Science.gov

Sample records for airborne hyperspectral remote

  1. Airborne Hyperspectral Remote Sensing

    DTIC Science & Technology

    2016-06-07

    the Naval Earth Map Observer (NEMO) spacecraft (Wilson and Davis, 1998, in press) in 2001 we have designed and built the Ocean PHILLS instrument. The...this shallow water environment. We imaged the entire study area on five days while other investigators collected in-water optical properties and...remote sensing images. WORK COMPLETED Five flight lines were flown on each of five days during the CoBOP study. The lines run at an angle of 83o

  2. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  3. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  4. Remote sensing of soil moisture using airborne hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  5. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  6. Airborne Hyperspectral Remote Sensing for Identification Grassland Vegetation

    NASA Astrophysics Data System (ADS)

    Burai, P.; Tomor, T.; Bekő, L.; Deák, B.

    2015-08-01

    In our study we classified grassland vegetation types of an alkali landscape (Eastern Hungary), using different image classification methods for hyperspectral data. Our aim was to test the applicability of hyperspectral data in this complex system using various image classification methods. To reach the highest classification accuracy, we compared the performance of traditional image classifiers, machine learning algorithm, feature extraction (MNF-transformation) and various sizes of training dataset. Hyperspectral images were acquired by an AISA EAGLE II hyperspectral sensor of 128 contiguous bands (400-1000 nm), a spectral sampling of 5 nm bandwidth and a ground pixel size of 1 m. We used twenty vegetation classes which were compiled based on the characteristic dominant species, canopy height, and total vegetation cover. Image classification was applied to the original and MNF (minimum noise fraction) transformed dataset using various training sample sizes between 10 and 30 pixels. In the case of the original bands, both SVM and RF classifiers provided high accuracy for almost all classes irrespectively of the number of the training pixels. We found that SVM and RF produced the best accuracy with the first nine MNF transformed bands. Our results suggest that in complex open landscapes, application of SVM can be a feasible solution, as this method provides higher accuracies compared to RF and MLC. SVM was not sensitive for the size of the training samples, which makes it an adequate tool for cases when the available number of training pixels are limited for some classes.

  7. Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data

    DTIC Science & Technology

    2011-01-01

    REPORT DATE (DD-MM-YYYY) 14-02-2012 2. REPORT TYPE Journal Article 3. DATES COVERED /From - To) 4. TITLE AND SUBTITLE Remote Sensing of Soil...Murchie, S. L., Oden, S. F, Hayes, J. R., Bell, J. F, Krein, S. J., and A. Mastandrea, 1997, "Near Infrared Spectrometer for the near Earth Asteroid

  8. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem.

  9. Remote Sensing of Vegetation Species Diversity: The Utility of Integrated Airborne Hyperspectral and Lidar Data

    NASA Astrophysics Data System (ADS)

    Krause, Keith Stuart

    The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts are underway to measure, monitor, and protect habitats that contain high species diversity. Remote sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and using those land cover maps or other derived data as proxies to species number and distribution. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of vegetation species and is a native habitat for several threatened fauna species. The research presented here investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to leverage the high spatial resolution data and study the variability of the data within a ground plot scale along with integrating data from the different sensors. Mathematical features are derived from the data and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. The results presented here represent an important contribution to utilizing integrated hyperspectral and lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a ground plot scale to a collection of vegetation types that make up a given ecosystem.

  10. CASI/SASI airborne hyperspectral remote sensing anomaly extraction of metallogenic prediction research in Gansu Beishan South Beach area

    NASA Astrophysics Data System (ADS)

    Che, Yongfei; Zhao, Yingjun

    2014-11-01

    Hyperspectral remote sensing has one of the technical advantages atlas. The known deposits of Gansu Beishan South Beach deposits as the study area, based on the theory of wall rock alteration, using airborne hyperspectral remote sensing data (CASI/SASI), extracted mineralization alteration information and analysis. Based on airborne hyperspectral remote sensing mineral mapping results in the study area, Combining analysising of possible mineral formation fluid properties, spatial distribution characteristics and time evolution with analysising of mineral formation environment (lithology and tectonic environment), construction of the South Beach gold deposit location model, the deposit location model as a guide, comprehensive analysis of mineralization geological background and surface geochemical data, delineated mineralization favorable areas. The field investigation showed that signs of altered development of strong in the delineation of the mineralization favorable areas and metallogenic potential of better, is worth paying attention to the prospecting target area. Further explanation that the hyperspectral remote sensing can provide accurate and reliable information for the prospecting, and is worthy of further mining the ore prospecting potential.

  11. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    NASA Astrophysics Data System (ADS)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  12. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture

    NASA Astrophysics Data System (ADS)

    Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard

    2017-04-01

    Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price

  13. Application of hydrothermal alteration mineral mapping using airborne hyperspectral remote sensing: data taken in the Baixianishan region of Gansu Province as an example

    NASA Astrophysics Data System (ADS)

    Yu, Sun; Zhao, Yingjun; Zhang, Donghui; Qin, Kai; Tian, Feng

    2016-10-01

    Hyperspectral remote sensing, featured by integrated images and spectra, is now a frontier of the remote sensing. Using meticulous spectra, hyperspectral remote sensing technology can depict spectral features of objects in detail and are capable of identifying objects rather than simply discriminating them. This study took the Baixianishan region in Gansu Province as an example, and CASI/SASI airborne hyperspectral data were utilized to extract and map alteration minerals by MTMF mapping method. Six hydrothermal alteration minerals were mapped, which contained limonite, sericite and epidote. In addition, we analyzed the types, combinations and distribution of the alteration minerals and divided three stages of hydrothermal activity. It is considered that the favorable ore-forming elements for gold deposits are middle Hercynian porphyraceous granite, fracture and veined distribution of sericite and limonite. The application of CASI/SASI airborne hyperspectral remote sensing data in the Baixianishan area has achieved ideal results, indicative of their wide application potential in the geological research.

  14. Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei

    2016-11-01

    Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter

  15. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  16. Spatially explicit modelling of forest structure and function using airborne lidar and hyperspectral remote sensing data combined with micrometeorological measurements

    NASA Astrophysics Data System (ADS)

    Thomas, Valerie Anne

    This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem

  17. Airborne multispectral and hyperspectral remote sensing: Examples of applications to the study of environmental and engineering problems

    SciTech Connect

    Bianchi, R.; Marino, C.M.

    1997-10-01

    The availability of a new aerial survey capability carried out by the CNR/LARA (National Research Council - Airborne Laboratory for the Environmental Research) by a new spectroradiometer AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) on board a CASA 212/200 aircraft, enable the scientists to obtain innovative data sets, for different approach to the definitions and the understanding of a variety of environmental and engineering problems. The 102 MIVIS channels spectral bandwidths are chosen to meet the needs of scientific research for advanced applications of remote sensing data. In such configuration MIVIS can offer significant contributions to problem solving in wide sectors such as geologic exploration, agricultural crop studies, forestry, land use mapping, idrogeology, oceanography and others. LARA in 1994-96 has been active over different test-sites in joint-venture with JPL, Pasadena, different European Institutions and Italian University and Research Institutes. These aerial surveys allow the national and international scientific community to approach the use of Hyperspectral Remote Sensing in environmental problems of very large interest. The sites surveyed in Italy, France and Germany include a variety of targets such as quarries, landfills, karst cavities areas, landslides, coastlines, geothermal areas, etc. The deployments gathered up to now more than 300 GBytes of MIVIS data in more than 30 hours of VLDS data recording. The purpose of this work is to present and to comment the procedures and the results at research and at operational level of the past campaigns with special reference to the study of environmental and engineering problems.

  18. The information of oil and gas micro-seepage in Dongsheng region of inner Mongolia based on the airborne hyperspectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Tian, Shu-Fang; Chen, Jian-Ping; Zhou, Mi

    2008-11-01

    The technology of hyper-spectral remote sensing which has higher spatial resolution characteristic, and optimizes the qualification of identifying and extracting salt mines, not only enhances the capacity of natural scenes detection and recognition, but also advances the level of quantitative remote sensing. It has important meaning for using the technology of hyper-spectral remote sensing to quantitative extraction. The paper investigate gas micro-seepage based on the Airborne Hyper-spectral Remote Sensing in Dongsheng of Inner Mongolia on the basis of gas micro-seepage theory using EO-1 Hyperion data collected by Satellite-Borne Sensor which has highest spatial resolution presently in the world. On the basis of data pretreated this paper adopts band math extracted the distribution of oil and gas micro-seepage using diagnostic assimilating spectrum of alteration minerals by the numbers. With eigenvector length model evaluates the research area comprehensive index, oil and gas micro-seepage information model of the research area is established and key regions of oil and gas micro-seepage are confirmed, which offers academic gist for oil and gas resource exploitation of Dongsheng.

  19. Hyperspectral remote sensing of postfire soil properties

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  20. Advances in soil mapping: Mapping quartz content of soil surface using airborne hyperspectral remote sensing in the longwave-infrared region

    NASA Astrophysics Data System (ADS)

    Weksler, Shahar; Notesco, Gila; Ben-Dor, Eyal

    2016-04-01

    Hyperspectral remote sensing in the longwave-infrared (LWIR) spectral region has proven to be a new and efficient tool for mineral mapping (Adar et al. 2013). Minerals which are featureless in the visible, near-infrared and shortwave-infrared regions, e.g., quartz, have a unique fingerprint in the LWIR region (8-12 μm). This spectral region adds to the optical region in which several important minerals can be characterized with significant features (e.g., clay). Accordingly, using airborne hyperspectral remote-sensing data in the LWIR region is an important and practical means of classifying and quantifying minerals. Day and night airborne data, acquired by the AisaOWL sensor over Nitzana National Park in Israel, were used to demonstrate how LWIR region data can be used to map quartz content on the soil surface in a pixel-by-pixel process. The LWIR radiance image is composed of the surface emissivity (and hence the surface's chemical and physical properties), the radiant temperature (according to the Plank equation) and the atmospheric attenuation (which is different during the day and at night). In this work, we show that it is possible to separate surface emissivity, temperature and atmospheric attenuation by using the radiance measured from a vicarious calibration site which was found to be distinctive for the atmospheric contribution. Applying the spectrum of this area as a gain factor to each pixel in the image reduced the atmospheric effects while emphasizing the mineralogical features. Based on this finding and using the same vicarious calibration site used by Notesco et al. (2015), we further studied the possibility of mapping quartz in an area outside the vicarious calibration site. The resulting emissivity image of Nitzana soils (100 km away from the vicarious calibration site) enabled quantifying the quartz in each pixel and mapping its abundance. The day and night images showed a similar quartz distribution, thereby validating the methodology and

  1. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms. PMID:27873868

  2. PRELIMINARY INVESTIGATION OF SUBMERGED AQUATIC VEGETATION MAPPING USING HYPERSPECTRAL REMOTE SENSING

    EPA Science Inventory

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submersed aquatic vegetation in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery, together with in-situ spectral refl...

  3. PRELIMINARY INVESTIGATION OF SUBMERGED AQUATIC VEGETATION MAPPING USING HYPERSPECTRAL REMOTE SENSING

    EPA Science Inventory

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submersed aquatic vegetation in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery, together with in-situ spectral refl...

  4. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    USDA-ARS?s Scientific Manuscript database

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  5. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests

    Treesearch

    Kimberly M. Carlson; Gregory P. Asner; R. Flint Hughes; Rebecca Ostertag; Roberta E. Martin

    2007-01-01

    Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawaii. Hyperspectral signatures spanning...

  6. Remote distinction of a noxious weed (musk thistle: Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier

    USDA-ARS?s Scientific Manuscript database

    Remote detection of invasive plant species using geospatial imagery may significantly improve monitoring, planning, and management practices by eliminating shortfalls such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion ex...

  7. Buried archaeological structures detection using MIVIS hyperspectral airborne data

    NASA Astrophysics Data System (ADS)

    Merola, P.; Allegrini, A.; Guglietta, D.; Sampieri, S.

    2006-08-01

    The identification of buried archaeological structures, using remote sensing technologies (aerophotos or satellite and airborne images) is based on the analysis of surface spectral features changes that overlying underground terrain units, located on the basis of texture variations, humidity and vegetation cover. The study of these anomalies on MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) hyperspectral data is the main goal of a research project that the CNR-IIA has carried on over different archaeological test sites. The major archaeological information were gathered by data analysis in the VIS and NIR spectral region and by use of the apparent thermal inertia image and their different vegetation index.

  8. The technique flows of target detection using thermal infrared hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Wu, Wen Huan; Yu, Hong; Huang, Shu Tao

    2016-10-01

    In this work, the workflow of airborne thermal infrared hyperspectral technology in the actual application process is reviewed. Using the Thermal Airborne Spectrographic Imager (TASI-600), a hyperspectral thermal infrared imager manufactured by ITRES Research Limited as a case study, the work process including instrument calibration, collecting the region information of interest, data processing and analysis is elaborated. The value and effect using thermal infrared data obtained through TASI-600 is demonstrated. This work provides ideas and references for further study and investigation on the application of airborne thermal infrared hyperspectral remote sensing.

  9. Hyperspectral remote sensing for terrestrial applications

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,

    2015-01-01

    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.

  10. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  11. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  12. Regional lithology mapping using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Qin, Kai; Chen, Jianping; Zhao, Yingjun

    2015-04-01

    This paper proposed a new procedure for rock identifiction and mapping using airborne hyperspectral CASI/SASI data (wavelength: 380-2450 nm) for the Nanbaishiling in Liuyuan area, Gansu Province, NW China. Rocks in the study area include granite, diorite, marble, basalt and quartzite. In situ and laboratory reflectance spectra (400 to 2500 nm) show Al-OH absorption of muscovite, kaolinite, and illite in granite, granodiorite and quartz diorite, and Fe-OH, Mg-OH absorptions of biotite and chlorite .The absorption near 2.3µm caused by carbonate is most intense in marble reflectance spectra. Ferric-iron absorption is intense in most of the felsic rocks. CASI/SASI data with approximately 2-m spatial resolution were recorded in 149 narrow bands along a 1.2-km-wide swath. Correction of the data to spectral reflectance was performed by reference to in situ measurements of an extensive, alluvial plain. Five major rock types have been identified by using MNF and analysis of in situ and laboratory spectra. The lithoglogic map presented in this study were verified by field investigation, and was compared with previous lithologic map. The result show a reliable classification of lithology using Airborne Hyperspectral data.

  13. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  14. Advanced Airborne Hyperspectral Imaging System (AAHIS)

    NASA Astrophysics Data System (ADS)

    Topping, Miles Q.; Pfeiffer, Joel E.; Sparks, Andrew W.; Jim, Kevin T. C.; Yoon, Dugan

    2002-11-01

    The design, operation, and performance of the fourth generation of Science and Technology International's Advanced Airborne Hyperspectral Imaging Sensors (AAHIS) are described. These imaging spectrometers have a variable bandwidth ranging from 390-840 nm. A three-axis image stabilization provides spatially and spectrally coherent imagery by damping most of the airborne platform's random motion. A wide 40-degree field of view coupled with sub-pixel detection allows for a large area coverage rate. A software controlled variable aperture, spectral shaping filters, and high quantum efficiency, back-illuminated CCD's contribute to the excellent sensitivity of the sensors. AAHIS sensors have been operated on a variety of fixed and rotary wing platforms, achieving ground-sampling distances ranging from 6.5 cm to 2 m. While these sensors have been primarily designed for use over littoral zones, they are able to operate over both land and water. AAHIS has been used for detecting and locating submarines, mines, tanks, divers, camouflage and disturbed earth. Civilian applications include search and rescue on land and at sea, agricultural analysis, environmental time-series, coral reef assessment, effluent plume detection, coastal mapping, damage assessment, and seasonal whale population monitoring

  15. Target detection algorithm for airborne thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  16. The enhanced MODIS airborne simulator hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Guerin, Daniel C.; Fisher, John; Graham, Edward R.

    2011-06-01

    The EMAS-HS or Enhanced MODIS Airborne Simulator is an upgrade to the solar reflected and thermal infrared channels of NASA's MODIS Airborne Simulator (MAS). In the solar reflected bands, the MAS scanner functionality will be augmented with the addition of this separate pushbroom hyperspectral instrument. As well as increasing the spectral resolution of MAS beyond 10 nm, this spectrometer is designed to maintain a stable calibration that can be transferred to the existing MAS sensor. The design emphasizes environmental control and on-board radiometric stability monitoring. The system is designed for high-altitude missions on the ER-2 and the Global Hawk platforms. System trades optimize performance in MODIS spectral bands that support land, cloud, aerosol, and atmospheric water studies. The primary science mission driving the development is high altitude cloud imaging, with secondary missions possible for ocean color. The sensor uses two Offner spectrometers to cover the 380-2400 nm spectral range. It features an all-reflective telescope with a 50° full field-of-view. A dichroic cold mirror will split the image from the telescope, with longer radiation transmitted to the SWIR spectrometer. The VNIR spectrometer uses a TE-cooled Si CCD detector that samples the spectrum at 2.5 nm intervals, while the SWIR spectrometer uses a Stirling-cooled hybrid HgCdTe detector to sample the spectrum at 10 nm per band. Both spectrometers will feature 1.05 mRad instantaneous fields-of-view registered to the MAS scanner IFOV's.

  17. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  18. Water turbidity estimation from airborne hyperspectral imagery and full waveform bathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Glennie, C. L.; Fernandez-Diaz, J. C.

    2015-12-01

    The spatial and temporal variations in water turbidity are of great interest for the study of fluvial and coastal environments; and for predicting the performance of remote sensing systems that are used to map these. Conventional water turbidity estimates from remote sensing observations have normally been derived using near infrared reflectance. We have investigated the potential of determining water turbidity from additional remote sensing sources, namely airborne hyperspectral imagery and single wavelength bathymetric LiDAR (Light Detection and Ranging). The confluence area of the Blue and Colorado River, CO was utilized as a study area to investigate the capabilities of both airborne bathymetric LiDAR and hyperspectral imagery for water turbidity estimation. Discrete and full waveform bathymetric data were collected using Optech's Gemini (1064 nm) and Aquarius (532 nm) LiDAR sensors. Hyperspectral imagery (1.2 m pixel resolution and 72 spectral bands) was acquired using an ITRES CASI-1500 imaging system. As an independent reference, measurements of turbidity were collected concurrent with the airborne remote sensing acquisitions, using a WET Labs EcoTriplet deployed from a kayak and turbidity was then derived from the measured backscatter. The bathymetric full waveform dataset contains a discretized sample of the full backscatter of water column and benthic layer. Therefore, the full waveform records encapsulate the water column characteristics of turbidity. A nonparametric support vector regression method is utilized to estimate water turbidity from both hyperspectral imagery and voxelized full waveform LiDAR returns, both individually and as a fused dataset. Results of all the evaluations will be presented, showing an initial turbidity prediction accuracy of approximately 1.0 NTU. We will also discuss our future strategy for enhanced fusion of the full waveform LiDAR and hyperspectral imagery for improved turbidity estimation.

  19. Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program

    DTIC Science & Technology

    2000-10-01

    The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.

  20. Close-range environmental remote sensing with 3D hyperspectral technologies

    NASA Astrophysics Data System (ADS)

    Nevalainen, O.; Honkavaara, E.; Hakala, T.; Kaasalainen, Sanna; Viljanen, N.; Rosnell, T.; Khoramshahi, E.; Näsi, R.

    2016-10-01

    Estimation of the essential climate variables (ECVs), such as photosynthetically active radiation (FAPAR) and the leaf area index (LAI), is largely based on satellite-based remote sensing and the subsequent inversion of radiative transfer (RT) models. In order to build models that accurately describe the radiative transfer within and below the canopy, detailed 3D structural (geometrical) and spectral (radiometrical) information of the canopy is needed. Close-range remote sensing, such as terrestrial remote sensing and UAV-based 3D spectral measurements, offers significant opportunity to improve the RT modelling and ECV estimation of forests. Finnish Geospatial Research Institute (FGI) has been developing active and passive high resolution 3D hyperspectral measurement technologies that provide reflectance, anisotropy and 3D structure information of forests (i.e. hyperspectral point clouds). Technologies include hyperspectral imaging from unmanned airborne vehicle (UAV), terrestrial hyperspectral lidar (HSL) and terrestrial hyperspectral stereoscopic imaging. A measurement campaign to demonstrate these technologies in ECV estimation with uncertainty propagation was carried out in the Wytham Woods, Oxford, UK, in June 2015. Our objective is to develop traceable processing procedures for generating hyperspectral point clouds with geometric and radiometric uncertainty propagation using hyperspectral aerial and terrestrial imaging and hyperspectral terrestrial laser scanning. The article and presentation will present the methodology, instrumentation and first results of our study.

  1. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing

    USGS Publications Warehouse

    Williams, D.J.; Rybicki, N.B.; Lombana, A.V.; O'Brien, T. M.; Gomez, R.B.

    2003-01-01

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to realtime resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.

  2. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing.

    PubMed

    William, David J; Rybicki, Nancy B; Lombana, Alfonso V; O'Brien, Tim M; Gomez, Richard B

    2003-01-01

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.

  3. Hyperspectral remote sensing of vegetation

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  4. Detection of European Corn Borer Infestation in Iowa Corn Plots using Spectral Vegetation Indices Derived from Airborne Hyperspectral Imagery

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology was used to distinguish corn infested with European corn borers, Ostrinia nubilalis, from corn that was not infested. In 2004 and 2005, eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery. Manual inocu...

  5. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  6. Evaluating Airborne Hyperspectral imagery for mapping waterhyacinth infestations

    USDA-ARS?s Scientific Manuscript database

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  7. Advanced Airborne Hyperspectral Imaging System (AAHIS): an imaging spectrometer for maritime applications

    NASA Astrophysics Data System (ADS)

    Voelker, Mark A.; Resmini, Ronald G.; Mooradian, Gregory C.; McCord, Thomas B.; Warren, Christopher P.; Fene, Michael W.; Coyle, Christopher C.; Anderson, Richard

    1995-06-01

    The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, lightweight visible and near IR pushbroom hyperspectral imaging spectrometer flown on a Piper Aztec aircraft. AAHIS is optimized for use in shallow water, littoral, and vegetation remote sensing. Data are collected at up to 55 frames/second and may be displayed and analyzed inflight or recorded for post-flight processing. Swath width is 200 meters at a flight altitude of 1 km. Each image pixel contains hyperspectral data simultaneously recorded in up to 288 contiguous spectral channels covering the 432 to 832 nm spectral region. Pixel binning typically yields pixels 1.0 meter square with a spectral channel width of 5.5 nm. Design and performance of the AAHIS is presented, including processed imagery demonstrating feature detection and materials discrimination on land and underwater at depths up to 27 meters.

  8. High spectral resolution airborne short wave infrared hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wei, Liqing; Yuan, Liyin; Wang, Yueming; Zhuang, Xiaoqiong

    2016-05-01

    Short Wave InfraRed(SWIR) spectral imager is good at detecting difference between materials and penetrating fog and mist. High spectral resolution SWIR hyperspectral imager plays a key role in developing earth observing technology. Hyperspectral data cube can help band selections that is very important for multispectral imager design. Up to now, the spectral resolution of many SWIR hyperspectral imagers is about 10nm. A high sensitivity airborne SWIR hyperspectral imager with narrower spectral band will be presented. The system consists of TMA telescope, slit, spectrometer with planar blazed grating and high sensitivity MCT FPA. The spectral sampling interval is about 3nm. The IFOV is 0.5mrad. To eliminate the influence of the thermal background, a cold shield is designed in the dewar. The pixel number of spatial dimension is 640. Performance measurement in laboratory and image analysis for flight test will also be presented.

  9. Active contour segmentation for hyperspectral oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Mei-ping; Chang, Ming; An, Ju-bai; Huang, Jian; Lin, Bin

    2013-08-01

    Oil spills could occur in many conditions, which results in pollution of the natural resources, marine environment and economic health of the area. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Hyperspectral remote sensing imaging is now widely used to detect oil spill. Active Contour Models (ACMs) is a widely used image segmentation method that utilizes the geometric information of objects within images. Region based models are less sensitive to noise and give good performance for images with weak edges or without edges. One of the popular Region based ACMs, active contours without edges Models, is implemented by Chan-Vese. The model has the property of global segmentation to segment all the objects within an image irrespective of the initial contour. In this paper, we propose an improved CV model, which can perform well in the oil spill hyper-spectral image segmentation. The energy function embeds spectral and spatial information, introduces the vector edge stopping function, and constructs a novel length term. Results of the improved model on airborne hyperspectral oil spill images show that it improves the ability of distinguishing between oil spills and sea water, as well as the capability of noise reduction.

  10. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  11. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric

    2008-01-01

    Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).

  12. Estimation of leaf nitrogen and silicon using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Mokhele, Tholang A.; Ahmed, Fethi B.

    2010-11-01

    The potential to estimate the nutrient status in important agricultural crops such as maize and sugarcane is of significant interest. In South African sugarcane agriculture, just like in global ecosystem, the estimation of Nitrogen (N) and Silicon (Si) is very important. These nutrients are one of the factors influencing the prevalence of the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Therefore, the researchers aim at estimating leaf N and Si concentration as well as their ratio in sugarcane using hyperspectral remote sensing (spectroradiometry) for monitoring E. saccharina. A hand-held Analytical Spectral Devices (ASD) Field Spec® 3 spectroradiometer was used to take leaf spectral measurements of sugarcane plants from a potted-plant trial taking place under shade house conditions. In this trial, nitrogen and silicon nutrient applications as well as varieties used were known. In addition, watering regimes and artificial infestation of E. saccharina were carefully controlled. The study results indicate that the Red-edge Index (R740/R720) is linearly related to N concentration (R2 = 0.81, Root Mean Square Error (RMSE) = 0.103) for N37 with the highest correlation coefficient. For Si, the index (R750-R560)/(R750+R560) was linearly related to Si concentration (R2 = 0.53, RMSE = 0.118) for N25. Finally, the N:Si ratio was linearly correlated to the index (R1075-R730)/(R1075+R730) (R2 = 0.67, RMSE = 1.508) for N37, hence this index can be used for early detection of E. saccharina damage or for identifying sugarcane that is prone to attack by E. saccharina. It was concluded that hyperspectral remote sensing has potential for use in estimating the N:Si ratio and E. saccharina potential infestations can be monitored rapidly and nondestructively in sugarcane under controlled conditions. It is recommended that an advanced study be conducted in field conditions using airborne and/or spaceborne hyperspectral sensors.

