, Huajun; Zeng, Guangming; Li, Hui; Wang, Jingyu; Zhou, Chunfei; Zhu, Huina; Pei, Xiaokai; Liu, Zhifeng; Liu, Zhantao

    2011-03-01

    The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.

  12. Heavy metal pollution in coastal areas of South China: a review.

    PubMed

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit.

  13. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    PubMed

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  14. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals.

    PubMed

    Lin, Yu-Chi; Hsu, Shih-Chieh; Chou, Charles C-K; Zhang, Renjian; Wu, Yunfei; Kao, Shuh-Ji; Luo, Li; Huang, Chao-Hao; Lin, Shuen-Hsin; Huang, Yi-Tang

    2016-01-01

    Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM2.5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10(-4) on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days.

  15. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  16. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than

  17. [Heavy metal poisoning and renal injury in children].

    PubMed

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  18. Brassinosteroids and Response of Plants to Heavy Metals Action

    PubMed Central

    Rajewska, Iwona; Talarek, Marta; Bajguz, Andrzej

    2016-01-01

    Brassinosteroids (BRs) are a widespread group of plant hormones. These phytohormones play a crucial role in the regulation of growth and development of various plant species, and they demonstrate high biological activity. BRs are considered to demonstrate protective activity in the plants exposed to various stresses. Due to rapid industrialization and urbanization, heavy metals have become one of the most important plant stressors. In plants, accumulation of heavy metals beyond the critical levels leads to oxidative stress. However, BRs may inhibit the degradation of lipids, resulted from the overproduction of reactive oxygen species under stress conditions, and increase the activity of antioxidants. They also have the ability to promote phytochelatins synthesis. PMID:27242833

  19. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  20. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  1. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica.

    PubMed

    Poblet, A; Andrade, S; Scagliola, M; Vodopivez, C; Curtosi, A; Pucci, A; Marcovecchio, J

    1997-11-27

    Trace-metal contents were recorded for the epilithic antarctic lichens Usnea aurantiacoatra and U. antartica, sampled close to the Argentine scientific station 'Jubany' on '25 de Mayo' (King George) Island, in the Southern Shetland Archipelago (Antarctica). The corresponding heavy-metal levels have been measured through atomic absorption spectrophotometry, following internationally accepted analytical methods. The results obtained support the hypothesis that an atmospheric circulation of trace metals exists on the assessed area, and the activities developed at the different scientific stations located on this island would be a potential source of heavy metals to the evaluated environment. The geographical distribution of trace metals atmospherically transported in the area close to 'Jubany Station' was studied through the corresponding metal contents of the assessed lichens. Finally, the suitability of both analyzed lichen species, Usnea aurantiacoatra and U. antartica, as biological indicators for quantitative monitoring of airborne metals for this antarctic environment was recognized.

  2. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  3. miRNA-based heavy metal homeostasis and plant growth.

    PubMed

    Noman, Ali; Aqeel, Muhammad

    2017-02-22

    Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.

  4. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    SciTech Connect

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  5. Coal burning leaves toxic heavy metal legacy in the Arctic.

    PubMed

    McConnell, Joseph R; Edwards, Ross

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximately 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  6. Coal burning leaves toxic heavy metal legacy in the Arctic

    SciTech Connect

    McConnell, J.R.; Edwards, R.

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximate to 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  7. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  8. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    PubMed

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  9. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  10. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  11. Characterization of disposable optical sensors for heavy metal determination.

    PubMed

    Vuković, Jadranka; Avidad, María Ariza; Capitán-Vallvey, Luis Fermín

    2012-05-30

    This paper presents the development, characterization and quality control of analytical methods based on the use of disposable optical sensors for determination of heavy metals. Chromogenic reagents such as 1-(2-pyridylazo)-2-naphthol, (2-pyridylazo)resorcinol, Zincon, Ferrozine, and Chromazurol S were used to develop optical sensors of heavy metal ions found as contaminants in pharmaceutical substances and products, such as Zn(II), Cu(II), Ni(II), Fe(II), and Fe(III). The chromogenic reagents were immobilized in polymeric membranes by spin-coating from cocktails containing all reagents needed. The methods were prevalidated using a comprehensive quality control strategy based on a system of mathematical/statistical testing and diagnosis of each prevalidation step. This system involved characterization of analytical groups; checking of two limiting groups; testing of data homogeneity; recognition of outliers; and determination of analytical functions, limiting values, precision and accuracy. The prevalidation strategy demonstrated the reliability of the proposed method and pointed out some limitations. Combining the optical sensors with multicomponent linear regression allowed simultaneous determination of multiple metals in synthetic mixtures with different compositions. Good agreement between experimental and theoretical amounts of heavy metals in the mixtures was obtained for the majority of sensors and metals. Even better agreement was obtained between the experimental and theoretical total amounts of metals in the mixtures. The proposed analytical methods were successfully applied to the determination of zinc in pharmaceutical preparations of insulin and the determination of metal mixtures in a commercial nasal spray of isotonic seawater. The reliable and sensitive individual optical sensors developed in this study may be useful for designing a multimembrane optical tongue that with appropriate further optimization can be used for screening heavy metals in

  12. Biosorption of heavy metals by Fucus spiralis.

    PubMed

    Romera, E; González, F; Ballester, A; Blázquez, M L; Muñoz, J A

    2008-07-01

    The sorption uptake of cadmium, nickel, zinc, copper and lead by marine brown alga Fucus spiralis was investigated in bimetallic, trimetallic and multimetallic solutions. The experimental data fitted very well to Langmuir model. In bimetallic systems, the affinity of biomass for lead and copper increased and the sorption uptake of these metals was not affected by increasing concentrations of cadmium, nickel or zinc. However, in solutions with both metals there was a significant mutual decrease of their sorption levels at high concentrations of the other metal. The sorption uptake of cadmium, nickel and copper was investigated in trimetallic aqueous systems. Based on the kinetic parameter b, the affinity of F. spiralis for copper was considerably higher than for cadmium or nickel: bCd=6.39, bNi=1.82 and bCu=17.89. In all tests, the maximum sorption uptake remained practically constant around 1 mmol/g, indicating that the number of active sites on the biomass was limited. Tests with four and five metals showed that copper was preferentially adsorbed. The differences between the experimental sorption data and those given by the chemical speciation program PHREEQCI were negligible. In general, the software used provided satisfactory estimated data for each metal and hence can be a useful tool to predict or simulate the real process.

  13. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  14. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    NASA Astrophysics Data System (ADS)

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  15. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  16. The potential for heavy metal decontamination

    SciTech Connect

    Baker, A.J.M.; McGrath, S.P.; Sidoli, C.M.D.; Reeves, R.D.

    1996-12-31

    Preliminary trials to assess the ability of plant species to extract metals are presented. A range of zinc and nickel hyperaccumulator plants from the Brassicaceae family, collected from diverse populations in Europe, were grown on plots along with nonaccumulating crop plants from the same family. Extraction efficiencies and the number of croppings required to reduce the total zinc in the soil to a concentration of 300 mg/kg are tabulated. Zinc accumulation remained high over a wide range of soil metal concentration. However, the concentration of nickel in the hyperaccumulators increased in accordance with increasing total nickel concentrations in the soil. Calculations suggest that there is an excellent potential for using hyperaccumulator species to remove metals from the rhizosphere where remediation can be considered over a period of years and multiple cropping is a viable option.

  17. Use of cestodes as indicator of heavy-metal pollution.

    PubMed

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution.

  18. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  19. Screening Capsicum chinense fruits for heavy metals bioaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentrations of heavy metals in edible plants could expose consumers to excessive levels of potentially hazardous chemicals. Sixty-three accessions (genotypes) of Capsicum chinense Jacq, collected from 8 countries of origin, were grown in a silty-loam soil under field conditions. At matur...

  20. Adolescents and Heavy Metal Music: From the Mouths of Metalheads.

    ERIC Educational Resources Information Center

    Arnett, Jeffrey

    1991-01-01

    Attitudes and characteristics of adolescents who like heavy metal music (HMM) were explored in a study of 52 adolescents (largely White males) who liked HMM and 123 who did not in suburban Atlanta (Georgia). HMM is discussed as a reflection of, rather than a cause of, adolescent alienation. (SLD)

  1. MICROBIAL SEQUESTRATION OF LEAD AND OTHER HEAVY METALS

    EPA Science Inventory

    Human activity resulting in heavy metal contamination is a worldwide concern. Lead is a potent neurotoxin that can cause heart problems, kidney damage, and mental retardation. Mercury causes toxicity based on its form and route of exposure. Effects range from allergic reactions t...

  2. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    PubMed Central

    Tee, L.W.; Najiah, M.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) and furazolidone (71.4%) while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR) index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100%) between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu2+. Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals. PMID:26623279

  3. Phenol degradation and heavy metal tolerance of Antarctic yeasts.

    PubMed

    Fernández, Pablo Marcelo; Martorell, María Martha; Blaser, Mariana G; Ruberto, Lucas Adolfo Mauro; de Figueroa, Lucía Inés Castellanos; Mac Cormack, Walter Patricio

    2017-03-07

    In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.

  4. Heavy metal resistant strains are widespread along Streptomyces phylogeny.

    PubMed

    Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia

    2013-03-01

    The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history.

  5. TREATMENT OF HEAVY METALS USING AN ORGANIC SULFATE REDUCING PRB

    EPA Science Inventory

    A mpilot-scale permeable reactive wall consisting of a leaf-rich compost-pea gravel mixture was installed at a site in the Vancouver area, Canada to evaluate its potential use for treatment of a large dissolved heavy metal plume. The compost based permeable reactive wall promote...

  6. Impact of heavy metals and PCBs on marine picoplankton.

    PubMed

    Caroppo, Carmela; Stabili, Loredana; Aresta, Michele; Corinaldesi, Cinzia; Danovaro, Roberto

    2006-12-01

    Synergistic/antagonistic effects of multiple contaminants in marine environments are almost completely unexplored. In the present study, we investigated the effects of heavy metals (Zn and Pb) and PCBs on picoplankton abundance, biomass, cell size distribution, and bacterial C production. Natural picoplankton assemblages were exposed to heavy metals (Zn or Pb), organic contaminants (PCBs, Aroclor 1260), and to a mixture of different contaminants. The results of the present study indicate that Zn addition stimulated heterotrophic growth, whereas Pb has a negative impact on heterotrophic picoplankton, particularly significant in the first 24 h. Heavy metals had no effects on the autotrophic component. The addition of Aroclor 1260 had a significant impact on abundance, biomass, and cell size of autotrophic and heterotrophic picoplankton, and reduced significantly bacterial secondary production. Three weeks after PCB treatment, heterotrophic bacteria displayed a clear resilience, both in terms of abundance and biomass, reaching values comparable to those of the controls, but not in terms of bacterial C production. Our results indicate that picoplankton can be sensitive indicators of impact determined by heavy metals and PCBs in coastal marine systems.

  7. HEAVY METAL CONTAMINATION IN THE TAIMYR PENINSULA, SIBERIAN ARCTIC

    EPA Science Inventory

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula, primarily because of the remoteness of this area. W...

  8. Optimization of heavy metals total emission, case study: Bor (Serbia)

    NASA Astrophysics Data System (ADS)

    Ilić, Ivana; Bogdanović, Dejan; Živković, Dragana; Milošević, Novica; Todorović, Boban

    2011-07-01

    The town of Bor (Serbia) is one of the most polluted towns in southeastern Europe. The copper smelter which is situated in the centre of the town is the main pollutant, mostly because of its old technology, which leads to environmental pollution caused by higher concentrations of SO 2 and PM 10. These facts show that the word is about a very polluted region in Europe which, apart from harming human health in the region itself, poses a particular danger for wider area of southeastern Europe. Optimization of heavy metal's total emission was undertaken because years of long contamination of the soil with heavy metals of anthropogenic origin created a danger that those heavy metals may enter the food chains of animals and people, which can lead to disastrous consequences. This work represents the usage of Geographic Information System (GIS) for establishing a multifactor assessment model to quantitatively divide polluted zones and for selecting control sites in a linear programming model, combined with PROMETHEE/GAIA method, Screen View modeling system, and linear programming model. The results show that emissions at some control sites need to be cut for about 40%. In order to control the background of heavy metal pollution in Bor, the ecological environment must be improved.

  9. Heavy metal contamination in the Delhi segment of Yamuna basin.

    PubMed

    Sehgal, Meena; Garg, Ankur; Suresh, R; Dagar, Priya

    2012-01-01

    Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd.

  10. Semax prevents learning and memory inhibition by heavy metals.

    PubMed

    Inozemtsev, A N; Bokieva, S B; Karpukhina, O V; Gumargalieva, K Z; Kamensky, A A; Myasoedov, N F

    2016-05-01

    Separate and joint effect of Semax, ascorbic acid, lead diacetate, and ammonium molybdate on avoidance conditioning in rats was studied. It was established that the heavy metal salts inhibited the avoidance response, and the peptide counteracted this inhibition as strongly as ascorbic acid or to a comparable degree. These findings confirm the antioxidant properties of Semax.

  11. Using biopolymers to remove heavy metals from soil and water

    SciTech Connect

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  12. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  13. Heavy metals pollution in the environment of Kathmandu

    NASA Astrophysics Data System (ADS)

    Shrestha, H. D.

    2003-05-01

    Nepal situated on the lap of mighty Himalayas is now threatened by heavy metals pollution in her atmosphere, land and river system. The indigenious technology of Nepal heavily depends on the use of mercury in gold plating technique. The mercury vapours are released to the atmosphere, when gold-amalgam smeared untesils and idols are strongly heated. Absence of control mechanism to collect mercury vapours has not only polluted atmosphere but it has also caused health hazard to the workers working in the poorly ventilated workshop. The craftsmen and articians have been victim of mercury poisoining. Another heavy metal that has caused atmospheric pollution in Nepal is lead. The lead containing gasoline used in greater amount in vehicles has released more and more lead in the from of exhaust gas into the atmosphere. The atmospheric pollution has been more acute in Nepal due to the use of lead gasoline in used vehicles. Likewise the river system of the urban areas of Nepal is polluted by heavy metals like cadmium, lead salt, ferrous salt, etc. The effulents of battery industries, leather factories, dye factories are directly dumped into the river system of urban areas. This has killed many aquatic animals of rivers. Thus Nepal is facing the problem of heavy metals pollution in her environnent.

  14. Fate of heavy metals and agrochemicals in biochar amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heavy metals and agrochemicals are the key targets for biochar-induced mitigation of runoff/groundwater contamination. Inorganic and organic contaminants interact differently with biochars as well as soil components. Mechanistic understandings are needed on sorption, desorption, and competitive sor...

  15. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  16. Heavy metal pollutants and chemical ecology: exploring new frontiers.

    PubMed

    Boyd, Robert S

    2010-01-01

    Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in "info-disruption" that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex

  17. Heavy metals fractionation in Ganga River sediments, India.

    PubMed

    Purushothaman, P; Chakrapani, G J

    2007-09-01

    The Ganga River is the largest river in India which, originates in the Himalayas and along with the Brahmaputra River, another Himalayan river, transports enormous amounts of sediments from the Indian sub-continent to the Bay of Bengal. Because of the important role of river sediments in the biogeochemical cycling of elements, the Ganga river sediments, collected from its origin to the down stretches, were studied in the present context, to assess the heavy metals associated with different chemical fractions of sediments. The fractionation of metals were studied in the sediments using SM&T protocol for the extraction of heavy metals and geo-accumulation index (GAI) (Muller, Schwermetalle in den sedimenten des rheins - Veranderungen seit. Umschau, 79, 778-783, 1979) and Metal Enrichment Factor (MEF) in different fractions were calculated. As with many river systems, residual fractions constitute more than 60% of total metals, except Zn, Cu and Cr. However, the reducible and organic and sulfide components also act as major sinks for metals in the down stretches of the river, which is supported by the high GAI and MEF values. The GAI values range between 4 and 5 and MEF exceed more than 20 for almost all the locations in the downstream locations indicating to the addition of metals through urban and industrial effluents, as compared to the low metals concentrations with less GAI and MEF in the pristine river sediments from the rivers in Himalayas.

  18. Heavy metal bioaccumulation in two passerines with differing migration strategies.

    PubMed

    Cooper, Zoë; Bringolf, Robert; Cooper, Robert; Loftis, Kathy; Bryan, Albert L; Martin, James A

    2017-03-11

    Various anthropogenic activities have resulted in concentration of heavy metals and contamination of surrounding environments. Historically, heavy metal contamination at the Savannah River Site (SRS) in South Carolina has resulted from accidental releases of stored waste generated from nuclear weapon production in the early 1950s. Songbirds inhabiting and using resources from these areas have the potential to bioaccumulate metals but there is limited information on metal concentration levels in areas suspected of contamination as well as uncontaminated sites. Nonlethal tissues samples from avian blood and feathers provide a reliable approach for determining the bioavailability of these pollutants (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The objectives of this study were to survey terrestrial heavy metal contamination at the SRS on potentially bioavailable contaminated (PBC) sites through blood and feather samples from resident Northern Cardinals (Cardinalis cardinalis) and migratory Great Crested Flycatchers (Myiarchus crinitus) and quantify sex-specific concentrations within species. Samples were collected in April to June of 2016. Cardinals had lower blood concentrations of Hg (β=-0.17, 85% CL=-0.26, -0.09) and Se (β=-0.33, 85% CL=-0.50, -0.16) than flycatchers. Cr feather concentrations were less in cardinals (β=-1.46, 85% CL=-2.44, -0.49) and all feathers of both species from reference locations had significantly less Zn (β=-67.92, 85% CL=-128.71, -7.14). Results indicate flycatchers were exposed to differing heavy metal levels during feather formation on their wintering grounds as compared to their recent exposure (through bloods samples) on their breeding grounds. Sex of individuals did not have a significant impact on bioaccumulation in either species. Overall, metal concentration levels in both species indicate minimal risk for acute toxicity; however, there is limited research on wild passerine populations with similar concentration levels. Therefore

  19. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  20. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  1. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.