  13. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-11-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  14. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-05-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  15. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Guyot, Éric; Chamberland, Martin

    2014-10-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  16. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  17. SpecTIR hyperspectral airborne Rochester experiment data collection campaign

    NASA Astrophysics Data System (ADS)

    Herweg, Jared A.; Kerekes, John P.; Weatherbee, Oliver; Messinger, David; van Aardt, Jan; Ientilucci, Emmett; Ninkov, Zoran; Faulring, Jason; Raqueño, Nina; Meola, Joseph

    2012-06-01

    A multi-modal (hyperspectral, LiDAR, and multi-spectral) imaging data collection campaign was conducted at the Rochester Institute of Technology (RIT) in conjunction with SpecTIR, LLC, in the Rochester, New York, area July 26-29, 2010. The campaign was titled the SpecTIR Hyperspectral Airborne Rochester Experiment (SHARE) and collected data in support of nine simultaneous unique experiments, several of which leveraged data from multiple modalities. Airborne imagery was collected over the city of Rochester with hyperspectral, multispectral, and Light Detection and Ranging (LiDAR) sensors. Sites for data collection included the Genesee River, sections of downtown Rochester, and the RIT campus. Experiments included sub-pixel target detection, water quality monitoring, thermal vehicle tracking and wetlands health assessment. An extensive ground truthing effort was accomplished in addition to the airborne imagery collected. The ultimate goal of this comprehensive data collection campaign was to provide a community sharable resource that would support additional experiments. This paper details the experiments conducted and the corresponding data that were collected in conjunction with this campaign.

  18. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  19. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  20. [Progress in leaf area index retrieval based on hyperspectral remote sensing and retrieval models].

    PubMed

    Zhang, Jia-Hua; Du, Yu-Zhang; Liu, Xu-Feng; He, Zhen-Ming; Yang, Li-Min

    2012-12-01

    The leaf area index (LAI) is a very important parameter affecting land-atmosphere exchanges in land-surface processes; LAI is one of the basic feature parameters of canopy structure, and one of the most important biophysical parameters for modeling ecosystem processes such as carbon and water fluxes. Remote sensing provides the only feasible option for mapping LAI continuously over landscapes, but existing methodologies have significant limitations. To detect LAI accurately and quickly is one of tasks in the ecological and agricultural crop yield estimation study, etc. Emerging hyperspectral remote sensing sensor and techniques can complement existing ground-based measurement of LAI. Spatially explicit measurements of LAI extracted from hyperspectral remotely sensed data are component necessary for simulation of ecological variables and processes. This paper firstly summarized LAI retrieval method based on different level hyperspectral remote sensing platform (i. e., airborne, satelliteborne and ground-based); and secondly different kinds of retrieval model were summed up both at home and abroad in recent years by using hyperspectral remote sensing data; and finally the direction of future development of LAI remote sensing inversion was analyzed.

  1. [Hyperspectral remote sensing monitoring of grassland degradation].

    PubMed

    Wang, Huan-jiong; Fan, Wen-jie; Cui, Yao-kui; Zhou, Lei; Yan, Bin-yan; Wu, Dai-hui; Xu, Xi-ru

    2010-10-01

    The distributing of China's grassland is abroad and the status of grassland degradation is in serious condition. So achieving real-time and exactly grassland ecological monitoring is significant for the carbon cycle, as well as for climate and on regional economies. With the field measured spectra data as data source, hyperspectral remote sensing monitoring of grassland degradation was researched in the present article. The warm meadow grassland in Hulunbeier was chosen as a study object. Reflectance spectra of leaves and pure canopies of some dominant grassland species such as Leymus chinensis, Stipa krylovii and Artemisia frigid, as well as reflectance spectra of mixed grass community were measured. Using effective spectral feature parametrization methods, the spectral feature of leaves and pure canopies were extracted, so the constructive species and degenerate indicator species can be exactly distinguished. Verification results showed that the accuracy of spectral identification was higher than 95%. Taking it as the foundation, the spectra of mixed grass community were unmixed using linear mixing models, and the proportion of all the components was calculated, and the errors were less than 5%. The research results of this article provided the evidence of hyperspectral remote sensing monitoring of grassland degradation.

  2. Detecting coral reef substrate types by airborne and spaceborne hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Dekker, Arnold G.; Skirving, William

    2002-01-01

    Traditional approaches to remote sensing of coral reefs have been highly empirical, relying on classification of remote sensing images. We have chosen a physics based approach - the collection of reflectance spectra of different substrates and the determination of the inherent optical properties of the water column. This information, together with radiative transfer models of water and atmosphere as well as technical characteristics of different remote sensing sensors, allows us to estimate what benthic communities are spectrally resolvable with respect to water column depth and the sensor characteristics. A hyperspectral library of more than 140 different coral reefs substrates (living hard and soft corals, dead corals, rubble, sand, algae and sponges) were collected from the Great Barrier Reef. Hydrolight 4.1 model was used to simulate remote sensing reflectances above the water and a MODTRAN3 type in-house atmosphere model was used to simulate radiance at airborne and space borne sensor levels. Most of the spectral variability in reflectance of coral reef benthic communities occurs in the spectral range of 550-680 nm (green to red light). The water itself is a main limiting factor in remote detection of various reef substrates, as water itself is absorbing light strongly in the same part of the spectrum where most of the variability in reflectance spectra of different coral reef benthic substrates occurs. Hyperspectral information allows us to separate different substrates from each other more easily and in deeper waters than broad band sensors.

  3. Hyperspectral Imagery Data for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry; Gualtney, Lawrence

    1999-01-01

    In order for remotely sensed data to be useful in a practical application for agriculture, an information product must be made available to the land management decision maker within 24 to 48 hours of data acquisition. Hyperspectral imagery data is proving useful in differentiation of plant species potentially allowing identification of non-healthy areas and pest infestations within crop fields that may require the farm managers attention. Currently however, extracting the needed site-specific feature information from the vast spectral content of large hyperspectral image files is a labor intensive and time consuming task prohibiting the necessary fast turnaround from raw data to final product. We illustrate the methods, techniques and technologies necessary to produce field-level information products from imagery and other related spatial data that are useful to the farm manager for specific decisions that must be made throughout the growing season. We also propose to demonstrate the cost effectiveness of an integrated system, from acquisition to final product distribution, to utilize imagery for decisions on a working farm in conjunction with a commercial agricultural services company and their crop scouts. The demonstration farm is Chesapeake Farms, a 3000 acre research farm in Chestertown, Maryland on the Eastern Shore and is owned by the DuPont Corporation.

  4. Hyperspectral Imagery Data for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry; Gualtney, Lawrence

    1999-01-01

    In order for remotely sensed data to be useful in a practical application for agriculture, an information product must be made available to the land management decision maker within 24 to 48 hours of data acquisition. Hyperspectral imagery data is proving useful in differentiation of plant species potentially allowing identification of non-healthy areas and pest infestations within crop fields that may require the farm managers attention. Currently however, extracting the needed site-specific feature information from the vast spectral content of large hyperspectral image files is a labor intensive and time consuming task prohibiting the necessary fast turnaround from raw data to final product. We illustrate the methods, techniques and technologies necessary to produce field-level information products from imagery and other related spatial data that are useful to the farm manager for specific decisions that must be made throughout the growing season. We also propose to demonstrate the cost effectiveness of an integrated system, from acquisition to final product distribution, to utilize imagery for decisions on a working farm in conjunction with a commercial agricultural services company and their crop scouts. The demonstration farm is Chesapeake Farms, a 3000 acre research farm in Chestertown, Maryland on the Eastern Shore and is owned by the DuPont Corporation.

  5. Assessment of Giant Kelp Physiological State Using Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Bell, T. W.; Siegel, D.

    2016-02-01

    Giant kelp is a highly dynamic foundation species that supports an ecologically and economically important ecosystem found throughout the globe. Currently, multispectral sensors (Landsat) provide valuable time series of emergent kelp canopy biomass that are useful for many applications. Hyperspectral sensors can provide information that quantify the quality or physiological condition of the kelp canopy, which can be linked to characteristics such as canopy age and morphology, light exposure, nutrient stress and photosynthetic yield. The HyspIRI Preparatory Airborne Campaign delivered near seasonal hyperspectral imagery of giant kelp canopy using the AVIRIS sensor ( 20 m spatial resolution; 10 nm spectral resolution), to support the proposed spaceborne hyperspectral imager mission. These images, combined with additional AVIRIS imagery, were used to assess giant kelp canopy condition across several years and biogeographical regions, including Monterey Bay, the Santa Barbara Channel, and the Southern California coast. Specifically, we developed novel techniques to infer the chlorophyll a to carbon ratio (Chl:C) from the AVIRIS imagery, derived from field observations of canopy blade reflectance, pigment concentrations and carbon content, and these determinations of Chl:C are used as measures of the physiological state of the kelp canopy. We found that the spatial and temporal variability in physiological condition of the kelp canopy varied with light exposure and timing of nutrient pulses due to coastal upwelling. These observations are consistent with photophysiological theory and field observations. Physiological state dynamics gleaned from airborne sensors and proposed spaceborne hyperspectral sensors enhance our understanding of this important ecosystem engineer, and provide useful information for marine scientists and ecosystem managers.

  6. Airborne Hyperspectral Imaging of Supraglacial Lakes in Greenland's Ablation Zone

    NASA Astrophysics Data System (ADS)

    Adler, J.; Behar, A. E.; Jacobson, N. T.

    2010-12-01

    In 2010 an airborne instrument was assembled to image supraglacial lakes near the Jakobshavn Isbrae of the Greenland Ice Sheet. The instrument was designed to fly on a helicopter, and consists of a hyperspectral imager, a GPS/inertial measurement unit (GPS/IMU), and a data-logging computer. A series of narrow visible optical channels ~13nm wide, such as found in a hyperspectral imager, are theorized to be useful in determining the depths of supraglacial lakes using techniques based on the Beer-Lambert-Bouguer Law. During June, several supraglacial lakes were selected for study each day, based upon MODIS imagery taken during the previous week. Flying over a given lake, several track lines were flown to image both shallow and deep sections of the lake, imaging the full range of depth for future algorithm development. The telescoping instrument mount was constructed to allow the sensor package to be deployed from a helicopter in-flight, with an unobstructed downward-facing field of view. The GPS/IMU records the pointing orientation, altitude, and geographical coordinates of the imager to the data-logger, in order to allow post-flight geo-referencing of the raw hyperspectral imagery. With this geo-referenced spectrum data, a depth map for a given lake can be calculated through reference to a water absorptivity model. This risk-reduction expedition to fly a helicopter-borne hyperspectral imager over the supraglacial lakes of Greenland was a success. The instrument mount for the imager worked as designed, and no vibration issues were encountered. As a result, we have confidence in the instrument platform's performance during future surveys of Greenland's supraglacial lakes. The hyperspectral imager, data acquisition computer, and geo-referencing services are provided by Resonon, Inc. of Bozeman, MT, and the GPS/IMU is manufactured by Cloudcap Technology of Hood River, OR.

  7. Alteration mineral mapping and metallogenic prediction using CASI/SASI airborne hyperspectral data in Mingshujing area of Gansu Province, NW China

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Zhao, Yingjun; Qin, Kai; Tian, Feng

    2016-04-01

    Hyperspectral remote sensing is a frontier of remote sensing. Due to its advantage of integrated image with spectrum, it can realize objects identification, superior to objects classification of multispectral remote sensing. Taken the Mingshujing area in Gansu Province of China as an example, this study extracted the alteration minerals and thus to do metallogenic prediction using CASI/SASI airborne hyperspectral data. The Mingshujing area, located in Liuyuan region of Gansu Province, is dominated by middle Variscan granites and Indosinian granites, with well developed EW- and NE-trending faults. In July 2012, our project team obtained the CASI/SASI hyperspectral data of Liuyuan region by aerial flight. The CASI hyperspectral data have 32 bands and the SASI hyperspectral data have 88 bands, with spectral resolution of 15nm for both. The hyperspectral raw data were first preprocessed, including radiometric correction and geometric correction. We then conducted atmospheric correction using empirical line method based on synchronously measured ground spectra to obtain hyperspectral reflectance data. Spectral dimension of hyperspectral data was reduced by the minimum noise fraction transformation method, and then purity pixels were selected. After these steps, image endmember spectra were obtained. We used the endmember spectrum election method based on expert knowledge to analyze the image endmember spectra. Then, the mixture tuned matched filter (MTMF) mapping method was used to extract mineral information, including limonite, Al-rich sericite, Al-poor sericite and chlorite. Finally, the distribution of minerals in the Mingshujing area was mapped. According to the distribution of limonite and Al-rich sericite mapped by CASI/SASI hyperspectral data, we delineated five gold prospecting areas, and further conducted field verification in these areas. It is shown that there are significant gold mineralized anomalies in surface in the Baixianishan and Xitan prospecting

  8. Diffused Matrix Format: a new storage and processing format for airborne hyperspectral sensor images.

    PubMed

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Ma; Schmid, Thomas; Hernández, Luz M

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used.

  9. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  10. Analysis of Coincident HICO and Airborne Hyperspectral Images Over Lake Erie Western Basin HABs

    NASA Astrophysics Data System (ADS)

    Cline, Michael T., Jr.

    Harmful algal blooms (HABs) produce waterborne toxins that pose a significant threat to people, livestock, and wildlife. Nearly 40 million people in both Canada and the U.S. depend on Great Lakes water. In the summer of 2014, in the Lake Erie Western Basin, an HAB of the cyanobacteria Microcystis was so severe that a do-not-drink advisory was in effect for the greater Toledo area, Ohio. This advisory applied to the water supply to over 400,000 people from a single water intake. Bloom intensity, composition, and spatial variability were investigated by comparing coincidental hyperspectral data from NASA's HICO, and NASA GRC's HSI airborne sensor, with on-lake ASD radiometer measurements and in situ water quality testing as ground reference data. Coincident data sets were obtained with HICO only on one day in 2014, however all other datasets coincide four times in 2015. Remote sensing data were atmospherically corrected using the empirical line method, utilizing dark reference spectra from a nearby asphalt parking lot measured from ASD and HSI radiometers. Cyanobacteria Index (CI) images were created from processed images using the Wynne (2010) algorithm, previously used for MODIS and MERIS imagery. This algorithm-generated CI images provide reliable results for both ground level (R2=0.921), airborne (R2=0.7981), and satellite imagery (R2=0.7794) for seven sampling points. The ability to robustly atmospherically correct and generate useful CI maps from airborne and satellite sensors can provide a time- and cost-effective method for HABs analysis. Timely processing of these high spatial and spectral resolution remote sensing data can aid in management of water intake resources. These results will help to improve methods leading to HABs mapping by testing different algal retrieval algorithms and atmospheric correction techniques using a three tiered hyperspectral sensor approach utilizing satellite, airborne, and ground level sensors, coupled with water quality

  11. Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data

    PubMed Central

    Szekielda, Karl H.; Bowles, Jeffrey H.; Gillis, David B.; Miller, W. David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments. PMID:22574053

  12. Interpretation of absorption bands in airborne hyperspectral radiance data.

    PubMed

    Szekielda, Karl H; Bowles, Jeffrey H; Gillis, David B; Miller, W David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments.

  13. Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL)

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Valentini, Emiliana; Taramelli, Andrea; Filipponi, Federico; Disperati, Leonardo

    2015-04-01

    Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above. Results showed the potential of hyperspectral signals to assess the effect of moisture, grain-size and mineral composition on sediment properties.

  14. Evaluating the feasibility of multitemporal hyperspectral remote sensing for monitoring bioremediation

    NASA Astrophysics Data System (ADS)

    Noomen, Marleen; Hakkarainen, Annika; van der Meijde, Mark; van der Werff, Harald

    2015-02-01

    In recent years, several studies focused on the detection of hydrocarbon pollution in the environment using hyperspectral remote sensing. Particularly the indirect detection of hydrocarbon pollution, using vegetation reflectance in the red edge region, has been studied extensively. Bioremediation is one of the methods that can be applied to clean up polluted sites. So far, there have been no studies on monitoring of bioremediation using (hyperspectral) remote sensing. This study evaluates the feasibility of hyperspectral remote sensing for monitoring the effect of bioremediation over time. Benzene leakage at connection points along a pipeline was monitored by comparing the red edge position (REP) in 2005 and 2008 using HyMap airborne hyperspectral images. REP values were normalized in order to enhance local variations caused by a change in benzene concentrations. 11 out of 17 locations were classified correctly as remediated, still polluted, or still clean, with a total accuracy of 65%. When only polluted locations that were remediated were taken into account, the (user's) accuracy was 71%.

  15. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    NASA Astrophysics Data System (ADS)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  16. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space.

    PubMed

    Gao, B C; Montes, M J; Ahmad, Z; Davis, C O

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses look-up tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 mum. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.

  17. Identification of invasive and expansive plant species based on airborne hyperspectral and ALS data

    NASA Astrophysics Data System (ADS)

    Szporak-Wasilewska, Sylwia; Kuc, Gabriela; Jóźwiak, Jacek; Demarchi, Luca; Chormański, Jarosław; Marcinkowska-Ochtyra, Adriana; Ochtyra, Adrian; Jarocińska, Anna; Sabat, Anita; Zagajewski, Bogdan; Tokarska-Guzik, Barbara; Bzdęga, Katarzyna; Pasierbiński, Andrzej; Fojcik, Barbara; Jędrzejczyk-Korycińska, Monika; Kopeć, Dominik; Wylazłowska, Justyna; Woziwoda, Beata; Michalska-Hejduk, Dorota; Halladin-Dąbrowska, Anna

    2017-04-01

    . Simultaneously to airborne data acquisitions also botanical surveys were performed covering in total 5680 reference plots for 18 alien invasive and native expansive plant species (1886 in first flight campaign, 1907 in second and 1887 in third). The collected data were used to identify species characteristics such as spectral properties among others (percentage cover, growth stage, discoloration, coexisting species, land use, plant litter). The research includes 10 invasive alien species and 8 native expansive plant species. Amongst plant species selected for the purposes of this study were: Robinia pseudoacacia, Padus serotina, Rumex confertus, Erigeron annuus, Spiraea tomentosa, Solidago spp., Lupinus polyphyllus, Reynoutria spp., Echinocystis lobata and Heracleum spp. as alien invasive species, and Urtica dioica, Filipendula ulmaria, Phragmites australis, Rubus spp, Calamagrostis epigejos, Cirsium arvense, Molinia caerulea, Deschampsia caespitosa as native expansive species. In this study we present the methodology used for identification of invasive alien and expansive native plant species using hyperspectral and airborne laser data with resulting accuracies using different classification methods and exemplary distribution maps. The research within this study will be continued during growing season of the year 2017. Acknowledgements This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  18. Hyperspectral Geobotanical Remote Sensing for CO2 Storage Monitoring

    SciTech Connect

    Pickles, W; Cover, W

    2004-05-14

    This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant and animal ecologies in our geothermal exploration, remote sensing research program at Mammoth Mountain CA USA. We also know from our geothermal exploration remote sensing programs, that we can map subtle hidden faults by spatial signatures of altered minerals and of plant species and health distributions. Mapping hidden faults is important because in our experience these highly localized (one to several centimeters) spatial pathways are good candidates for potentially significant CO2 leaks from deep underground formations. The detection and discrimination method we are developing uses primarily airborne hyperspectral, high spatial (3 meter) with 128 band wavelength resolution, visible and near infrared reflected light imagery. We also are using the newly available ''Quickbird'' satellite imagery that has high spatial resolution (0.6 meter for panchromatic images, 2.4 meters for multispectral). We have a commercial provider, HyVista Corp of Sydney Australia, of airborne hyperspectral imagery acquisitions and very relevant image data post processing, so that eventually the ongoing surveillance of CO2 storage fields can be contracted for commercially. In this project we have imaged the Rangely Colorado Oil field and surrounding areas with an airborne hyperspectral visible and near infrared reflected light sensor. The images were analyzed by several methods using the suite of tools available in the ENVI

  19. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

    PubMed

    Dalponte, Michele; Coomes, David A

    2016-10-01

    Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks (r(2) = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.

  20. Dehazing method for hyperspectral remote sensing imagery with hyperspectral linear unmixing

    NASA Astrophysics Data System (ADS)

    Gan, Yuquan; Hu, Bingliang; Wen, Desheng; Wang, Shuang

    2016-10-01

    Haze always exists in hyper-spectral remote sensing imagery, and it is a key reason that influences the effective information extraction of hyper-spectral images. Specially, when the faint haze covers part of the target in remote sensing images, the target still can be detected but not clear. So, how to remove the influence of the haze and improve the applicable efficiency of hyper-spectral images is a popular research point. This paper proposes a dehazing method for hyper-spectral images based on linear unmixing. First, a popular hyper-spectral unmixing method called FUN is used to get the signature of all the end-members and their corresponding abundance. And then, the abundance of the haze end-member is removed and the abundances of the rest end-members are adjusted to satisfy the sum-to-one and non-negative constraint. Lastly, the new abundance and the signature of the end-members are linearly mixed to get the dehazed hyper-spectral images. The experiment result shows that the dehazed hyper-spectral images exhibit better target information and details. The method is effective and available.

  1. Evaluating airborne hyperspectral imagery for mapping saltcedar infestations in west Texas

    USDA-ARS?s Scientific Manuscript database

    The Rio Grande of west Texas contains by far the largest infestation of saltcedar (Tamarix spp.) in Texas. The objective of this study was to evaluate airborne hyperspectral imagery and different classification techniques for mapping saltcedar infestations. Hyperspectral imagery with 102 usable band...

  2. Using airborne hyperspectral imagery for mapping saltcedar infestations in west Texas

    USDA-ARS?s Scientific Manuscript database

    The Rio Grande of west Texas contains, by far, the largest infestation of saltcedar (Tamarix spp.) in Texas. The objective of this study was to evaluate airborne hyperspectral imagery and different classification techniques for mapping saltcedar infestations. Hyperspectral imagery with 102 usable ba...

  3. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  4. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    cloud cover analysis, Quadantid meteor shower studies, extra-solar far infrared ionic structure lines measurement, Cape Kennedy launch support, and studies in air pollution, The Products and Services Exhibit showcased new sensor and image processing technologies, aircraft data collection services, unmanned vehicle technology, platform equipment, turn-key services, software a workstations, GPS services, publications, and processing and integration systems by 58 exhibitors. The participation of aircraft users and crews provided unique dialogue between those who plan data collection a operate the remote sensing technology, and those who supply the data processing and integration equipment. Research results using hyperspectral imagery, radar and optical sensors, lidar, digital aerial photography, a integrated systems were presented. Major research and development programs and campaigns we reviewed, including CNR's LARA Project and European Space Agency's 1991-1995 Airborne Campaign. The pre-conference short courses addressed airborne video, photogrammetry, hyperspectral data analysis, digital orthophotography, imagery and GIS integration, IFSAR, GPS, and spectrometer calibration.

  5. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented. PMID:27879875

  6. Extracting Roof Parameters and Heat Bridges Over the City of Oldenburg from Hyperspectral, Thermal, and Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bannehr, L.; Luhmann, Th.; Piechel, J.; Roelfs, T.; Schmidt, An.

    2011-09-01

    Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS) digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  7. HSI mapping of marine and coastal environments using the advanced airborne hyperspectral imaging system (AAHIS)

    NASA Astrophysics Data System (ADS)

    Holasek, Rick E.; Portigal, Frederick P.; Mooradian, Gregory C.; Voelker, Mark A.; Even, Detlev M.; Fene, Michael W.; Owensby, Pamela D.; Breitwieser, David S.

    1997-08-01

    The advanced airborne hyperspectral imaging system (AAHIS) is an operational, high signal-to-noise ratio, high resolution, integrated hyperspectral imaging spectrometer. The compact, lightweight and portable AAHIS system is normally flown in Piper Aztec aircraft. AAHIS collect 'push- broom' data with 385 spatial channels and 288 simultaneous spectral channels from 433 nm to 832 nm, recording at 12 bits up to 55 frames/second. Typical operation incorporates on-chip pixel binning of four pixels spectrally and two pixels spatially, increasing the signal-to-noise ratio and reducing data rate. When binned, the spectral resolution is 5.5 nm and the instantaneous field-of-view is 1 mrad, resulting in a ground sample distance of 0.5 m from 500 m altitude. The sensor is optimized for littoral region remote sensing for a variety of civilian and defense applications including ecosystem surveying and inventory, detection and monitoring of environmental pollution, infrastructure mapping, and surveillance. Since August 1994, AAHIS has acquired over 120 GB of hyperspectral image data of littoral, urban, desert and tropical scenes. System upgrades include real-time spectral image processing, integrated flight navigation and 3-axis image stabilization. A description of the sensor system, its performance characteristics, and several processed images demonstrating material discrimination are presented. The remote assessment, characterization, and mapping of coral reef health and species identification and floral species at Nu'upia Ponds, are shown and compared to extensive ground truthing in and around Kaneohe Bay, Oahu, Hawaii. SETS emphasizes providing georegistered, GIS-integrated, value- added data products for customers to help them solve real- world problems.

  8. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Yan, Bokun; Dong, Xinfeng; Zhang, Shimin; Zhang, Jingfa; Tian, Feng; Wang, Runsheng

    2015-08-01

    Thermal infrared remote sensing (8-12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum-minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature-emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32-1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.

  9. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  10. Bayesian classifier applications of airborne hyperspectral imagery processing for forested areas

    NASA Astrophysics Data System (ADS)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    2015-06-01

    Pattern recognition problem is outlined in the context of textural and spectral analysis of remote sensing imagery processing. Main attention is paid to Bayesian classifier that can be used to realize the processing procedures based on parallel machine-learning algorithms and high-productive computers. We consider the maximum of the posterior probability principle and the formalism of Markov random fields for the neighborhood description of the pixels for the related classes of objects with the emphasis on forests of different species and ages. The energy category of the selected classes serves to account for the likelihood measure between the registered radiances and the theoretical distribution functions approximating remotely sensed data. Optimization procedures are undertaken to solve the pattern recognition problem of the texture description for the forest classes together with finding thin nuances of their spectral distribution in the feature space. As a result, possible redundancy of the channels for imaging spectrometer due to their correlations is removed. Difficulties are revealed due to different sampling data while separating pixels, which characterize the sunlit tops, shaded space and intermediate cases of the Sun illumination conditions on the hyperspectral images. Such separation of pixels for the forest classes is maintained to enhance the recognition accuracy, but learning ensembles of data need to be agreed for these categories of pixels. We present some results of the Bayesian classifier applicability for recognizing airborne hyperspectral images using the relevant improvements in separating such pixels for the forest classes on a test area of the 4 × 10 km size encompassed by 13 airborne tracks, each forming the images by 500 pixels across the track and from 10,000 to 14,000 pixels along the track. The spatial resolution of each image is near to 1 m from the altitude near to 2 km above the ground level. The results of the hyperspectral imagery

  11. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  12. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  13. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  14. [Advances in researches on hyperspectral remote sensing forestry information-extracting technology].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-09-01

    The hyperspectral remote sensing technology has become one of the leading technologies in forestry remote sensing domain. In the present review paper, the advances in researches on hyperspectral remote sensing technology in forestry information extraction both at home and abroad were reviewed, and the five main research aspects including the hyperspectral classification and recognition of forest tree species, the hyperspectral inversion and extraction of forest ecological physical parameters, the hyperspectral monitoring and diagnosis of forest nutrient element, the forest crown density information extraction and the hyperspectral monitoring of forest disasters were summarized. The unresolved problems of hyperspectral technology in the forestry remote sensing applications were pointed out and the possible ways to solve these problems were expounded. Finally, the application prospect of hyperspectral remote sensing technology in forestry was analyzed.

  15. Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry

    NASA Astrophysics Data System (ADS)

    McIntyre, Michelle L.; Naar, David F.; Carder, Kendall L.; Donahue, Brian T.; Mallinson, David J.

    2006-06-01

    We present a large-scale quantitative test of a hyperspectral remote-sensing reflectance algorithm. We show that coastal bathymetry can be adequately derived through model inversions using data from the Airborne Visible-Infrared Imaging Spectrometer instrument. Data are analyzed from a shore-perpendicular transect 5 km offshore Sarasota, Florida at water depths ranging from 10 m to 15.5 m. Derived bottom depths are compared to a high-resolution multibeam bathymetry survey. Model-derived depths are biased 4.9% shallower than the mean of the multibeam depths with an RMS error of 7.83%. These results suggest that the model performs well for retrieving bottom depths from hyperspectral data in subtropical coastal areas in water depths ranging from 10 m to 15.5 m.

  16. New progress in study on vegetation models for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Tong, Qingxi; Zhao, Yongchao; Zhang, Xia; Zhang, Bing; Zheng, Lanfen

    2001-02-01

    Some new vegetation models for hyperspectral remote sensing are provided in this paper. They are Derivative Spectral Model (DSM), Multi-temporal Index Image Cube Model (MIIC), Hybrid Decision Tree Model (HDT) and Correlation Simulating Analysis Model (CSAM). All models are developed and used to process the images acquired by Airborne Pushbroom Hyperspectral Imager (PHI) in Changzhou area, China, 1999. Some successful applications are provided and evaluated. The results show that DSM has the ability of eliminating the background interference of vegetation analysis. MIIC is a viable method for monitoring dynamic change of land cover and vegetation growth stages. HDT is effective in precise classification of rice land while CSAM provide a possibility and theoretical basis for crop identification, breed classification, and land information extraction especially for rice.

  17. Hyperspectral Remote Sensing and Ecological Modeling Research and Education at Mid America Remote Sensing Center (MARC): Field and Laboratory Enhancement

    NASA Technical Reports Server (NTRS)

    Cetin, Haluk

    1999-01-01

    The purpose of this project was to establish a new hyperspectral remote sensing laboratory at the Mid-America Remote sensing Center (MARC), dedicated to in situ and laboratory measurements of environmental samples and to the manipulation, analysis, and storage of remotely sensed data for environmental monitoring and research in ecological modeling using hyperspectral remote sensing at MARC, one of three research facilities of the Center of Reservoir Research at Murray State University (MSU), a Kentucky Commonwealth Center of Excellence. The equipment purchased, a FieldSpec FR portable spectroradiometer and peripherals, and ENVI hyperspectral data processing software, allowed MARC to provide hands-on experience, education, and training for the students of the Department of Geosciences in quantitative remote sensing using hyperspectral data, Geographic Information System (GIS), digital image processing (DIP), computer, geological and geophysical mapping; to provide field support to the researchers and students collecting in situ and laboratory measurements of environmental data; to create a spectral library of the cover types and to establish a World Wide Web server to provide the spectral library to other academic, state and Federal institutions. Much of the research will soon be published in scientific journals. A World Wide Web page has been created at the web site of MARC. Results of this project are grouped in two categories, education and research accomplishments. The Principal Investigator (PI) modified remote sensing and DIP courses to introduce students to ii situ field spectra and laboratory remote sensing studies for environmental monitoring in the region by using the new equipment in the courses. The PI collected in situ measurements using the spectroradiometer for the ER-2 mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS). Currently MARC is mapping water quality in Kentucky Lake and

  18. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    PubMed

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  19. Naval hyperspectral remote sensing research for the oceans, atmosphere, and space

    NASA Astrophysics Data System (ADS)

    McCoy, Robert P.; Cleveland, Joan S.; Ferek, Ronald J.

    2004-10-01

    To meet Naval needs for sensing of the global environment, the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) sponsor or carry out a variety of research programs using hyperspectral sensing. For ocean sensing, airborne and space-borne hyperspectral sensors are used to characterize the littoral environment with the aim of providing specification of ocean optical parameters including water clarity, diver visibility, bathymetry, bottom type and beach characterization. For the atmosphere, the Navy has interest in hyperspectral remote sensing from geosynchronous orbit. ONR interests include improved modeling of radiation transport in the atmosphere to infer high resolution profiles of wind, temperature and minor species and cloud characteristics. With sponsorship from Director Defense Research and Engineering (DDR&E), ONR is managing a Multidisciplinary University Research Initiative (MURI) to provide new models for use with geosynchronous data. In partnership with NASA, NOAA and the Air Force, ONR is promoting the flight of the Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) program to obtain hyperspectral atmospheric imagery with high spatial, spectral and temporal resolution. For the space environment, NRL has flown a suite of experimental ultraviolet hyperspectral sensors to determine altitude profiles of the ionospheric electron density and upper atmospheric neutral density. The High Resolution Airglow/Aurora Spectroscopy (HIRAAS) experiment on the ARGOS satellite provided a proof of concept for a future series of hyperspectral ultraviolet space weather sensors the first of which has recently been launch on a DMSP weather satellite. ONR is sponsoring the development of a multispectral ultraviolet imager to take this capability to geosynchronous orbit.

  20. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  1. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a

  2. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  3. [Analysis of related factors of slope plant hyperspectral remote sensing].

    PubMed

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  4. Classification of urban features using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Ganesh Babu, Bharath

    Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the

  5. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    NASA Astrophysics Data System (ADS)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation

  6. Monitoring water transparency and diver visibility in ports and harbors using aircraft hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Bissett, Paul W.; Dierssen, Heidi; Kohler, David D. R.; Moline, Mark A.; Mueller, James L.; Pieper, Richard E.; Twardowski, Michael S.; Zaneveld, J. Ronald V.

    2005-05-01

    Diver visibility analyses and predictions, and water transparency in general, are of significant military and commercial interest. This is especially true in our current state, where ports and harbors are vulnerable to terrorist attacks from a variety of platforms both on and below the water (swimmers, divers, AUVs, ships, submarines, etc.). Aircraft hyperspectral imagery has been previously used successfully to classify coastal bottom types and map bathymetry and it is time to transition this observational tool to harbor and port security. Hyperspectral imagery is ideally suited for monitoring small-scale features and processes in these optically complex waters, because of its enhanced spectral (1-3 nm) and spatial (1-3 meters) resolutions. Under an existing NOAA project (CICORE), a field experiment was carried out (November 2004) in coordination with airborne hyperspectral ocean color overflights to develop methods and models for relating hyperspectral remote sensing reflectances to water transparency and diver visibility in San Pedro and San Diego Bays. These bays were focused areas because: (1) San Pedro harbor, with its ports of Los Angeles and Long Beach, is the busiest port in the U.S. and ranks 3rd in the world and (2) San Diego Harbor is one of the largest Naval ports, serving a diverse mix of commercial, recreational and military traffic, including more than 190 cruise ships annual. Maintaining harbor and port security has added complexity for these Southern California bays, because of the close proximity to the Mexican border. We will present in situ optical data and hyperspectral aircraft ocean color imagery from these two bays and compare and contrast the differences and similarities. This preliminary data will then be used to discuss how water transparency and diver visibility predictions improve harbor and port security.

  7. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data ( R2 > 0.97), validating the atmospheric correction of the latter.

  8. Land cover mapping in Latvia using hyperspectral airborne and simulated Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Brauns, Agris; Taskovs, Juris; Erins, Gatis

    2016-08-01

    Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. The advantage of CLC is the creation of a standardized nomenclature and mapping protocol comparable across all European countries, thereby making it a valuable information source at the European level. However, low spatial resolution and accuracy, infrequent updates and expensive manual production has limited its use at the national level. As of now, there is no remote sensing based high resolution land cover and land use services designed specifically for Latvia which would account for the country's natural and land use specifics and end-user interests. The European Space Agency launched the Sentinel-2 satellite in 2015 aiming to provide continuity of free high resolution multispectral satellite data thereby presenting an opportunity to develop and adapted land cover and land use algorithm which accounts for national enduser needs. In this study, land cover mapping scheme according to national end-user needs was developed and tested in two pilot territories (Cesis and Burtnieki). Hyperspectral airborne data covering spectral range 400-2500 nm was acquired in summer 2015 using Airborne Surveillance and Environmental Monitoring System (ARSENAL). The gathered data was tested for land cover classification of seven general classes (urban/artificial, bare, forest, shrubland, agricultural/grassland, wetlands, water) and sub-classes specific for Latvia as well as simulation of Sentinel-2 satellite data. Hyperspectral data sets consist of 122 spectral bands in visible to near infrared spectral range (356-950 nm) and 100 bands in short wave infrared (950-2500 nm). Classification of land cover was tested separately for each sensor data and fused cross-sensor data. The best overall classification accuracy 84.2% and satisfactory classification accuracy (more than 80%) for 9 of 13 classes was obtained using Support Vector Machine (SVM) classifier with 109 band

  9. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2

  10. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  11. Assessment of chlorophyll-a concentration in the Gulf of Riga using hyperspectral airborne and simulated Sentinel-3 OLCI data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Brauns, Agris; Filipovs, Jevgenijs; Taskovs, Juris; Fedorovicha, Dagnija; Paavel, Birgot; Ligi, Martin; Kutser, Tiit

    2016-08-01

    Remote sensing has proved to be an accurate and reliable tool in clear water environments like oceans or the Mediterranean Sea. However, the current algorithms and methods usually fail on optically complex waters like coastal and inland waters. The whole Baltic Sea can be considered as optically complex coastal waters. Remote assessment of water quality parameters (eg., chlorophyll-a concentration) is of interest for monitoring of marine environment, but hasn't been used as a routine approach in Latvia. In this study, two simultaneous hyperspectral airborne data and in situ measurement campaigns were performed in the Gulf of Riga near the River Daugava mouth in summer 2015 to simulate Sentinel-3 data and test existing algorithms for retrieval of Level 2 Water products. Comparison of historical data showed poor overall correlation between in situ measurements and MERIS chlorophyll-a data products. Better correlation between spectral chl-a data products and in situ water sampling measurements was achieved during simultaneous airborne and field campaign resulting in R2 up to 0.94 for field spectral data, R2 of 0.78 for airborne data. Test of all two band ratio combinations showed that R2 could be improved from 0.63 to 0.94 for hyperspectral airborne data choosing 712 and 728 nm bands instead of 709 and 666 nm, and R2 could be improved from 0.61 to 0.83 for simulated Sentinel-3 OLCI data choosing Oa10 and Oa8 bands instead of Oa11 and Oa8. Repeated campaigns are planned during spring and summer blooms 2016 in the Gulf of Riga to get larger data set for validation and evaluate repeatability. The main challenges remain to acquire as good data as possible within rapidly changing environment and often cloudy weather conditions.

  12. [Review of monitoring soil water content using hyperspectral remote sensing].

    PubMed

    Wu, Dai-hui; Fan, Wen-jie; Cui, Yao-kui; Yan, Bin-yan; Xu, Xi-ru

    2010-11-01

    Soil water content is a key parameter in monitoring drought. In recent years, a lot of work has been done on monitoring soil water content based on hyperspectral remotely sensed data both at home and abroad. In the present review, theories, advantages and disadvantages of the monitoring methods using different bands are introduced first. Then the unique advantages, as well as the problems, of the monitoring method with the aid of hyperspectral remote sensing are analyzed. In addition, the impact of soil water content on soil reflectance spectrum and the difference between values at different wavelengths are summarized. This review lists and summarizes the quantitative relationships between soil water content and soil reflectance obtained through analyzing the physical mechanism as well as through statistical way. The key points, advantages and disadvantages of each model are also analyzed and evaluated. Then, the problems in experimental study are pointed out, and the corresponding solutions are proposed. At the same time, the feasibility of removing vegetation effect is discussed, when monitoring soil water content using hyperspectral remote sensing. Finally, the future research trend is prospected.

  13. Assessment of Shoreline Vegetation in the Western Basin of Lake Erie Using Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Rupasinghe, P. A.; Simic, A.; Simonson, M. A.; Mayer, C.; Arend, K.

    2016-12-01

    Lake Erie is well known for its high biodiversity and productive fisheries. Recently, there has been growing interest in fish diversity and abundance in relation to landscape, land cover and vegetation diversity. Identification of land cover and assessment of biodiversity in the Lake Erie nearshore ecosystems have been conducted using a combination of remote sensing and field data. In collaboration with the University of Toledo and the Ohio Department of Natural Resources, twenty two pre-select sites along the coast of the Western basin were assessed using the airborne NASA Glenn Hyperspectral Imager (HSI) and in-situ hyperspectral measurements for mapping land cover types at different compositional levels. This study also evaluate different atmospheric correction models and classification techniques and their applicability to the NASA Glenn HSI data. Eight different atmospheric correction methods and ten different image classification methods were evaluated. The Empirical Line Calibration was the best atmospheric method for the NASA Glenn HSI images. The Support Vector Machine (SVM) classification method results in the highest overall accuracy (85.58%). The error propagation due to the inclusion and exclusion of NIR bands at different pre-processing and processing levels suggests that the highest accuracy was obtained when NIR bands are excluded before the atmospheric corrections (85.58%). The accuracy is lower (84.89%) when NIR bands are excluded prior to the classification, leaving the lowest accuracy for the case when NIR bands are included in both atmospheric correction and classification. The multispectral images from Pleiades exhibit lower classification accuracy when compared with the NASA Glenn HSI data (81.35% and 93.28% for a chosen image respectively) even when the NIR bands are excluded from the hyperspectral dataset. It is most likely that spectral resolution causes the trend. The diversity indices calculated from the NASA Glen HSI images suggest that

  14. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  15. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang

    2015-10-01

    Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.

  16. ROI-Based On-Board Compression for Hyperspectral Remote Sensing Images on GPU.

    PubMed

    Giordano, Rossella; Guccione, Pietro

    2017-05-19

    In recent years, hyperspectral sensors for Earth remote sensing have become very popular. Such systems are able to provide the user with images having both spectral and spatial information. The current hyperspectral spaceborne sensors are able to capture large areas with increased spatial and spectral resolution. For this reason, the volume of acquired data needs to be reduced on board in order to avoid a low orbital duty cycle due to limited storage space. Recently, literature has focused the attention on efficient ways for on-board data compression. This topic is a challenging task due to the difficult environment (outer space) and due to the limited time, power and computing resources. Often, the hardware properties of Graphic Processing Units (GPU) have been adopted to reduce the processing time using parallel computing. The current work proposes a framework for on-board operation on a GPU, using NVIDIA's CUDA (Compute Unified Device Architecture) architecture. The algorithm aims at performing on-board compression using the target's related strategy. In detail, the main operations are: the automatic recognition of land cover types or detection of events in near real time in regions of interest (this is a user related choice) with an unsupervised classifier; the compression of specific regions with space-variant different bit rates including Principal Component Analysis (PCA), wavelet and arithmetic coding; and data volume management to the Ground Station. Experiments are provided using a real dataset taken from an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) airborne sensor in a harbor area.

  17. The wildfire experiment (WIFE): observations with airborne remote sensors

    Treesearch

    L.F. Radke; T.L. Clark; J.L. Coen; C.A. Walther; R.N. Lockwood; P.J. Riggan; J.A. Brass; R.G. Higgins

    2000-01-01

    Airborne remote sensors have long been a cornerstone of wildland fire research, and recently three-dimensional fire behaviour models fully coupled to the atmosphere have begun to show a convincing level of verisimilitude. The WildFire Experiment (WiFE) attempted the marriage of airborne remote sensors, multi-sensor observations together with fire model development and...

  18. ICARE-HS: atmospheric correction of airborne hyperspectral urban images using 3D information

    NASA Astrophysics Data System (ADS)

    Ceamanos, Xavier; Briottet, Xavier; Roussel, Guillaume; Gilardy, Hugo

    2016-10-01

    The algorithm ICARE-HS (Inversion Code for urban Areas Reflectance Extraction using HyperSpectral imagery) is presented in this paper. ICARE-HS processes airborne hyperspectral images for atmospheric compensation taking into account the strong relief of urban areas. A digital surface model is used to provide the 3D information, which is key to simulating relief-related effects such as shadow casting, multiple reflections between objects and variable illumination depending on local solid angle of view of the sky. Some of these effects are modeled using ray tracing techniques. ICARE-HS is applied to airborne hyperspectral data of the city center of Toulouse, which are also processed by a standard atmospheric correction method for comparison.

  19. Characterization of Urban-Industrial Emissions with Airborne Thermal-Infrared Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Buckland, K. N.; Hall, J. L.; Keim, E. R.; Johnson, P. D.

    2016-12-01

    The ability to rapidly survey fugitive emissions and their sources over broad areas is a capability that has relevance across multiple diverse application areas, such as atmospheric chemistry, radiation budget and climate studies, regulatory monitoring, and post-disaster hazard assessment. Airborne hyperspectral thermal-infrared (TIR) imaging is a powerful technique for detecting, identifying, sourcing, and tracking gaseous emissions from compact sources since the diagnostic spectral features of most gases occur in the TIR 7-14 micron "fingerprint region." Hyperspectral resolution enables full characterization of the thermal radiance distribution and detection/identification of gases within the sensor field-of-regard using spectral correlation techniques. This contribution will demonstrate the capabilities and versatility of airborne TIR hyperspectral imaging for locating and monitoring multiple fugitive emissions in the urban-industrial environment.

  20. Retrieval of Water Quality Parameters in a Highly Turbid Estuary from Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Greenberg, J. A.; Ustin, S. L.

    2007-12-01

    The Sacramento-San Joaquin River Delta is a highly turbid inland estuary that drains into the Pacific Ocean via the San Francisco Bay. The Delta has become a major ecological concern over the past decade, and the decline of the endangered fish, Delta smelt, has been attributed in part to decreasing turbidity in the Delta. Measuring and monitoring turbidity and Secchi disk depth are important to ecosystem health management and water quality monitoring of inland case-2 waters. The spectral determination of water quality parameters is dependent on (i) the inherent optical properties of water, such as the load of total suspended solids, suspended sediments, humic acids and dissolved organic matter, and planktonic content and composition, and (ii) the apparent optical properties of water which depend on both the medium and the geometric structure of light (surface reflectance, vertical diffuse attenuation). Water quality parameters such as turbidity and Secchi disk depth can be retrieved from hyperspectral remote sensing imagery, remote sensing data collected with many narrow spectral bands, using semi-empirical methods that require regression analysis, or from radiative transfer calculations that model apparent optical properties. We compared the accuracy of both semi-empirical and radiative transfer methods to retrieve turbidity and Secchi disk depths from airborne hyperspectral remote sensing imagery (the HyMap sensor, 450-2500 nm, 10-15nm bandwidth) of the Delta collected in June 2007. Results were validated using extensive field data collected concurrent with image acquisition. Additionally, we examined the effect of resampling the hyperspectral data to multispectral resolutions more commonly found on spaceborne instruments on the accuracy of water constituent retrieval from inland, case-2 waters.

  1. Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery

    Treesearch

    Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell

    2014-01-01

    We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...

  2. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  3. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  4. Developing a Soil Moisture Index for California Grasslands from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Flamme, H. E.; Roberts, D. A.; Miller, D. L.

    2016-12-01

    Soil moisture is a key environmental factor controlling vegetation diversity and productivity, evaporation, transpiration, and rainfall runoff. Despite the contribution of soil moisture to ecological productivity, the hydrologic cycle, and erosion, it is currently not being monitored as accurately or as frequently as other environmental factors. Traditional soil moisture monitoring techniques rely on in situ measurements, which become costly when evaluating areas of unevenly distributed soil characteristics and varying topography. Alternatively, satellite remote sensing, such as passive microwave from SMAP, can provide soil moisture but only at very coarse spatial resolutions. Imagery from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) has the potential to allow better spatial and temporal monitoring of soil moisture. This study established a relationship between plant available water and hyperspectral reflectance via linear regressions of data from 2013-2015 for two grassland field sites: 1) near Santa Barbara, California, at Coal Oil Point Reserve (COPR) and 2) Airstrip station (AIRS) at UC Santa Barbara's Sedgwick Reserve near Santa Ynez, California. Volumetric soil moisture measurements at 10 cm and 20 cm depths were provided by meteorological stations situated in COPR and AIRS while reflectance data were extracted from AVIRIS. We found strong correlations between plant available water and bands centered at wavelengths 704 nm and 831 nm, which we used to create Hyperspectral Soil Moisture Index (HSMI): 0.38((ρ831-ρ704)/(ρ831+ρ704))-0.02. HSMI demonstrated a coefficient of determination (R2) of 0.71 for linear regressions of reflectance versus plant available water with a lag time of 28 days. We applied HSMI to the AIRS and COPR grasslands for 2011 AVIRIS scenes. Plant available water values predicted by HSMI were 0.039 higher at AIRS and 0.048 higher at COPR than the field measurements at the sites. Differences in grass species, soil

  5. VNIR-SWIR-TIR hyperspectral airborne campaign for soil and sediment mapping in semi-arid south african environments

    NASA Astrophysics Data System (ADS)

    Milewski, Robert; Chabrillat, Sabine; Eisele, Andreas

    2016-04-01

    Airborne hyperspectral remote sensing techniques has been proven to offer efficient procedures for soil and sediment mineralogical mapping in arid areas on larger scales. Optical methods based on traditional remote sensing windows using the solar reflective spectral wavelength range from the visible-near infrared (VNIR: 0.4-1.1 μm) to the short-wave infrared region (SWIR: 1.1-2.5 μm) allow mapping of common soil properties such as iron oxides, textural characteristics and organic carbon. However, soil mapping in semi-arid environments using VNIR-SWIR is currently limited due to specific spectral characteristics. Challenges appear in such environments due to the common presence of sandy soils (coarse textured) which grain size distribution is driven by the dominant mineral, quartz (SiO2), and which lacks any distinctive Si-O bond related spectral features within the VNIR-SWIR. Furthermore, another challenge is represented by the common presence of other specific spectral features due to different salts (gypsum, halite) or coatings of different forms (cyanobacteria, iron-oxides and/or -oxyhydroxides) for which few studies exists or that oft prevent detection of any other potential spectral feature of e.g. soil organics. In this context, more methodological developments are needed to overcome current limitations of hyperspectral remote sensing for arid areas, and to extent its scope using the thermal infrared (TIR) wavelength region within the atmospheric window between 8 and 14 μm (longwave infrared). In 2015 an extensive VNIR-SWIR-TIR airborne hyperspectral dataset consisting of HySpex-VNIR, HySpex-SWIR (NEO) and Hyper-Cam (TELOPS) data has been acquired in various Namibian and South African landscapes part of the Dimap/GFZ campaign in the frame of the BMBF-SPACES Geoarchive project. Research goals are 1) to demonstrate the capabilities to extract information from such a dataset and 2) to demonstrate the potential of advanced hyperspectral remote sensing

  6. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; hide

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  7. Monitoring marine pollution by airborne remote sensing techniques

    SciTech Connect

    Yuanfu, S.; Quanan, Z.

    1982-06-01

    In order to monitor marine pollution by airborne remote sensing techniques, some comprehensive test of airborne remote sensing, involving monitoring marine oil pollution, were performed at several bay areas of China. This paper presents some typical results of monitoring marine oil pollution. The features associated with the EM spectrum (visible, thermal infrared, and microwave) response of marine oil spills is briefly analyzed. It has been verified that the airborne oil surveillance systems manifested their advantages for monitoring the oil pollution of bay environments.

  8. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness.

  9. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  10. A Synergistic Approach to Atmospheric Compensation of Neon's Airborne Hyperspectral Imagery Utilizing an Airborne Solar Spectral Irradiance Radiometer

    NASA Astrophysics Data System (ADS)

    Wright, L.; Karpowicz, B. M.; Kindel, B. C.; Schmidt, S.; Leisso, N.; Kampe, T. U.; Pilewskie, P.

    2014-12-01

    A wide variety of critical information regarding bioclimate, biodiversity, and biogeochemistry is embedded in airborne hyperspectral imagery. Most, if not all of the primary signal relies upon first deriving the surface reflectance of land cover and vegetation from measured hyperspectral radiance. This places stringent requirements on terrain, and atmospheric compensation algorithms to accurately derive surface reflectance properties. An observatory designed to measure bioclimate, biodiversity, and biogeochemistry variables from surface reflectance must take great care in developing an approach which chooses algorithms with the highest accuracy, along with providing those algorithms with data necessary to describe the physical mechanisms that affect the measured at sensor radiance. The Airborne Observation Platform (AOP) part of the National Ecological Observatory Network (NEON) is developing such an approach. NEON is a continental-scale ecological observation platform designed to collect and disseminate data to enable the understanding and forecasting of the impacts of climate change, land use change, and invasive species on ecology. The instrumentation package used by the AOP includes a visible and shortwave infrared hyperspectral imager, waveform LiDAR, and high resolution (RGB) digital camera. In addition to airborne measurements, ground-based CIMEL sun photometers will be used to help characterize atmospheric aerosol loading, and ground validation measurements with field spectrometers will be made at select NEON sites. While the core instrumentation package provides critical information to derive surface reflectance of land surfaces and vegetation, the addition of a Solar Spectral Irradiance Radiometer (SSIR) is being investigated as an additional source of data to help identify and characterize atmospheric aerosol, and cloud contributions contributions to the radiance measured by the hyperspectral imager. The addition of the SSIR provides the opportunity to

  11. Support Vector Machines for Hyperspectral Remote Sensing Classification

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. Anthony; Cromp, R. F.