    PubMed

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M

    2015-05-01

    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.

  2. Disposable cuvette test for enzymatic determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Wolfbeis, Otto S.; Preininger, Claudia

    1995-10-01

    We report on an optical cuvette test for total heavy metals based on the inhibition of the enzyme urease by metals ions including silver(I), mercury(II), copper(II), nickel(II), cobalt(II), and cadmium(II). The enzymatic action is monitored using an optical ammonia transducer deposited on the wall of a disposable cuvette. This results in a rapid and inexpensive single-shot device for heavy metal sensing. A solution of urease and buffer is placed in the cuvette with the ammonium sensor membrane fixed on one of its walls. Enzymatic action starts after addition of a defined quantity of urea. This is indicated by the increase in the absorption of the ammonia sensor membrane whose color changes from yellow to blue. The slop of the increase in signal is the information for the un-inhibited reaction. After several minutes,the sample (containing the heavy metal) is added to the cuvette. Heavy metal ions inhibit the enzyme (by binding to the sulfhydryl groups) and cause a decrease in the slope. The ratio of slopes of un-inhibited and inhibited reactions is a direct parameter for detecting and calculating total heavy metals. The optimum pH was a trade-off between optimum enzyme activity (pH 7 at 25 degree(s)C) and the relative signal change of the ammonia-sensor (highest at pH 8). pH 7.5 was found to be optimal. The system was calibrated at optimized activities of urease (1.5 (mu) ) and an optimized urea concentration (0.5 mmol). Heavy metals inhibit in the following order: Ag(I) > Hg(II) > Cu(II) >> Ni(II) > Co(II) > Cd(II) > Fe(III) > Pb(II), Zn(II). The following concentrations that cause 50% inhibition were found: Ag(I) (0.1 ppm), Hg(II) (0.5 ppm), Cu(II) (0.5 ppm), Ni(II) (7 ppm), Co(II) (30 ppm), Cd(II) (95 ppm), Fe(III) (50 ppm), Zn(II) (85 ppm) and Pb(II) (210 ppm). We also studied the inhibitory effect of combinations of metal ions, the influence of ionic strength, and the effect of incubation time.

  3. A sensitive rapid on-site immunoassay for heavy metal contamination

    SciTech Connect

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  4. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  5. Two-stage anaerobic digestion enables heavy metal removal.

    PubMed

    Selling, Robert; Håkansson, Torbjörn; Björnsson, Lovisa

    2008-01-01

    To fully exploit the environmental benefits of the biogas process, the digestate should be recycled as biofertiliser to agriculture. This practice can however be jeopardized by the presence of unwanted compounds such as heavy metals in the digestate. By using two-stage digestion, where the first stage includes hydrolysis/acidification and liquefaction of the substrate, heavy metals can be transferred to the leachate. From the leachate, metals can then be removed by adsorption. In this study, up to 70% of the Ni, 40% of the Zn and 25% of the Cd present in maize was removed when the leachate from hydrolysis was circulated over a macroporous polyacrylamide column for 6 days. For Cu and Pb, the mobilization in the hydrolytic stage was lower which resulted in a low removal. A more efficient two-stage process with improved substrate hydrolysis would give lower pH and/or longer periods with low pH in the hydrolytic stage. This is likely to increase metal mobilisation, and would open up for an excellent opportunity of heavy metal removal.

  6. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  7. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  8. Bioleaching of heavy metals from sewage sludge: a review.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-06-01

    During the treatment of sewage, a huge volume of sludge is generated, which is disposed of on land as soil fertilizer/conditioner due to the presence of nitrogen, phosphorus, potassium and other nutrients. However, the presence of toxic heavy metals and other toxic compounds in the sludge restricts its use as a fertilizer. Over the years, bioleaching has been developed as an environmentally friendly and cost-effective technology for the removal of heavy metals from the sludge. The present paper gives an overview of the various bioleaching studies carried out in different modes of operation. The various important aspects such as pathogen destruction, odor reduction and metal recovery from acidic leachate also have been discussed. Further, a detailed discussion was made on the various technical problems associated with the bioleaching process, which need to be addressed while developing the process on a larger scale.

  9. [Heavy metals in water of the Skikda Bay].

    PubMed

    Kehal, M; Mennour, A; Reinert, L; Fuzellier, H

    2004-09-01

    The region of Skikda is one of the most important industrial poles of Algeria. The aim of the study is a qualitative and quantitative evaluation of the pollution by heavy metals of the marine water of the bay. The pollutants investigated are lead, cadmium and mercury because of their toxicity. The study is concerned mainly with the spatiotemporal evolution of the pollution on the extent of the bay. Concentrations of heavy metals metals vary from 4 microg l(-1) to 55 microg l(-1) for lead, 1 microg l(-1) to 17 microg l(-1) for cadmium and 0,1 to 1,1 microg l(-1) for mercury, which indicates a beginning of pollution of the site. Only small variation of the contents have been noted in a second investigation carried out one decade after the first one.

  10. [Oxidative stress in plants exposed to heavy metals].

    PubMed

    Rucińiska-Sobkowiak, Renata

    2010-01-01

    Oxidative stress has been involved in the toxicity of heavy metals in different plant species. Exposure to metal ions can intensify the production of reactive oxygen species (ROS) such as: superoxide radicals, hydroxyl radicals or hydrogen peroxide. These species can react with cellular components (lipids, proteins, nucleic acids) and cause lipid peroxidation, membrane damage and inactivation of enzymes thus affect many physiological processes as well as cell viability. Plants have evolved a complex array of mechanisms to maintain low ROS level and avoid the detrimental effects of excessively high ROS concentrations. This antioxidant network includes numerous soluble (ascorbate, glutathione) and membrane (tocopherol) compounds as well as enzymes involved in ROS scavenging (superoxide dismutase, catalase, ascorbate peroxidase). ROS must be efficiently detoxified to ameliorate the harmful effects of heavy metals in the cells. However they cannot be eliminated completely because plants use ROS as second messengers in signal transduction cascades in diverse physiological processes.

  11. Heavy - metal biomonitoring by using moss bags in Florence urban area, Italy

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Canu, Annalisa; Arca, Angelo; Duce, Pierpaolo

    2013-04-01

    In the last century, pollution has become one of the most important risks for environment. In particular, heavy metal presence in air, water and soil induces toxic effects on ecosystems and human health. Monitoring airborne trace element over large areas is a task not easy to reach since the concentrations of pollutants are variable in space and time. Data from automatic devices are site-specific and very limited in number to describe spatial-temporal trends of pollutants. In addition, especially in Italy, trace elements concentrations are not often recorded by most of the automated monitoring stations. In the last decades, development of alternative and complementary methods as bio-monitoring techniques, allowed to map deposition patterns not only near single pollution sources, but also over relatively large areas at municipal or even regional scale. Bio-monitoring includes a wide array of methodologies finalised to study relationships between pollution and living organisms. Mosses and lichens have been widely used as bio-accumulators for assessing the atmospheric deposition of heavy metals in natural ecosystems and urban areas. In this study bio-monitoring of airborne trace metals was made using moss bags technique. The moss Hypnum cupressiforme was used as bio-indicator for estimating atmospheric traces metal deposition in the urban area of Florence. Moss carpets were collected in a forested area of central Sardinia (municipality of Bolotana - Nuoro), which is characterised by absence of air pollution. Moss bags were located in the urban area of Florence close to three monitoring air quality stations managed by ARPAT (Agenzia Regionale Protezione Ambiente Toscana). Two stations were located in high-traffic roads whereas the other one was located in a road with less traffic density. In each site moss bags were exposed during three campaigns of measurement conducted during the periods March-April, May-July, and August-October 2010. Two moss bags, used as control

  12. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops*

    PubMed Central

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  13. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    PubMed

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  14. Phytoremediation potential of Lemna minor L. for heavy metals.

    PubMed

    Bokhari, Syeda Huma; Ahmad, Iftikhar; Mahmood-Ul-Hassan, Muhammad; Mohammad, Ashiq

    2016-01-01

    Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.

  15. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  16. Toxicity, mechanism and health effects of some heavy metals

    PubMed Central

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Beeregowda, Krishnamurthy N.

    2014-01-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects. PMID:26109881

  17. Toxicity, mechanism and health effects of some heavy metals.

    PubMed

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Mathew, Blessy B; Beeregowda, Krishnamurthy N

    2014-06-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects.

  18. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.

  19. Heavy metal speciation and toxicity characteristics of tannery sludge

    NASA Astrophysics Data System (ADS)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  20. Bacterial sorption of heavy metals. [Bacillus cereus

    SciTech Connect

    Mullen, M.D.; Wolf, D.C. ); Ferris, F.G.; Beveridge, T.J.; Flemming, C.A. ); Bailey, G.W. )

    1989-12-01

    Four bacteria, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd{sup 2+} nor Cu{sup 2+} provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag > La > Cu > Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  1. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier.

    PubMed

    Łokas, Edyta; Zaborska, Agata; Kolicka, Małgorzata; Różycki, Michał; Zawierucha, Krzysztof

    2016-10-01

    Surface of glaciers is covered by mineral and organic dust, together with microorganisms forming cryoconite granules. Despite fact that glaciers and ice sheets constitute significance part of land surface, reservoir of freshwater, and sites of high biological production, the knowledge on the cryoconite granules still remain unsatisfactory. This study presents information on radionuclide and heavy metal contents in cryoconites. Cryoconites collected from the Hans Glacier in SW Spitsbergen reveal high activity concentrations of anthropogenic ((238,239,240)Pu, (137)Cs, (90)Sr) and natural ((210)Pb) radionuclides. The (238)Pu/(239+240)Pu activity ratios in these cryoconites significantly exceed the mean global fallout ratio (0.025). The (238)Pu/(239+240)Pu ranged from 0.064 to 0.118. The (239+240)Pu/(137)Cs varied from 0.011 ± 0.003 to 0.030 ± 0.007. Such activity ratios as observed in these cryoconites were significantly higher than the values characterizing global fallout, pointing to possible contributions of these radionuclides from other sources. Heavy metals (Pb, Cd, Cu, Zn, Fe, and Mn) in cryoconites exceed both UCC concentrations and local rocks' concentrations, particularly for cadmium. The concentration ratios of stable lead isotopes ((206)Pb/(207)Pb, (208)Pb/(206)Pb) were determined to discriminate between the natural and anthropogenic sources of Pb in cryoconites and to confirm the strong anthropogenic contribution to heavy metal deposition in the Arctic. In investigated cryoconite holes, two groups of invertebrates, both extremophiles, Tardigrada and Rotifera were detected. Our study indicate that cryoconites are aggregates of mineral and organic substances on surfaces of glaciers are able to accumulate large amounts of airborne pollutants bound to extracellular polymeric substances secreted by microorganisms.

  2. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals.

  3. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.

  4. Heavy metals in garden soils along roads in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  5. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain <63μm fraction. Bioavailable, exchangeable and residual fractions were 0.01M CaCl2, 1M NaOAc, pH 8.2 and microwave digestion using HF, HNO3 and HClO4. Filtered samples were analyzed for As, Co, Zn, Mn, Cu, Ni, Pb and Fe using atomic absorption spectrophotometer (GBC 933AA). Total digestion results in different layers indicated that heavy metals show an increasing pattern with depth. About 4 gem bearing gravel layers were consist of high concentrations of Ni (>150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as <5mg/kg. Total arsenic analysis is under investigation. Highest concentrations for bioavailable and exchangeable (leach to water) metals were Fe>Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High

  6. Botanical plants could rid soil of heavy metals

    SciTech Connect

    Brennan, M.

    1993-04-20

    A new technology that is now emerging holds promise of revolutionizing the remediation of soils contaminated with heavy metals. Called phytoremediation, it would use green plants to remove the metals. Plants take up the metals in their roots and translocate them to their shoots, which are harvested, burned in a kiln, and the metals recovered and recycled. The challenge is finding or engineering plants that can absorb, translocate, and tolerate heavy metals while producing enough foliage to make the process efficient. All plants take up small amounts of metals, he notes. What he looks for are weird plants that can accumulate them. Such plants exist, he says, giving credence to the feasibility of phytoremediation. Naturally occurring plants with spectacular metal uptake have been found growing on ore outcroppings, he explains. Cunningham scouts waste repositories and mining and industrial sites for metal-accumulating plant species. So far, he has identified two common weeds - hemp dogbane and ragweed - as candidates for remediating lead-contaminated soils. Both plants accumulate lead, he says, but their abilities vary across soils because lead exists in several forms in soil, and not all of its forms are easily absorbed. He finds that lowering the pH and the phosphate and sulfate content of the soil enhances uptake of the metal. The downside is these changes can impair the plant's nutritional environment. So, the chemistry of the soil must be carefully manipulated to boost metal uptake without losing plant biomass, he emphasizes. Cunningham's scheme is being field-tested at Chambers Works, a Due Pont facility in New Jersey. If ragweed proves to be the species of choice for remediating weapons sites and other lead-contaminated sites, he says allergy sufferers needn't worry. Only mutants of the weed that don't pollinate will be grown.

  7. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake.

    PubMed

    Shahid, Muhammad; Dumat, Camille; Khalid, Sana; Schreck, Eva; Xiong, Tiantian; Niazi, Nabeel Khan

    2017-03-05

    Anthropologic activities have transformed global biogeochemical cycling of heavy metals by emitting considerable quantities of these metals into the atmosphere from diverse sources. In spite of substantial and progressive developments in industrial processes and techniques to reduce environmental emissions, atmospheric contamination by toxic heavy metals and associated ecological and health risks are still newsworthy. Atmospheric heavy metals may be absorbed via foliar organs of plants after wet or dry deposition of atmospheric fallouts on plant canopy. Unlike root metal transfer, which has been largely studied, little is known about heavy metal uptake by plant leaves from the atmosphere. To the best of our understanding, significant research gaps exist regarding foliar heavy metal uptake. This is the first review regarding biogeochemical behaviour of heavy metals in atmosphere-plant system. The review summarizes the mechanisms involved in foliar heavy metal uptake, transfer, compartmentation, toxicity and in plant detoxification. We have described the biological and environmental factors that affect foliar uptake of heavy metals and compared the biogeochemical behaviour (uptake, translocation, compartmentation, toxicity and detoxification) of heavy metals for root and foliar uptake. The possible health risks associated with the consumption of heavy metal-laced food are also discussed.

  8. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea).

    PubMed

    Lu, Mang; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Min; Xu, Yu-Xin; Wu, Xue-Jiao

    2014-01-21

    90-Day growth chamber experiments were performed to investigate the interactive effect of pyrene and heavy metals (Cu, Cd, and Pb) on the growth of tall fescue and its uptake, accumulation, and dissipation of heavy metals and pyrene. Results show that plant growth and phytomass production were impacted by the interaction of heavy metals and pyrene. They were significantly decreased with heavy metal additions (100-2000 mg/kg), but they were only slightly declined with pyrene spiked up to 100 mg/kg. The addition of a moderate dosage of pyrene (100 mg/kg) lessened heavy metal toxicity to plants, resulting in enhanced plant growth and increased metal accumulation in plant tissues, thus improving heavy metal removal by plants. In contrast, heavy metals always reduced both plant growth and pyrene dissipation in soils. The chemical forms of Cu, Cd, and Pb in plant organs varied with metal species and pyrene addition. The dissipation and mineralization of pyrene tended to decline in both planted soil and unplanted soils with the presence of heavy metals, whereas they were enhanced with planting. The results demonstrate the complex interactive effects of organic pollutants and heavy metals on phytoremediation in soils. It can be concluded that, to a certain extent, tall fescue may be useful for phytoremediation of pyrene-heavy metal-contaminated sites. Further work is needed to enhance methods for phytoremediation of heavy metal-organics co-contaminated soil.

  9. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9.

  10. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.

    PubMed

    Ullah, Abid; Mushtaq, Hafsa; Ali, Hazrat; Munis, Muhammad Farooq Hussain; Javed, Muhammad Tariq; Chaudhary, Hassan Javed

    2015-02-01

    Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.

  11. Perspectives of plant-associated microbes in heavy metal phytoremediation.

    PubMed

    Rajkumar, M; Sandhya, S; Prasad, M N V; Freitas, H

    2012-01-01

    "Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.

  12. Heavy metals distribution in sediments of Nador lagoon (Morocco)

    NASA Astrophysics Data System (ADS)

    Bloundi, K.; Duplay, J.