    1998-01-01

    The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.

  12. Hyper-spectral remote sensing of global CO2

    NASA Astrophysics Data System (ADS)

    Wang, Ding Yi

    2016-07-01

    Monitoring of greenhouse gas CO2 on a basis of global scale, high precision, and real time has great significance for the understanding CO2 sources and sinks, as well as global climate change. In order to meet the urgent needs, several research projects are ongoing in China and in the world for retrieving CO2 from satellite-based hyper-spectral observations. In this talk, the projects are briefly introduced, the theory of atmospheric near-infrared remote sensing is discussed, and a forward model and inversion software system for near-infrared hyper-spectral measurements of CO2 is outlined. The validation of the software package against GOST-FTS observation are performed, and their relative error is less than 1.0%. Future cross-validation between the Chinese satellite and other observations is suggested.

  13. Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance

    DTIC Science & Technology

    2004-01-01

    For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/cubic meter, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote - sensing reflectance using a newly...potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments. (7 figures, 47 refs.)

  14. Multi- and hyperspectral geologic remote sensing: A review

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  15. Hyperspectral Remote Sensing-Sensors and Applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral remote sensors have been traditionally used to map and monitor anthropogenic and environmental changes in the biosphere. While these sensors have proven robust for many applications, they often lack the spectral resolution necessary to differentiate characteristics of the Earth’s surfa...

  16. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B.

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  17. Hyperspectral remote sensing of foliar nitrogen content.

    PubMed

    Knyazikhin, Yuri; Schull, Mitchell A; Stenberg, Pauline; Mõttus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Latorre Carmona, Pedro; Kaufmann, Robert K; Lewis, Philip; Disney, Mathias I; Vanderbilt, Vern; Davis, Anthony B; Baret, Frédéric; Jacquemoud, Stéphane; Lyapustin, Alexei; Myneni, Ranga B

    2013-01-15

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact--it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  18. Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Erinš, Gatis; Taskovs, Juris

    2014-10-01

    Airborne hyperspectral imaging is widely used for remote sensing of environment. The choice of spectral region usually depends on the availability and cost of the sensor. Visible-to-near infrared (400-1100 nm) spectral range corresponds to spectral sensitivity of relatively cheap Si detectors therefore it is the most commonly used. The implementation of shortwave infrared (1100-3000 nm) requires more expensive solutions, but can provide valuable information about the composition of the substance. Mid wave infrared (3000-8000 nm) is rarely used for civilian applications, but it provides information on the thermal emission of materials. The fusion of different sensors allows spectral analysis of a wider spectral range combining and improving already existing algorithms for the analysis of chemical content and classification. Here we introduce our Airborne Surveillance and Environmental Monitoring System (ARSENAL) that was developed by fusing seven sensors. The first test results from the fusion of three hyperspectral imaging sensors in the visible-to-mid wave infrared (365-5000 nm) are demonstrated. Principal component analysis (PCA) is applied to test correlation between principal components (PCs) and common vegetation indices.

  19. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  20. Biosensor for remote monitoring of airborne toxins

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn

    1999-12-01

    The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.

  1. Temperature and emissivity separation via sparse representation with thermal airborne hyperspectral imager data

    NASA Astrophysics Data System (ADS)

    Li, Chengyi; Tian, Shufang; Li, Shijie; Yin, Mei

    2016-10-01

    The thermal airborne hyperspectral imager (TASI), which has 32 channels that provide continuous spectral coverage within wavelengths of 8 to 11.5 μm, is very beneficial for land surface temperature and land surface emissivity (LSE) retrieval. In remote sensing applications, emissivity is important for features classification and temperature is important for environmental monitoring, global climate change, and target recognition studies. This paper proposed a temperature and emissivity separation method via sparse representation (SR-TES) with TASI data, which employs a sparseness differences point of view whereby the atmospheric spectrum cannot be considered SR under the LSE spectral dictionary. We built the dictionary from Johns Hopkins University's spectral library as an overcomplete base, and the dictionary learning K-SVD algorithm was adopted. The simulation results showed that SR-TES performed better than the TES algorithm in the case of noise impact, and the results from TASI data for the Liuyuan research region were reasonable; partial validation revealed a root mean square error of 0.0144 for broad emissivity, which preliminarily proves that this method is feasible.

  2. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  3. A multiple criteria-based spectral partitioning method for remotely sensed hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Jun; Plaza, Antonio; Sun, Yanli

    2016-10-01

    Hyperspectral remote sensing offers a powerful tool in many different application contexts. The imbalance between the high dimensionality of the data and the limited availability of training samples calls for the need to perform dimensionality reduction in practice. Among traditional dimensionality reduction techniques, feature extraction is one of the most widely used approaches due to its flexibility to transform the original spectral information into a subspace. In turn, band selection is important when the application requires preserving the original spectral information (especially the physically meaningful information) for the interpretation of the hyperspectral scene. In the case of hyperspectral image classification, both techniques need to discard most of the original features/bands in order to perform the classification using a feature set with much lower dimensionality. However, the discriminative information that allows a classifier to provide good performance is usually classdependent and the relevant information may live in weak features/bands that are usually discarded or lost through subspace transformation or band selection. As a result, in practice, it is challenging to use either feature extraction or band selection for classification purposes. Relevant lines of attack to address this problem have focused on multiple feature selection aiming at a suitable fusion of diverse features in order to provide relevant information to the classifier. In this paper, we present a new dimensionality reduction technique, called multiple criteria-based spectral partitioning, which is embedded in an ensemble learning framework to perform advanced hyperspectral image classification. Driven by the use of a multiple band priority criteria that is derived from classic band selection techniques, we obtain multiple spectral partitions from the original hyperspectral data that correspond to several band subgroups with much lower spectral dimensionality as compared with

  4. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  5. Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?

    NASA Astrophysics Data System (ADS)

    Vanderbilt, V. C.; Daughtry, C. S.

    2011-12-01

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.

  6. Geological applications of machine learning on hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  7. An algorithm of remotely sensed hyperspectral image fusion based on spectral unmixing and feature reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Xuejian; Zhang, Lifu; Cen, Yi; Zhang, Mingyue

    2016-05-01

    In order to get high spatial resolution hyperspectral data, many studies have examined methods to combine spectral information contained in hyperspectral image with spatial information contained in multispectral/panchromatic image. This paper developed a new hyperspectral image fusion method base on the non-negative matrix factorization (NMF) theory. Data sets obtained by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) was used to evaluate the performance of the method. Experimental results show that the proposed algorithm can provide a good way to solve the problem of high spatial resolution hyperspectral data shortage.

  8. Verification of the calibration technique of airborne hyperspectral raw data to reflectance based on sky light reference data

    NASA Astrophysics Data System (ADS)

    Suhama, T.; Rikimaru, A.; Takahashi, K.; Takemine, S.

    Airborne hyperspectral sensor is increasingly being used for the precision agriculture and for the monitoring our environment In general data obtained by airborne hyperspectral sensor are affected by atmospheric conditions and solar illumination geometry Therefore airborne hyperspectral sensor data are commonly expressed as relative radiance value For measuring and monitoring ground surface changes through time it is important to calibrate hyperspectral sensor data to amount of reflectance A number of calibration techniques have been developed ranging from empirical approaches to analytical radiative transfer approaches These methods require a priori knowledge such as field reflectance observations or atmospheric conditions Several airborne hyperspectral sensor systems which are used for commercial purpose include a fiber optic probe on the aircraft roof A fiber optic probe is able to monitor sky light reference data to ratio to hyperspectral raw data This is a simple and practical calibration technique However there is a problem that small inaccuracies in sky right reference data calibrations may lead to unacceptable errors in calculated apparent reflectance In this paper simple calibration technique based on sky light reference data was discussed The resultant reflectance estimates are compared with field reflectance observations of flat and homogeneous ground target and illustrate that proposed calibration technique is possible to derive reasonable reflectance from airborne hyperspectral raw data

  9. Assessing wheat residue cover with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Tripathy, Rojalin; Manjunath, K. R.

    2016-04-01

    Hyperspectral remote sensing can aid in discriminating crop residue owing to the ability of narrow bands to capture the unique absorption feature of soil and residue. The present study was carried out to find out the suitable narrow spectral bands and hyper-spectral indices for discriminating wheat residue (stubble and burnt). Ground spectra of wheat residue and the adjoining soil were collected using the ASD fieldspec™ spectroradiometer. The best spectral range was derived using the Stepwise Discriminating Analysis (SDA). `F' statistics from one-way ANOVA was used to find out the best index for discriminating wheat residue from soil. EO1-Hyperion data over Anand-Borsad region of Gujarat state in India was acquired free of cost from USGS earth explorer website (http://eo1.usgs.gov/) to apply the field based result over the Hyperion scene. Spectral Angle Mapper (SAM) classification scheme was used to generate the wheat residue cover over the Hyperion scene. Among the hyperspectral indices evaluated for this study the Cellulose Absorption Index (CAI) was found to be the best and hence CAI was used to classify the Hyperion scene for discriminating crop residue in field and also the burnt wheat residue. Results indicated that the wave bands at 10 nm width in the SWIR spectral region specifically from 1500-1700nm and 1900 to 2300nm are most suitable for wheat residue discrimination. The SAM classification technique is suitable for classifying the wheat residues with an overall accuracy of around 80 % whereas classification based on CAI could be used successfully to identify both wheat stubble and the burnt residues. This study concluded that wheat residue can be mapped for a large area with an accuracy of 80% using the space borne hyperspectral data with.

  10. An algorithm for hyperspectral remote sensing of aerosols: theoretical framework, information content analysis and application to GEO-TASO

    NASA Astrophysics Data System (ADS)

    Hou, W.; Wang, J.; Xu, X.; Leitch, J. W.; Delker, T.; Chen, G.

    2015-12-01

    This paper includes a series of studies that aim to develop a hyperspectral remote sensing technique for retrieving aerosol properties from a newly developed instrument GEO-TASO (Geostationary Trance gas and Aerosol Sensor Optimization) that measures the radiation at 0.4-0.7 wavelengths at spectral resolution of 0.02 nm. GEOS-TASO instrument is a prototype instrument of TEMPO (Tropospheric Emissions: Monitoring of Pollution), which will be launched in 2022 to measure aerosols, O3, and other trace gases from a geostationary orbit over the N-America. The theoretical framework of optimized inversion algorithm and the information content analysis such as degree of freedom for signal (DFS) will be discussed for hyperspectral remote sensing in visible bands, as well as the application to GEO-TASO, which has mounted on the NASA HU-25C aircraft and gathered several days' of airborne hyperspectral data for our studies. Based on the optimization theory and different from the traditional lookup table (LUT) retrieval technique, our inversion method intends to retrieve the aerosol parameters and surface reflectance simultaneously, in which UNL-VRTM (UNified Linearized Radiative Transfer Model) is employed for forward model and Jacobians calculation, meanwhile, principal component analysis (PCA) is used to constrain the hyperspectral surface reflectance.The information content analysis provides the theoretical analysis guidance about what kind of aerosol parameters could be retrieved from GeoTASO hyperspectral remote sensing to the practical inversion study. Besides, the inversion conducted iteratively until the modeled spectral radiance fits with GeoTASO measurements by a Quasi-Newton method called L-BFGS-B (Large scale BFGS Bound constrained). Finally, the retrieval results of aerosol optical depth and other aerosol parameters are compared against those retrieved by AEROENT and/or in situ measurements such as DISCOVER-AQ during the aircraft campaign.

  11. Application of multivariate curve resolution alternating least squares (MCR-ALS) to remote sensing hyperspectral imaging.

    PubMed

    Zhang, Xin; Tauler, Romà

    2013-01-31

    The application of the MCR-ALS method is demonstrated on two simulated remote sensing spectroscopic images and on one experimental reference remote sensing spectroscopic image obtained by the Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). By application of MCR-ALS, the spectra signatures of the pure constituents present in the image and their concentration distribution at a pixel level are estimated. Results obtained by MCR-ALS are compared to those obtained by other methods frequently used in the remote sensing spectroscopic imaging field like VCA and MVSA. In the case of the analysis of the experimental data set, the resolved pure spectra signatures were compared to reference spectra from USGS library for their identification. In all cases, results were also evaluated for the presence of rotational ambiguities using the MCR-BANDS method. The obtained results confirmed that the MCR-ALS method can be successfully used for remote sensing hyperspectral image resolution purposes. However, the amount of rotation ambiguity still present in the solutions obtained by this and other resolution methods (like VCA or MVSA) can still be large and it should be evaluated with care, trying to reduce its effects by selecting the more appropriate constraints. Only in this way it is possible to increase the reliability of the solutions provided by these methods and decrease the uncertainties associated to their use.

  12. Capabilities of Remote Sensing Hyperspectral Images for the Detection of Lead Contamination: a Review

    NASA Astrophysics Data System (ADS)

    Maliki, A. A.; Owens, G.; Bruce, D.

    2012-07-01

    Advances in remote sensing technologies are increasingly becoming more useful for resource, ecosystem and agricultural management applications to the extent that these techniques can now also be applied for monitoring of soil contamination and human health risk assessment. While, extensive previous studies have shown that Visible and Near Infrared Spectroscopy (VNIRS) in the spectral range 400-2500 nm can be used to quantify various soil constituents simultaneously, the direct determination of metal concentrations by remote sensing and reflectance spectroscopy is not as well examined as other soil parameters. The application of VNIRS, including laboratory hyperpectral measurements, field spectrometer measurements or image spectroscopy, generally achieves a good prediction of metal concentrations when compared to traditional wet chemical methods and has the advantage of being relatively less expensive and faster, allowing chemical assessment of contamination in close to real time. Furthermore, imaging spectroscopy can potentially provide significantly more samples over a larger spatial extent than traditional ground sampling methods. Thus the development of remote sensing techniques (field based and either airborne or satellite hyperspectral imaging) can support the monitoring and efficient mapping of metal contamination (in dust and soil) for environmental and health impact assessment. This review is concerned with the application of remote sensing and reflectance spectroscopy to the detection of heavy metals and discusses how current methods could be applied for the quantification of Pb contaminated soil surrounding mines and smelters.

  13. Sunglint effects on the characterization of optically active substances in high spatial resolution airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Faria Barbosa, C. Clemente; Soares Galvão, L.; Goodman, J. A.; Silva, T. S.

    2013-05-01

    Sunglint, also known as the specular reflection of light from water surfaces, is a component of sensor-received radiance that represents a confounding factor on the characterization of water bodies by remote sensing. In airborne remote sensing images, the effect of sunglint can be minimized by optimizing the flight paths, directing the sensor towards or away from the Sun, and by keeping solar zenith angles between 30° and 60°. However, these guidelines cannot always be applied, often due to the irregular spatial pattern of lakes, estuaries and coastlines. The present study assessed the impact of sunglint on the relationship between the optically active substances (OAS) concentration, in optically complex waters, and the spectral information provided by an airborne high spatial resolution hyperspectral sensor (SpecTIR). The Ibitinga reservoir, located in southeastern Brazil (state of São Paulo), was selected as the study area because of its meandering shape. As a result, there is demanding constant changes in data acquisition geometry to achieve complete coverage, therefore not allowing sunglint conditions to be minimized during image acquisition. Field data collection was carried out on October 23 and 24, 2011. During these two days, 15 water stations along the reservoir were sampled, concurrently with the SpecTIR image acquisition in 357 bands (398-2455 nm) and at 3 m spatial resolution. Chlorophyll, pheophytin, total suspended solids, organic and inorganic suspended solids and colored dissolved matter were determined in laboratory. The images were corrected for the atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm and then geometrically corrected. In order to evaluate the sunglint effects on the OAS characterization, the images were corrected for such effects using the deglint algorithm from Goodman et al. (2008). The SpecTIR 662-nm band reflectance was selected to be correlated to the OAS due to

  14. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xie, Huan; Luo, Xin; Xu, Xiong; Tong, Xiaohua; Jin, Yanmin; Pan, Haiyan; Zhou, Bingzhong

    2014-01-01

    Extracting surface land-cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic tasks is to identify and map surface water boundaries. Spectral water indexes have been successfully used in the extraction of water bodies in multispectral images. However, directly applying a water index method to hyperspectral images disregards the abundant spectral information and involves difficulty in selecting appropriate spectral bands. It is also a challenge for a spectral water index to distinguish water from shadowed regions. The purpose of this study is therefore to develop an index that is suitable for water extraction by the use of hyperspectral images, and with the capability to mitigate the effects of shadow and low-albedo surfaces, especially in urban areas. Thus, we introduce a new hyperspectral difference water index (HDWI) to improve the water classification accuracy in areas that include shadow over water, shadow over other ground surfaces, and low-albedo ground surfaces. We tested the new method using PHI-2, HyMAP, and ROSIS hyperspectral images of Shanghai, Munich, and Pavia. The performance of the water index was compared with the normalized difference water index (NDWI) and the Mahalanobis distance classifier (MDC). With all three test images, the accuracy of HDWI was significantly higher than that of NDWI and MDC. Therefore, HDWI can be used for extracting water with a high degree of accuracy, especially in urban areas, where shadow caused by high buildings is an important source of classification error.

  15. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak

    2017-02-01

    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  16. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak

    2017-01-01

    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  17. Classification of the forest cover of Tver oblast using hyperspectral airborne imagery

    NASA Astrophysics Data System (ADS)

    Dmitriev, E. V.

    2014-12-01

    Recent research efforts have been focused on building a system of hyperspectral aerial sounding of forest vegetation on regional scales. The components of this system are developed using data obtained in the course of measurement campaigns in Tver forestry test sites. Hyperspectral airborne surveys are conducted using a Russian video spectrometer produced by the NPO Lepton company. The technique for recognizing ground-based objects is based on Bayesian classification principles with the feature space optimization. The choice of the most informative spectral channels is based on the step-up method. We propose an approach allowing the choice of channels to be more stable. We compare the classification of timber stands on the basis of hyperspectral imagery with ground-based data to demonstrate the consistency of the system developed.

  18. Subtropical Forest Biomass Estimation Using Airborne LiDAR and Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Pang, Yong; Li, Zengyuan

    2016-06-01

    Forests have complex vertical structure and spatial mosaic pattern. Subtropical forest ecosystem consists of vast vegetation species and these species are always in a dynamic succession stages. It is very challenging to characterize the complexity of subtropical forest ecosystem. In this paper, CAF's (The Chinese Academy of Forestry) LiCHy (LiDAR, CCD and Hyperspectral) Airborne Observation System was used to collect waveform Lidar and hyperspectral data in Puer forest region, Yunnan province in the Southwest of China. The study site contains typical subtropical species of coniferous forest, evergreen broadleaf forest, and some other mixed forests. The hypersectral images were orthorectified and corrected into surface reflectance with support of Lidar DTM product. The fusion of Lidar and hyperspectral can classify dominate forest types. The lidar metrics improved the classification accuracy. Then forest biomass estimation was carried out for each dominate forest types using waveform Lidar data, which get improved than single Lidar data source.

  19. Mapping tree health using airborne full-waveform laser scans and hyperspectral imagery: a case study for floodplain eucalypt forest

    NASA Astrophysics Data System (ADS)

    Shendryk, I.; Tulbure, M. G.; Broich, M.

    2014-12-01

    Barmah-Millewa Forest (BMF), the largest River Red Gum forest in the world, located in south-eastern Australia is suffering from severe dieback, thus diminishing its ecological and economical value. Previous research showed that dieback is a good predictor of the forest health and stressed the need for BMF health mapping and change monitoring. In this respect, airborne laser scanning and hyperspectral imaging offer extensive spatial and spectral coverage of measurements and represent an ideal tool for forest health mapping at individual tree scale. The aim of this project is to quantify the health of individual, structurally complex floodplain eucalypt trees by integrating airborne hyperspectral imagery, full-waveform laser scans and field measurements. An aerial survey, conducted in May 2014, was designed to provide a representative sample of BMF tree health. The positioning of 17 flight lines aimed to capture the heterogeneity of the forest health and flood frequency. Preliminary analysis of the aerial remote sensing data with regards to chlorophyll concentrations, dieback levels and canopy densities allowed us to target our field campaign (conducted in June 2014). Field measurements included accurate position measurements, LAI, visual assessment, spectral measurement and mensuration of individual trees in 30 m2 plots. For detection of individual tree trunks from airborne laser scans we used a novel approach based on Euclidean distance clustering, taking advantage of the intensity and pulse width difference between woody and leaf tree compartments. The detected trunks were used to seed a minimum cut algorithm for tree crown delineation. In situ measurements confirmed the high structural diversity of the forest and allowed the calibration of the tree detection algorithm. An overall accuracy of the tree detection of 54% and 67% was achieved for trees with circumference over 40 cm and over 100 cm respectively. As a further step, 3D point clusters representing

  20. Detecting and discriminating petroleum and petroleum products from water on terrestrial backgrounds with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Allen, C. Scott

    Petroleum and petroleum product spills are frequent and as both Hurricane Katrina and the Deepwater Horizon accident demonstrated, they can be catastrophic. A prominent portion of the response is mapping the extent to which oil has reached both shoreline and inland areas. Yet, petroleum and water--when present on common substrates such as sand, concrete, and vegetation--are often difficult to distinguish in panchromatic and multispectral imagery. This research demonstrates how hyperspectral remote sensing, also known as imaging spectroscopy, provides petroleum detection and discrimination from water on terrestrial backgrounds. Utilizing spectral libraries, it also performs material identification and successfully discriminates some petroleum products from one another as a means of further classification and mapping spill extent. To achieve these goals, this effort collected spectral signatures of four crude oils and five refined petroleum products on ten common terrestrial substrates and compared them to water on the same backgrounds over a period of 1-90 days, depending on liquid volatility. The result is the first publicly available spectral library for petroleum and petroleum products on terrestrial substrates in the reflective portion of the electromagnetic spectrum (400-2500 nm) for use in petroleum spill detection and response. It also establishes a baseline for the use of imaging spectroscopy as a technique for confident, accurate petroleum detection in the terrestrial environment. Using common material identification algorithms, the spectra were successfully applied to airborne hyperspectral data from the Hurricane Katrina disaster in 2005 as a proof-of-concept for discriminating petroleum from water.

  1. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling

  2. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  3. Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo; Edited by Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    The focus of this chapter was to summarize the advances made over last 40+ years, as reported in various chapters of this book, in understanding, modeling, and mapping terrestrial vegetation using hyperspectral remote sensing (or imaging spectroscopy) using sensors that are ground-based, truck-mounted, airborne, and spaceborne. As we have seen in various chapters of this book and synthesized in this chapter, the advances made include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracies (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (b), (e) ability to access stress resulting from causes such as management practices, pests and disease, water deficit or excess; , and (f) establishing more sensitive wavebands and indices to detect plant water\\moisture content. The advent of spaceborne hyperspectral sensors (e.g., NASA’s Hyperion, ESA’s PROBA, and upcoming NASA’s HyspIRI) and numerous methods and techniques espoused in this book to overcome Hughes phenomenon or data redundancy when handling large volumes of hyperspectral data have generated tremendous interest in advancing our hyperspectral applications knowledge base over larger spatial extent such as region, nation, continent, and globe.

  4. Hyperspectral remote sensing of coral reefs: Deriving bathymetry, aquatic optical properties and a benthic spectral unmixing classification using AVIRIS data in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Goodman, James Ansell

    My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.

  5. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    Treesearch

    Jungho Im; John R. Jensen; Mark Coleman; Eric. Nelson

    2009-01-01

    Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...

  6. Analysis of Coincident HICO and Airborne Hyperspectral Images Over Lake Erie Western Basin HABs

    NASA Astrophysics Data System (ADS)

    Cline, M., Jr.; Becker, R.; Lekki, J.; Bridgeman, T. B.; Tokars, R. P.; Anderson, R. C.

    2015-12-01

    Harmful algal blooms (HABs) produce waterborne toxins that pose a significant threat to people, livestock, and wildlife. 40 million people in both Canada and the U.S. depend on Great Lakes water. In the summer of 2014, in the Lake Erie Western Basin, an HAB of the cyanobacteria Microsystis was so severe that a water-use ban was in effect for the greater Toledo area, Ohio. This shut off the water supply to over 400,000 people from a single water intake. We investigated bloom intensity, composition, and spatial variability by comparing hyperspectral data from NASA's HICO, multispectral data from MODIS spaceborne imagers and NASA GRC's HSI imagers to on-lake ASD radiometer measurements using in situ water quality testing as ground reference data, all acquired on a single day during the bloom in 2014. HICO imagery acquired on Aug 15, 2014 was spatially georeferenced and atmospherically corrected using empirical line method utilizing on-lake ASD spectra. HSI imagery were processed in a similar way. Cyanobacteria Index (CI) images were created from processed images using the Wynne (2010) algorithm, previously used for MODIS and MERIS imagery. This algorithm-generated CI images provide reliable results for both ground level (R²=0.7784), and satellite imagery (R²=0.7794) for seven sampling points in Lake Erie's western basin. Spatial variability in the bloom was high, and was not completely characterized by the lower spatial resolution MODIS data. The ability to robustly atmospherically correct and generate useful CI maps from airborne and satellite sensors can provide a time- and cost-effective method for HABs analysis. Timely processing of these high spatial and spectral resolution remote sensing data can aid in management of water intake resources.

  7. Detection of abandoned mines/caves using airborne LWIR hyperspectral data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Roettiger, Kurt A.

    2012-09-01

    The detection of underground structures, both natural and man-made, continues to be an important requirement in both the military/intelligence and civil communities. There are estimates that as many as 70,000 abandoned mines/caves exist across the nation. These mines represent significant hazards to public health and safety, and they are of concern to Government agencies at the local, state, and federal levels. NASA is interested in the detection of caves on Mars and the Moon in anticipation of future manned space missions. And, the military/ intelligence community is interested in detecting caves, mines, and other underground structures that may be used to conceal the production of weapons of mass destruction or to harbor insurgents or other persons of interest by the terrorists. Locating these mines/caves scattered over millions of square miles is an enormous task, and limited resources necessitate the development of an efficient and effective broad area search strategy using remote sensing technologies. This paper describes an internally-funded research project of The Aerospace Corporation (Aerospace) to assess the feasibility of using airborne hyperspectral data to detect abandoned cave/mine entrances in a broad-area search application. In this research, we have demonstrated the potential utility of using thermal contrast between the cave/mine entrance and the ambient environment as a discriminatory signature. We have also demonstrated the use of a water vapor absorption line at12.55 μm and a quartz absorption feature at 9.25 μm as discriminatory signatures. Further work is required to assess the broader applicability of these signatures.

  8. Retrieving Atmospheric Profiles Data in the Presence of Clouds from Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.; Yang, Ping; Gu, Degui

    2011-01-01

    Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.

  9. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2002-09-30

    integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.

  10. Atmospheric correction algorithm based on vector radiative transfer modeling for hyperspectral remote sensing of ocean color

    NASA Astrophysics Data System (ADS)

    Gao, BoCai; Montes, Marcos J.; Ahmad, Ziauddin; Davis, Curtiss O.

    1999-10-01

    Multi-channel remote sensing of ocean color from space has a rich history -- from the past CZCS, to the present SeaWiFS, and to the near-future MODIS. The atmospheric correction algorithms for processing remotely sensed data from these sensors were mainly developed by Howard Gordon at University of Miami. The algorithms were primarily designed for retrieving water leaving radiances in the visible spectral region over clear deep ocean areas. The information about atmospheric aerosols is derived from channels between 0.66 and 0.87 micrometer, where the water leaving radiances are close to zero. The derived aerosol information is extrapolated back to the visible when retrieving water leaving radiances from remotely sensed data. For the turbid coastal environment, the water leaving radiances for channels between 0.66 and 0.87 micrometer may not be close to zero because of back scattering by suspended materials in the water. Under these conditions, the channels are no longer useful for deriving information on atmospheric aerosols. As a result, the algorithms developed for applications to clear ocean waters cannot be easily modified to retrieve water leaving radiances from remote sensing data acquired over the costal environments. We have recently developed a fast and fully functional atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the Coastal Ocean Imaging Spectrometer (COIS). Our algorithm uses lookup tables generated with a vector radiative transfer code developed by Ahmad and Fraser (1982) and a spectral matching technique for the retrieval of water leaving radiances. The information on atmospheric aerosols is estimated using dark channels beyond 0.86 micron. Quite reasonable results were obtained when applying the algorithm to process spectral imaging data acquired over Chesapeake Bay with the NASA JPL Airborne Visible Infrared Imaging Spectrometer (AVIRIS).

  11. Multispectral, hyperspectral, and LiDAR remote sensing and geographic information fusion for improved earthquake response

    NASA Astrophysics Data System (ADS)

    Kruse, F. A.; Kim, A. M.; Runyon, S. C.; Carlisle, Sarah C.; Clasen, C. C.; Esterline, C. H.; Jalobeanu, A.; Metcalf, J. P.; Basgall, P. L.; Trask, D. M.; Olsen, R. C.

    2014-06-01

    The Naval Postgraduate School (NPS) Remote Sensing Center (RSC) and research partners have completed a remote sensing pilot project in support of California post-earthquake-event emergency response. The project goals were to dovetail emergency management requirements with remote sensing capabilities to develop prototype map products for improved earthquake response. NPS coordinated with emergency management services and first responders to compile information about essential elements of information (EEI) requirements. A wide variety of remote sensing datasets including multispectral imagery (MSI), hyperspectral imagery (HSI), and LiDAR were assembled by NPS for the purpose of building imagery baseline data; and to demonstrate the use of remote sensing to derive ground surface information for use in planning, conducting, and monitoring post-earthquake emergency response. Worldview-2 data were converted to reflectance, orthorectified, and mosaicked for most of Monterey County; CA. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired at two spatial resolutions were atmospherically corrected and analyzed in conjunction with the MSI data. LiDAR data at point densities from 1.4 pts/m2 to over 40 points/ m2 were analyzed to determine digital surface models. The multimodal data were then used to develop change detection approaches and products and other supporting information. Analysis results from these data along with other geographic information were used to identify and generate multi-tiered products tied to the level of post-event communications infrastructure (internet access + cell, cell only, no internet/cell). Technology transfer of these capabilities to local and state emergency response organizations gives emergency responders new tools in support of post-disaster operational scenarios.

  12. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  13. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-07-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320×256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.788027.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  14. Miniature infrared hyperspectral imaging sensor for airborne applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  15. Performance of One-Class Classifiers for Invasive Species Mapping using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Skowronek, S.; Asner, G. P.; Feilhauer, H.

    2016-12-01

    Reliable distribution maps are crucial for the monitoring and management of invasive plant species. Remote sensing can provide such maps for larger areas. However, most remote sensing approaches focus on species in a prominent phenological stage, and a systematic assessment of the performance of different one-class classifiers for mapping species in a more inconspicuous phenological stage is missing so far. In this study, we used hyperspectral remote sensing data to detect the invasive grass Phalaris aquatica and the invasive herb Centaurea solstitialisin a pre-flowering stage in the Jasper Ridge Biological Preserve in California. We collected presence-only data, 66 plots for C. solstitialis and 30 plots for P. aquatica, to calibrate a distribution model and additional presence-absence data (166 / 173 plots) to validate model performance. All plots have a size of 3 m x 3 m. The hyperspectral remote sensing imagery was acquired using the Carnegie Airborne Observatory (CAO) visible to shortwave infrared (VSWIR) imaging spectrometer (400-2500 nm range) in May 2015 with a ground sampling distance (pixel size) of 1 m x 1 m. To find the best approach for mapping these species, we compared the performance of three different state-of-the-art classifiers working with presence-only data: Maxent, biased support vector machines and boosted regression trees. The resulting overall accuracies were 72 - 74% for C. solstitialis, and 83 - 88% for P. aquatica. For both species the overall performance was slightly better for Maxent and BRT than for biased SVM. The detection rates for low cover plots were considerably higher for C. solstitialis than for P. aquatica. For C. solstitalis, they ranged between 71 and 75% for plots with less than 15% cover, highlighting the potential of remote sensing to contribute to an early detection. The models relied on different areas of the spectrum, but still produced the same general pattern, which implies that more than one property of a species or

  16. Crop stress detection and classification using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Irby, Jon Trenton

    crop stresses utilizing hyperspectral remote sensing. Key words: crop stress, herbicide drift, remote sensing

  17. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  18. Hyperspectral remote sensing of crop leaf chlorophyll content using reflectance simulation model and field data in open canopies

    NASA Astrophysics Data System (ADS)

    Jiao, Quanjun; Wu, Yanhong; Liu, Liangyun; Zhang, Bing

    2015-04-01

    Leaf chlorophyll content -a and -b content (Cab) is an indicator for crop nutrition status and photosynthetic capacity. Remote sensing of Cab plays an important role in crop growth monitoring, pest and disease diagnosis, and crop yield assessment, yet the feasibility and stability of such estimation has not been assessed thoroughly for mixed pixels when crop canopies are not closed. This study analyzes the influence of spectral mixing on leaf chlorophyll content estimation using canopy spectra simulated by the PROSAIL reflectance model and the spectral linear mixture concept. It is observed that the accuracy of leaf chlorophyll content estimation would be degraded for mixed pixels using the well accepted approach of the combination of TCARI and OSAVI. A two-step method was thus developed for winter wheat chlorophyll content estimation by taking into consideration the fractional vegetation cover using a look-up table approach. The two methods were validated using ground spectra, airborne hyperspectral data and leaf chlorophyll content measured the same time over experimental winter wheat fields. Using the two-step method, the leaf chlorophyll content of the open canopy was estimated from the airborne hyperspectral imagery with a root mean square error of 5.18 μg cm-2, which is an improvement of about 8.9% relative to the accuracy obtained using the TCARI/OSAVI ratio directly. This implies that the method proposed in this study has great potential for hyperspectral applications in agricultural management, particularly for applications before crop canopy closure. This study, therefore, offers a feasible technique that might be applied to crop chlorophyll content estimation using large-scale remote sensing data.

  19. Assessing Wheat Yellow Rust Disease through Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Krishna, G.; Sahoo, R. N.; Pargal, S.; Gupta, V. K.; Sinha, P.; Bhagat, S.; Saharan, M. S.; Singh, R.; Chattopadhyay, C.

    2014-12-01

    The potential of hyperspectral reflectance data was explored to assess severity of yellow rust disease (Biotroph Pucciniastriiformis) of winter wheat in the present study. The hyperspectral remote sensing data was collected for winter wheat (Triticum aestivum L.) cropat different levels of disease infestation using field spectroradiometer over the spectral range of 350 to 2500 nm. The partial least squares (PLS) and multiple linear (MLR) regression techniques were used to identify suitable bands and develop spectral models for assessing severity of yellow rust disease in winter wheat crop. The PLS model based on the full spectral range and n = 36, yielded a coefficient of determination (R2) of 0.96, a standard error of cross validation (SECV) of 12.74 and a root mean square error of cross validation (RMSECV) of 12.41. The validation analysis of this PLS model yielded r2 as 0.93 with a SEP (Standard Error of Prediction) of 7.80 and a RMSEP (Root Mean Square Error of prediction) of 7.46. The loading weights of latent variables from PLS model were used to identify sensitive wavelengths. To assess their suitability multiple linear regression (MLR) model was applied on these wavelengths which resulted in a MLR model with three identified wavelength bands (428 nm, 672 nm and 1399 nm). MLR model yielded acceptable results in the form of r2 as 0.89 for calibration and 0.90 for validation with SEP of 3.90 and RMSEP of 3.70. The result showed that the developed model had a great potential for precise delineation and detection of yellow rust disease in winter wheat crop.

  20. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  1. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  2. Biodiversity mapping in a tropical West African forest with airborne hyperspectral data.

    PubMed

    Vaglio Laurin, Gaia; Cheung-Wai Chan, Jonathan; Chen, Qi; Lindsell, Jeremy A; Coomes, David A; Guerriero, Leila; Del Frate, Fabio; Miglietta, Franco; Valentini, Riccardo

    2014-01-01

    Tropical forests are major repositories of biodiversity, but are fast disappearing as land is converted to agriculture. Decision-makers need to know which of the remaining forests to prioritize for conservation, but the only spatial information on forest biodiversity has, until recently, come from a sparse network of ground-based plots. Here we explore whether airborne hyperspectral imagery can be used to predict the alpha diversity of upper canopy trees in a West African forest. The abundance of tree species were collected from 64 plots (each 1250 m(2) in size) within a Sierra Leonean national park, and Shannon-Wiener biodiversity indices were calculated. An airborne spectrometer measured reflectances of 186 bands in the visible and near-infrared spectral range at 1 m(2) resolution. The standard deviations of these reflectance values and their first-order derivatives were calculated for each plot from the c. 1250 pixels of hyperspectral information within them. Shannon-Wiener indices were then predicted from these plot-based reflectance statistics using a machine-learning algorithm (Random Forest). The regression model fitted the data well (pseudo-R(2) = 84.9%), and we show that standard deviations of green-band reflectances and infra-red region derivatives had the strongest explanatory powers. Our work shows that airborne hyperspectral sensing can be very effective at mapping canopy tree diversity, because its high spatial resolution allows within-plot heterogeneity in reflectance to be characterized, making it an effective tool for monitoring forest biodiversity over large geographic scales.

  3. Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data

    PubMed Central

    Vaglio Laurin, Gaia; Chan, Jonathan Cheung-Wai; Chen, Qi; Lindsell, Jeremy A.; Coomes, David A.; Guerriero, Leila; Frate, Fabio Del; Miglietta, Franco; Valentini, Riccardo

    2014-01-01

    Tropical forests are major repositories of biodiversity, but are fast disappearing as land is converted to agriculture. Decision-makers need to know which of the remaining forests to prioritize for conservation, but the only spatial information on forest biodiversity has, until recently, come from a sparse network of ground-based plots. Here we explore whether airborne hyperspectral imagery can be used to predict the alpha diversity of upper canopy trees in a West African forest. The abundance of tree species were collected from 64 plots (each 1250 m2 in size) within a Sierra Leonean national park, and Shannon-Wiener biodiversity indices were calculated. An airborne spectrometer measured reflectances of 186 bands in the visible and near-infrared spectral range at 1 m2 resolution. The standard deviations of these reflectance values and their first-order derivatives were calculated for each plot from the c. 1250 pixels of hyperspectral information within them. Shannon-Wiener indices were then predicted from these plot-based reflectance statistics using a machine-learning algorithm (Random Forest). The regression model fitted the data well (pseudo-R2 = 84.9%), and we show that standard deviations of green-band reflectances and infra-red region derivatives had the strongest explanatory powers. Our work shows that airborne hyperspectral sensing can be very effective at mapping canopy tree diversity, because its high spatial resolution allows within-plot heterogeneity in reflectance to be characterized, making it an effective tool for monitoring forest biodiversity over large geographic scales. PMID:24937407

  4. Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach

    NASA Astrophysics Data System (ADS)

    Mishra, Deepak R.; Narumalani, Sunil; Rundquist, Donald; Lawson, Merlin; Perk, R.

    2007-08-01

    Coral reefs and associated benthic habitats are heterogeneous in nature. A remote sensor designed to discriminate these environments requires a high number of narrow, properly placed bands which are not currently available in existing satellite sensors. Optical hyperspectral sensors mounted on aerial platforms seem to be appropriate for overcoming the lack of both high spectral and spatial resolution of satellite sensors. This research presents results of an innovative coral reef application by such a sensor. Using hyperspectral Airborne Imaging Spectroradiometer for Applications (AISA) Eagle data, the approach presented solves the confounding influence of water column attenuation on substrate reflectance on a per-pixel basis. The hyperspectral imagery was used in band ratio algorithms to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). The water column correction technique produced a bottom albedo image which revealed that the dark regions comprised of sea grasses and benthic algae had albedo values ≈15%, whereas sand- and coral-dominated areas had albedos >30% and ≈15-35%, respectively. The retrieved bottom albedo image was then used to classify the benthos, generating a detailed map of benthic habitats, followed by accuracy assessment.

  5. COUPLING HYPERSPECTRAL REMOTE SENSING WITH FIELD SPECTROMETRY TO MONITOR INLAND WATER QUALITY PARAMETERS

    EPA Science Inventory

    Visible to near-infrared, airborne hyperspectral data were successfully used to estimate water quality parameters such as chlorophyll a, turbidity and total phosphorus from the Great Miami River, Ohio. During the summer of 1999, spectral data were collected with a hand-held fiel...

  6. COUPLING HYPERSPECTRAL REMOTE SENSING WITH FIELD SPECTROMETRY TO MONITOR INLAND WATER QUALITY PARAMETERS

    EPA Science Inventory

    Visible to near-infrared, airborne hyperspectral data were successfully used to estimate water quality parameters such as chlorophyll a, turbidity and total phosphorus from the Great Miami River, Ohio. During the summer of 1999, spectral data were collected with a hand-held fiel...

  7. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  8. Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.

    1994-01-01

    Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.

  9. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  10. Airborne Multi-Angle Hyper-Spectral Measurements of White Caps on the Open Ocean

    NASA Astrophysics Data System (ADS)

    Laveigne, J.; Cairns, B.; Diner, D. J.

    2004-05-01

    The influence of whitecaps on the atmospheric correction of ocean color measurements is highly dependent on the spectral variation of albedo that is assumed for the whitecaps. Field measurements of breaking waves in the surf zone indicate a strong spectral variation in whitecap reflectance with the reflectance at 1650 nm nm decreasing by 95% relative to that at 440 nm. The cause of this spectral variation is thought to be the strong absorption by water at longer wavelengths that attenuates light reflected from submerged bubbles. Measurements made during an ocean cruise suggest that the magnitude of this decrease is typically less in the open ocean where the wave breaking is less violent and bubbles are not injected as deep into the water. Nonetheless, even in the open ocean, when whitecaps are large and bright similar decreases in reflectance from 440 nm to 860 nm to those observed in the surf zone are seen. Unfortunately, although measurements in the vicinity of 1600 and 2200 nm are important for remote sensing of aerosols and the atmospheric correction of ocean color measurements, the longest wavelength used for the open ocean measurements was 860 nm. Information about typical reflectance decreases from 440 nm to these longer wavelengths is therefore missing. One approach to remedying this absence of information about the spectral variation of white cap albedo across the solar spectrum is to use an airborne imaging spectrometer. However, a significant difficulty in using airborne, or ship-borne, instrumentation to measure the spectral albedo of whitecaps is the contamination of data by sun glitter. It is usually much more difficult than anticipated to filter data to reject glitter, even for ship-borne measurements with a television camera that provides a visual reference. This means that most data that is reported is obtained under overcast conditions. One approach to alleviating the problems caused by sun glitter is to using multi-angle remote sensing. If

  11. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  12. Study on data mining technology in hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Su, Hongjun; Sheng, Yehua; Wen, Yongning; Tao, Hong

    2007-06-01

    In this paper, the problems rise in hyperspectral data mining and some key issues should pay attention to were proposed based on the analysis on the state-of-art of hyperspectral data mining. The problems are as follows: data mining precision, mining algorithm efficiency, new hyperspectral data mining algorithms, the uncertainty in hyperspectral data mining, visualization in hyperspectral data mining process, and knowledge presentation, interpretation, estimation and management etc.. Some key issues should emphasize in the future are: systematic hyperspectral data mining theory, dimensionality reduction, mining spatial and temporal knowledge from images, and mining distributed data and mining multi-agent data. Also the framework and architecture of hyperspectral data mining were put forward in this paper. Hyperspectral data mining framework includes some subparts as follows: data selection, data preprocessing, data transfer, data mining and pattern estimation. And the architecture is composed of database, data warehouse, database management system, repository, mining process, user interface etc.. At last, an algorithm which named Relational perspective map (RPM) was introduced into the field of hyperspectral data mining. By the experiment on the spectra data from USGS spectral library, it proves that this algorithm is suitable to discover those spectral features and to identify and discriminate object classes based on their spectra.

  13. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  14. Estimating canopy water content using hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Clevers, J. G. P. W.; Kooistra, L.; Schaepman, M. E.

    2010-04-01

    Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a modelling approach and in situ spectroradiometric measurements. The relationship of the first derivative at the right slope of the 970 nm water absorption feature with CWC was investigated with the PROSAIL radiative transfer model and tested for field spectroradiometer measurements on two test sites. The first site was a heterogeneous floodplain with natural vegetation like grasses and various shrubs. The second site was an extensively grazed fen meadow. PROSAIL simulations (using coupled SAIL/PROSPECT-5 models) showed a linear relationship between the first derivative over the 1015-1050 nm spectral interval and CWC ( R2 = 0.97). For 8 plots at the floodplain site the spectral derivative over the 1015-1050 nm interval obtained with an ASD FieldSpec spectroradiometer yielded an R2 of 0.51 with CWC. For 40 plots at the fen meadow ASD FieldSpec spectral measurements yielded an R2 of 0.68 for the derivative over the 1015-1050 nm interval with CWC. Consistency of the results confirmed the potential of using simulation results for calibrating the relationship between this first derivative and CWC.

  15. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  16. Chlorophyll content retrieval from hyperspectral remote sensing imagery.

    PubMed

    Yang, Xiguang; Yu, Ying; Fan, Wenyi

    2015-07-01

    Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.

  17. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  18. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned

  19. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    NASA Astrophysics Data System (ADS)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  20. Development of an airborne remote sensing system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  1. Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Buchhorn, M.; Cristobal, J.; Kokaly, R. F.; Graham, P. R.; Waigl, C. F.; Hampton, D. L.; Werdon, M.; Guldager, N.; Bertram, M.; Stuefer, M.

    2015-12-01

    Hyperspectral imagery acquired using Hyspex VNIR-1800 and SWIR-384 camera systems have provided unique information on terrestrial and aquatic biogeochemical parameters, and diagnostic mineral properties in exposed outcrops in selected sites in the state of Alaska. The Hyspex system was configured for in-situ and field scanning by attaching it to a gimbal-mounted rotational stage on a robust tripod. Scans of vertical faces of vegetation and rock outcrops were made close to the campus of the University of Alaska Fairbanks, in an abandoned mine near Fairbanks, and on exposures of Orange Hill in Wrangell-St. Elias National Park. Atmospherically corrected integrated VNIR_SWIR spectra were extracted which helped to study varying nitrogen content in the vegetation, and helped to distinguish the various micas. Processed imagery helped to pull out carbonates, clays, sulfates, and alteration-related minerals. The same instrument was also mounted in airborne configuration on two different aircrafts, a DeHavilland Beaver and a Found Bush Hawk. Test flights were flown over urban and wilderness areas that presented a variety of landcover types. Processed imagery shows promise in mapping man-made surfaces, phytoplankton, and dissolved materials in inland water bodies. Sample data and products are available on the University of Alaska Fairbanks Hyperspectral Imaging Laboratory (HyLab) website at http://hyperspectral.alaska.edu.

  2. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  3. The design and the development of a hyperspectral and multispectral airborne mapping system

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Gessler, Paul E.

    Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445-900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented.

  4. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    PubMed

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  5. Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kandare, Kaja; Ørka, Hans Ole; Dalponte, Michele; Næsset, Erik; Gobakken, Terje

    2017-08-01

    Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI

  6. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  7. Airborne infrared-hyperspectral mapping for detection of gaseous and solid targets

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2010-04-01

    Airborne hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. The Telops Hyper-Cam is a rugged and compact infrared hyperspectral imager based on the Fourier-transform technology. It has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. The technology offers fine spectral resolution (up to 0.25 cm-1) and high accuracy radiometric calibration (better than 1 degree Celsius). Furthermore, the spectral resolution, spatial resolution, swath width, integration time and sensitivity are all flexible parameters that can be selected and optimized to best address the specific objectives of each mission. The system performance and a few measurements have been presented in previous publications. This paper focuses on analyzing additional measurements in which detection of fertilizer and Freon gas has been demonstrated.

  8. [Hyperspectral Remote Sensing Estimation Models for Pasture Quality].

    PubMed

    Ma, Wei-wei; Gong, Cai-lan; Hu, Yong; Wei, Yong-lin; Li, Long; Liu, Feng-yi; Meng, Peng

    2015-10-01

    that the first derivatives or the wavelet coefficients of hyperspectral reflectance in visible and near-infrared regions can be used for pasture quality estimation, and that it will provide a basis for real-time prediction of pasture quality using remote sensing techniques.

  9. Retrieval of Topsoil Properties of Vegetation-Covered Terrain Using Airborne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Liu, Lanfa; Buchroithner, Manfred

    2016-04-01

    Soil spectroscopy is a promising technique for topsoil analysis, and has been successfully utilized in the laboratory. When it is applied from airborne platforms, the presence of vegetation significantly affects imaging spectroscopy or hyperspectral imaging when retrieving topsoil properties. A Forced Invariance Approach has been proved to be able to effectively suppress the vegetation signal in mixed pixels. However, the approach is still mainly limited to lithological mapping. In this paper, we attempted to apply it to the retrieval of topsoil properties (soil moisture and soil salinity at depths 4 cm and 10 cm) using airborne hyperspectral data. The corresponding ground truth data was obtained from an eco-hydrological wireless sensing network in the Zhangye Oasis in the middle stream of the Heihe River Basin, China. The General Linear Model with Logit Link Function was adopted to model the relationships between measured soil properties and the spectra. The vegetation suppression result demonstrates that the spectral response curves of hyperspectral image pixels are flattened and the shapes are rather similar to the soil endmenber spectrum. From the modelling results it can be seen that the Forced Invariance Approach is more effective for soil moisture than for soil salinity at depth 10 cm, as the salt content is comparatively lower than the water content in soil, and the corresponding spectral response is weaker. This approach did not work for soil at a depth of 4 cm. The reason for this is that surface soil is significantly influenced by exterior factors like irrigation and wind, and landscape fragmentation and cultivation activities also contribute to the high spatial heterogeneity of the surface soil properties.

  10. Massively parallel processing of remotely sensed hyperspectral images

    NASA Astrophysics Data System (ADS)

    Plaza, Javier; Plaza, Antonio; Valencia, David; Paz, Abel

    2009-08-01

    In this paper, we develop several parallel techniques for hyperspectral image processing that have been specifically designed to be run on massively parallel systems. The techniques developed cover the three relevant areas of hyperspectral image processing: 1) spectral mixture analysis, a popular approach to characterize mixed pixels in hyperspectral data addressed in this work via efficient implementation of a morphological algorithm for automatic identification of pure spectral signatures or endmembers from the input data; 2) supervised classification of hyperspectral data using multi-layer perceptron neural networks with back-propagation learning; and 3) automatic target detection in the hyperspectral data using orthogonal subspace projection concepts. The scalability of the proposed parallel techniques is investigated using Barcelona Supercomputing Center's MareNostrum facility, one of the most powerful supercomputers in Europe.

  11. Remote sensing using an airborne biosensor

    SciTech Connect

    Ligler, F.S.; Anderson, G.P.; Davidson, P.T.; Stenger, D.A.; Ives, J.T.; King, K.D.; Page, G.; Whelan, J.P.

    1998-08-15

    There is no current method for remote identification of aerosolized bacteria. In particular, such a capability is required to warn of a biological warfare attack prior to human exposure. A fiber optic biosensor, capable of running four simultaneous immunoassays, was integrated with an automated fluidics unit, a cyclone-type air sampler, a radio transceiver, and batteries on a small, remotely piloted airplane capable of carrying a 4.5-kg payload. The biosensor system was able to collect aerosolized bacteria in flight, identify them, and transmit the data to the operator on the ground. The results demonstrate the feasibility of integrating a biosensor into a portable, remotely operated system for environmental analysis.

  12. A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data

    NASA Astrophysics Data System (ADS)

    Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi

    2014-10-01

    This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.

  13. Airborne remote sensing combating marine pollution in the United Kingdom

    SciTech Connect

    Goodman, C.; Small, J.; Mason, D.

    1996-10-01

    The Marine Pollution Control Unit (MPCU) is a small command, control and rapid response Organization set up to exercise the responsibility accepted by the United Kingdom Government for counter pollution operations at sea when spilled oil (or other dangerous substances) from ships threatens major pollution of the UK coast. Resources used by WCU to respond to pollution incidents include two surveillance aircraft fitted with side-looking radar (SLAR), and infrared (IR) and ultra-violet (UV) Remote Sensing equipment. The paper will describe the use of Airborne Remote Sensing in an operational role and demonstrate how the United Kingdom Government responds to pollution incidents. The paper will also explain how Airborne Remote Sensing is used to patrol the waters surrounding the United Kingdom. Reference will be made to coordinated flights carried out under the Bonn Agreement, a non-mandatory support Organization involving all states bordering the North Sea, and the EU. 2 refs.