    2003-04-01

    The Nador lagoon is a paralic system, located North-East of Morocco. At the present time this ecosystem undergoes an anthropic stress induced by urban, industrial and agricultural releases, and also by fishery activity which enriches this ecosystem in organic and inorganic wastes. A geochemical study has been undertaken, first to define the areas contaminated by heavy metals (Zn, Cu, Co, Cr and V), and second to caracterize the different mineral phases, which trap these elements. Sediment samples were collected on twenty-eight stations scattered all over the lagoon, and each core (30 cm) was subdivided in two horizons (surface and depth). Mineralogical analyses as well as major and trace elements analyses were performed on surface and deep sediments. The results on major element analyses (Si, Al, Ca, Mg, Na, P) show an enrichment in halite and phosphates in the surface sediments. This highlights on one hand, low water exchange rates between the lagoon and the Mediterranean sea, and on the other hand, an increase in organic releases related to the urban, agricultural and fishery activities. The highest concentrations in inorganic micro-pollutant were recorded N-E of the lagoon and close to Nador city. With reference to the geochemical background, it can be concluded that there is a slight contamination in heavy metals. Moreover, enrichment factor calculations (EF) for heavy metals point out an increase in metal elements as following: Zn>Co>Cr>V>Cu. Sequential extractions were performed to determine the behaviour of these micro-pollutants. Thus, it was shown that carbonates, oxides and phosphates are the preferential mineral phases for trapping these heavy metals.

  13. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    PubMed

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite.

  14. Competitive sorption of heavy metals by water hyacinth roots.

    PubMed

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca(2+) and Mg(2+). However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry.

  15. Heavy liquid metals: Research programs at PSI

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  16. Biochar Mechanisms of Heavy Metal Sorption and Potential Utility

    NASA Astrophysics Data System (ADS)

    Ippolito, J.

    2015-12-01

    Mining-affected lands are a global issue; in the USA alone there are an estimated 500,000 abandoned mines encompassing hundreds of thousands of hectares. Many of these sites generate acidic mine drainage that causes release of heavy metals, and subsequently degradation in environmental quality. Because of its potential liming characteristics, biochar may play a pivotal role as a soil amendment in future mine land reclamation. However, to date, most studies have focused on the use of biochar to sorb metals from solution. Previous studies suggest that metals are complexed by biochar surface function groups (leading to ion exchange, complexation), coordination with Pi electrons (C=C) of carbon, and precipitation of inorganic mineral phases. Several recent studies have focused on the use of biochar for amending mine land soils, showing that biochar can indeed reduce heavy metal lability, yet the mechanism(s) behind labile metal reduction have yet to be established. In a proof-of-concept study, we added lodgepole pine, tamarisk, and switchgrass biochar (0, 5, 10, 15% by weight; 500 oC) to four different western US mine land soils affected by various heavy metals (Cd, Cu, Mn, Pb, Zn). Extraction with 0.01M CaCl2 showed that increasing biochar application rate significantly decreased 'bioaccessible' metals in almost all instances. A concomitant increase in solution pH was observed, suggesting that metals may be rendered bio-inaccessible through precipitation as carbonate or (hydr)oxide phases, or sorbed onto mineral surfaces. However, this was only supposition and required further research. Thus, following the 0.01M CaCl2 extraction, biochar-soil mixtures were air-dried and metals were further extracted using the four-step BCR sequential removal procedure. Results from selective extraction suggest that, as compared to the controls, most metals in the biochar-amended mine land soils were associated with exchange sites, carbonate, and oxide phases. Biochar may play a

  17. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  18. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  19. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  20. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.

  1. Heavy metals in soils of the Russian North

    NASA Astrophysics Data System (ADS)

    Alexander, Evseev; Tatiana, Krasovskaya

    2014-05-01

    Results of soil cover studies in different regions of the Russian North from the Kola peninsula at the West and the Chuckchi peninsula at the East are presented. Heavy metals distribution in soils of both impact (technogenically disturbed) and background regions were studied. It was demonstrated that microelement soil content is closely connected with that of parent rocks which differ in different regions of the Arctic. Noticeable increase of heavy metals in the upper soil horizons are marked near large industrial sites, sometime exceeding background for more than 10-100 times. Each region and soil type has its own background concentration level. That is why no general subregional background concentration patterns may be revealed based on numerous soils sampling in different regions of the discussed territory.

  2. [Antimony and other heavy metals in metallic kitchen ware].

    PubMed

    Ishiwata, H; Sugita, T; Yoshihira, K

    1989-01-01

    The antimony in metallic kitchen ware was determined. The content of this element in metals used for the production or repairing of utensils, containers and packaging which come in contact with foods is regulated and should be less than 5% in under the Japanese Food Sanitation Law. In eight metallic samples, antimony was detected in solder used for the production of a can for green tea and an eggbeater. The contents were 1.30% in the former and 1.90% in the latter. No antimony was detected in solder used for a cookie cutter. A sample of solder used for electric work, not for food utensils, contained 0.81% of antimony. In other metallic utensils which come in contact with food such as aluminum foil, a brass spoon, a stainless steel fork, a wire netting, and an iron rock for vegetable color stabilizing, antimony was not detected at a 0.05% detection limit. A qualitative test using rhodamine B also showed positive results in only three solder samples. Lead concentrations in solder used for the kitchen ware were from 39.3 to 51.3%. These concentrations were higher than the limit (20%) of lead content by the Law. No cadmium was detected in any samples.

  3. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    PubMed

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  4. Heavy metal transport in the hindon river basin, India.

    PubMed

    Jain, C K; Sharma, M K

    2006-01-01

    Total mass transfers of heavy metal in dissolved and particulate form has been determined in the downstream section of river Hindon, an important tributary of river Yamuna (India). The contribution of different point sources to the river Hindon has also been assessed. The river Kali has the largest contribution to the river Hindon. The highest metal loads were related to the highest flow of the river and thereby increased both by surface runoff and sediment resuspension. The contribution of monsoon months to the total transported load was also calculated and it was observed that monsoon months contributes more than 40% of total loading annually for all the metals. The metal fluxes from the river Hindon were compared with other rivers of Indian sub-continent.

  5. Identification of weed plants excluding the uptake of heavy metals.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Wang, Xin

    2005-08-01

    Using the field pot-culture and sample-analysis method, 54 weed species belonging to 20 families and 31 weed species belonging to 17 families were systematically examined as to whether they can exclude the uptake of heavy metals. After a systematic identification, it was determined that Oenothera biennis and Commelina communis were Cd-excluders and Taraxacum mongolicum was a Zn-excluder. O. biennis is a potential Cd-excluder, but also a potential Cu-excluder. The research raises the possibility of making a major breakthrough in the application of metal excluders for safe agro-production in the future.

  6. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  7. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  8. Sorption of heavy metals onto hydrophobic parts of aquatic plants

    SciTech Connect

    Smith, R.W.; Robichaud, K.; Misra, M.

    1995-12-31

    The ability of the roots of Eichhornia crassipes (water hyacinth), Tripha latifolia (common cattail) and Sparganium minimum (burr reed) to accumulate lead and mercury ions from aqueous solution was investigated. The relative abilities of the hydrophilic and hydrophobic portions of the root material to accumulate these ions was studied and it was found that the hydrophilic portion accumulates substantially more of the heavy metal ions than the hydrophobic portion. An attempt is made to explain this better sorption ability.

  9. Heavy Metal Bioabsorption Capacity of Intestinal Helminths in Urban Rats

    PubMed Central

    TEIMOORI, Salma; SABOUR YARAGHI, Aliakbar; MAKKI, Mahsa Sadat; SHAHBAZI, Farideh; NAZMARA, Shahrokh; ROKNI, Mohhamad Bagher; MESDAGHINIA, Alireza; SALAHI MOGHADDAM, Abdoreza; HOSSEINI, Mostafa; RAKHSHANPOUR, Arash; MOWLAVI, Gholamreza

    2014-01-01

    Abstract Background The aim of the present study was to evaluate the capability of helminths to absorb heavy metals in comparison with that of the host tissues. Methods We compared the concentration of cadmium (Cd) and chromium (Cr) in urban rats and in their harboring helminthes —Moniliformis moniliformis, Hymenolepis diminuta and larval stage of Taenia taenaeiformis (Cysticercus fasciolaris). The heavy metal absorption was evaluated in 1g wet weight of parasites and tissues digested in nitric acid, using Inductivity Coupled Plasma (ICP_OES). Results A higher concentration of heavy metals was revealed in the helminths than in the host tissues. Bioconcentration factor (BF= C in parasite/C in tissue) for both Cd and Cr absorption was more than 10-fold higher in M. moniliformis than in the three compared host tissues. The BF of Cd in M. moniliformis compared to the liver, kidney and muscle of the host was 9.16, 14.14 and 17.09, respectively. BF in Cr in the same parasite and the same host tissues ranged from 10.67, 7.06 and 4.6. High level of absorption in H. diminuta was significantly likewise; the individual BF of Cd and Cr in H. diminuta compared to the liver, kidney and muscle of the hosts was 4.95, 5.94 and 4.67 vs. 2.67, 11.56 and 5.59. The mean concentration of Cd and Cr in C. fasciolaris was also significantly higher than that in the rat livers (P<0.007 and P<0.004, respectively). Conclusion This study claims that parasites of terrestrial animals exposed to heavy metals can be more accurate indicators than the host tissues as new environmental monitoring agents. PMID:25988090

  10. Site Characterization and Analysis Penetrometer System (SCAPS) Heavy Metal Sensors

    DTIC Science & Technology

    2003-04-01

    bleaches, hydrochloric acid, sulfuric acid, nitric acid, explosive compounds (e.g., lead azide and lead styphnate ), phosphate cleaners, petroleum and...products of these chemicals. Previous investigations have indicated that heavy metals, including arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd...Lake City. It was used by the LCAAP fire department from 1951 to 1967 to burn wooden boxes. Antimony, barium , cadmium, copper, lead, mercury, silver

  11. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    PubMed

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  12. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L.; Story, Sandra; Altman, Denis J.; Berry, Christopher J.

    2011-05-03

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  13. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L [North Augusta, SC; Story, Sandra [Greenville, SC; Altman, Denis J [Evans, GA; Berry, Christopher J [Aiken, SC

    2011-03-15

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  14. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L.; Story, Sandra; Altman, Denis; Berry, Christopher J.

    2009-01-06

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  15. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L [North Augusta, SC; Story, Sandra [Greenville, SC; Altman,; Denis, J [Evans, GA; Berry, Christopher J [Aiken, SC

    2011-03-29

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  16. Diffuse sources of heavy metals entering an urban wastewater catchment.

    PubMed

    Rule, K L; Comber, S D W; Ross, D; Thornton, A; Makropoulos, C K; Rautiu, R

    2006-03-01

    New legislation such as the Water Framework Directive (WFD) will require Member States to better understand the concentrations and loads of contaminants entering surface waters. This will include inputs from wastewater treatment plants (WWTP) as well as from other urban, industrial and agricultural sources. A review of available literature revealed a shortage of data on the levels and sources of heavy metals entering WWTP from urban sources. As a consequence, the concentrations of heavy metals (cadmium, chromium, copper, mercury, nickel, lead and zinc) were determined in the wastewater from an urban catchment located in the UK, as part of a project undertaken for UK Water Industry Research (UKWIR). Both foul and surface water samples were taken. Metal concentrations varied considerably in the foul water samples, both between sources and over the course of the week. Concentrations of most metals were higher in the Monday town centre samples, attributed to leaching from stagnant water remaining in the pipework of office buildings over the weekend. Runoff concentrations were higher in the light industrial estate samples than in the domestic samples for all the metals, and exhibited highest levels in the 'first flush' samples, coincident with the initial flow of runoff containing the highest concentrations of suspended solids.

  17. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities.

    PubMed

    Vázquez, S; Martín, A; García, M; Español, C; Navarro, E

    2016-04-01

    The analysis of the airborne particulate matter-PM-incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas.

  18. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in

  19. Effect of fertilizer application on soil heavy metal concentration.

    PubMed

    Atafar, Zahra; Mesdaghinia, Alireza; Nouri, Jafar; Homaee, Mehdi; Yunesian, Masoud; Ahmadimoghaddam, Mehdi; Mahvi, Amir Hossein

    2010-01-01

    A large amount of chemicals is annually applied at the agricultural soils as fertilizers and pesticides. Such applications may result in the increase of heavy metals particularly Cd, Pb, and As. The objective of this study was to investigate the variability of chemical applications on Cd, Pb, and As concentrations of wheat-cultivated soils. Consequently, a study area was designed and was divided into four subareas (A, B, C, and D). The soil sampling was carried out in 40 points of cultivated durum wheat during the 2006-2007 periods. The samples were taken to the laboratory to measure their heavy metal concentration, soil texture, pH, electrical conductivity, cationic exchange capacity, organic matter, and carbonate contents. The result indicated that Cd, Pb, and As concentrations were increased in the cultivated soils due to fertilizer application. Although the statistical analysis indicates that these heavy metals increased significantly (P value<0.05), the lead and arsenic concentrations were increased dramatically compared to Cd concentration. This can be related to overapplication of fertilizers as well as the pesticides that are used to replant plant pests, herbs, and rats.

  20. Heavy metals and pain in the dysfunctional patient

    PubMed Central

    Di Paolo, Carlo; Serritella, Emanuela; Panti, Fabrizio; Falisi, Giovanni; Manna, Fedele

    2014-01-01

    Summary Aims The aim of this research is to verify the quality and quantity of heavy metals (HM) of dental origin in TMD patients. Methods A population of 100 subject was studied and divided in two homogeneous groups: Study Group (SG) and Control Group (CG). Organism heavy metals were tested by a spot sampling method in which the first urine of the day, through Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), were analyzed. The results obtained were compared with reference values (RV) of Italian people. Descriptive statistical analysis and student’s t-test has been applied (statistical significance for p > 0.05). Results The SG presented the absolute highest levels of HM compared to the CG (p=0.787). As regards the relation between pain and HM, the subjects that refer “severe/very severe” values of pain present the highest levels of HM in urines. Conclusions The obtained results seem to highlight a possible direct proportionality between the level of pain the increase of the concentration of heavy metals in all the examined groups and subgroups. PMID:25002917

  1. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  2. Transgenerational adaptation to heavy metal salts in Arabidopsis.

    PubMed

    Rahavi, Mohammad Reza; Migicovsky, Zoë; Titov, Viktor; Kovalchuk, Igor

    2011-01-01

    Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1-S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni(2+) or Cd(2+) did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu(2+) and Ni(2+) indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate.

  3. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  4. Heavy Metal Contamination in the Taimyr Peninsula, Siberian Arctic

    SciTech Connect

    Allen-Gil, Susan M.; Ford, Jesse; Lasorsa, Brenda K.; Monetti, Matthew; Vlasova, Tamara; Landers, Dixon H.

    2003-01-01

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula. We analyzed heavy metal concentrations in lichen (Cetraria cucullata), moss (Hylocomium splendens), soils, lake sediment, freshwater fish (Salvelinus alpinus, Lota lota, and Coregonus spp.) and collared lemming (Dicrostonyx torquatus) from 13 sites between 30 and 300 km from Norilsk. Element concentrations were low in both C. cucullata and H. splendens, although concentrations of Al, Fe, Cu, Ni, and Pb were significantly higher than those in Arctic Alaska, probably due to natural differences in the geochemical environments. Inorganic surface soils had significantly higher concentrations of Cd, Zn, Pb, and Mg than inorganic soils at depth, although a lake sediment core from the eastern Taimyr Peninsula indicated no recent enrichment by atmospherically transported elements. Tissue concentrations of heavy metals in fish and lemming were not elevated relative to other Arctic sites. Our results show that the impact of the Norilsk smelting complex is primarily localized rather than regional, and does not extend northward beyond 100 km.

  5. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  6. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage.

  7. Heavy metal concentrations in Louisiana waterways, sediments, and biota

    SciTech Connect

    Bundy, K.J.; Berzins, D.

    1994-12-31

    In this investigation polarographic methods (along with GFAAS and ICP) have been used to study the distribution of lead and chromium in Bayou Trepagnier and Devil`s Swamp. Both laboratory and field research have been conducted. Separation and extraction methodology appropriate for analysis of the contaminants at these sites have been developed. Particular attention has been paid to extraction methods for chromium which do not lead to valence state conversion. The availability of such techniques is essential to take full advantage of polarography, a method capable of performing speciation analysis. The results indicate that there is a very inhomogeneous distribution of heavy metals in these environments. In Devil`s Swamp, for example, separation and analysis of aqueous and variously sized particulate moieties in the water and sediment compartments were conducted to determine the partition of lead between them. The results showed that the average lead content was 14.7 ppb and 19.8 ppm, respectively, in these compartments. Apparently bull frogs in Devil`s Swamp can bioaccumulate lead (compared to the measured water level), since the muscle concentration was found to be about 0.6 ppm. This phenomenon is being investigated in a Xenopus frog laboratory model of heavy metal uptake. The basic methodology validated in this study should be fairly generally applicable to assays of other heavy metals.

  8. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  9. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  10. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    PubMed

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  11. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions.

  12. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.

    PubMed

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-03-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  13. An improved transfection assay for evaluating the effects of heavy metals.

    PubMed

    Suzuki, Kaoru; Koizumi, Shinji

    2009-08-01

    The transfection assay is an important tool for evaluating the health effects of industrial chemicals, with the reporter gene expression as an indicator. However, heavy metals often influence the expression of the reference plasmids used to correct variations in transfection efficiency between assay plates, reducing the reliability of this assay. We found that the target of heavy metals is the reporter, rather than the promoter used in the reference plasmid. Of the reporters we tested, luciferase (Luc) enzyme activity was affected by heavy metals, whereas gene product levels of the chloramphenicol acetyltransferase (CAT) or beta-galactosidase (betaGal) gene were not. Neither heavy metals nor extracts from cells exposed to heavy metals showed an effect when directly added to the Luc enzyme, suggesting that heavy metals act through an indirect mechanism. These data indicate that the use of CAT or betaGal as a reporter is appropriate for a reliable assay of heavy metal effects.

  14. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  15. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    PubMed

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account.

  16. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.

    PubMed

    Hong-Bo, Shao; Li-Ye, Chu; Cheng-Jiang, Ruan; Hua, Li; Dong-Gang, Guo; Wei-Xiang, Li

    2010-03-01

    Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal-contaminated soils.

  17. Bioaccumulation of heavy metals in macroinvertebrates living in stormwater wetlands

    SciTech Connect

    Karouna, N.K.; Sparling, D.W.

    1995-12-31

    The design of stormwater wetlands and ponds as wildlife habitats has prompted concern over the potential uptake of runoff contaminants by aquatic fauna. Stormwater wetlands provide a diverse array of habitat for aquatic macroinvertebrates. The importance of macroinvertebrates in aquatic communities has been well documented. Aquatic macroinvertebrates also serve as a major food source of many aquatic vertebrates, including fish and birds. The objectives of the study were to: (1) examine the responses of the macroinvertebrate community to water and sediment concentrations of heavy metals, and other water quality parameters; (2) determine whether macroinvertebrates living in stormwater wetlands bioaccumulate significant concentrations of heavy metals; (3) relate the concentrations of heavy metals in sediment, water and macroinvertebrates to land use in the surrounding watershed; (4) determine sediment and water toxicity to macroinvertebrates. Twenty stormwater wetlands, representing four land uses commercial, residential, highway and control, were monitored in this study. Water quality parameters, including pH, DO, turbidity, conductivity, hardness and metal concentrations were monitored bi-weekly for six months. Sediment samples were collected three times during the same period. Macroinvertebrate communities were sampled during alternate weeks after water collections. Ten-day sediment bioassays were conducted using the amphipod Hyalella azteca. Preliminary data analyses have indicated no significant difference in sediment and water metal concentrations between land uses. However, Zn concentrations in macroinvertebrates were significantly higher (p < 0.05) in wetlands serving commercial watersheds than in those serving the remaining three land uses. No differences have been detected in composition of invertebrate communities due to land use category.

  18. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  19. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  20. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  1. Broom fibre PRB for heavy metals groundwater remediation

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  2. Improving the sensitivity of bacterial bioreporters for heavy metals.

    PubMed

    Hynninen, Anu; Tönismann, Karmen; Virta, Marko

    2010-01-01

    Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment.

  3. Monitoring of heavy metal burden in mute swan (Cygnus olor).

    PubMed

    Grúz, Adrienn; Szemerédy, Géza; Kormos, Éva; Budai, Péter; Majoros, Szilvia; Tompai, Eleonóra; Lehel, József

    2015-10-01

    Concentrations of heavy metals (especially arsenic, cadmium, chromium, copper, mercury and lead) were measured in the contour (body) feathers of mute swans (Cygnus olor) and in its nutrients (fragile stonewort [Chara globularis], clasping leaf pondweed [Potamogeton perfoliatus], Eurasian watermilfoil [Myriophyllum spicatum], fennel pondweed [Potamogeton pectinatus]) to investigate the accumulation of metals during the food chain. The samples (17 feathers, 8 plants) were collected at Keszthely Bay of Lake Balaton, Hungary. Dry ashing procedure was used for preparing of sample and the heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Copper (10.24 ± 2.25 mg/kg) and lead (1.11 ± 1.23 mg/kg) were detected the highest level in feathers, generally, the other metals were mostly under the detection limit (0.5 mg/kg). However, the concentrations of the arsenic (3.17 ± 1.87 mg/kg), cadmium (2.41 ± 0.66 mg/kg) and lead (2.42 ± 0.89 mg/kg) in the plants were low but the chromium (198.27 ± 102.21 mg/kg) was detected in high concentration.

  4. A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity.

    PubMed

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd(2+), Pb(2+) and Fe(2+). The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35~40 nm in height was identified in the Cd(2+) challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification.

  5. Effects of heavy metal pollution on oak leaf microorganisms.

    PubMed

    Bewley, R J

    1980-12-01

    During the growing season, comparisons were made of the leaf surface microflora of (i) two groups of mature oak trees, one in the vicinity of a smelting complex contaminated by heavy metals and the other at a relatively uncontaminated site, and (ii) two groups of oak saplings at the uncontaminated site, one of which was sprayed with zinc, lead, and cadmium to simulate the heavy metal pollution from the smelter without the complicating effects of other pollutants. Total viable counts of bacteria, yeasts, and filamentous fungi (isolated by leaf washing) were generally little affected by the spraying treatment, whereas polluted leaves of mature trees supported fewer bacteria compared with leaves of mature trees at the uncontaminated site. Numbers of pigmented yeasts were lower on polluted oaks and on metal-dosed saplings compared with their respective controls. Polluted leaves of mature trees supported both greater numbers of Aureobasidium pullulans and Cladosporium spp. and a greater percentage of metal-tolerant fungi compared with oak leaves at the uncontaminated site. There were no significant overall differences in the degree of mycelial growth between the two groups of saplings or the mature trees.

  6. A Ferritin from Dendrorhynchus zhejiangensis with Heavy Metals Detoxification Activity

    PubMed Central

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd2+, Pb2+ and Fe2+. The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35∼40 nm in height was identified in the Cd2+ challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification. PMID:23284696

  7. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    PubMed

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  8. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin.

    PubMed

    Kneer, R; Kutchan, T M; Hochberger, A; Zenk, M H

    1992-01-01

    In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (gamma-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 microM Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.

  9. Unusual sources of aluminium and heavy metals in potable waters.

    PubMed

    Fuge, R; Pearce, N J; Perkins, W T

    1992-04-01

    Aluminium in water supplies derives from natural sources and from the use of Al2(SO4)3 in water treatment. Heavy metals such as Pb, Cu, Zn and Cd can be added to water from pipework and solder. However, it is apparent that AI and other metals in potable waters can derive from deposits on pipe walls which can be subsequently mobilised when the supply and/or treatment process is changed. Concentrations of Al in domestic supply water of the Llanbrynmair area have been shown to increase from 1 μg to 50 μg L(-1) during its 18 km journey along the water main. Similarly, Pb concentrations in a public building in the Aberystwyth area are found to be extremely elevated due to the metal's mobilisation from encrustations occurring on the copper pipework.

  10. Heavy metals distribution in an Iowa suburban landscape.

    PubMed

    Langner, A N; Manu, A; Tabatabai, M A

    2011-01-01

    This study investigated the degree to which human activities through urbanization influence heavy metal concentrations in a suburban landscape in Ankeny, IA. Residential areas from different years in nine time periods of development were identified from aerial photos. Soil cores were collected from the center of the front yard of 10 randomly selected homes. Cores were subdivided into 0- to 5-, 5- to 10-, and 10- to 20-cm increments from a composite of five cores. The soils were analyzed for organic C, pH, and total Cd, Co, Cr, Cu, Ni, Pb, and Zn. Results showed that organic C increased and pH decreased with time, and that there was a general decreasing trend in heavy metal concentrations from the pre-1939 period until 1983-1990, after which there was a sharp increase in the concentrations of most of the metals. The mean Cu concentration ranged from 21 mg kg(-1) for the pre-1939 time period of development to 14.9 mg kg(-1) for the recent period of development (2003-2005). Nickel concentrations increased significantly with depth with means of 21.3 mg kg(-1) at depth 0 to 5 cm, 22.5 mg kg(-1) at depth 5 to 10 cm, and 23.0 mg kg(-1) at depth 10 to 20 cm. The concentrations of heavy metals were significantly intercorrelated, except Zn, suggesting their coexistence as mineral constituents or common contamination source. The concentrations of Cu and Pb in some locations could be due to anthropogenic inputs or higher organic matter content in soils adjacent to older homes. There appears to have been a source that caused an increase in Cd, Cr, Co, Cu, Pb, and Ni concentrations in soil adjacent to homes built between 1983 and 1990.

  11. Water-soluble organophosphorus reagents for mineralization of heavy metals.

    SciTech Connect

    Nash, K. L.

    1999-02-26

    In this report, we have described the principal stages of a two-step process for the in-situ stabilization of actinide ions in the environment. The combination of cation exchange and mineralization appears likely to provide a long-term solution to environments contaminated with heavy metals. Relying on a naturally occurring sequestering agent has obvious potential advantages from a regulatory standpoint. There are additional aspects of this technology requiring further elucidation, including the demonstration of the effect of these treatment protocols on the geohydrology of soil columns, further examination of the influence of humates and other colloidal species on cation uptake, and microbiological studies of phytate hydrolysis. We have learned during the course of this investigation that phytic acid is potentially available in large quantities. In the US alone, phytic acid is produced at an annual rate of several hundred thousand metric tons as a byproduct of fermentation processes (11). This material presently is not isolated for use. Instead, most of the insoluble phyate (as phytin) is being recycled along with the other solid fermentation residues for animal feed. This material is in fact considered undesirable in animal feed. The details of possible separation processes for phytate from these residues would have to be worked out before this untapped resource would be available for application to heavy metal sequestration. The results described emphasize the behavior of actinide and trivalent lanthanide metal ions, as these species are of primary interest to the Department of Energy for the cleanup of the former nuclear weapons production complex. While the specific demonstration includes this limited selection of metal ions, the technique should be readily applicable to any class of metal ions that form insoluble phosphate compounds under appropriate conditions. Further, though this demonstration has been conducted in the pH 5-8 range, it is conceivable that

  12. Chelant extraction of heavy metals from contaminated soils.

    PubMed

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  13. Heavy metal concentrations in edible barnacles exposed to natural contamination.

    PubMed

    Dionísio, M; Costa, A; Rodrigues, A

    2013-04-01

    The giant barnacle Megabalanus azoricus is a popular seafood in the Azores. It is mainly caught in coastal environments and sold for domestic human consumption. This species is a filter feeder and can be used as a biomonitor of trace metal bioavailabilities. To investigate consumption safety, the concentrations of 10 trace metals - As, Cd, Cr, Cu, Mn, Pb, Rb, Se, Sr and Zn - were evaluated in 3 body tissues of M. azoricus from 3 sites on 2 islands. There were no significant differences between the metal loads of the barnacles from the different sites. However, the concentrations of the total trace metal loads revealed significant differences among the tissues (cirrus, muscles and ovaries). The concentrations of some metals in the body were not within the safety levels for consumers, based on the allowable standard levels for crustaceans issued by the European Union and of legislations in several countries. Alarming levels of As and Cd were found. Considering the absence of heavy industry in the region, a non-anthropogenic volcanic source was assumed to be the reason for the observed metal levels. Barnacles, in particular M. azoricus, seem to be useful as bioindicators in this peculiar environment.

  14. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

    PubMed

    Jung, Jaejoon; Jeong, Haeyoung; Kim, Hyun Ju; Lee, Dong-Woo; Lee, Sang Jun

    2016-12-01

    Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments.

  15. Kinetics of heavy metal inhibition of 1,2-dichloroethane biodegradation in co-contaminated water.

    PubMed

    Arjoon, Ashmita; Olaniran, Ademola Olufolahan; Pillay, Balakrishna

    2015-03-01

    Sites co-contaminated with heavy metals and 1,2-DCA may pose a greater challenge for bioremediation, as the heavy metals could inhibit the activities of microbes involved in biodegradation. Therefore, this study was undertaken to quantitatively assess the effects of heavy metals (arsenic, cadmium, mercury, and lead) on 1,2-DCA biodegradation in co-contaminated water. The minimum inhibitory concentrations (MICs) and concentrations of the heavy metals that caused half-life doubling (HLDs) of 1,2-DCA as well as the degradation rate coefficient (k(1)) and half-life (t(½)) of 1,2-DCA were measured and used to predict the toxicity of the heavy metals in the water microcosms. An increase in heavy metal concentration resulted in a progressive increase in the t(½) and relative t(½) and a decrease in k(1). The MICs and HLDs of the heavy metals were found to vary, depending on the heavy metals type. In addition, the presence of heavy metals was shown to inhibit 1,2-DCA biodegradation in a dose-dependent manner, with the following order of decreasing inhibitory effect: Hg(2+)  > As(3+)  > Cd(2+)  > Pb(2+). Findings from this study have significant implications for the development of bioremediation strategies for effective degradation of 1,2-DCA and other related compounds in wastewater co-contaminated with heavy metals.

  16. Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis.

    PubMed

    Ji, Ling-yun; Zhang, Wei-wei; Yu, Dong; Cao, Yan-ru; Xu, Heng

    2012-01-01

    The macrofungus, Tricholoma lobynsis, was chosen to remedy Zn-Cd-Pb contaminated soil. To enhance its metal-extracting efficiency, two heavy metal resistant microbes M6 and K1 were applied owing to their excellent abilities to solubilize heavy metal salts. The two isolated microbial strains could also produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate, but neither of them showed 1-aminocyclopropane-1-carboxylate deaminase activity. The strains M6 and K1 were identified as Serratia marcescens and Rhodotorula mucilaginosa based on 16S rDNA and ITS sequence analysis respectively. Pot experiment showed that spraying to T. lobynsis-inoculated soil with M6 and K1 respectively could increase total Cd accumulations of this mushroom by 216 and 61%, and Zn by 153 and 49% compared to the uninoculated control. Pb accumulation however, was too low (<1 mg kg(-1)) to be determined. The results illustrated that special microbes and macrofungi can work together to remedy polluted soil as plant and plant growth promoting microbes do, probably because of excellent metal-accumulating abilities of macrofungi and IAA-siderophore production, phosphate solubilization abilities of the assisted-microbes. This kind of macrofungi-microbe interaction can be developed into a novel bioremediation strategy.

  17. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  18. Chemometric interpretation of heavy metal patterns in soils worldwide.

    PubMed

    Skrbić, Biljana; Durisić-Mladenović, Natasa

    2010-09-01

    Principal component analysis (PCA) was applied on data sets containing levels of six heavy metals (Pb, Cu, Zn, Cd, Ni, Cr) in soils from different parts of the world in order to investigate the information captured in the global heavy metal patterns. Data used in this study consisted of the heavy metal contents determined in 23 soil samples from and around the Novi Sad city area in the Vojvodina Province, northern part of Serbia, together with those from the city of Banja Luka, the second largest city in Bosnia and Herzegovina, and the ones reported previously in the relevant literature in order to evaluate heavy metal distribution pattern in soils of different land-use types, as well as spatial and temporal differences in the patterns. The chemometric analysis was applied on the following input data sets: the overall set with all data gathered in this study containing 264 samples, and two sub sets obtained after dividing the overall set in accordance to the soil metal index, SMI, calculated here, i.e. the set of unpolluted soils having SMIs<100%, and the set of polluted soils with SMIs>100%. Additionally, univariate descriptive statistics and the Spearman's non-parametric rank correlation coefficients were calculated for these three sets. A Box-Cox transformation was used as a data pretreatment before the statistical methods applied. According to the results, it was seen that anthropogenic and background sources had different impact on the data variability in the case of polluted and unpolluted soils. The sample discrimination regarding the land-use types was more evident for the unpolluted soils than for the polluted ones. Using linear discriminant analysis, content of Cu was determined as a variable with a major discriminant capacity. The correct classification of 73.3% was achieved for predefined land-use types. Classification of the samples in accordance to the pollution level expressed as SMI was necessary in order to avoid the "masking" effect of the

  19. The effects of fire temperatures on water soluble heavy metals.

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (<300-400°C) released in water higher contents of Al3+ than unburned sample, especially in Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem

  20. Characterization of airborne trace metal and trace organic species from coal gasification.

    PubMed

    Osborn, J F; Santhanam, S; Davidson, C I; Flotard, R D; Stetter, J R

    1984-12-01

    Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.

  1. Characterization and source identification of trace metals in airborne particulates of Bangkok, Thailand.

    PubMed

    Rungratanaubon, Thitima; Wangwongwatana, Supat; Panich, Noppaporn

    2008-10-01

    Airborne particulate samples were collected in Bangkok, Thailand, using high-volume air samplers from March 2006 to March 2007. The sampling sites were the Huay-Khwang Community Housing (HCH) and the Ratburana Post Office (RPO), represented as residential and industrial areas, respectively. The samples collected were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for elemental analysis. The study reveals that total suspended particulate (TSP) concentrations are higher in the RPO (144.47 microg/m(3)) than at the HCH (110.93 microg/m(3)) site. The results also indicate that most of the metals were highest in winter and lowest in the rainy season. Na, Al, K, and Fe are the elements mostly found in the study. High-correlation coefficients of Al-K, K-Zn, and Al-Zn are observed at the HCH (R=-0.99, -0.97, and -0.97) and the RPO (R=-0.94, -0.92, and -0.83), respectively. Most of the measured metallic elements show weak correlation with meteorological parameters. Principal component analysis (PCA) indicates that soil, construction, vehicular emission, and biomass burning are the major pollutant sources of both sampling site. The HCH site is influenced by the domestic activities like vehicular emission, construction, and biomass burning. The sources of airborne metals found in the RPO come from both domestic and industrial activities.

  2. Heavy metal-binding proteins from metal-stimulated bacteria as a novel adsorbent for metal removal technology.

    PubMed

    Sano, D; Myojo, K; Omura, T

    2006-01-01

    Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.