  14. Postfire soil burn severity mapping with hyperspectral image unmixing

    Treesearch

    Peter R. Robichaud; Sarah A. Lewis; Denise Y. M. Laes; Andrew T. Hudak; Raymond F. Kokaly; Joseph A. Zamudio

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after...

  15. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring

    NASA Astrophysics Data System (ADS)

    Scafutto, Rebecca Del'Papa Moreira; de Souza Filho, Carlos Roberto; de Oliveira, Wilson José

    2017-06-01

    Remote detection and mapping of hydrocarbons (PHCs) in situ in continental areas is still an operational challenge due to the small scale of the occurrences and the mix of spectral signatures of PHCs and mineral substrates in imagery pixels. Despite the increasing development of new technologies, the use of hyperspectral remote sensing data as a complementary tool for both oil exploration and environmental monitoring is not standard in the oil industry, despite its potential. The high spectral resolution of hyperspectral images allows the direct identification of PHCs on the surface and provides valuable information regarding the location and spread of oil spills that can assist in containment and cleanup operations. Combining the spectral information with statistical techniques also offers the potential to improve exploration programs focused on the discovery of new exploration fields through the qualitative and quantitative characterization of oil occurrences in onshore areas. In this scenario, the aim of this work was to develop methods that can assist the detection of continental areas affected by natural oil seeps or leaks (crude oils and fuels). A field experiment was designed by impregnating several mineral substrates with crude oils and fuels in varying concentrations. Simultaneous measurements of soil-PHC combinations were taken using both a hand-held spectrometer and an airborne hyperspectral imager. Classification algorithms were used to directly map the PHCs on the surface. Spectral information was submitted to a PLS (partial least square regression) to create a prediction model for the estimation of the concentrations of PHCs in soils. The developed model was able to detect three impregnation levels (low, intermediate, high), predicting values close to the concentrations used in the experiment. Given the quality of the results in controlled experiments, the methods developed in this research show the potential to support the oil industry in the

  16. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].

    PubMed

    Tan, Chang-Wei; Zhou, Qing-Bo; Qi, La; Zhuang, Heng-Yang

    2008-06-01

    The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem < sheath < spike < leaf. The spectral reflectance at visible light bands was leaf < spike < sheath < stem, but that at near-infrared bands was in adverse. The linear and exponential models with the raw hyperspectral reflectance at 796.7 nm and the first derivative hyperspectral reflectance at 738.4 nm as independent variables could better diagnose rice plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.

  17. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area

    NASA Astrophysics Data System (ADS)

    Richter, Ronny; Reu, Björn; Wirth, Christian; Doktor, Daniel; Vohland, Michael

    2016-10-01

    The success of remote sensing approaches to assess tree species diversity in a heterogeneously mixed forest stand depends on the availability of both appropriate data and suitable classification algorithms. To separate the high number of in total ten broadleaf tree species in a small structured floodplain forest, the Leipzig Riverside Forest, we introduce a majority based classification approach for Discriminant Analysis based on Partial Least Squares (PLS-DA), which was tested against Random Forest (RF) and Support Vector Machines (SVM). The classifier performance was tested on different sets of airborne hyperspectral image data (AISA DUAL) that were acquired on single dates in August and September and also stacked to a composite product. Shadowed gaps and shadowed crown parts were eliminated via spectral mixture analysis (SMA) prior to the pixel-based classification. Training and validation sets were defined spectrally with the conditioned Latin hypercube method as a stratified random sampling procedure. In the validation, PLS-DA consistently outperformed the RF and SVM approaches on all datasets. The additional use of spectral variable selection (CARS, "competitive adaptive reweighted sampling") combined with PLS-DA further improved classification accuracies. Up to 78.4% overall accuracy was achieved for the stacked dataset. The image recorded in August provided slightly higher accuracies than the September image, regardless of the applied classifier.

  18. [Application of hyper-spectral remote sensing technology in environmental protection].

    PubMed

    Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An

    2013-12-01

    Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

  19. Airborne Hyperspectral Infrared Imaging Survey of the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Johnson, P. D.

    2014-12-01

    The San Andreas Fault (SAF) between Desert Hot Springs and Bombay Beach has been surveyed with Mako, an airborne hyperspectral imager operating across the wavelength range 7.6-13.2 μm in the thermal-infrared (TIR) spectral region. The data were acquired with a 4-km swath width centered on the SAF, and many tectonic features are recorded in the imagery. Spectral analysis using diagnostic features of minerals can identify rocks, soils and vegetation. Mako imagery can also locate rupture zones and measure slip distances. Designed and built by The Aerospace Corporation, the innovative and highly capable airborne imaging spectrometer used for this work enables low-noise performance (NEΔT ≲ 0.1 K @ 10 μm) at small pixel IFOV (0.55 mrad) and high frame rates, making possible an area-coverage rate of 20 km2 per minute with 2-m ground resolution from 12,500 ft (3.8 km) above-ground altitude. Since its commissioning in 2010, Mako has been used in numerous studies involving other earthquake fault systems (Hector Mine, S. Bristol Mts.), mapping of surface geology, geothermal sources (fumaroles near the Salton Sea), urban surveys, and the detection, quantification, and tracking of natural and anthropogenic gaseous emission plumes. Mako is available for airborne field studies and new applications are of particular interest. It can be flown at any altitude below 20,000 ft to achieve the desired GSD.

  20. Mariana Islands-Hyperspectral Airborne Remote Environmental Sensing Experiment 2010

    DTIC Science & Technology

    2012-04-09

    bouquet flower coral Stony coral found in a variety of textures and colors. Some are smooth, while others are pimply, and look like carpet. Colors...only relict structures and textures remaining. Like Tinian, volcanic rock forms the foundation of Guam and is exposed over about 35 percent of the...500GB or greater. Memory greater than 500GB is required due to the voluminous size of HSI data cubes . For the HSI, spatial information is represented

  1. Hawaii-Hyperspectral Airborne Remote Environmental Sensing (HIHARES󈧍) Experiment

    DTIC Science & Technology

    2012-03-15

    encrusting and plate- like (shallow water) or branching (deep); dark - chocolate with white borders to beige or white. Pavona varians false brain coral...Mushroom coral Solitary coral on large (4-28 cm), free, elliptical plates; green to dark brown. Montipora verrucosa rice coral Highly variable...pencil; colonies small, up to 15 cm; bushy- shaped; light to dark brown. Pocillopora meandrina cauliflower coral Heavy, leaf-like branches often forked

  2. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  3. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    PubMed Central

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I.

    2008-01-01

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer) and compared to the available measuring sensitivity of the sensor (NEΔLλsensor). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions. PMID:27879801

  4. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing.

    PubMed

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I

    2008-03-18

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλ(aer) ) and compared to the available measuring sensitivity of the sensor (NE ΔLλ(sensor)). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  5. Real-time progressive hyperspectral remote sensing detection methods for crop pest and diseases

    NASA Astrophysics Data System (ADS)

    Wu, Taixia; Zhang, Lifu; Peng, Bo; Zhang, Hongming; Chen, Zhengfu; Gao, Min

    2016-05-01

    Crop pests and diseases is one of major agricultural disasters, which have caused heavy losses in agricultural production each year. Hyperspectral remote sensing technology is one of the most advanced and effective method for monitoring crop pests and diseases. However, Hyperspectral facing serial problems such as low degree of automation of data processing and poor timeliness of information extraction. It resulting we cannot respond quickly to crop pests and diseases in a critical period, and missed the best time for quantitative spraying control on a fixed point. In this study, we take the crop pests and diseases as research point and breakthrough, using a self-development line scanning VNIR field imaging spectrometer. Take the advantage of the progressive obtain image characteristics of the push-broom hyperspectral remote sensor, a synchronous real-time progressive hyperspectral algorithms and models will development. Namely, the object's information will get row by row just after the data obtained. It will greatly improve operating time and efficiency under the same detection accuracy. This may solve the poor timeliness problem when we using hyperspectral remote sensing for crop pests and diseases detection. Furthermore, this method will provide a common way for time-sensitive industrial applications, such as environment, disaster. It may providing methods and technical reserves for the development of real-time detection satellite technology.

  6. Multivariate curve resolution for the analysis of remotely sensed thermal infrared hyperspectral images.

    SciTech Connect

    Haaland, David Michael; Stork, Christopher Lyle; Keenan, Michael Robert

    2004-07-01

    While hyperspectral imaging systems are increasingly used in remote sensing and offer enhanced scene characterization relative to univariate and multispectral technologies, it has proven difficult in practice to extract all of the useful information from these systems due to overwhelming data volume, confounding atmospheric effects, and the limited a priori knowledge regarding the scene. The need exists for the ability to perform rapid and comprehensive data exploitation of remotely sensed hyperspectral imagery. To address this need, this paper describes the application of a fast and rigorous multivariate curve resolution (MCR) algorithm to remotely sensed thermal infrared hyperspectral images. Employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, it is demonstrated that MCR can successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. We take a semi-synthetic approach to obtaining image data containing gas plumes by adding emission gas signals onto real hyperspectral images. MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of an ammonia gas plume component added near the minimum detectable quantity.

  7. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots

    EPA Science Inventory

    Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae. ...

  8. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots

    EPA Science Inventory

    Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae. ...

  9. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Minghua; Qin, Zhihao; Liu, Xue; Ustin, Susan L.

    2003-11-01

    Large-scale farming of agricultural crops requires on-time detection of diseases for pest management. Hyperspectral remote sensing data taken from low-altitude flights usually have high spectral and spatial resolutions, which can be very useful in detecting stress in green vegetation. In this study, we used late blight in tomatoes to illustrate the capability of applying hyperspectral remote sensing to monitor crop disease in the field scale and to develop the methodologies for the purpose. A series of field experiments was conducted to collect the canopy spectral reflectance of tomato plants in a diseased tomato field in Salinas Valley of California. The disease severity varied from stage 1 (the light symptom), to stage 4 (the sever damage). The economic damage of the crop caused by the disease is around the disease stage 3. An airborne visible infrared imaging spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4-2.5 μm was acquired during the growing season when the field data were collected. The spectral reflectance of the field samples indicated that the near infrared (NIR) region, especially 0.7-1.3 μm, was much more valuable than the visible range to detect crop disease. The difference of spectral reflectance in visible range between health plants and the infected ones at stage 3 was only 1.19%, while the difference in the NIR region was high, 10%. We developed an approach including the minimum noise fraction (MNF) transformation, multi-dimensional visualization, pure pixels endmember selection and spectral angle mapping (SAM) to process the hyperspectral image for identification of diseased tomato plants. The results of MNF transformation indicated that the first 28 eigenimages contain useful information for classification of the pixels and the rest were mainly noise-dominated due to their low eigenvalues that had few signals. Therefore, the 28 signal eigenimages were used to generate a multi-dimensional visualization space for

  10. Application of airborne remote sensing to the ancient Pompeii site

    NASA Astrophysics Data System (ADS)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  11. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  12. Airborne FTIR remote sensing of methane from the FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Illingworth, Samuel; Mead, Iq; Harlow, Chawn; Newman, Stuart; Vance, Alan

    2015-04-01

    This paper presents the first campaign results for retrievals of methane (and other gases and thermodynamic parameters) from the Airborne Research Interferometer Evaluation System (ARIES) FTIR instrument on the UK Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft. The ARIES is a thermal infrared BOMEM FTS tailored for airborne use and has an unapodised spectral resolution of 1 cm-1. It was developed as an IASI analogue for radiometric calibration of its satellite countepart. We will discuss the technical and theoretical assessment of the ARIES retrieval processor and present retrievals and interpretation of remote sampling over several years of campaign data in the tropics, around the UK, and in the high Arctic, during the Jaivex, GAUGE and MAMM campaigns respectively. Validation studies against airborne in situ data have shown that ARIES can achieve accuracties of ~2% in partial column retrievals of methane, while providing simultaneous information on a wide range of other trace gases typical of FTIR measurement. The ARIES has now beein in operation on the FAAM aircraft for a range of campaigns around the world and represents a useful validation bridge between high precision in situ point measurements (on the ground and by aircraft) and satellite remote sensing.

  13. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  14. Evaluating AISA+ hyperspectral imagery for mapping black mangrove along the South Texas Gulf Coast

    USDA-ARS?s Scientific Manuscript database

    Mangrove wetlands are economically and ecologically important ecosystems and accurate assessment of these wetlands with remote sensing can assist in their management and conservation. This study was conducted to evaluate airborne AISA+ hyperspectral imagery and image transformation and classificatio...

  15. Mapping Black Mangrove Along the South Texas Gulf Coast Using AISA+ Hyperspectral Imagery

    USDA-ARS?s Scientific Manuscript database

    Mangrove wetlands are economically and ecologically important ecosystems and accurate assessment of these wetlands with remote sensing can assist in their management and conservation. This study was conducted to evaluate airborne hyperspectral imagery and image compression and classification techniq...

  16. Performance of Three Reflectance Calibration Methods for Airborne Hyperspectral Spectrometer Data

    PubMed Central

    Miura, Tomoaki; Huete, Alfredo R.

    2009-01-01

    In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The “reflectance mode (RM)” method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The “linear-interpolation (LI)” method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The “continuous panel (CP)” method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies

  17. Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data.

    PubMed

    Miura, Tomoaki; Huete, Alfredo R

    2009-01-01

    In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The "reflectance mode (RM)" method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The "linear-interpolation (LI)" method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The "continuous panel (CP)" method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important

  18. Exploring the relationship between species discrimination and plant functional types with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Roth, K. L.; Roberts, D. A.; Dennison, P. E.; Alonzo, M.

    2012-12-01

    Hyperspectral remote sensing data has been used extensively to map vegetation function and to classify plant functional types (PFTs) and species. Still, room remains to explore how these two exercises are related. Species-specific variations can hinder the broader applicability of models, and likewise, the role of functional differences in species discrimination has only recently been conceptually framed. The relationship between our ability to discriminate species with hyperspectral data and how species are grouped into plant functional types bears examination. Here we present an exploratory data analysis of this relationship using hyperspectral data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for approximately 56 plant species over five ecosystems. We address three main research questions: 1) How spectrally separable are species overall?; 2) Which wavelengths and functional indices/features best discriminate species and do these relate to functional differences?; and 3) What optical functional types appear to exist across species? Reflectance spectra from each site were extracted from areas of known species dominance, and a suite of vegetation indices and spectral feature parameters (e.g., red edge wavelength) were calculated. Reflectance data and index/feature data were used separately in analyses. Classification via Canonical Discriminant Analysis (CDA) was used to reduce data dimensionality and determine spectral separability across all species. The resulting kappa coefficient represents overall class separability, and the error matrix contains information on which pairs of species were more or less separable. The importance of individual variables to species discrimination was evaluated using the total structure coefficients for each function. These allowed us to identify the information a function carries that is useful for discrimination. We also calculated the potency index, a measure of the total contribution of each variable

  19. Remote sensing of shorelines using data fusion of hyperspectral and multispectral imagery acquired from mobile and fixed platforms

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Frystacky, Heather

    2012-06-01

    An optimized data fusion methodology is presented and makes use of airborne and vessel mounted hyperspectral and multispectral imagery acquired at littoral zones in Florida and the northern Gulf of Mexico. The results demonstrate the use of hyperspectral-multispectral data fusion anomaly detection along shorelines and in surface and subsurface waters. Hyperspectral imagery utilized in the data fusion analysis was collected using a 64-1024 channel, 1376 pixel swath width; temperature stabilized sensing system; an integrated inertial motion unit; and differential GPS. The imaging system is calibrated using dual 18 inch calibration spheres, spectral line sources, and custom line targets. Simultaneously collected multispectral three band imagery used in the data fusion analysis was derived either a 12 inch focal length large format camera using 9 inch high speed AGFA color negative film, a 12.3 megapixel digital camera or dual high speed full definition video cameras. Pushbroom sensor imagery is corrected using Kalman filtering and smoothing in order to correct images for airborne platform motions or motions of a small vessel. Custom software developed for the hyperspectral system and the optimized data fusion process allows for post processing using atmospherically corrected and georeferenced reflectance imagery. The optimized data fusion approach allows for detecting spectral anomalies in the resolution enhanced data cubes. Spectral-spatial anomaly detection is demonstrated using simulated embedded targets in actual imagery. The approach allows one to utilize spectral signature anomalies to identify features and targets that would otherwise not be possible. The optimized data fusion techniques and software has been developed in order to perform sensitivity analysis of the synthetic images in order to optimize the singular value decomposition model building process and the 2-D Butterworth cutoff frequency selection process, using the concept of user defined "feature

  20. Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Skidmore, Andrew K.; Wang, Tiejun; Darvishzadeh, Roshanak; Heiden, Uta; Heurich, Marco; Latifi, Hooman; Hearne, John

    2017-02-01

    A statistical relationship between canopy mass-based foliar nitrogen concentration (%N) and canopy bidirectional reflectance factor (BRF) has been repeatedly demonstrated. However, the interaction between leaf properties and canopy structure confounds the estimation of foliar nitrogen. The canopy scattering coefficient (the ratio of BRF and the directional area scattering factor, DASF) has recently been suggested for estimating %N as it suppresses the canopy structural effects on BRF. However, estimation of %N using the scattering coefficient has not yet been investigated for longer spectral wavelengths (>855 nm). We retrieved the canopy scattering coefficient for wavelengths between 400 and 2500 nm from airborne hyperspectral imagery, and then applied a continuous wavelet analysis (CWA) to the scattering coefficient in order to estimate %N. Predictions of %N were also made using partial least squares regression (PLSR). We found that %N can be accurately retrieved using CWA (R2 = 0.65, RMSE = 0.33) when four wavelet features are combined, with CWA yielding a more accurate estimation than PLSR (R2 = 0.47, RMSE = 0.41). We also found that the wavelet features most sensitive to %N variation in the visible region relate to chlorophyll absorption, while wavelet features in the shortwave infrared regions relate to protein and dry matter absorption. Our results confirm that %N can be retrieved using the scattering coefficient after correcting for canopy structural effect. With the aid of high-fidelity airborne or upcoming space-borne hyperspectral imagery, large-scale foliar nitrogen maps can be generated to improve the modeling of ecosystem processes as well as ecosystem-climate feedbacks.

  1. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  2. The practical utility of hyperspectral remote sensing for early detection of emerald ash borer

    Treesearch

    Richard Hallett; Jennifer Pontius; Mary Martin; Lucie Plourde

    2008-01-01

    Hyperspectral remote sensing technology has been used in forest ecology research for the last decade to examine landscape scale patterns of foliar chemistry (nitrogen, cellulose, and lignin) (Martin and Aber 1997), stand productivity (Smith et al. 2002), and soil nitrogen dynamics (Ollinger et al. 2002). More recently, techniques have been developed to map the location...

  3. The PNNL Quantitative IR Database for Infrared Remote Sensing and Hyperspectral Imaging

    SciTech Connect

    Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2002-10-16

    PNNL is presentle complying a quantitive, high spectral resolution set of infrared reference data that are specifically designed for atmospheric monitoring, remote sensing and hyperspectral imaging. The final lost of target componds will contain nearly 500 gas-phase species, where by each species is reported as a composite reference spectrum at 25 degress Celsius.

  4. ARE AIRBORNE CONTAMINANTS A RISK FACTOR TO AQUATIC ECOSYSTEMS IN REMOTE WESTERN NATIONAL PARKS (USA)

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  5. ARE AIRBORNE CONTAMINANTS A RISK FACTOR TO AQUATIC ECOSYSTEMS IN REMOTE WESTERN NATIONAL PARKS (USA)

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  6. Can the normalized soil moisture index improve the prediction of soil organic carbon based on hyperspectral remote sensing data?

    NASA Astrophysics Data System (ADS)

    van Wesemael, Bas; Nocita, Marco

    2016-04-01

    One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These

  7. Enhancement of Capabilities in Hyperspectral and Radar Remote Sensing for Environmental Assessment and Monitoring

    NASA Technical Reports Server (NTRS)

    Hepner, George F.

    1999-01-01

    The University of Utah, Department of Geography has developed a research and instructional program in satellite remote sensing and image processing. The University requested funds for the purchase of software licenses, mass storage for massive hyperspectral imager data sets, upgrades for the central data server to handle the additional storage capacity, a spectroradiometer for field data collection. These purchases have been made. This equipment will support research in one of the newest and most rapidly expanding areas of remote sensing.

  8. Hyperspectral remote sensing for monitoring species-specific drought impacts in southern California

    NASA Astrophysics Data System (ADS)

    Coates, Austin Reece

    A drought persisting since the winter of 2011-2012 has resulted in severe impacts on shrublands and forests in southern California, USA. Effects of drought on vegetation include leaf wilting, leaf abscission, and potential plant mortality. These impacts vary across plant species, depending on differences in species' adaptations to drought, rooting depth, and edaphic factors. During 2013 and 2014, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data were acquired seasonally over the Santa Ynez Mountains and Santa Ynez Valley north of Santa Barbara, California. To determine the impacts of drought on individual plant species, spectral mixture analysis was used to model a relative green vegetation fraction (RGVF) for each image date in 2013 and 2014. A July 2011 AVIRIS image acquired during the last nondrought year was used to determine a reference green vegetation (GV) endmember for each pixel. For each image date in 2013 and 2014, a three-endmember model using the 2011 pixel spectrum as GV, a lab nonphotosynthetic vegetation (NPV) spectrum, and a photometric shade spectrum was applied. The resulting RGVF provided a change in green vegetation cover relative to 2011. Reference polygons collected for 14 plant species and land cover classes were used to extract the RGVF values from each date. The deeply rooted tree species and tree species found in mesic areas appeared to be the least affected by the drought, whereas the evergreen chaparral showed the most extreme signs of distress. Coastal sage scrub had large seasonal variability; however, each year, it returned to an RGVF value only slightly below the previous year. By binning all the RGVF values together, a general decreasing trend was observed from the spring of 2013 to the fall of 2014. This study intends to lay the groundwork for future research in the area of multitemporal, hyperspectral remote sensing. With proposed plans for a hyperspectral sensor in space (HyspIRI), this type of research will prove to

  9. Band selection for hyperspectral remote sensing data through correlation matrix to improve image clustering

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Hamed

    2013-09-01

    Hyperspectral remote sensing is capable of providing large numbers of spectral bands. The vast amount of data volume presents challenging problems for information processing, such as heavy computational burden. In this paper, the impact of dimension reduction on hyperspectral data clustering is investigated from two viewpoints: 1) computational complexity; and 2) clustering performance. Clustering is one of the most useful tasks in data mining process. So, investigating the impact of dimension reduction on hyperspectral data clustering is justifiable. The proposed approach is based on thresholding the band correlation matrix and selecting the least correlated bands. Selected bands are then used to cluster the hyperspectral image. Experimental results on a real-world hyperspectral remote sensing data proved that the proposed approach will decrease computational complexity and lead to better clustering results. For evaluating the clustering performance, the Calinski-Harabasz, Davies-Bouldin and Krzanowski-Lai indices are used. These indices evaluate the clustering results using quantities and features inherent in the dataset. In other words, they do not need any external information.

  10. Hyperspectral Remote Sensing of Vegetation:Knowledge Gain and Knowledge Gap after 40 years of research

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Huete, A. R.

    2012-12-01

    This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher: Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advancements in processing large volumes of hyperspectral data have generated tremendous interest in expanding the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband spectral data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) the ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reduced uncertainty in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) the ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing wavebands and indices with greater sensitivity for analyzing vegetation characteristics. Current state of knowledge on hyperspectral narrowbands (HNBs) for agricultural and vegetation studies inferred from the Book entitled hyperspectral remote sensing of vegetation by Thenkabail et al., 2011. Six study areas of the World for which we have extensive data from field spectroradiometers for 8 major world crops (wheat, corn, rice, barley, soybeans, pulses, and cotton). Approx. 10,500 such data points will be used in crop modeling and in building spectral libraries.

  11. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data.

    PubMed

    Moses, Wesley J; Gitelson, Anatoly A; Perk, Richard L; Gurlin, Daniela; Rundquist, Donald C; Leavitt, Bryan C; Barrow, Tadd M; Brakhage, Paul

    2012-03-15

    Algorithms based on red and near infra-red (NIR) reflectances measured using field spectrometers have been previously shown to yield accurate estimates of chlorophyll-a concentration in turbid productive waters, irrespective of variations in the bio-optical characteristics of water. The objective of this study was to investigate the performance of NIR-red models when applied to multi-temporal airborne reflectance data acquired by the hyperspectral sensor, Airborne Imaging Spectrometer for Applications (AISA), with non-uniform atmospheric effects across the dates of data acquisition. The results demonstrated the capability of the NIR-red models to capture the spatial distribution of chlorophyll-a in surface waters without the need for atmospheric correction. However, the variable atmospheric effects did affect the accuracy of chlorophyll-a retrieval. Two atmospheric correction procedures, namely, Fast Line-of-sight Atmospheric Adjustment of Spectral Hypercubes (FLAASH) and QUick Atmospheric Correction (QUAC), were applied to AISA data and their results were compared. QUAC produced a robust atmospheric correction, which led to NIR-red algorithms that were able to accurately estimate chlorophyll-a concentration, with a root mean square error of 5.54 mg m(-3) for chlorophyll-a concentrations in the range 2.27-81.17 mg m(-3). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Research on dimension reduction method for hyperspectral remote sensing image based on global mixture coordination factor analysis

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wang, C.

    2015-06-01

    Over the past thirty years, the hyperspectral remote sensing technology is attracted more and more attentions by the researchers. The dimension reduction technology for hyperspectral remote sensing image data is one of the hotspots in current research of hyperspectral remote sensing. In order to solve the problems of nonlinearity, the high dimensions and the redundancy of the bands that exist in the hyperspectral data, this paper proposes a dimension reduction method for hyperspectral remote sensing image data based on the global mixture coordination factor analysis. In the first place, a linear low dimensional manifold is obtained from the nonlinear and high dimensional hyperspectral image data by mixture factor analysis method. In the second place, the parameters of linear low dimensional manifold are estimated by the EM algorithm of find a local maximum of the data log-likelihood. In the third place, the manifold is aligned to a global parameterization by the global coordinated factor analysis model and then the lowdimension image data of hyperspectral image data is obtained at last. Through the comparison of different dimensionality reduction method and different classification method for the low-dimensional data, the result illuminates the proposed method can retain maximum spectral information in hyperspectral image data and can eliminate the redundant among bands.

  13. Hyperspectral remote sensing for early detection of invasive pests

    Treesearch

    Jennifer Pontius; Mary Martin; Lucie Plourde; Richard Hallett

    2008-01-01

    Use of hyperspectral technologies to assess vegetation stress has been well-documented over the past several decades. However, taking these technologies from research to management applications has proven challenging. A multi-agency effort was conducted in 2006 to examine the capability of a commercially available sensor (SpecTIR VNIR) to map ash decline due to the...

  14. Mapping tree health using airborne laser scans and hyperspectral imagery: a case study for a floodplain eucalypt forest

    NASA Astrophysics Data System (ADS)

    Shendryk, Iurii; Tulbure, Mirela; Broich, Mark; McGrath, Andrew; Alexandrov, Sergey; Keith, David

    2016-04-01

    Airborne laser scanning (ALS) and hyperspectral imaging (HSI) are two complementary remote sensing technologies that provide comprehensive structural and spectral characteristics of forests over large areas. In this study we developed two algorithms: one for individual tree delineation utilizing ALS and the other utilizing ALS and HSI to characterize health of delineated trees in a structurally complex floodplain eucalypt forest. We conducted experiments in the largest eucalypt, river red gum forest in the world, located in the south-east of Australia that experienced severe dieback over the past six decades. For detection of individual trees from ALS we developed a novel bottom-up approach based on Euclidean distance clustering to detect tree trunks and random walks segmentation to further delineate tree crowns. Overall, our algorithm was able to detect 67% of tree trunks with diameter larger than 13 cm. We assessed the accuracy of tree delineations in terms of crown height and width, with correct delineation of 68% of tree crowns. The increase in ALS point density from ~12 to ~24 points/m2 resulted in tree trunk detection and crown delineation increase of 11% and 13%, respectively. Trees with incorrectly delineated crowns were generally attributed to areas with high tree density along water courses. The accurate delineation of trees allowed us to classify the health of this forest using machine learning and field-measured tree crown dieback and transparency ratios, which were good predictors of tree health in this forest. ALS and HSI derived indices were used as predictor variables to train and test object-oriented random forest classifier. Returned pulse width, intensity and density related ALS indices were the most important predictors in the tree health classifications. At the forest level in terms of tree crown dieback, 77% of trees were classified as healthy, 14% as declining and 9% as dying or dead with 81% mapping accuracy. Similarly, in terms of tree

  15. Water Quality Measurements from Hyperspectral Remote Sensing: The Case of the River Ganga

    NASA Astrophysics Data System (ADS)

    Baruch, A.; Carbonneau, P.; Sinha, R.; Scott, S.

    2014-12-01

    Water pollution is a major challenge in large river systems such as the Ganga (i.e. Ganges). With a population of 400 million, widespread agriculture and a heavy industrial base, this river basin is facing multiple stressors and as a result, is now notorious for poor water quality. One of the key issues in addressing this problem remains basic water quality monitoring with systematic and reliable methods. Currently, water quality datasets in the River Ganga are highly fragmented and inadequate for most investigations. Given the sub-continental scale of the system, remote sensing could offer a plausible solution if capable of producing holistic assessments of water quality with a standardised methodology. Specifically, the development of hyperspectral remote sensing, capable of detecting very small changes in incident radiation, offers the potential to mimic laboratory spectroscopy and thus identify the chemicals polluting a body of water, and perhaps, even measure their concentration. However, the use of hyperspectral remote sensing in order to measure water quality is not yet established and remains a very challenging problem. In this study, laboratory experiments, ancillary field data and hyperspectral imagery from the Hyperion sensor were used to explore the feasibility of using remote sensing to detect chromium pollution in the River Ganga. The laboratory experiments demonstrated that field spectroscopy was indeed capable of detecting chromium in concentrations that can currently be found in the Ganga. Furthermore, the analysis of the Hyperion images of the River Ganga shows some promising results which suggest that chromium compounds can be detected using hyperspectral satellite imagery. However, the results confirm that measuring water quality from spaceborne hyperspectral imagery is extremely challenging and further research is required to improve the confidence of these results and refine this methodology.

  16. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  17. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    PubMed

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  18. [Independent component analysis for spectral unmixing in hyperspectral remote sensing image].

    PubMed

    Luo, Wen-Fei; Zhong, Liang; Zhang, Bing; Gao, Lian-Ru

    2010-06-01

    Hyperspectral remote sensing plays an important role in earth observation on land, ocean and atmosphere. A key issue in hyperspectral data exploitation is to extract the spectra of the constituent materials (endmembers) as well as their proportions (fractional abundances) from each measured spectrum of mixed pixel in hyperspectral remote sensing image, called spectral un-mixing. Linear spectral mixture model (LSMM) provides an effective analytical model for spectral unmixing, which assumes that there is a linear relationship among the fractional abundances of the substances within a mixed pixel. To be physically meaningful, LSMM is subject to two constraints: the first constraint requires all abundances to be nonnegative and the second one requires all abundances to be summed to one. Independent component analysis (ICA) has been proposed as an advanced tool to un-mix hyperspectral image. However, ICA is based on the assumption of mutually independent sources, which violates the constraint conditions in LSMM. This embarrassment compromises ICA applicability to hyperspectral data. To overcome this problem, the present paper introduces a solution of minimization of total correlation of the components. Interestingly, with the minimization of total correlation of the components, the angle of the direction between each components is invariable. A Parallel oblique-ICA (Pob-ICA) algorithm is proposed to correct the angle of the searching direction between the components. Two novelties result from our proposed Pob-ICA algorithm. First, the algorithm completely satisfies the physical constraint conditions in LSMM and overcomes the limitation of statistical independency assumed by ICA. Second, the last component, which is missed in other existing ICA algorithms, can be estimated by our proposed algorithm. In experiments, Pob-ICA algorithm demonstrates excellent performance in the simulative and real hyperspectral images.

  19. Parallel implementation of linear and nonlinear spectral unmixing of remotely sensed hyperspectral images

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Plaza, Javier

    2011-11-01

    Hyperspectral unmixing is a very important task for remotely sensed hyperspectral data exploitation. It addresses the (possibly) mixed nature of pixels collected by instruments for Earth observation, which are due to several phenomena including limited spatial resolution, presence of mixing effects at different scales, etc. Spectral unmixing involves the separation of a mixed pixel spectrum into its pure component spectra (called endmembers) and the estimation of the proportion (abundance) of endmember in the pixel. Two models have been widely used in the literature in order to address the mixture problem in hyperspectral data. The linear model assumes that the endmember substances are sitting side-by-side within the field of view of the imaging instrument. On the other hand, the nonlinear mixture model assumes nonlinear interactions between endmember substances. Both techniques can be computationally expensive, in particular, for high-dimensional hyperspectral data sets. In this paper, we develop and compare parallel implementations of linear and nonlinear unmixing techniques for remotely sensed hyperspectral data. For the linear model, we adopt a parallel unsupervised processing chain made up of two steps: i) identification of pure spectral materials or endmembers, and ii) estimation of the abundance of each endmember in each pixel of the scene. For the nonlinear model, we adopt a supervised procedure based on the training of a parallel multi-layer perceptron neural network using intelligently selected training samples also derived in parallel fashion. The compared techniques are experimentally validated using hyperspectral data collected at different altitudes over a so-called Dehesa (semi-arid environment) in Extremadura, Spain, and evaluated in terms of computational performance using high performance computing systems such as commodity Beowulf clusters.

  20. (Cunninghamia lanceolata) caused by acid rain with hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Xie, Xiaozan; Jiang, Hong; Yu, Shuquan

    2009-10-01

    The purpose of this study is using hyperspectral data to detect the reflectance differences of Chinese fir (Cunninghamia lanceolata) which are sensitive to acidic stress and have been under different degrees of acid deposition stress for a long time. The hyperspectral reflectance for Chinese fir leaf is measured by Fieldspec Pro FR under three simulated acid rain levels (pH2.5, 4.0 and 5.6) during three years in order to monitor the response of leaf. The results indicated: (1) chlorophyll concentration of Chinese fir increased with the increasing of the simulated rain acidity in the late experimental period; (2) the 1st derivative values increased at the green edge (480-540nm) and red edge (680-760nm) with pH increasing; (3) the RVI550 and GNDVI values did differ significantly at pH2.5 and 5.6 treatment; (4) red edge position was found moving to longer wave bands with increasing rain acidity along with the experimental time; (5) there are significant differences vale at blue 510nm and 690nm wavelength between different treatments that can be used to be an useful parameters to distinguish the severity of acid deposition. The research also indicated that the hyperspectral parameters can be used to monitor the acid rain stress on trees.

  1. Modular airborne remote sampling and sensing system (MARSSS)

    SciTech Connect

    Woods, R.O.

    1982-04-01

    Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

  2. SYSIPHE system: a state of the art airborne hyperspectral imaging system: initial results from the first airborne campaign

    NASA Astrophysics Data System (ADS)

    Rousset-Rouviere, Laurent; Coudrain, Christophe; Fabre, Sophie; Poutier, Laurent; Løke, Trond; Fridman, Andrei; Blaaberg, Søren; Baarstad, Ivar; Skauli, Torbjorn; Mocoeur, Isabelle

    2014-10-01

    SYSIPHE is an airborne hyperspectral imaging system, result of a cooperation between France (Onera and DGA) and Norway (NEO and FFI). It is a unique system by its spatial sampling -0.5m with a 500m swath at a ground height of 2000m- combined with its wide spectral coverage -from 0.4μm to 11.5μm in the atmospheric transmission bands. Its infrared component, named SIELETERS, consists in two high étendue imaging static Fourier transform spectrometers, one for the midwave infrared and one for the longwave infrared. These two imaging spectrometers are closely similar in design, since both are made of a Michelson interferometer, a refractive imaging system, and a large IRFPA (1016x440 pixels). Moreover, both are cryogenically cooled and mounted on their own stabilization platform which allows the line of sight to be controlled and recorded. These data are useful to reconstruct and to georeference the spectral image from the raw interferometric images. The visible and shortwave infrared component, named Hyspex ODIN-1024, consists of two spectrographs for VNIR and SWIR based on transmissive gratings. These share a common fore-optics and a common slit, to ensure perfect registration between the VNIR and the SWIR images. The spectral resolution varies from 5nm in the visible to 6nm in the shortwave infrared. In addition, the STAD, the post processing and archiving system, is developed to provide spectral reflectance and temperature products (SRT products) from calibrated georeferenced and inter-band registered spectral images at the sensor level acquired and pre-processed by SIELETERS and Hyspex ODIN-1024 systems.

  3. NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing

    Treesearch

    Don Cline; Simon Yueh; Bruce Chapman; Boba Stankov; Al Gasiewski; Dallas Masters; Kelly Elder; Richard Kelly; Thomas H. Painter; Steve Miller; Steve Katzberg; Larry. Mahrt

    2009-01-01

    This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma...

  4. Hyperspectral remote sensing tools for quantifying plant litter and invasive species in arid ecosystems

    USGS Publications Warehouse

    Nagler, Pamela L.; Sridhar, B.B. Maruthi; Olsson, Aaryn Dyami; Glenn, Edward P.; van Leeuwen, Willem J.D.; Thenkabail, Prasad S.; Huete, Alfredo; Lyon, John G.

    2012-01-01

    Green vegetation can be distinguished using visible and infrared multi-band and hyperspectral remote sensing methods. The problem has been in identifying and distinguishing the non-photosynthetically active radiation (PAR) landscape components, such as litter and soils, and from green vegetation. Additionally, distinguishing different species of green vegetation is challenging using the relatively few bands available on most satellite sensors. This chapter focuses on hyperspectral remote sensing characteristics that aim to distinguish between green vegetation, soil, and litter (or senescent vegetation). Quantifying litter by remote sensing methods is important in constructing carbon budgets of natural and agricultural ecosystems. Distinguishing between plant types is important in tracking the spread of invasive species. Green leaves of different species usually have similar spectra, making it difficult to distinguish between species. However, in this chapter we show that phenological differences between species can be used to detect some invasive species by their distinct patterns of greening and dormancy over an annual cycle based on hyperspectral data. Both applications require methods to quantify the non-green cellulosic fractions of plant tissues by remote sensing even in the presence of soil and green plant cover. We explore these methods and offer three case studies. The first concerns distinguishing surface litter from soil using the Cellulose Absorption Index (CAI), as applied to no-till farming practices where plant litter is left on the soil after harvest. The second involves using different band combinations to distinguish invasive saltcedar from agricultural and native riparian plants on the Lower Colorado River. The third illustrates the use of the CAI and NDVI in time-series analyses to distinguish between invasive buffelgrass and native plants in a desert environment in Arizona. Together the results show how hyperspectral imagery can be applied to

  5. Hyperspectral remote sensing exploration of carbonatite - an example from Epembe, Kunene region, Namibia

    NASA Astrophysics Data System (ADS)

    Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard

    2015-04-01

    Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures

  6. Validating surface energy balance fluxes derived from airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Chavez Eguez, Jose Luis

    Remote sensing-derived energy balance components were compared against measured eddy covariance energy balance terms using heat flux source area models to validate the airborne multispectral remote sensing procedure in the estimation of instantaneous and daily evapotranspiration rates. A procedure was developed to generate raster layers of the footprint weights for weighting/integrating the different components of the energy balance model and obtain meaningful comparisons to similar energy balance terms measured at eddy covariance and/or Bowen ratio stations. Soil heat flux and surface aerodynamic temperature models were studied in an effort to improve the remote sensing estimation of distributed evapotranspiration rates. Aerial and ground data were acquired over a riparian corridor (Salt Cedar, Tamarix grove), soybean and cornfields (rainfed crops) in different ecosystems. The results confirmed that net radiation is well estimated with the remote sensing technique showing an estimation error of only -4.8 +/- 20.7 W m-2, (-0.5 +/- 3.6%). Linear and exponential soil heat flux models were found to correlate strongly to leaf area index and net radiation. The surface aerodynamic temperature term in the sensible heat flux equation was parameterized using surface radiometric temperature, air temperature, wind speed, and leaf area index. It is suggested that the surface aerodynamic temperature model be tested for a wide range of vegetation types, atmospheric stability conditions, surface heterogeneity, and ecosystems to assess the model limitations. The flux source area footprint model "FSAM" integrated heat flux pixels that compared better to measured values and it is recommended as a standard procedure to compare airborne remote sensing-derived heat fluxes against measured fluxes by eddy covariance systems; when compared to the "FASOWG" footprint model and simple arithmetic averages. Finally, the method that uses alfalfa reference daily evapotranspiration in

  7. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Peerbhay, Kabir Yunus; Mutanga, Onisimo; Ismail, Riyad

    2013-05-01

    Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393-900 nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n = 230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user's and producer's accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n = 78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user's and producer's accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393-723 nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.

  8. Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings

    NASA Astrophysics Data System (ADS)

    Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A.

    2014-10-01

    Acid mine drainage (AMD) is a key concern of the mining industry due to its impact on the quality of water and soils surrounding mine waste deposits. Acid mine drainage derives from the oxidation of metal sulphides, e.g. pyrite (FeS2), exposed to oxygen and water. The leachate acidity is capable of releasing heavy metals contained in the mining waste rock, which can affect water quality and lead to metal enrichment in sediments and potentially resulting in ecosystem degradation. Predicting tailings leachate pH is key to the management of sulfide-bearing mine wastes and is an emerging remote sensing application with limited studies having been realized. Such a capability would supplement traditional methods (i.e. ground surveys) that are challenging to implement due to the extent and large volume of mine waste. This study reports regional scale tailings mineral maps generated from airborne hyperspectral information of the Sotiel-Migollas complex in Spain and pinpoints sources of AMD. The extraction of spectral endmembers from imagery revealed twenty six endmembers for tailings material that represent mostly mineral mixtures. From these, eleven spectral groups were defined, each encompassing minor variations in mineral mixtures. The mineral maps resulting from the use of these endmembers for the detailed investigation of four tailings serve as indicators of the metal, sulphate, and pH levels of the AMD solution at the time of mineral precipitation. Predicted mineralogy was assessed using spectra from samples collected in the field and associated X-ray diffraction measurements. We also discuss the relative merits of the minerals maps of this study and soil leachate pH maps that we previously reported for the same locality using the same airborne data. The pH maps tend to provide predictions consistent with the mineralogy predicted from the mineral maps and the field and laboratory evidence. The pH maps offer information on the pH conditions of the tailings thus giving

  9. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  10. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields

    USGS Publications Warehouse

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  11. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data

    PubMed Central

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  12. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.

    PubMed

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R

    2015-09-11

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.

  13. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    PubMed

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  14. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    PubMed Central

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe

    2017-01-01

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface

  15. GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Paz, Abel; Plaza, Antonio

    2010-08-01

    Automatic target and anomaly detection are considered very important tasks for hyperspectral data exploitation. These techniques are now routinely applied in many application domains, including defence and intelligence, public safety, precision agriculture, geology, or forestry. Many of these applications require timely responses for swift decisions which depend upon high computing performance of algorithm analysis. However, with the recent explosion in the amount and dimensionality of hyperspectral imagery, this problem calls for the incorporation of parallel computing techniques. In the past, clusters of computers have offered an attractive solution for fast anomaly and target detection in hyperspectral data sets already transmitted to Earth. However, these systems are expensive and difficult to adapt to on-board data processing scenarios, in which low-weight and low-power integrated components are essential to reduce mission payload and obtain analysis results in (near) real-time, i.e., at the same time as the data is collected by the sensor. An exciting new development in the field of commodity computing is the emergence of commodity graphics processing units (GPUs), which can now bridge the gap towards on-board processing of remotely sensed hyperspectral data. In this paper, we describe several new GPU-based implementations of target and anomaly detection algorithms for hyperspectral data exploitation. The parallel algorithms are implemented on latest-generation Tesla C1060 GPU architectures, and quantitatively evaluated using hyperspectral data collected by NASA's AVIRIS system over the World Trade Center (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in the WTC complex.

  16. Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis

    NASA Astrophysics Data System (ADS)

    Hakvoort, Hans; de Haan, Johan; Jordans, Rob; Vos, Robert; Peters, Steef; Rijkeboer, Machteld

    Water managers request maps of water quality parameters such as concentrations of dissolved organic matter (CDOM), chlorophyll or total suspended matter (TSM). Rijkswaterstaat sets up a production chain for such maps using a hyperspectral imaging scanner installed in the Dutch coast guard aircraft. Water quality parameters are retrieved from remote-sensed images using successively: (1) a module calculating the subsurface reflectance spectra and (2) a module calculating the concentrations using specific inherent optical properties (SIOP) of the water constituents and the Gordon reflectance model implemented in a matrix inversion technique. The accuracy of several numerical methods for retrieval of concentrations from reflectance spectra was assessed. Effects of instrumental noise, errors in the atmospheric correction and errors in the specific inherent optical properties on the derived concentrations were also estimated. A benchmark data set was collected for Lake Veluwe in the Netherlands. For ideal circumstances, two of the tested numerical methods were able to retrieve both total suspended matter as well as chlorophyll concentration. For less favourable circumstances, total suspended matter could still be retrieved, but chlorophyll became less accurate. Dissolved organic matter concentrations could not be retrieved for any case. Application of the matrix inversion technique tested on an airborne image from Lake Veluwe showed promising results.

  17. Hyperspectral mineral mapping technology applied to geology based on HyMap data

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Yang, Kai; Yang, Zi'an; Zhang, Pubin; Lu, Yan; Yan, Peisheng

    2016-10-01

    Hyperspectral remote sensing technology has been in front of remote sensing science and technology. It brought a technical revolution for remote sensing. Hyperspectral remote sensing let the spatial and spectral dimensions of traditional image information fusion to an organic whole. It make the multispectral remote sensing image features in wide band to be detected and differentiated in hyperspectral remote sensing detection. Hyperspectral mineral mapping is the most successful technology which can exert its advantages of application field in geology. Using the airborne visible-light and near infrared and short-wave infrared imaging spectral HyMap data, we research the rock ore information recognition of Hami district in Xinjiang. Hyperspectral mineral mapping has made the good application effect in the exploration and resource prediction evaluation in ore-prospecting work.

  18. Model-based Hyperspectral Exploitation Algorithm Development

    DTIC Science & Technology

    2006-01-01

    pixels, and an iterative constrained optimization using generalized reduced gradients ( GRG ). Sample results are shown in Figure 5. Much progress has...in-water optical parameters from remote observations involved a non-linear optimization that required observations of several regions of interests...retrieval from long wave infrared airborne hyperspectral imagery. The optimized land surface temperature and emissivity retrieval (OLSTER) algorithm

  19. Model-based Hyperspectral Exploitation Algorithm Development

    DTIC Science & Technology

    2007-09-30

    near- blackbody pixels, and an iterative constrained optimization using generalized reduced gradients ( GRG ). Sample results are shown in Figure 5...derive the spectral in-water optical parameters from remote observations involved a non-linear optimization that required observations of several...and emissivity retrieval from long wave infrared airborne hyperspectral imagery. The optimized land surface temperature and emissivity retrieval

  20. Hyperspectral remote sensing data maps minerals in Afghanistan

    NASA Astrophysics Data System (ADS)

    King, Trude V. V.; Kokaly, Raymond F.; Hoefen, Todd M.; Johnson, Michaela R.

    2012-08-01

    Although Afghanistan has abundant mineral resources, including gold, silver, copper, rare earth elements, uranium, tin, iron ore, mercury, lead-zinc, bauxite, and industrial minerals, most have not been successfully developed or explored using modern methods. The U.S. Geological Survey (USGS) with cooperation from the Afghan Geological Survey (AGS) and support from the Department of Defense's Task Force for Business and Stability Operations (TFBSO) has used new imaging spectroscopy surface material maps to help refine the geologic signatures of known but poorly understood mineral deposits and identify previously unrecognized mineral occurrences. To help assess the potential mineral deposit types, the high-resolution hyperspectral data were analyzed to detect the presence of selected minerals that may be indicative of past mineralization processes. This legacy data set is providing tangible support for economic decisions by both the government of Afghanistan and other public and private sector parties interested in the development of the nation's natural resources.

  1. Investigation of crop growth condition with hyperspectral reflectance based on ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Li, Minzan; Zhang, Xijie; Zhang, Yane; Zhao, Peng; Zhang, Jianping

    2005-01-01

    Cucumber was selected as the experimental crop in greenhouse, and a spectroradiometer (ASD FieldSpec HH, 325-1075 nm measurable range with 1 nm resolution) was used to acquire hyperspectral reflectance of whole plants and leaves in growing status. The seedlings were grown in compound substrate composed of vermiculite and straw charcoal. In order to create nutrient stress to cucumber, five kinds of compound substrates were prepared with mixing vermiculite and straw charcoal in the ratios of 10:0, 8:2, 6:4, 4:6, and 2:8, respectively. Thirteen measurements were conducted in testing period continued from May to July in 2003. The correlation coefficient between hyperspectral reflectance and N-content of leaves and that between hyperspectral reflectance and growth condition of whole plants were analyzed in all wavelength bands. The results show that the hyperspectral reflectance based on ground-based remote sensing is available to predict N-content of leaves and to determine growth condition of whole plants.

  2. Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Williams, McKay D.; van Aardt, Jan; Kerekes, John P.

    2016-05-01

    Exploitation of imaging spectroscopy (hyperspectral) data using classification and spectral unmixing algorithms is a major research area in remote sensing, with reference data required to assess algorithm performance. However, we are limited by our inability to generate rapid, accurate, and consistent reference data, thus making quantitative algorithm analysis difficult. As a result, many investigators present either limited quantitative results, use synthetic imagery, or provide qualitative results using real imagery. Existing reference data typically classify large swaths of imagery pixel-by-pixel, per cover type. While this type of mapping provides a first order understanding of scene composition, it is not detailed enough to include complexities such as mixed pixels, intra-end-member variability, and scene anomalies. The creation of more detailed ground reference data based on field work, on the other hand, is complicated by the spatial scale of common hyperspectral data sets. This research presents a solution to this challenge via classification of low altitude, high spatial resolution (1m GSD) National Ecological Observatory Network (NEON) hyperspectral imagery, on a pixel-by-pixel basis, to produce sub-pixel reference data for high altitude, lower spatial resolution (15m GSD) AVIRIS imagery. This classification is performed using traditional classification techniques, augmented by (0.3m GSD) NEON RGB data. This paper provides a methodology for generating large scale, sub-pixel reference data for AVIRIS imagery using NEON imagery. It also addresses challenges related to the fusion of multiple remote sensing modalities (e.g., different sensors, sensor look angles, spatial registration, varying scene illumination, etc.). A new algorithm for spatial registration of hyperspectral imagery with disparate resolutions is presented. Several versions of reference data results are compared to each other and to direct spectral unmixing of AVIRIS data. Initial results are

  3. Airborne remote sensing applications to coastal wave research

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Walsh, Edward J.; Krabill, William B.; Swift, Robert N.; Manizade, Serdar S.; Scott, John F.; Earle, Marshall D.

    1998-08-01

    Airborne sensors provide effective coverage of a broad region and are suitable for large-scale experiments. In this paper, two scanning sensors that use the direct ranging technique to measure surface wave displacement are described. On a NASA P-3 aircraft the sensors can complete one run across a 100-km continental shelf in 17 min. A case study is presented using radar-measured, two-dimensional surface topography to derive wave damping due to bottom friction. The results are in good agreement with an analytical model based on a quadratic formulation of bottom shear stress. This study demonstrates that remote sensing measurements can be used for rapid characterization of surface waves on the continental shelf and in coastal regions. Examples illustrated in this paper include the derivation of wavenumber spectra and estimation of the dissipation rate of shoaling ocean swell.

  4. Multiresolution processing for fractal analysis of airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Lam, N.

    1992-01-01

    Images acquired by NASA's Calibrated Airborne Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension: Shelberg's (1982, 1983) line-divider method, the variogram method, and the triangular prism method. A description of these methods and the result of applying these methods to a remotely-sensed image is also presented. The scanner data was acquired over western Puerto Rico in January, 1990 over land and water. The aim is to study impacts of man-induced changes on land that affect sedimentation into the near-shore environment. The data were obtained over the same area at three different pixel sizes: 10 m, 20 m, and 30 m.