  3. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  4. Heavy metals in urban soils of the Granada city (Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, Gabriel; Sánchez-Marañón, Manuel; Bech, Jaume; Sartini, Alessandra; Martín-García, Juan Manuel; Delgado, Rafael

    2013-04-01

    Urban soils (Anthrosols, Technosols, and the remaining natural patches) are essential components of the city ecosystems influencing the quality of life for people. Unfortunately, because of the high concentration of matter and energy that occurs in any city, these soils might accumulate potentially toxic pollutants such as heavy metals, organic compounds, pathogens, pharmaceuticals, and soluble salts. Contamination by heavy metals has been considered especially dangerous because they can affect human health via inhalation of dust, ingestion, or skin contact with soils. Children are the more exposed citizens in gardens and parks. Accordingly, our objective was to analyze the content of heavy metals in soils of the two most emblematic, extensive, and visited landscaped areas of the Granada city (Salón Garden, which dates back to 1612, and Federico García Lorca Park, opened since 1993) for assessing the health hazard. Using a composite sampling of 20-30 points chosen at random, we collected the upper soil (10 cm) of five representative plots for each landscaped area. We determined soil characteristics by routine procedures and metal elements using ICP-mass. From high to low concentration we found Mn, Ba, Pb, Zn, V, Sn, Cr, Cu, Ni, Sb, Y, As, Sc, Co, Th, Au, U, Mo, Be, Bi, Tl, Cd, and In; the first 10 metals ranging between 478 and 22 ppm. Mn, Ba, and other trace elements were strongly correlated with soil properties suggesting the inheritance as a possible source of metal variation, especially in the soils of younger Park, where the materials used to build gardens in the five sampled plots seemed to be more variable (carbonates: 10-40%, clay: 18-26%, pH: 7.6-7.9, organic matter: 3-7%, free iron 0.5-1.1%). The content of many other metals measured in the sampled plots, however, were independent of soil material and management. On the other hand, compared to agricultural and native soils of the surroundings, our urban soils had obviously greater content in organic

  5. Heavy metals in edible seaweeds commercialised for human consumption

    NASA Astrophysics Data System (ADS)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  6. Wastewaters at SRS where heavy metals are a potential problem

    SciTech Connect

    Wilde, E.W.; Radway, J.C.

    1994-11-01

    The principal objective of this report is to identify and prioritize heavy metal-containing wastewaters at the Savannah River Site (SRS) in terms of their suitability for testing of and clean-up by a novel bioremediation process being developed by SRTC. This process involves the use of algal biomass for sequestering heavy metal and radionuclides from wastewaters. Two categories of SRS wastewaters were considered for this investigation: (1) waste sites (primarily non-contained wastes managed by Environmental Restoration), and (2) waste streams (primarily contained wastes managed by Waste Management). An attempt was made to evaluate all sources of both categories of waste throughout the site so that rational decisions could be made with regard to selecting the most appropriate wastewaters for present study and potential future treatment. The investigation included a review of information on surface and/or groundwater associated with all known SRS waste sites, as well as waters associated with all known SRS waste streams. Following the initial review, wastewaters known or suspected to contain potentially problematic concentrations of one or more of the toxic metals were given further consideration.

  7. Biomonitoring of heavy metals in fish from the Danube River.

    PubMed

    Zrnčić, Snježana; Oraić, Dražen; Ćaleta, Marko; Mihaljević, Željko; Zanella, Davor; Bilandžić, Nina

    2013-02-01

    The Croatian part of the Danube River extends over 188 km and comprises 58 % of the country's overall area used for commercial freshwater fishing. To date, the heavy metal contamination of fish in the Croatian part of the Danube has not been studied. The main purpose of this study was to determine heavy metal levels in muscle tissue of sampled fish species and to analyze the measured values according to feeding habits of particular groups. Lead ranged from 0.015 μg(-1) dry weight in planktivorous to 0.039 μg(-1) dry weight in herbivorous fish, cadmium from 0.013 μg(-1) dry weight in herbivorous to 0.018 μg(-1) dry weight in piscivorous fish, mercury from 0.191 μg(-1) dry weight in omnivorous to 0.441 μg(-1) dry weight in planktivorous fish and arsenic from 0.018 μg(-1) dry weight in planktivorous to 0.039 μg(-1) dry weight in omnivorous fish. Among the analyzed metals in muscle tissue of sampled fish, only mercury exceeded the maximal level (0.5 mg kg(-1)) permitted according to the national and EU regulations determining maximum levels for certain contaminants in foodstuffs, indicating a hazard for consumers of fish from the Danube River.

  8. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  9. Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals.

    PubMed

    Abney, C W; Gilhula, J C; Lu, K; Lin, W

    2014-12-17

    An innovative wet-treatment with Na2 S transforms two indium metal-organic frameworks (MOFs) into a series of porous inorganic sorbents. These MOF-templated materials display remarkable affinity for heavy metals with saturation occurring in less than 1 h. The saturation capacity for Hg(II) exceeds 2 g g(-1) , more than doubling the best thiol-functionalized sorbents in the literature.

  10. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    PubMed

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  11. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications

    PubMed Central

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-01-01

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker’s mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker’s health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans. PMID:27529268

  12. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications.

    PubMed

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-08-13

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker's mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker's health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans.

  13. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  14. Phytomining of heavy metals from soil by Croton bonplandianum using phytoremediation technology

    NASA Astrophysics Data System (ADS)

    Panchal, K. J.; Dave, B. R.; Parmar, P. P.; Subramanian, R. B.

    2015-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials for technical applications. They possess some unique but, identical physical and chemical properties, which make them useful probes of low temperature geochemical reactions. Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. Metal concentration in soil typically ranges from less than one to as high as 100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerous environmental studies and attract a great deal of attention worldwide. This is attributed to no--biodegradability and persistence of heavy metals in soils. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation, separation, and removal of metal ions have become increasingly attractive areas of research and have led to new technical developments like phytoremediation that has numerous biotechnological implications of understanding of plant metal accumulation. Croton bonplandianum is newly identified as a potential heavy metal hypreaccumulator. In this study Croton bonplandianum was subjected for in vitro heavy metal accumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel and Zinc in various parts of Croton bonplandianum plant parts. It was found that the efficiency of Croton bonplandianum to accumulate heavy metals is Cd>Pb>Zn>Ni. The absorption of these heavy metals in plant parts revealed that the highest translocation of metals from ground to root was ground to be in the order of Pb (1.12) > Zn (0.26) > Ni (0.18) > Cd (0.15). The distribution of Cd in Croton bonplandianum followed the trend Root>Stem>Leaf; with Ni it was Root>Leaf>Stem, while Pb showed leaf>stem>root. Translocation of metals in Croton bonplandianum plant parts

  15. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  16. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    PubMed Central

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  17. [Heavy metal concentrations in mosses from Qiyi Glacier region].

    PubMed

    Ma, Juan-Juan; Li, Zhen

    2014-06-01

    Heavy metal (Cr, Fe, Cu, Zn, As, Cd and Pb) concentrations were measured in 17 moss samples which were collected at Qiyi Glacier Region in July, August and September, 2009 in a preliminary investigation of heavy metal pollution situation in this area. The results indicated that heavy metal concentrations in mosses were relatively high and concentrations of Fe were at the highest level (varied between 15 160.00 and 34 960.00 microg x g(-1)), followed by Zn, Cu, Cr, Pb, As, with average concentrations of 169.56, 134.81, 34.52, 26.16, 9.15 microg x g(-1). Enrichment factor analysis and correlation analysis indicated that Fe and Cr in mosses mainly stemmed from crustal dust, and concentrations of Cu, Pb, Zn and Cd were influenced by human activities; As was moderately enriched which means As in mosses was mainly originated from anthropogenic pollution. According to the Global Data Assimilation System (GDAS) meteorological data from the National Center for Environmental Prediction (NCEP) of 2009 and the simulation of the HYSPLIT v4.9 Model on 3-dimension back trajectories of air mass at Qiyi glacier district, several trajectories reflecting the main characteristics of air flow were obtained based on the classification of cluster analysis on the hundreds of back trajectories. The back trajectories revealed that atmospheric transport characteristics in the study area changed obviously by season. Compared to Spring and Autumn, atmospheric transmission sources were relatively more in Winter and Summer. The main sources of atmospheric pollutants in Qiyi Glacier region were transported from Jiuquan and Jiayuguan regions.

  18. Heavy metal partitioning in a municipal solid waste incinerator

    SciTech Connect

    Sorum, L.; Fossum, M.; Hustad, J.E.; Evensen, E.

    1997-12-01

    Norway has the following priorities for management of municipal solid waste (MSW) (1) Reduce waste generation and toxic components in waste, (2) Encourage re-use, recycling and energy recovery, and (3) Secure an environmentally safe management of residues. MSW consists of household waste and waste from the service and trade industry delivered to municipal waste treatment plants or recycling schemes. In 1995, a total of 2.7 million tons of MSW (1.26 million tons of household waste and 1.44 million tons of waste from service and trade industry) was handled as follows: 68% was deposited on landfills, 18% was combusted, 13% recycled and 1% composted. Combustion of MSW is handled in five larger plants with energy recovery located in different cities in Norway. In addition, a new incinerator for MSW is planned. This incinerator will have to meet the new emission regulations given by the European Union which are more stringent than the present regulations. Hence, Norway is moving towards more stringent regulations, leading to an increased interest in the environmental aspects of MSW incinerators. During 1995 Trondheim Energy Company carried out an investigation program to examine the residues from the incinerator. Primary attention was on the heavy metals in the bottom ash, fly ash and the landfill leacate. The program was conducted in order to establish more information about characteristics of the residues and thus be able to undertake a sounder evaluation of the environmental aspects of the final treatment of these products. This program was supplementary to the emission analysis done periodically for the flue gas and drain water. The objective of this work has been to establish knowledge about the partitioning of heavy metals through the incinerator and calculate the concentrations of heavy metal in the input MSW.

  19. Representing soil pollution by heavy metals using continuous limitation scores

    NASA Astrophysics Data System (ADS)

    Romić, Marija; Hengl, Tomislav; Romić, Davor; Husnjak, Stjepan

    2007-10-01

    The paper suggests a methodology to represent overall soil pollution in a sampled area using continuous limitation scores. The interpolated heavy metal concentrations are first transformed to limitation scores using the exponential transfer function determined by using two threshold values: permissible concentration (0 limitation points) and seriously polluted soil (4 limitation points). The limitation scores can then be summed to produce the map of cumulative limitation scores and visualize the most critically polluted areas. The methodology was illustrated using the 784 soil samples analyzed for Cd, Cr, Cu, Ni, Pb and Zn in the central region of Croatia. The samples were taken at 1×1 and 2×2 km grids and at fixed depths of 20 cm. Heavy metal concentrations in soil were determined by ICP-OES after microwave assisted aqua regia digestion. The sampled concentrations were interpolated using block regression-kriging with geology and land cover maps, terrain parameters and industrialization parameters as auxiliary predictors. The results showed that the best auxiliary predictors are geological map, ground water depth, NDVI and slope map and distance to urban areas. The spatial prediction was satisfactory for Cd, Ni, Pb and Zn, and somewhat less satisfactory for Cu and Cr. The final map of cumulative limitation scores showed that 33.5% of the total area is suitable for organic agriculture and 7.2% of the total area is seriously polluted by one or more heavy metals. This procedure can be used to assess suitability of soils for agricultural production and as a basis for possible legal commitments to maintain the soil quality.

  20. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  1. In vitro tests to assess toxic effects of airborne PM(10) samples. Correlation with metals and chlorinated dioxins and furans.

    PubMed

    Roig, Neus; Sierra, Jordi; Rovira, Joaquim; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-01-15

    Inhalation is an important exposure pathway to airborne pollutants such as heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and particulate matter. Chronic exposure to those chemicals, which form part of complex environmental mixtures, may mean important human health risks. In the present study, the suitability of different in vitro tests to evaluate the toxic effects of air PM(10) pollutants is investigated. In addition, it is also assessed how to distinguish the contribution of chemical pollutants to toxicity. Sixty-three air samples were collected in various areas of Catalonia (Spain), and the levels of ecotoxicity, cytotoxicity and genotoxicity were evaluated. Aqueous acidic extractions of quartz fiber filters, where PM(10) had been retained, were performed. The photo-luminescent bacteria Vibrio fischeri (Microtox®) bioassay was performed to assess ecotoxicity. Moreover, MTT and Comet Assays, both using human lung epithelial cells A549 as target cells, were applied to assess the cytotoxicity and genotoxicity of air samples, respectively. The results show that Microtox® is an excellent screening test to perform a first evaluation of air quality, as it presented a significant correlation with chemical contaminants, contrasting with MTT Assay. Although none of the samples exhibited genotoxicity, a high correlation was found between this in vitro test and carcinogenic agents. Urban samples from traffic-impacted areas would be significantly more toxic. Finally, environmental temperature was identified as a key parameter, as higher values of ecotoxicity were found in winter.

  2. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity.

    PubMed

    Haynes, Erin N; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N

    2011-11-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance

  3. Using semivariogram scaled to the sample design of heavy metals

    NASA Astrophysics Data System (ADS)

    Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Vidal Vazquez, Eva; Paz González, Antonio

    2013-04-01

    The "sampling intensity" issue is of important application to precision agriculture. About 80%-85 % of the total error in precision in agriculture results from the field sampling preceding the application of fertilizers and corrective practices. The spatial sampling design used to characterize the spatial variability of soil attributes is crucial to science studies. The sample planning for interpolation of a regionalized variable may use several criteria, which could be best selected from the estimated semivariogram from a previously established grid. The objective of this study was to evaluate the use of the semivariogram scaled to improve the sample design of heavy metals in an experimental plot. The study area surface is 6 ha and is located at Castro Ribeiras de Lea, Lugo, Spain. The geographical coordinates of the study area are: latitude 43° 09 '49''N and longitude 7° 29' 47''W, with average elevation of 410 m and average slope of 2 %. The mean annual temperature is 11.2 °C and mean annual rainfall is 930 mm (data 1961-1990). The soil is classified with Cambisol and the parent material are sediments from tertiary and quaternary. Heavy metals were initially sampled at 40 points randomly distributed in the study area. The heavy metals analyzed in this study were: Pb, Cd, Cu and Ni. Data were initially analyzed using descriptive statistics and geostatistical tools. The scaled semivariogram was built with the aim of setting a single theoretical semivariogram all elements studied. Subsequently, the software SANOS was used to determine the sampling optimization of new sampling points of the heavy metals. The spatial variability analysis of the studied elements using the scaled semivariogram showed the existence of a relationship between the spatial variability of these elements. The gaussian model was adjusted for Pb, Cd and Ni, and spherical models for the Cu element. The semivariogram scaled theoretical adjusted to elements in four study was Gaussian, with a

  4. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    PubMed

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  5. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    PubMed

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area.

  6. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals: the cohort prospective study.

    PubMed

    Jedrychowski, Wiesław A; Perera, Frederica P; Majewska, Renata; Mrozek-Budzyn, Dorota; Mroz, Elżbieta; Roen, Emily L; Sowa, Agata; Jacek, Ryszard

    2015-01-01

    Fetal exposure to environmental toxicants may program the development of children and have long-lasting health impacts. The study tested the hypothesis that depressed height gain in childhood is associated with prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead and mercury). The study sample comprised 379 children born to non-smoking mothers among whom a total of 2011 height measurements were carried out over the 9-year follow-up period. Prenatal airborne PAH exposure was assessed by personal air monitoring of the mother in the second trimester of pregnancy and heavy metals were measured in cord blood. At the age of 3 residential air monitoring was done to evaluate the level of airborne PAH, and at the age 5 the levels of heavy metals were measured in capillary blood. The effect estimates of prenatal PAH exposure on height growth over the follow-up were adjusted in the General Estimated Equation (GEE) models for a wide set of relevant covariates. Prenatal exposure to airborne PAH showed a significant negative association with height growth, which was significantly decreased by 1.1cm at PAH level above 34.7 ng/m(3) (coeff.=-1.07, p=0.040). While prenatal lead exposure was not significantly associated with height restriction, the effect of mercury was inversely related to cord blood mercury concentration above 1.2 μg/L (coeff.=-1.21, p=0.020), The observed negative impact of prenatal PAH exposure on height gain in childhood was mainly mediated by shorter birth length related to maternal PAH exposure during pregnancy. The height gain deficit associated with prenatal mercury exposure was not seen at birth, but the height growth was significantly slower at later age.

  7. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals. The cohort prospective study

    PubMed Central

    Jedrychowski, Wiesław A.; Perera, Frederica P.; Majewska, Renata; Mrozek-Budzyn, Dorota; Mroz, Elżbieta; Roen, Emily L.; Sowa, Agata; Jacek, Ryszard

    2014-01-01

    Fetal exposure to environmental toxicants may program the development of children and have long-lasting health impacts. The study tested the hypothesis that depressed height gain in childhood is associated with prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead and mercury). The study sample comprised 379 children born to non-smoking mothers among whom a total of 2011 height measurements were carried out over the 9-year follow-up period. Prenatal airborne PAH exposure was assessed by personal air monitoring of the mother in the second trimester of pregnancy and heavy metals were measured in cord blood. At the age of 3 residential air monitoring was done to evaluate the level of airborne PAH, and at the age 5 the levels of heavy metals were measured in capillary blood. The effect estimates of prenatal PAH exposure on height growth over the follow-up were adjusted in the General Estimated Equation (GEE) models for a wide set of relevant covariates. Prenatal exposure to airborne PAH showed a significant negative association with height growth, which was significantly decreased by 1.1 cm at PAH level above 34.7 ng/m3 (coeff. = − 1.07, p = 0.040). While prenatal lead exposure was not significantly associated with height restriction, the effect of mercury was inversely related to cord blood mercury concentration above 1.2 ug/dL (coeff. = −1.21, p = 0.020), The observed negative impact of prenatal PAH exposure on height gain in childhood was mainly mediated by shorter birth length related to maternal PAH exposure during pregnancy. The height gain deficit associated with prenatal mercury exposure was not seen at birth, but the height growth was significantly slower at later age. PMID:25460630

  8. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water.

  9. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.

    PubMed

    Kaushik, A; Kansal, Ankur; Santosh; Meena; Kumari, Shiv; Kaushik, C P

    2009-05-15

    Concentration of Heavy Metals (Cd, Cr, Fe, Ni) in water, plants and sediments of river Yamuna flowing in Haryana through Delhi are reported here selecting 14 stations covering the upstream and downstream sites of major industrial complexes of the State. Some important characteristics of river water and sediments (pH, EC, Cl(-), SO(3)(2-), and PO(4)(3-) in water and sediments, COD of water and organic matter content of sediments) were also analysed and inter-relationships of all these parameters with heavy metal concentration in different compartments were examined. The sediments of the river show significant enrichment with Cd and Ni indicating inputs from industrial sources. Concentrations of Cr are moderate and show high enrichment values only at a few sites. Enrichment factor for Fe is found to be <1, showing insignificant effect of anthropogenic flux. Concentrations of these metals in river water are generally high exceeding the standard maximum permissible limits prescribed for drinking water, particularly in the downstream sites. The aquatic plants show maximum accumulation of Fe. The other heavy metals Cd, Cr and Ni, though less in concentration, show some accumulation in the plants growing in contaminated sites. Interrelationships of metal concentration with important characteristics of water and sediment have been analysed. Analysis of heavy metals in water, sediments and littoral flora in the stretch of river Yamuna is first study of itself and interrelationship of metal concentration and other important characteristics make the study significant and interesting in analysing the pollution load at different points of the river body.

  10. Heavy metal content in rubbish bags used for separate collection of biowaste.

    PubMed

    Huerta-Pujol, Oscar; Soliva, Montserrat; Giró, Francesc; López, Marga

    2010-01-01

    The heavy metal content of several rubbish bags used to collect the organic fraction of municipal solid waste (OFMSW) is shown in this paper. Nowadays, several public awareness campaigns carried out by municipalities have promoted rubbish bags based mainly on their appearance, without concern for their heavy metal content. A high amount of heavy metals was detected in some polyethylene bags promoted in different campaigns for OFMSW source-sorted collection, while compostable bags presented low quantities of heavy metals. Some other rubbish bags, as well as commercial bags, were also analysed for comparison. These results should be taken into account before promoting the use of one or other type of bag. Moreover, the rubbish bag manufacturers should reduce the heavy metal content in order to avoid heavy metal scattering in the environment, and also to reduce the consumption of raw materials.

  11. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    PubMed

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  12. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  13. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  14. Use of dried aquatic plant roots to adsorb heavy metals

    SciTech Connect

    Robichaud, K.D.

    1996-12-31

    The removal of heavy metal ions by dried aquatic macrophytes was investigated. The ability of the biomass, Eichhornia crassipes (water hyacinth), Typha latifolia (cattail), Sparganium minimum (burr reed) and Menyanthes trifoliata to abstract lead and mercury ions is presented here, along with a conceptual filter design. This paper examines an alternative to both the traditional and recent systems designed for metal removal. It involves the use of dried aquatic macrophytes. There are numerous advantages for the use of dried macrophytes in the treatment of industrial wastewater. First, it is cost-effective. There are also funding opportunities through a variety of Environmental Protection Agency`s (EPA) programs. It is more environmentally conscious because a wetland, the harvesting pond, has been created. And, it creates public goodwill by providing a more appealing, less hardware-intensive, natural system.

  15. Genetic manipulation of a cyanobacterium for heavy metal detoxivication

    SciTech Connect

    McCormick, P.; Cannon, G.; Heinhorst, S.

    1995-12-31

    Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

  16. Natural and technogenic compounds of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2014-04-01

    The existing geological classification of heavy metals (HMs) is not suitable for their characterization in soils. The carriers of HMs in soils differ from those in the lithosphere. These are clay minerals; iron oxides, whose composition varies between the background and urban soils; various manganese oxides; and different groups of organic substances. The mineral composition of HM carriers can vary significantly. The main iron oxides are ferrihydrite, goethite, feroxyhyte, and lepidocrocite in the background soils and technogenic magnetite in the urban soils. The different structures of manganese oxides determine their affinity for specific HMs. Metallic iron and green rust are very efficient in artificial geochemical barriers, although they act as strong reducers there. HM compounds strongly vary in soils because of the unstable conditions.

  17. Heavy Metal Removal in a Detention Basin for Road Runoff

    NASA Astrophysics Data System (ADS)

    Belizario, Paulo; Scalize, Paulo; Albuquerque, Antonio

    2016-11-01

    Road runoff produced during rainfalls has significant pollutant load, which can cause important environmental impacts on waste and soil. The efficiency of a detention basin for removing heavy metals (Cr, Cu and Zn) in road runoffwas evaluated for 8 rainfalls over one year with different intensities (between 16mmand 103 mm) and durations (higher than 3 hours). The basin showed good performance for removing all metals for precipitation intensities between 16mmand 103mmand rainfall durations up to 3 hours. The volume of the basin is suitable for retaining all the road runoff coming from rainfalls with intensities lower than 29.4mmand duration longer than 6 hours. This type of monitoring should be introduced in Environmental Monitoring Plans of roads because it allows evaluating the effectiveness of treatment systems and preventing the possible impacts of discharges into the environment.

  18. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge.

  19. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater.

  20. The National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention

    DTIC Science & Technology

    1997-12-01

    Heavy Metal Adsorbents for Storm Water Pollution Prevention U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER in...National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED. FINAL REPORT HEAVY METAL ADSORBENTS

  1. Benzylamine-Free, Heavy-Metal-Free Synthesis of CL-20

    DTIC Science & Technology

    2006-12-28

    Approved for public release; distribution is unlimited Benzylamine-Free, Heavy - Metal -Free Synthesis of CL-20 SERDP SEED Project WP-1518...PERSON 19b. TELEPHONE NUMBER (Include area code) 28-12-2006 Final Dec 2005–Dec 2006 Benzylamine-Free, Heavy - Metal -Free Synthesis of CL-20 603716D WP...17 Figure 5. Benzylamine-free, heavy - metal -free route to CL-20..................................................... 21 Figure A-1. 1H NMR spectrum of

  2. Heavy metals processing near-net-forming summary progress report

    SciTech Connect

    Watson, L.D.; Thompson, J.E.

    1994-09-01

    This study utilized a converging-diverging nozzle to spray-form an alloy having a weight percent composition of 49.6% iron, 49.6% tungsten, and 0.8% carbon into samples for analysis. The alloy was a surrogate that displayed metallurgical characteristics similar to the alloys used in the heavy metals processing industry. US DOE facilities are evaluating advanced technologies which can simplify component fabrication, reduce handling steps, and minimize final machining. The goal of producing net-shaped components can be approached from several directions. In spray forming, molten metal is converted by a nozzle into a plume of fine droplets which quickly cool in flight and solidify against a substrate. The near-final dimension product that is formed receives additional benefits from rapid solidification. This single-step processing approach would aid the heavy metals industry by streamlining fabrication, improving production yields, and minimizing the generation of processing wastes. This Program effort provided a large selection of as-sprayed specimens. These samples were sprayed with gas-to-metal mass ratios ranging from 0.8:1 to 4:1. Samples targeted for analysis were produced from different spray conditions. Metallography on some samples revealed areas that were fully dense and homogeneous at 5,000X. These areas averaged grain sizes of 1 micron diameter. Other samples when viewed at 2,000X were highly segregated in the 10 micron diameter range. Deposit efficiencies of greater than 90% were demonstrated using the untailored spray system. Discharge gases were analyzed and two categories of particles were identified. One category of particle had a chemical composition characteristic of the alloy being sprayed and the second type of particle had a chemical composition characteristic of the ceramics used in the spray system component fabrication. Particles ranged in size from 0.07 to 3 microns in diameter. 8 refs., 67 figs., 20 tabs.

  3. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    PubMed

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p < 0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  4. Mapping of available heavy metals in Catamarca (Argentina)

    NASA Astrophysics Data System (ADS)

    Roca, N.; Pazos, M. S.; Bech, J.

    2009-04-01

    Copper, iron, manganese and zinc are four essential elements for plant growth. Mapping heavy metal migration and distribution in soils is a preliminary step in assessing heavy metal availability in soils. However, data of qualitative and quantitative trace elements composition of soils of Argentina are scarce. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more micronutrients, therefore, their concentration in plant tissues falls below the levels that allow optimal growth. Soil nature plays a fundamental role in the availability of micronutrients and their behaviour at a soil-plant level. The aim of this study is to determine the plant availability and areas of deficiency in agricultural soils with risk of salinization. The presented maps have been elaborated on the basis of the information provided by the monochromatic aerial photographs, scale 1:7000 and projected using the topographic information of the National Topographic Maps. Soils were sampled according to the spatial variation of soil types and land use. Sampling points were geo-referenced. Soil samples were analyzed at the laboratory for complete physicochemical and mineralogical characteristics. The percentage of organic matter is the determining factor in the presence and distribution of the available metals in the soils of the studied area, being the top horizon the one of greatest accumulation. CuDTPA, FeDPTA and MnDPTA are mobile within the profile, whereas ZnDPTA remains adsorbed without vertical displacement. ZnDTPA is the only available metal which also shows differences due to soil salinity and textural classes. However, soil geochemical conditions imply low extractability and a certain difficulty for micronutrient absorption by plants.

  5. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    PubMed

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered.

  6. Monitoring of chromium species and 11 selected metals in emission and immission of airborne environment

    NASA Astrophysics Data System (ADS)

    Krystek, Petra; Ritsema, Rob

    2007-08-01

    Monitoring of chromium species as hexavalent chromium (Cr(VI)) and the determination of the total chromium concentration as well as the concentration of 11 selected metals (Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in industrial emission of a foundry and immission studies of the nearby airborne environment were carried out. The samples were taken as industrial exhaust directly by the outlet and as airborne sample in the environment with distances between some hundred meters and 2 km from the industrial factoryE Wherefore two methods of sampling, sample pre-treatment and mass spectrometric measurement were developed and applied. With respect to different sampling duration different volumes of air were sampled and analysed. For the determination of Cr(VI) sampling in impingers (filled with carbonate-buffer) was used. A procedure of selective complex forming and extraction was developed and measured by double focussing sector field inductively coupled plasma mass spectrometry (ICP-SFMS). For the determination of the total chromium concentration as well as of 11 metals sampling was done by using quartz-filters. After microwave digestion in the medium of aqua regia the samples were analysed by quadrupole inductively coupled plasma mass spectrometry (ICP-QMS). The maximum concentration of Cr(VI)-species in emission samples was determined as 180 ng/m3 air which is about 2% of total Cr. The lowest concentration of Cr(VI)-species in immission was determined as 0.5 ng/m3 air.

  7. Sources of heavy metals in urban wastewater in Stockholm.

    PubMed

    Sörme, L; Lagerkvist, R

    2002-10-21

    The sources of heavy metals to a wastewater treatment plant was investigated. Sources can be actual goods, e.g. runoff from roofs, wear of tires, food, or activities, e.g. large enterprises, car washes. The sources were identified by knowing the metals content in various goods and the emissions from goods to sewage or stormwater. The sources of sewage water and stormwater were categorized to enable comparison with other research and measurements. The categories were households, drainage water, businesses, pipe sediment (all transported in sewage water), atmospheric deposition, traffic, building materials and pipe sediment (transported in stormwater). Results show that it was possible to track the sources of heavy metals for some metals such as Cu and Zn (110 and 100% found, respectively) as well as Ni and Hg (70% found). Other metals sources are still poorly understood or underestimated (Cd 60%, Pb 50%, Cr 20% known). The largest sources of Cu were tap water and roofs. For Zn the largest sources were galvanized material and car washes. In the case of Ni, the largest sources were chemicals used in the WTP and drinking water itself. And finally, for Hg the most dominant emission source was the amalgam in teeth. For Pb, Cr and Cd, where sources were more poorly understood, the largest contributors for all were car washes. Estimated results of sources from this study were compared with previously done measurements. The comparison shows that measured contribution from households is higher than that estimated (except Hg), leading to the conclusion that the sources of sewage water from households are still poorly understood or that known sources are underestimated. In the case of stormwater, the estimated contributions are rather well in agreement with measured contributions, although uncertainties are large for both estimations and measurements. Existing pipe sediments in the plumbing system, which release Hg and Pb, could be one explanation for the missing amount of

  8. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.

    PubMed

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-19

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

  9. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  10. Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf.

    PubMed

    Yang, Yongqiang; Chen, Fanrong; Zhang, Ling; Liu, Jinsong; Wu, Shijun; Kang, Mingliang

    2012-09-01

    Total metal concentrations (Cr, Ni, Cu, Zn, and Pb), acid volatile sulfide and simultaneously extracted metals (AVS-SEM), and heavy metal fractionation were used to assess the heavy metals contamination status and ecological risk in the sediments of the Pearl River Estuary (PRE) and adjacent shelf. Elevated concentrations at estuarine sites and lower concentrations at adjacent shelf sites are observed, especially for Cu and Zn. Within the PRE, the concentration of heavy metals in the western shore was mostly higher than that in the middle shore. The metals from anthropogenic sources mainly occur in the labile fraction and may be taken up by organisms as the environmental parameters change. A combination of total metal concentrations, metal contamination index and sequential extraction analysis is necessary to get the comprehensive information on the baseline, anthropogenic discharge and bioavailability of heavy metals.

  11. An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes.

    PubMed

    Tiwari, Suchi; Dixit, Savita; Verma, Neelam

    2007-06-01

    Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World's most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.

  12. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, Eddie C.

    1995-01-01

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  13. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2017-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  14. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution.

  15. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  16. Bioaccumulation of heavy metals in the wolf spider, Pardosa astrigera L. Koch (Araneae: Lycosidae).

    PubMed

    Jung, Myung-Pyo; Lee, Joon-Ho

    2012-03-01

    Previous studies have proposed that Pardosa astrigera L. Koch (Lycosidae) can be used as a biological indicator of heavy metal contamination in soil. In this study, we estimated the bioaccumulation levels and the bioconcentration factors (BCF) of four heavy metals (Cd, Cu, Pb, and Zn) in adult female P. astrigera collected from various field sites according to heavy metal content gradient and broods. The relationship between heavy metal content in the soil and that in spiders was different depending on the heavy metals and the broods. However, heavy metal content in P. astrigera increased with increasing heavy metal content in the soil. While the heavy metal content in the soil was in the order of Zn > Pb > Cu > Cd, its content in P. astrigera was in the order Zn > Cu > Cd > Pb. The BCF for Cd in both of the broods was distinctly higher than those of the other heavy metals evaluated. These results indicate that P. astrigera may be useful as a biological indicator of Cd soil contamination.

  17. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    NASA Astrophysics Data System (ADS)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  18. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance*

    PubMed Central

    Cahoon, Rebecca E.; Lutke, W. Kevin; Cameron, Jeffrey C.; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S.; Rea, Philip A.; Jez, Joseph M.

    2015-01-01

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation. PMID:26018077

  19. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.

    PubMed

    Cahoon, Rebecca E; Lutke, W Kevin; Cameron, Jeffrey C; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S; Rea, Philip A; Jez, Joseph M

    2015-07-10

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.

  20. Mussel Shell Evaluation as Bioindicator For Heavy Metals

    NASA Astrophysics Data System (ADS)

    Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra

    2010-05-01

    Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.

  1. EM Task 13 - Cone Penetrometer for Subsurface Heavy Metals Detection

    SciTech Connect

    Ames A. Grisanti; Charlene R. Crocker

    1998-11-01

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations (1) Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2) Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils that allow cost-effective, rapid, in situ measurements. The overall objectives of this project are to evaluate potential calibration techniques for the laser-induced breakdown spectroscopy (LIBS)-CPT instrument, to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field and to provide technical support to field demonstration of the LIBS-CPT instrument at a DOE facility.

  2. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  3. Bioindication of heavy metals in soil by liverworts.

    PubMed

    Samecka-Cymerman, A; Marczonek, A; Kempers, A J

    1997-08-01

    Studies were made of the accumulation of the heavy metals Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Sr, V, and Zn and the macroelements N, P, K, Ca, and Mg in liverworts Conocephalum conicum, Marchantia polymorphia, and Pellia epiphylla collected from 57 microhabitats in Poland (Lower Silesia, Tatry Mts., and Puszcza Augustowska forest) and one microhabitat in the Czech Republic (Moravsky Kras). Ecological differentiation of Conocephalum conicum, Marchantia polymorpha and Pellia epiphylla populations is closely correlated with the soil chemistry. The evidence for this assumption are the significant positive correlations between concentrations of elements in soil and in the examined liverworts. In particular, correlations between contents of chromium and cobalt in soil and in Conocephalum conicum and between nickel, chromium, copper, and barium in soil and in Pellia epiphylla prove that these plants can be useful in monitoring of contamination of soil with elements mentioned above. Concentrations of cobalt in almost all the examined liverworts surpass the average background values of this element established for terrestrial bryophytes what proves that these plants tolerate increased accumulated amounts of this element and may therefore act as bioindicator for this heavy metal. Cationic equilibrium of Conocephalum conicum, Marchantia polymorpha and Pellia epiphylla examined according to Czarnowski (1977) pointed to the existence of some disturbances in ionic balance of these plants caused probably by elevated concentrations of microelements (especially iron, cobalt, lead, and copper) in their tissues.