  5. [Hyperspectral remote sensing image classification based on radical basis function neural network].

    PubMed

    Tan, Kun; Du, Pei-jun

    2008-09-01

    Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS II made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40. 88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.

  6. Improved Classification of Mangroves Health Status Using Hyperspectral Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Vidhya, R.; Vijayasekaran, D.; Ahamed Farook, M.; Jai, S.; Rohini, M.; Sinduja, A.

    2014-11-01

    Mangrove ecosystem plays a crucial role in costal conservation and provides livelihood supports to humans. It is seriously affected by the various climatic and anthropogenic induced changes. The continuous monitoring is imperative to protect this fragile ecosystem. In this study, the mangrove area and health status has been extracted from Hyperspectral remote sensing data (EO- 1Hyperion) using support vector machine classification (SVM). The principal component transformation (PCT) technique is used to perform the band reduction in Hyperspectral data. The soil adjusted vegetation Indices (SAVI) were used as additional parameters. The mangroves are classified into three classes degraded, healthy and sparse. The SVM classification is generated overall accuracy of 73 % and kappa of 0.62. The classification results were compared with the results of spectral angle mapper classification (SAM). The SAVI also included in SVM classification and the accuracy found to be improved to 82 %. The sparse and degraded mangrove classes were well separated. The results indicate that the mapping of mangrove health is accurate when the machine learning classifier like SVM combined with different indices derived from hyperspectral remote sensing data.

  7. Image and spectral fidelity study of hyperspectral remote sensing image scaling up based on wavelet transform

    NASA Astrophysics Data System (ADS)

    An, Ni; Ma, Yi; Bao, Yuhai

    2015-08-01

    Wavelet transform is a kind of effective image-scale transformation method, which can achieve multi-scale transformation by distinguishing the low-frequency information and the high-frequency information. Hyperspectral remote sensing data combining image with spectrum has almost continuous spectrum that is the important premise of extracting hyperspectral image information, while scale transformation will inevitably lead to the change of image and spectra. Therefore, it is important to study the image and spectral fidelity after wavelet transform. In this paper, the Proba CHRIS hyperspectral remote sensing image of Yellow River Estuary Wetland is used to investigate the image and spectral fidelity of image transformed by wavelet which remained the low-frequency information. The level 1-3 of up-scale images are obtained and then compared with the original. Then image and spectral fidelity is quantitatively analyzed. The results show that the image fidelity is slightly reduced by up-scale transformation, but near-infrared images have a larger distortion than other bands. With the increasing scaling up, the distortion of spectrum is more and more great, but spectral fidelity is overall well. For the typical wetland objects, Phragmites austrialis has the best spectral correlation, Spartina has a small spectra change, and aquaculture water spectral distortion is most remarkable.

  8. Flight and Ground Results from Long-Wave and Mid-wave Airborne Hyperspectral Spectrographic Images

    DTIC Science & Technology

    2009-10-01

    hyperspectral imager for landmine detection ,” in Detection and Remediation Technologies for Mines and Mine-like Targets X, R.S.Harmon, J.T.Broach... hyperspectral imaging of land mines,” in Detection and Remediation Technologies for Mines and Mine-Like Targets XII, R.S.Harmon, J.T.Broach, and... hyperspectral pushbroom imagers which are ideally suited for landmine detection , but which also have numerous applications outside the defence community

  9. Hyperspectral Remote Sensing of Atmosphere and Surface Properties

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Yang, Ping

    2011-01-01

    Atmospheric Infrared Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI), and Cross-track Infrared Sounder (CrIS) are all hyper-spectral satellite sensors with thousands of spectral channels. Top of atmospheric radiance spectra measured by these sensors contain high information content on atmospheric, cloud, and surface properties. Exploring high information content contained in these high spectral resolution spectra is a challenging task due to computation e ort involved in modeling thousands of spectral channels. Usually, only very small fractions (4{10 percent) of the available channels are included in physical retrieval systems or numerical weather forecast (NWP) satellite data assimilations. We will describe a method of simultaneously retrieving atmospheric temperature, moisture, cloud, and surface properties using all available spectral channels without sacrificing computational speed. The essence of the method is to convert channel radiance spectra into super-channels by an Empirical Orthogonal Function (EOF) transformation. Because the EOFs are orthogonal to each other, about 100 super-channels are adequate to capture the information content of the radiance spectra. A Principal Component-based Radiative Transfer Model (PCRTM) developed at NASA Langley Research Center is used to calculate both the super-channel magnitudes and derivatives with respect to atmospheric profiles and other properties. There is no need to perform EOF transformations to convert super channels back to spectral space at each iteration step for a one-dimensional variational retrieval or a NWP data assimilation system. The PCRTM forward model is also capable of calculating radiative contributions due to multiple-layer clouds. The multiple scattering effects of the clouds are efficiently parameterized. A physical retrieval algorithm then performs an inversion of atmospheric, cloud, and surface properties in super channel domain directly therefore both reducing the

  10. Evaluation of multi-scale hyperspectral reflectance and emittance image data for remote mineral mapping in northeastern Death Valley National Park, California and Oasis Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Aslett, Zan

    This dissertation focuses upon the analyses of hyperspectral reflectance and thermal emission image data to remotely detect and map surficial mineralogy in an arid environment in southern Nevada and southeastern California. It includes four manuscripts prepared for submission to peer-reviewed journals, which are presented as single chapters. The research involves the use of longwave-infrared (LWIR) hyper- and multi-spectral measurements made from ground, aerial, and spaceborne perspectives of sedimentary and meta-sedimentary geologic units in northeastern Death Valley National Park, California and both shortwave-infrared (SWIR) and LWIR hyperspectral measurements in an area of diverse Paleozoic and Tertiary geology in Oasis Valley, Nevada. In Chapter 1, a brief overview of the dissertation is provided, including background on reflected and thermal-infrared mineral spectroscopy; remote sensing; the impacts of spatial and spectral resolution upon the ability to detect, identify, and map minerals using remote sensing image data; and the use of combined reflectance and emittance image data to better map minerals. In Chapter 2, ground-based SEBASS LWIR hyperspectral image data is analyzed in order to determine the utility of very high resolution remotely-sensed emittance measurements to delineate late-Proterozoic and Paleozoic sedimentary lithologies of an outcrop at Hell's Gate, Death Valley. In Chapter 3, airborne SEBASS image data over Boundary Canyon are analyzed in conjunction with moderate-scale geologic maps and laboratory measurements to map minerals associated with sedimentary and meta-sedimentary rocks and important in recognizing a detachment fault structure, as well as metamorphic facies. In Chapter 4, ground-based and aerial SEBASS, aerial MASTER, and spaceborne ASTER emittance measurements are compared over two study sites to determine what repercussions viewing perspective and spatial, spectral, and radiometric resolutions have upon remote identification

  11. Airborne LiDAR and hyperspectral mapping of snow depth and albedo in the Upper Colorado River Basin, Colorado, USA by the NASA JPL Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.

    2014-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, and is paired with a hyperspectral imager to provide an unprecedented snowpack monitoring capability and enabling a new operational paradigm. We present the initial results from this new application of multi-temporal LiDAR and hyperspectral mapping. During the snowmelt seasons of 2013 and 2014, the ASO mapped snow depth and albedo in the Uncompahgre River Basin in Colorado's Upper Colorado River Basin on a nominally monthly basis. These products enable an assessment and comparison of spatial snow accumulation and melt processes in two years with very different snowmelt hydrographs.

  12. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  13. Development and improvement of airborne remote sensing radar platforms

    NASA Astrophysics Data System (ADS)

    Arnold, Emily J.

    With the recent record ice melt in the Arctic as well as the dramatic changes occurring in the Antarctic, the need and urgency to characterize ice sheets in these regions has become a research thrust of both the NSF and NASA. Airborne remote sensing is the most effective way to collect the necessary data on a large scale with fine resolution. Current models for determining the relationship between the world's great ice sheets and global sea-level are limited by the availability of data on bed topography, glacier volume, internal layers, and basal conditions. This need could be satisfied by equipping long range aircraft with an appropriately sensitive suite of sensors. The goal of this work is to enable two new airborne radar installations for use in cryospheric surveying, and improve these systems as well as future systems by addressing aircraft integration effects on antenna-array performance. An aerodynamic fairing is developed to enable a NASA DC-8 to support a 5-element array for CReSIS's MCoRDS radar, and several structures are also developed to enable a NASA P-3 to support a 15-element MCoRDS array, as well as three other radar antenna-arrays used for cryospheric surveying. Together, these aircraft have flown almost 200 missions and collected 550 TB of unique science data. In addition, a compensation method is developed to improve beamforming and clutter suppression on wing-mounted arrays by mitigating phase center errors due to wing-flexure. This compensation method is applied to the MVDR beamforming algorithm to improve clutter suppression by using element displacement information to apply appropriate phase shifts. The compensation demonstrated an average SINR increase of 5-10 dB. The hardware contributions of this work have substantially contributed to the state-of-the-art for polar remotes sensing, as evidenced by new data sets made available to the science community and widespread use and citation of the data. The investigations of aircraft integration

  14. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    SciTech Connect

    Im, Jungho; Jensen, John R.; Coleman, Mark; Nelson, Eric

    2009-08-01

    Abstract - Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized difference vegetation index based simple linear regression (NSLR), (2) partial least squares regression (PLSR) and (3) machine-learning regression trees (MLRT) to predict the biophysical and biochemical characteristics of the crops (leaf area index, stem biomass and five leaf nutrients concentrations). The calibration and cross-validation results were compared between the three techniques. The PLSR approach generally resulted in good predictive performance. The MLRT approach appeared to be a useful method to predict characteristics in a complex environment (i.e. many tree species and numerous fertilization and/or irrigation treatments) due to its powerful adaptability.

  15. Regional prediction of soil organic carbon content over croplands using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefebvre, Josias; Chehdi, Kacem

    2015-04-01

    This study was carried out in the framework of the Prostock-Gessol3 and the BASC-SOCSENSIT projects, dedicated to the spatial monitoring of the effects of exogenous organic matter land application on soil organic carbon storage. It aims at identifying the potential of airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks which were georeferenced. Tracks were atmospherically corrected using a set of 22 synchronous field spectra of both bare soils, black and white targets and impervious surfaces. Atmospherically corrected track tiles were mosaicked at a 2 m-resolution resulting in a 66 Gb image. A SPOT4 satellite image was acquired the same day in the framework of the SPOT4-Take Five program of the French Space Agency (CNES) which provided it with atmospheric correction. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then NDVI calculation and thresholding enabled to map agricultural fields with bare soil. All 18 sampled sites known to be bare at this very date were correctly included in this map. A total of 85 sites sampled in 2013 or in the 3 previous years were identified as bare by means of this map. Predictions were made from the mosaic spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples. The use of the total sample including 27 sites under cloud shadows led to non-significant results. Considering 43 sites outside cloud shadows only, median

  16. Airborne hyperspectral imaging for sensing phosphorus concentration in the Lake Okeechobee drainage basin

    NASA Astrophysics Data System (ADS)

    Bogrekci, Ismail; Lee, Won Suk; Jordan, Jonathan D.

    2005-05-01

    Eutrophication disturbs the ecological balance in the Lake Okeechobee due to high concentration of phosphorus emanated from the regions in the lake's drainage basin. Ability of measuring phosphorus (P) concentrations of water in the Lake Okeechobee itself is very important. Furthermore, monitoring P in its drainage basins is crucial in order to find the cause of P loading and contributing regions. Also, inexpensive real-time sensing capability for a large area in a short time would help scientist, government agents, and civilians to understand the causes, spot the high-risk areas, and develop management practices for restoring the natural equilibrium. In order to measure P concentrations in the Lake Okeechobee drainage basin, airborne hyperspectral images were taken from five representative target sites by deploying a modified queen air twin engine aircraft. Each flight line covered a swath of approximately 365 m wide. Spatial resolution was about 1 m. Spectral range covered was between 412.65 and 991.82 nm with an approximate of 5 nm spectral resolution. Ground truthing was conducted to collect soil and vegetation samples, GPS coordinates of each location, and reflectance measurement of each sample. On the ground, spectral reflectance was measured using a handheld spectrometer in 400-2500 nm. The samples were sent to a laboratory for chemical analysis. Also diffuse reflectance of the samples was measured in a laboratory setting using a spectrophotometer with an integrating sphere. Images were geocorrected and rectified to reduce geometric effect. Calibration of images was conducted to obtain actual reflectance of the target area. Score, SAM (Spectral Angle Mapping), SFF (Spectral Feature Fitting) were computed for spectral matching with image derived spectral library.

  17. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, Gábor; Yule, I. J.

    2016-07-01

    On-farm assessment of mixed pasture nutrient concentrations is important for animal production and pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in heterogeneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution airborne visible-to-shortwave infrared (Vis-SWIR) imaging spectrometer measuring in the wavelength region 380-2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sulfur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were developed using four different methods which are included partial least squares regression (PLSR), kernel PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance compared using the test data. The results from the study revealed that RFR produced highest accuracy (0.55 ⩽ R2CV ⩽ 0.78; 6.68% ⩽ nRMSECV ⩽ 26.47%) compared to all other algorithms for the majority of nutrients (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with high accuracy (0.68 ⩽ R2CV ⩽ 0.86; 13.00% ⩽ nRMSECV ⩽ 14.64%) using SVR. The best training models were used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range and geographical location of often large differences in pasture nutrient values which are normally not measured and therefore not included in decision making when considering more effective ways to utilized pasture.

  18. Claycap anomaly detection using hyperspectral remote sensing and lidargrammetric techniques

    NASA Astrophysics Data System (ADS)

    Garcia Quijano, Maria Jose

    Clay capped waste sites are a common method to dispose of the more than 40 million tons of hazardous waste produced in the United States every year (EPA, 2003). Due to the potential threat that hazardous waste poses, it is essential to monitor closely the performance of these facilities. Development of a monitoring system that exploits spectral and topographic changes over hazardous waste sites is presented. Spectral anomaly detection is based upon the observed changes in absolute reflectance and spectral derivatives in centipede grass (Eremochloa ophiuroides) under different irrigation levels. The spectral features that provide the best separability among irrigation levels were identified using Stepwise Discriminant Analyses. The Red Edge Position was selected as a suitable discriminant variable to compare the performance of a global and a local anomaly detection algorithm using a DAIS 3715 hyperspectral image. Topographical anomaly detection is assessed by evaluating the vertical accuracy of two LIDAR datasets acquired from two different altitudes (700 m and 1,200 m AGL) over a clay-capped hazardous site at the Savannah River National Laboratory, SC using the same Optech ALTM 2050 and Cessna 337 platform. Additionally, a quantitative comparison is performed to determine the effect that decreasing platform altitude and increasing posting density have on the vertical accuracy of the LIDAR data collected.

  19. Airborne hyperspectral imaging for the detection of powdery mildew in wheat

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Mewes, Thorsten; Menz, Gunter

    2008-08-01

    Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).

  20. Can hyperspectral remote sensing detect species specific biochemicals?

    USDA-ARS?s Scientific Manuscript database

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds and invasive species. Detection of clandestinely grown Cannabis sativa L. is in many ways a special case of weed detection. Remote sensing technology provides an automated, computer based,...

  1. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  2. Applying linear spectral unmixing to airborne hyperspectral imagery for mapping yield variability in grain sorghum and cotton fields

    NASA Astrophysics Data System (ADS)

    Yang, Chenghai; Everitt, James H.; Du, Qian

    2010-08-01

    This study examined linear spectral unmixing techniques for mapping the variation in crop yield for precision agriculture. Both unconstrained and constrained linear spectral unmixing models were applied to airborne hyperspectral imagery collected from a grain sorghum field and a cotton field. A pair of crop plant and soil spectra derived from each image was used as endmember spectra to generate unconstrained and constrained plant and soil cover abundance fractions. For comparison, the simulated broad-band normalized difference vegetation index (NDVI) and narrow-band NDVI-type indices involving all possible two-band combinations of the 102 bands in the hyperspectral imagery were calculated and related to yield. Statistical results showed that plant abundance fractions provided better correlations with yield than the broad-band NDVI and the majority of the narrow-band NDVIs, indicating that plant abundance maps derived from hyperspectral imagery can be used as relative yield maps to characterize yield variability in grain sorghum field and cotton fields without the need to choose the best NDVI. Moreover, the unconstrained plant abundance provided essentially the same results for yield estimation as the constrained plant abundance either with the abundance sum-to-one constraint only or with both the sum-to-one and non-negativity constraints, indicating that the more computationally complex constrained linear unmixing does not offer any advantage over the simple unconstrained linear unmixing for this application.

  3. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Carder, Kendall L.; Mobley, Curtis D.; Steward, Robert G.; Patch, Jennifer S.

    1998-09-01

    For analytical or semianalytical retrieval of shallow-water bathymetry and or optical properties of the water column from remote sensing, the contribution to the remotely sensed signal from the water column has to be separated from that of the bottom. The mathematical separation involves three diffuse attenuation coefficients: one for the downwelling irradiance ( K d ), one for the upwelling radiance of the water column ( K u C ), and one for the upwelling radiance from bottom reflection ( K u B ). Because of the differences in photon origination and path lengths, these three coefficients in general are not equal, although their equality has been assumed in many previous studies. By use of the Hydrolight radiative-transfer numerical model with a particle phase function typical of coastal waters, the remote-sensing reflectance above ( R rs ) and below ( r rs ) the surface is calculated for various combinations of optical properties, bottom albedos, bottom depths, and solar zenith angles. A semianalytical (SA) model for r rs of shallow waters is then developed, in which the diffuse attenuation coefficients are explicitly expressed as functions of in-water absorption ( a ) and backscattering ( b b ). For remote-sensing inversion, parameters connecting R rs and r rs are also derived. It is found that r rs values determined by the SA model agree well with the exact values computed by Hydrolight ( 3% error), even for Hydrolight r rs values calculated with different particle phase functions. The Hydrolight calculations included b b a values as high as 1.5 to simulate high-turbidity situations that are occasionally found in coastal regions.

  4. Analysis of hyperspectral and lidar data: Remote optical mineralogy and fracture identification

    NASA Astrophysics Data System (ADS)

    Bellian, J. A.; Beck, R. A.; Kerans, C.

    2007-12-01

    Karst systems are widely recognized as highly complex and often extremely productive reservoirs of water as well as petroleum. They are also often associated with mineralization. The availability of a large (several tens of square kilometers), well-preserved paleokarst outcrop is rare; therefore, maximizing the information that we can extract from examples like the Franklin Mountains is critical to the study of karst-related fluid flow. The mapping process is confounded by the need to map very large areas to find relatively small and somewhat unpredictable zones of extreme deformation. Moreover, the brecciated regions interpreted to be of karst origin are often composed of the same lithology as the surrounding rock and thus make traditional remote sensing data such as multispectral satellite imagery or photographic data inadequate to delineate such systems. The Franklin Mountains in El Paso, Texas, expose lower Paleozoic carbonates deposited over a giant carbonate platform referred to as the Great Ordovician Bank. The limestone dominated bank was subsequently modified by surface karst and several large, vertically extensive caves that occupy up to 70,000 m2 of outcrop each. The breccia bodies are preferentially dolomitized within the limestone host rock. The size of these features is ideal for testing dolomite-calcite identification with high-elevation hyperspectral imagery at 20-m × 20-m pixel size. Terrestrial-based lidar (light detection and ranging) data were also utilized to identify collapse brecciation highlighted by hyperspectral image analysis. Results of this study delineate the distribution of dolomite and calcite in natural, passive light, well outside the visible spectrum, and combine active (lidar) and passive remote-sensing technologies to conduct remote mineralogical mapping linked to diagenetic alteration of carbonates. Through the combination of hyperspectral image processing and shape/texture analysis of terrestrial lidar data, a quantitative

  5. Remote sensing for gas plume monitoring using state-of-the-art infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    1999-02-01

    Under contract to the US Air Force and Navy, Pacific Advanced Technology has developed a very sensitive hyperspectral imaging infrared camera that can perform remote imaging spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of gas plume emissions. Pacific Advanced Technology (PAT) currently has the technology available to detect and identify chemical species in gas plumes using a small light weight infrared camera the size of a camcorder. Using this technology as a remote sensor can give advanced warning of hazardous chemical vapors undetectable by the human eye as well as monitor the species concentrations in a gas plume from smoke stack and fugitive leaks. Some of the gas plumes that have been measured and species detected using an IMSS imaging spectrometer are refinery smoke stacks plumes with emission of CO2, CO, SO2, NOx. Low concentration vapor unseen by the human eye that has been imaged and measured is acetone vapor evaporating at room temperature. The PAT hyperspectral imaging sensor is called 'Image Multi-spectral Sensing or IMSS.' The IMSS instrument uses defractive optic technology and exploits the chromatic aberrations of such lenses. Using diffractive optics for both imaging and dispersion allows for a very low cost light weight robust imaging spectrometer. PAT has developed imaging spectrometers that span the spectral range from the visible, midwave infrared (3 to 5 microns) and longwave infrared (8 to 12 microns) with this technology. This paper will present the imaging spectral data that we have collected on various targets with our hyperspectral imaging instruments as will also describe the IMSS approach to imaging spectroscopy.

  6. Development of an airborne remote sensing system for crop pest management: System integration and verification

    USDA-ARS?s Scientific Manuscript database

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  7. Landscape metrics of coastal dunefields from LiDAR and hyper-spectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Baas, A. C.

    2010-12-01

    This paper presents an upscaling study extracting landscape metrics of coastal dunefields, calculated from local topography and vegetation-type abundance, from high-resolution LiDAR and collocated hyper-spectral remote-sensing imagery, at coastal sites in Wales, UK. The hyper-spectral data (Eagle & Hawk instruments on NERC’s ARSF aircraft in 2009) are analysed in combination with spectrometer ground-truthing to determine relative within-pixel (down-scaled) abundance maps of different vegetation types, using a novel method that combines linear spectral mixture modelling with a maximum likelihood classification. The resulting landscape metrics are the same state variables that have been used for classifying simulated dunefield landscapes in the DECAL model and for tracking the evolution of the ecogeomorphology in a 3D state space. The landscape metrics of the dunefields can now be plotted in the same space on the same ordinates to establish a direct and quantitative comparison beween simulated and real-world landscapes. For the Kenfig Dunefield in Wales, LiDAR and hyperspectral analysis has also been accomplished on archived (1997) data to investigate the changes in metrics over a 12-year period.

  8. Estimating canopy water content of wetland vegetation using hyperspectral and multispectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Sun, Yonghua; Wang, Yihan; Huang, Jin

    2015-10-01

    The canopy water content of wetland vegetation is an important measuring index of the health status of wetland ecosystem. This article takes the Honghe national wetland nature reserve as study area. We focus on innovative approaches for retrieving canopy water content from optical remote sensing data-multispectral and hyperspectral data. Spectral features, such as narrow band spectral indices, hyperspectral vegetation indices in early literatures, absorption features and vegetation indices extracted from TM image were used to estimate the canopy water content. For narrow band spectral indices, Normalized difference vegetation index comprised of 970 nm and at 900 nm had a highest correlation with canopy water content. For general hyperspectral vegetation indices in early literatures, WI had a highest correlation with canopy water content. For absorption features, the absorption deepness at 1200nm had a highest correlation with canopy water content. In addition, NDII (band5) extracted from TM images could be used for estimating canopy water content. Finally, a distribution map of canopy water content in HNNR was generated.

  9. Investigation of Arctic mixed-phase clouds during VERDI and RACEPAC: Combining airborne remote sensing and in situ observations

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Wendisch, Manfred

    2015-04-01

    To improve our understanding of Arctic mixed-phase clouds in sea-ice covered areas the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) were initiated by a collaboration of German and French research institutes. The aircraft operated by the Alfred Wegener Institute for Polar and Marine Research, Germany were based in Inuvik, Canada from where the research flights of in total 149 flight hours (62 h during VERDI, 87 h during RACEPAC) were able to cover a wide area above the Canadian Beaufort. The aim of both campaigns was to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. Remote sensing instrumentation contained a backscatter lidar and spectral solar radiation measurements including a hyperspectral camera. In-situ sampling was highlighted by a suit of comprehensive cloud particle probes, aerosol particle counters and mass spectroscopy as well as trace gas detectors. While during VERDI remote sensing and in-situ measurements were performed by one aircraft (Polar 5) subsequently, for RACEPAC two identical aircraft (Polar 5 & 6, Basler BT-67) were coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. In this way not only the combined analysis of radiative and microphysical processes in the clouds can by studied more reliably, also remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of both projects including instrumentation and flight patterns of the research flights. Beside flight missions dedicated to sample low level clouds by remote sensing and in situ probing, flights were also coordinated with satellite overpasses and ground based stations. Exemplary results will be highlighted.

  10. Efficient Method for Analyzing Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Lrar, Allen M.; Smith, William L., Jr.

    2009-01-01

    The current and next generation satellite infrared sensors such as AIRS, IASI, CrIS, and CLARREO all have one thing in common: large number of spectral channels. In order to fully utilize the information content of these sensors, a large number of Radiative Transfer (RT) calculations through the inhomogeneous atmosphere are needed. It is also computationally intensive to invert atmospheric and surface properties using all the channels. Usually, only subsets of channels are used to perform physical inversions for atmospheric profiles. We will explore ways to speed up RT calculations and inversions and test the algorithms using data from the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument. We will describe a retrieval algorithm using a Principal Component-based Radiative Transfer Model (PCRTM) for generating atmospheric temperature/moisture/ozone profiles and surface properties. The retrieval algorithm performs both the radiative transfer calculations and inversions in the Principal Component (PC) domain. The inversion algorithm is based on a non-linear Levenberg- Marquardt method with climatology covariance matrices and a priori information as constraints. One advantage of this approach is that it uses all information content from the ultraspectral data so that the retrieval is less sensitive to instrument noise and eliminates the need for selecting a sub-set of the channels. We will also use data collected during the Joint Airborne IASI Validation Experiment (JAIVEx) field campaign to validate the algorithm and IASI retrievals.

  11. From HYSOMA to ENSOMAP - A new open source tool for quantitative soil properties mapping based on hyperspectral imagery from airborne to spaceborne applications

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Guillaso, Stephane; Rabe, Andreas; Foerster, Saskia; Guanter, Luis

    2016-04-01

    Soil spectroscopy from the visible-near infrared to the short wave infrared has been shown to be a proven method for the quantitative prediction of key soil surface properties in the laboratory, field, and up to airborne