  4. Joint toxicity of heavy metals and chlorobenzenes to pyriformis Tetrahymena.

    PubMed

    Zhang, Tian; Li, Xi; Lu, Yang; Liu, Peng; Zhang, Chaocan; Luo, Hui

    2014-06-01

    Chlorobenzens and heavy metals are frequently detected in the environment, but few studies have assessed the joint toxicity of organic and inorganic contaminants. The joint toxicity of heavy metals and chlorobenzenes was evaluated in the present study. Growth metabolism of the joint toxicity was studied by microcalorimetry at 28°C, the growth constant (k) and inhibitory ratio (I) were calculated. Toxic unit (TU) and additional index (AI) were introduced to determine the outcome in combined tests, and the coexistence of Cu, Cd, Cr(III) and p-chlorobenzene was antagonism, and the effect of Cu, Cd, Cr(III) and o-chlorobenzene, Cu and 1,2,4-trichlorobenzene were synergism. In addition, micro-situation of the cell membrane surface of pyriformis Tetrahymena was observed by SEM. The cells suffered serious damage after sufficient acting time. ATR-FTIR spectra revealed that amide groups and PO2(-) of the phospholipid phospho-diester, both in the hydrophobic end exposed to the outer layer, were the easiest to be damaged.

  5. [Immobilization of heavy metal Pb2+ with geopolymer].

    PubMed

    Jin, Man-tong; Jin, Zan-fang; Huang, Cai-ju

    2011-05-01

    A series of geopolymers were synthesized by mixing metakaolinite, water glass, sodium hydroxide and water, and the lead ion solidification experiments were performed with the geopolymer. Then, the immobilization efficiency was characterized by monitoring the leaching concentration and compressive strength of solidified products. Additionally, the structure and properties of the solidified products were studied by X-ray diffraction (XRD), scan electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Furthermore, based on the analysis of immobilization efficiency, microstructure and mineral structure, the difference between geopolymer and cement on the performance of immobilizing heavy metals was discussed. The results of lead ion immobilization experiments showed that over 99.7% of heavy metal was captured by the geopolymer as the doping concentration of lead ion was less than 3%. Meanwhile, the compressive strength of the solidified product ranged from 40 MPa to 50 MPa. Furthermore, by using the same Pb2+ concentration, the geopolymer showed higher compressive strength and lower leaching concentration compared to the cement. Because lead ion participated in constitution of structure of geopolymer, or Pb2+ was adsorbed by the aluminium ions on the geopolymeric skeleton and held in geopolymer. However, cement mainly solidified lead ion by physical encapsulation and adsorption mechanism. Therefore, both from the compressive strength and leaching concentration and from the microstructure characterization as well as the mechanism of the geopolymerization reaction, the geopolymer has more advantages in immobilizing Pb2+ than the cement.

  6. Effective Removal of Heavy Metals from Wastewater Using Modified Clay.

    PubMed

    Song, Mun-Seon; Vijayarangamuthu, K; Han, EunJi; Jeon, Ki-Joon

    2016-05-01

    We report an economical and eco-friendly way to remove the heavy metal pollutant using modified clay. The modification of clay was done by calcining the natural clay from Kyushu region in Japan. Further, the removal efficiency for various pH and contact time was evaluated. The morphology of the clays was studied using the scanning electron microscopy (SEM). The structural and chemical analyses of modified clay were done by using X-ray diffraction (XRD), Raman spectroscopy, and Energy dispersion analysis (EDAX) to understand the properties related to the removal of heavy metal pollutant. Further, we studied the absorption efficiency of clay for various pH and contacting time using Ni polluted water. The modified clays show better removal efficiency for all pH with different saturation time. The adsorption follows pseudo-second order kinetics and the adsorption capacity of modified clay is 1.5 times larger than that of natural clay. The increase in the adsorption efficiency of modified clay was correlated to the increase in hematite phase along with increase in surface area due to surface morphological changes.

  7. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    PubMed Central

    Sears, Margaret E.

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease. PMID:23690738

  8. Outer-core emission spectra of heavy alkali metals

    NASA Astrophysics Data System (ADS)

    Fink, R. L.; First, P. N.; Flynn, C. P.

    1988-09-01

    We report np5(n+1)s2-->np6(n+1)s emission spectra of K (n=3), Rb (n=4), and Cs (n=5), and compare emission-band characteristics through the series Na-Cs using earlier data for Na. The normalized band profiles of the different alkali metals are remarkably similar when scaled by the Fermi energy EF. However, the spin-orbit partner intensity ratios are far from the ideal value 2, reaching approximately 60 for Rb and above 65 for Cs, mainly owing to Coster-Kronig decays from higher levels. We confirm that the Mahan-Nozières-De Dominicis ``anomaly'' at EF is generally weaker in emission than in absorption. It decreases through the series to become undetectable for emission from Cs. A systematic increase of the core-hole-lifetime width occurs through the column of alkali metals from a reported estimate of 10 meV for Na to a value of 50 meV for Cs. A study of the Fermi-edge shape between 20 and 300 K reveals temperature-dependent phonon broadening in generally good agreement with theoretical predictions. Incomplete relaxation plays only a minor role in the edge processes of the heavy alkali metals. Additional Fermi-edge broadening and the shifted emission edges of surface atoms are observed for alkali-metal films 10-100 Å thick.

  9. Trace metals in heavy crude oils and tar sand bitumens

    SciTech Connect

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  10. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    PubMed

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  11. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  12. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

  13. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    PubMed

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods.

  14. Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.

    PubMed

    Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A

    2015-03-01

    The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.

  15. Accumulation of heavy metals in mosses: a biomonitoring study.

    PubMed

    Macedo-Miranda, G; Avila-Pérez, P; Gil-Vargas, P; Zarazúa, G; Sánchez-Meza, J C; Zepeda-Gómez, C; Tejeda, S

    2016-01-01

    The metropolitan area of the Toluca Valley (MATV) extends over an area of 1208.55 km(2) and has 1,361,500 inhabitants making it the fifth highest populated area in the country and the second highest in the state. The MATV has several environmental problems, with regards to the air quality. Particles PM10 and PM2.5 are considered to be the main pollutant due to these particles frequently exceeding the limit laid down in the standards of the air quality in the country. For this reason, samples of the mosses Fabriona ciliaris and Leskea angustata were collected at different sites in MATV, Mexico in order to establish the atmospheric deposition of heavy metals by means of the analysis of the mosses tissues. Results show the average metal concentrations in the mosses in the order of: Zn > Pb > Cr > Cd. The concentration capacities of heavy metals were higher in Fabriona ciliaris than Leskea angustata. Enrichment factors for Cr, Zn, Pb and Cd were obtained using the soils from the same sampling area. Enrichment factors results show that Cr is conservative in both sampling seasons with a terrigenous origin; Zn is moderately enriched in both sampling seasons and mainly associated to pedological-soil or substrate contribution and anthropogenic activities and Cd is highly enriched in the rainy season and Pb is highly enriched in both sampling seasons, with a predominantly anthropogenic origin. This study provides information to be considered in the strategies for similar environmental problems in the world.

  16. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  17. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India.

    PubMed

    Pandey, J; Pandey, Usha

    2009-01-01

    Increasing consciousness about future sustainable agriculture and hazard free food production has lead organic farming to be a globally emerging alternative farm practice. We investigated the accumulation of air-borne heavy metals in edible parts of vegetables and in cultivated soil horizon in organic farming system in a low rain fall tropical region of India. The factorial design of whole experiment consisted of six vegetable crops (tomato, egg plant, spinach, amaranthus, carrot and radish) x two treatments (organic farming in open field and organic farming in glasshouse (OFG)) x seven independent harvest of each crop. The results indicated that except for Pb, atmospheric deposition of heavy metals increased consistently on time scale. Concentrations of heavy metals in cultivated soil horizon and in edible parts of open field grown vegetables increased over time and were significantly higher than those recorded in OFG plots. Increased contents of heavy metals in open field altered soil porosity, bulk density, water holding capacity, microbial biomass carbon, substrate-induced respiration, alkaline phosphatase and fluorescein diacetate hydrolytic activities. Vegetable concentrations of heavy metal appeared in the order Zn > Pb > Cu > Ni > Cd and were maximum in leaves (spinach and amaranths) followed by fruits (tomato and egg plant) and minimum in roots (carrot and radish). Multiple regression analysis indicated that the major contribution of most heavy metals to vegetable leaves was from atmosphere. For roots however, soil appeared to be equally important. The study suggests that if the present trend of atmospheric deposition is continued, it will lead to a destabilizing effect on this sustainable agricultural practice and will increase the dietary intake of toxic metals.

  18. Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels.

    PubMed

    Onnby, Linda; Giorgi, Camilla; Plieva, Fatima M; Mattiasson, Bo

    2010-01-01

    Applications of IDA in, for example, immobilized metal ion affinity chromatography for purification of His-tagged proteins are well recognized. The use of IDA as an efficient chelating adsorbent for environmental separations, that is, for the capture of heavy metals, is not studied. Adsorbents based on supermacroporous gels (cryogels) bearing metal chelating functionalities (IDA residues and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine followed by the treatment with bromoacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture of heavy metal ions. The cryogels were prepared in plastic carriers, resulting in desired mechanical stability and named as macroporous gel particles (MGPs). Sorption and desorption experiments for different metals (Cu²+, Zn²+, Cd²+, and Ni²+ with IDA adsorbent and Cu²+ and Zn²+ with TBA adsorbent) were carried out in batch and monolithic modes, respectively. Obtained capacities with Cu²+ were 74 μmol/mL (TBA) and 19 μmol/mL gel (IDA). The metal removal was higher for pH values between pH 3 and 5. Both adsorbents showed improved sorption at lower temperatures (10°C) than at higher (40°C) and the adsorption significantly dropped for the TBA adsorbent and Zn²+ at 40°C. Desorption of Cu²+ by using 1 M HCl and 0.1 M EDTA was successful for the IDA adsorbent whereas the desorption with the TBA adsorbent needs further attention. The result of this work has demonstrated that MGPs are potential treatment alternatives within the field of environmental separations and the removal of heavy metals from water effluents.

  19. TREATMENT OF HEAVY METALS IN STORMWATER USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is a significant source of suspended sediments and associated contaminants, including heavy metals, to receiving waterways. These metals are either dissolved or bound to particulates (coarse - >75 µm; fine particulates - <75 - 1µm; colloids - <1 µm). Inf...

  20. Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater.

    PubMed

    Massaquoi, Lamin Daddy; Ma, Hui; Liu, Xue Hui; Han, Peng Yu; Zuo, Shu-Mei; Hua, Zhong-Xian; Liu, Dian-Wu

    2015-12-01

    It is common knowledge that soils irrigated with wastewater accumulate heavy metals more than those irrigated with cleaner water sources. However, little is known on metal concentrations in soils and cultivars after the cessation of wastewater use. This study assessed the accumulation and health risk of heavy metals 3 years post-wastewater irrigation in soils, vegetables, and farmers' hair. Soils, vegetables, and hair samples were collected from villages previously irrigating with wastewater (experimental villages) and villages with no history of wastewater irrigation (control villages). Soil samples were digested in a mixture of HCL/HNO3/HCLO4/HF. Plants and hair samples were digested in HNO3/HCLO4 mixture. Inductive coupled plasma-optical emission spectrometer (ICP-OES) was used to determine metal concentrations of digested extracts. Study results indicate a persistence of heavy metal concentration in soils and plants from farms previously irrigated with wastewater. In addition, soils previously irrigated with wastewater were severely contaminated with cadmium. Hair metal concentrations of farmers previously irrigating with wastewater were significantly higher (P < 0.05) than farmers irrigating with clean water, but metal concentrations in hair samples of farmers previously irrigating with wastewater were not associated with current soil metal concentrations. The study concludes that there is a persistence of heavy metals in soils and plants previously irrigated with wastewater, but high metal concentrations in hair samples of farmers cannot be associated with current soil metal concentrations.

  1. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    NASA Astrophysics Data System (ADS)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  2. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  3. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  4. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996.

    PubMed

    Pfeifer, G D; Harrison, R M; Lynam, D R

    1999-09-01

    In 1995, a petroleum marketer introduced a diesel fuel additive in the UK containing Mn as MMT (methylcyclopentadienyl manganese tricarbonyl). A small study of personal exposures to airborne Mn in London was conducted before and after introduction of the additive to identify any major impact of the additive on exposures. In 1995, personal exposures to Mn were measured in two groups, taxi drivers and office workers (10 subjects per group) for two consecutive 7-day periods. A similar study was carried out in 1996 to determine if exposures had changed. Samples were also analyzed for Ca, Al, Mg and Pb. In 1996, exposures to aerosol mass as total suspended particulates (TSP) and PM2.5 were measured in addition to the metals. Manganese exposures in this cohort did not increase as a result of introduction of the additive. However, a significant source of Mn exposure was discovered during the conduct of these tests. The mean exposure to Mn was higher among the office workers in both years than that of the taxi drivers. This was due to the fact that approximately half of the office workers commuted via the underground railway system where airborne dust and metal concentrations are significantly elevated over those in the general environment. Similar results have been noted in other cities having underground rail systems. Exposure to Mn, Pb, Ca, and Mg were not significantly different between the 2 years. Taxi drivers had higher exposures than office workers to Mg and Pb in both years. Commuting via the underground also had a significant impact on exposures to TSP, PM2.5, Al, and Ca, but had little effect on exposures to Mg. The aerosol in the underground was particularly enriched in Mn, approximately 10-fold, when compared to the aerosol in the general environment. There are several possible sources for this Mn, including mechanical wear of the steel wheels on the steel rais, vaporization of metal from sparking of the third rail, or brake wear.

  5. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China.

    PubMed

    Gong, Xing; Chen, Zhihua; Luo, Zhaohui

    2014-12-01

    This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north-central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.

  6. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  7. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  8. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    PubMed Central

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  9. Study on the law of heavy metal leaching in municipal solid waste landfill.

    PubMed

    Liu, Hui-Hu; Sang, Shu-Xun

    2010-06-01

    Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation-reduction potential were measured by oxidation-reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill.

  10. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  11. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  12. Near-shore distribution of heavy metals in the Albanian part of Lake Ohrid.

    PubMed

    Malaj, Egina; Rousseau, Diederik P L; Du Laing, Gijs; Lens, Piet N L

    2012-04-01

    The heavy metal contamination in Lake Ohrid, a lake shared between Albania and Macedonia, was studied. Lake Ohrid is believed to be one of the oldest lakes in the world, with a large variety of endemic species. Different anthropogenic pressures, especially heavy metal influxes from mining activities, might have influenced the fragile equilibrium of the lake ecosystem. Heavy metal concentrations in water, sediment, emergent vegetation, and fish were investigated at selected sites of the lake and a study of the heavy metals in five tributaries was conducted. The lake surface water was found to have low levels of heavy metals, but sediments contained very high levels mostly near river mouths and mineral dump areas with concentrations reaching 1,501 mg/kg for Ni, 576 mg/kg for Cr, 116.8 mg/kg for Co and 64.8 g/kg for Fe. Sequential extraction of metals demonstrates that heavy metals in the sediment are mainly present in the residual fraction varying from 75% to 95% in different sites. High heavy metal levels (400 mg/kg Ni, 89 mg/kg Cr, and 39 mg/kg Co) were found in plants (stem of Phragmites australis), but heavy metals could not be detected in fish tissue (gill, muscle, and liver of Salmo letnica and Salmothymus ohridanus).

  13. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    PubMed

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain.

  14. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    PubMed

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  15. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.

    PubMed

    Dubey, Sonali; Shri, Manju; Misra, Prashant; Lakhwani, Deepika; Bag, Sumit Kumar; Asif, Mehar H; Trivedi, Prabodh Kumar; Tripathi, Rudro Deo; Chakrabarty, Debasis

    2014-06-01

    Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification.

  16. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region.

  17. [Hygienic evaluation of health risk for Ufa city residents under exposure to heavy metals].

    PubMed

    Larionova, T K; Garifullina, G F

    2008-01-01

    The article deals with results of evaluated metals intake by residents of Ufa - major industrial city. Findings are that in absence of occupational exposure to heavy metal salts human health becomes more vulnerable to ecologic influence. Main sources of heavy metals intake by humans are foods providing over 90% of daily dose of the metals. Higher level of lead, chromium, nickel and lower level of zinc in biologic materials of Ufa residents could result from character and degree of foods contamination.

  18. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  19. The stress analysis of a heavy liquid metal pump impeller

    NASA Astrophysics Data System (ADS)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.

    2016-05-01

    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  20. Differential metal response and regulation of human heavy metal-inducible genes.

    PubMed

    Murata, M; Gong, P; Suzuki, K; Koizumi, S

    1999-07-01

    A number of heavy metal-inducible genes have been reported, but their ranges of response to various metal species are not well known. It is also unclear if these genes are regulated through common mechanisms. To answer these questions, we compared induction kinetics of human metal-inducible genes including the MT-IIA (coding for a metallothionein isoform), hsp70 (coding for the 70-kDa heat-shock protein), and c-fos genes in HeLa cells exposed to Zn, Cd, Ag, Hg, Cu(II), Co, or Ni ions. Transcripts from these three genes were increased after exposure to wide ranges of metals, but each gene was unique in its induction kinetics. Generally, induction was observed at lower metal concentrations in the order of MT-IIA, hsp70, and c-fos. These genes also showed differential responses in time course: more rapid induction was observed in the order of c-fos, hsp70, and MT-IIA after exposure to Zn or Cd. Since the metal-responsive element (MRE) and heat shock element (HSE) of the MT-IIA and hsp70 genes, respectively, are thought to be the cis-acting DNA elements that mediate metal response, we compared the properties of proteins that specifically bind to these elements. MRE-binding activity was detected only in the extract from cells exposed to Zn. By contrast, HSE-binding activity was detected in extracts from cells treated with Zn, Cd, Ag, and Cu. The former was also activated by Zn in vitro, while the latter was not. Each of these DNA-binding activities showed no affinity to the recognition sequence of the other. These results demonstrate that the human metal-inducible genes have broad ranges of response to a variety of heavy metals, but suggest that they are probably regulated through independent mechanisms.

  1. Inducibility of a molecular bioreporter system by heavy metals

    SciTech Connect

    Klimowski, L.; Rayms-Keller, A.; Olson, K.E.; Yang, R.S.H.; Tessari, J.; Carlson, J.; Beaty, B.

    1996-02-01

    The authors have developed a molecular bioreporter model for detecting an invertebrate response to heavy metals in streams. The bioreporter system, pMt2-luc, utilizes a Drosophila melanogaster metallothionein promoter to regulate luciferase expression in stably transformed mosquito cells.The LucC5 clone, which was isolated from pMt2-luc transformed, hygromycin-resistant C6/36 (Aedes albopictus) cells, demonstrated a 12-fold increase in luciferase-specific activity 48 h after exposure to 13 ppm copper (Cu). In addition to Cu, exposure of LucC5 cells to 19 ppm lead (Pb) or 3 ppm mercury (Hg) for 48 h induced luciferase expression threefold and fourfold, respectively. Exposures of up to 30 ppm arsenic (As), 8 ppm cadmium (Cd), 7 ppm chromium (Cr), or 5 ppm nickel (Ni) had no effect on luciferase induction. LucC5 cells exposed to metal mixtures of 13 ppm Cu and 19 ppm Pb yielded an additive response with a 14-fold increase in luciferase expression. When organic chemicals such as phenol (3 ppm) were mixed with 13 ppm Cu, 19 ppm Pb, or 3 ppm Hg a significant reduction in luciferase activity was noted. Additionally, atomic absorption spectroscopy suggested that two of the metals, Cu and Pb, show marked differences in accumulation within the LucC5 cell line.

  2. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance.

    PubMed

    Yamina, Benmalek; Tahar, Benayad; Marie Laure, Fardeau

    2012-01-01

    The uncontrolled discharges of wastes containing a large quantity of heavy metal create huge economical and healthcare burdens particularly for people living near that area. However, the bioremediation of metal pollutants from wastewater using metal-resistant bacteria is a very important aspect of environmental biotechnology. In this study, 13 heavy metal resistant bacteria were isolated from the wastewater of wadi El Harrach in the east of Algiers and characterized. These include zinc-, lead-, chromium- and cadmium-resistant bacteria. The metal-resistant isolates characterized include both Gram-negative (77%) and Gram-positive (23%) bacteria. The Minimum Inhibitory Concentration (MIC) of wastewater isolates against the four heavy metals was determined in solid media and ranged from 100 to 1,500 μg/ml. All the isolates showed co-resistance to other heavy metals and antibiotic resistance of which 15% were resistant to one antibiotic and 85% were multi- and bi-antibiotics resistant. The zinc-resistant species Micrococcus luteus was the much more heavy metal resistant. The results of toxicity tests on Vibrio fischeri showed that the DI(50) (5 min) as low as 0.1 carried away luminescence inhibition greater than 50%.

  3. Native Australian species are effective in extracting multiple heavy metals from biosolids.

    PubMed

    Mok, Hoi-Fei; Majumder, Ramaprasad; Laidlaw, W Scott; Gregory, David; Baker, Alan J M; Arndt, Stefan K

    2013-01-01

    Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.

  4. Aflatoxins and heavy metals in animal feed in Iran.

    PubMed

    Eskandari, M H; Pakfetrat, S

    2014-01-01

    The occurrence of aflatoxin (aflatoxin B1, aflatoxin B2, aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2)) and heavy metal (Pb, Cd, As and Hg) contamination was determined in 40 industrially produced animal feed samples which were collected from the southwest of Iran. The results indicated that 75% of samples were contaminated by four aflatoxins and the level of AFB1 and sum of aflatoxins were higher than the permissible maximum levels in Iran (5 and 20 µg kg(-1), respectively) in all feed samples. A positive correlation was found between four types of aflatoxins in all the tested samples (p < 0.01) and the positive correlation between AFG1 and AFG2 was significant (r(2) = 0.708). All feed samples had lead concentrations lower than the maximum EU limit, while 5%, 17% and 42.5% of feed samples had As, Cd and Hg concentrations higher than the maximum limits, respectively.

  5. Portable X-Ray, K-Edge Heavy Metal Detector

    SciTech Connect

    Fricke, V.

    1999-10-25

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

  6. Testing of T91 steel in heavy liquid metals

    NASA Astrophysics Data System (ADS)

    Chocholoušek, M.; Fulín, Z.; Janoušek, J.; Špirit, Z.

    2017-02-01

    Tests of candidate construction materials for a heavy liquid metal environment are performed at Centrum Vyzkumu Rez. Tests are focused among other things on the influence of corrosive environments on the mechanical properties of T91 steel. Non-standard environments require special testing devices, which must be able to perform tests in liquid lead or liquid lead bismuth eutectic. An important issue is also the monitoring of the oxygen volume, which has an influence on the production and stability of oxide layers and therefore on crack initiation. This article presents the issue of testing steel T91 and the associated development of a testing device for slow strain rate tests, especially in liquid lead bismuth eutectic environment.

  7. Heavy metal transport by the CusCFBA efflux system

    PubMed Central

    Delmar, Jared A; Su, Chih-Chia; Yu, Edward W

    2015-01-01

    It is widely accepted that the increased use of antibiotics has resulted in bacteria with developed resistance to such treatments. These organisms are capable of forming multi-protein structures that bridge both the inner and outer membrane to expel diverse toxic compounds directly from the cell. Proteins of the resistance nodulation cell division (RND) superfamily typically assemble as tripartite efflux pumps, composed of an inner membrane transporter, a periplasmic membrane fusion protein, and an outer membrane factor channel protein. These machines are the most powerful antimicrobial efflux machinery available to bacteria. In Escherichia coli, the CusCFBA complex is the only known RND transporter with a specificity for heavy metals, detoxifying both Cu+ and Ag+ ions. In this review, we discuss the known structural information for the CusCFBA proteins, with an emphasis on their assembly, interaction, and the relationship between structure and function. PMID:26258953

  8. Heavy metal levels in goats from Notasulga, Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Forester, D.M.; Thompson, S.J.; Mielke, H.W.

    1994-12-31

    Goat meat farming is increasing in popularity in southeastern region of United States. In order to monitor environmental contamination of heavy metals in goat meat, samples of liver, kidney, and muscle were collected from 20 goats on a goat farm in Notasulga, Alabama. These samples were analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy. The copper concentration was significantly higher in livers than the concentration in kidneys and muscles. Lead, cadmium, and zinc levels did not show any significant differences between liver, kidney, and muscle samples. The concentrations of lead and copper in livers and cadmium in kidneys were significantly different in males when compared to females. However, in muscle, the concentrations of lead, cadmium, copper, and zinc showed no significant difference between male and female or between young and old goats. Further, the concentrations of lead in livers and cadmium in kidneys showed a significant difference between young and old goats.

  9. Hydrate-based heavy metal separation from aqueous solution

    PubMed Central

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  10. Heavy metals detection in sediments using PGNAA method.

    PubMed

    Da-Qian, Hei; Wen-Bao, Jia; Zhou, Jiang; Can, Cheng; Jia-Tong, Li; Hong-Tao, Wang

    2016-06-01

    A prompt gamma ray neutron activation analysis detection system was developed to detect the heavy metals in sediments by using an (241)Am-Be neutron source and BGO detector. The samples containing cadmium and mercury were used to test the performance of setup. The linear relationship between prompt gamma ray counts and the concentrations was studied. The results showed the counts of the prompt gamma rays from cadmium do not increase linearly with its concentrations, while the prompt gamma ray counts from Hg vary nearly linearly with the concentrations, due to the neutron self-shielding. Then a method was used to correct the effect and the non-linearly response was restored after the correction. And the minimum detectable concentration of Cd and Hg were 52.8 (at 8.484MeV) and 81.6 (at 5.967MeV) ppm, respectively.

  11. A Pyoverdin Siderophore Produced By Pseudomonas aeruginosa CHL-004 Binds Lead And Other Heavy Metals - (Poster)

    EPA Science Inventory

    Heavy metal pollution in soils, sediments and wastewater poses a significant environmental and public health threat due to toxicity and the potential for bioaccumulation in both plant and animal tissues. Remediation of heavy metals in soils and sediments using solely physical or...

  12. A Pyoverdin Siderophore Produced By Pseudomonas aeruginosa CHL-004 Binds Lead And Other Heavy Metals

    EPA Science Inventory

    Heavy metal pollution in soils, sediments and wastewater poses a significant environmental and public health threat due to toxicity and the potential for bioaccumulation in both plant and animal tissues. Remediation of heavy metals in soils and sediments using solely physical or...

  13. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...

  14. [Determination of eight heavy metals and two main ingredients of safflower planted in linzhi of Tibetan].

    PubMed

    Feng, Xin; Du, Xiao-wei; Zhou, Gang; Wang, Dong; Zhong, Ge-jia

    2015-10-01

    The eight heavy metals and two essential constitutes of safflowers planted in linzhi which lies in Southern Tibet were analyzed by ICP-MS and by HPLC respectively. Heavy metals of safflower in the region were at the lower level and the essential constitutes were at the higher level. The better quality of safflower here was assisted by the excellent climate in tibet.

  15. Meso- and racemic-DMSA as Antidotes in Heavy Metal Poisoning

    DTIC Science & Technology

    2001-09-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013383 TITLE: Meso- and racemic-DMSA as Antidotes in Heavy Metal Poisoning...comprise the compilation report: ADP013371 thru ADP013468 UNCLASSIFIED 13. Meso- AND racemic-DMSA AS ANTIDOTES IN HEAVY METAL POISONING 1Maja Blanu~a

  16. Toenail as a biomarker of heavy metal exposure via drinking water: a systematic review.

    PubMed

    Ab Razak, Nurul Hafiza; Praveena, Sarva Mangala; Hashim, Zailina

    2015-01-01

    Toenail is metabolic end product of the skin, which can provide information about heavy metal accumulation in human cells. Slow growth rates of toenail can represent heavy metal exposure from 2 to 12 months before the clipping. The toenail is a non-invasive biomarker that is easy to collect and store and is stable over time. In this systematic review, the suitability of toenail as a long-term biomarker was reviewed, along with the analysis and validation of toenail and confounders to heavy metal. This systematic review has included 30 articles chosen from a total of 132 articles searched from online electronic databases like Pubmed, Proquest, Science Direct, and SCOPUS. Keywords used in the search included "toenail", "biomarker", "heavy metal", and "drinking water". Heavy metal in toenail can be accurately analyzed using an ICP-MS instrument. The validation of toenail heavy metal concentration data is very crucial; however, the Certified Reference Material (CRM) for toenail is still unavailable. Usually, CRM for hair is used in toenail studies. Confounders that have major effects on heavy metal accumulation in toenail are dietary intake of food and supplement, smoking habit, and overall health condition. This review has identified the advantages and limitations of using toenail as a biomarker for long-term exposure, which can help future researchers design a study on heavy metal exposure using toenail.

  17. [Effect of reclaimed water irrigation on soil properties and vertical distribution of heavy metal].

    PubMed

    Zhao, Zong-Ming; Chen, Wei-Ping; Jiao, Wen-Tao; Wang, Mei-E

    2012-12-01

    Utilization of reclaimed water is one of the important methods to alleviate water shortage. The effect of reclaimed water irrigation on soil is always a concern. To understand the effect of long time reclaimed water irrigation on soil, typical farmland irrigated with reused water was selected. Soil properties and heavy metal concentration of soil and water samples were analyzed to identify the effect of the irrigation on heavy metal vertical distribution and organic matter content, total carbon, total nitrogen and pH value in soil. The results show that heavy metal contents of irrigation water used in Liangshuihe farmland are 2.5 to 10.5 times higher than that of Beiyechang farmland, and reclaimed water irrigation could cause changes of soil properties that soil organic matter content, total carbon, total nitrogen were increased and pH values were reduced. Based on the field investigation results, the soil nutrient conditions benefit from irrigate reclaimed water, however, the accumulation of heavy metal in soil could raise the risk. As a source of soil heavy metal, reclaimed water irrigation could make differences on the accumulation and mobility of soil heavy metal. Also the distribution and mobility of soil heavy metal are influenced by soil organic matter content and there are more heavy metal were taken up by plants or transferred to the deeper area in Liangshuihe farmland.

  18. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  19. Effect of drying on heavy metal fraction distribution in rice paddy soil.

    PubMed

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples.

  20. Development of protein based bioremediation and drugs for heavy metal toxicity

    SciTech Connect

    Opella, Stanley J.

    2001-09-18

    Structural studies were performed on several proteins of the bacterial detoxification system. These proteins are responsible for binding (MerP) and transport of heavy metals, including mercury, across membranes. The structural information obtained from NMR experiments provides insight into the selectivity and sequestration processes towards heavy metal toxins.

  1. Environmental Pollution Studies in an Underdeveloped Country: (1) Heavy Metal Pollution in Ibadan, Nigeria.

    ERIC Educational Resources Information Center

    Onianwa, P. C.

    1993-01-01

    Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…

  2. Effects of Listening to Heavy Metal Music on College Women: A Pilot Study

    ERIC Educational Resources Information Center

    Becknell, Milton E.; Firmin, Michael W.; Hwang, Chi-en; Fleetwood, David M.; Tate, Kristie L.; Schwab, Gregory D.

    2008-01-01

    College students are typically very identified with popular music and spend many hours listening to their music of preference. To investigate the effects of heavy metal music, we compared the responses of 18 female undergraduate college students to a baseline silence condition (A) and a heavy metal music condition (B). Dependent measures included:…

  3. [Application of ICP-MS to detecting ten kinds of heavy metals in KCl fertilizer].

    PubMed

    Rui, Yu-kui; Shen, Jian-bo; Zhang, Fu-suo; Yan, Yun; Jing, Jing-ying; Meng, Qing-feng

    2008-10-01

    With the rapid development of society, more and more attention has been focused on environmental safety, especially on the pollutions of heavy metals, pesticides, persistent organic pollutants and deleterious microorganism. Heavy metals are difficult to metabolize in human body are quite harmful, so research on the pollution of heavy metals is increasingly important. There are many pollution sources of heavy metals, including waste residue, waste water and exhaust gas from industry and automobile, and garbage from human life. The contents of 10 kinds of heavy metals (Cr, Ni, Cu, As, Cd, Sn, Sb, Hg, Tl and Pb) in potassium fertilizer (KCl) from Russia were analyzed by ICP-MS. The results showed that potassium fertilizer (KCl) contained less heavy metals than organic-inorganic compound fertilizer; the content of heavy metals Cr, Ni, Cu, As, Cd, Sn, Sb, Hg, Tl and Pb is 0.00, 65.54, 238.85, 190.60, 0.98, 14.98, 2.97, 10.04, 1.28 and 97.42 ng x g(-1), respectively, which accords with the correlative standards. All the data showed that if potassium fertilizer (KCl) is manufactured through normal channel, the content of heavy metals should be little and safe.

  4. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-02

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  5. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method.

    PubMed

    Ranjitha, P; Karthy, E S

    2012-01-01

    Effects of different heavy metals on Vibrio harveyi, V. fischeri, Photobacterium phosphoreum and P. leiognathi were examined. Checkerboard assay was used for the detection of the natural metal tolerance levels of a large number of marine luminous eubacteria. 57 strains of luminous bacteria were investigated for their natural patterns of heavy metal tolerance. The behaviors of these strains were not homogeneous with respect to all metals tested, even within the strains belonging to the same genus. At least 1 to 4 different MICs were detected for every metal except barium and cobalt. Isolated bacteria were tested for the presence of plasmids using the modified alkaline lysis method, was effective for identification of plasmids of different sizes. This study revealed the frequency of the occurrence of plasmids in heavy metal resistance bacteria and inferred that plasmids are highly ubiquitous and predominant in most heavy metal resistant bacteria.

  6. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea.

    PubMed

    Yuan, Huamao; Song, Jinming; Li, Xuegang; Li, Ning; Duan, Liqin

    2012-10-01

    The distributions, annual sedimentation and atmospheric deposition flux of heavy metals have been studied in sediments of the South Yellow Sea (SYS), in order to evaluate their levels and pollution status. The higher concentrations of heavy metals were generally found in the central part of the SYS, which may be associated with the organic matters due to their high affinity to the metals. According to the calculated enrichment factor (EF) of the studied metals, Cd in the sediments posed a high risk to local environments, while Mn, Hg, Pb and Zn were at moderate risk levels. Sedimentation fluxes study in the SYS showed that most heavy metals were deposited in the Chinese offshore. Annual dry deposition flux of these metals indicated that the particulate heavy metals deposition via atmosphere also play an important role in biogeochemical cycles in the SYS.

  7. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    NASA Astrophysics Data System (ADS)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar an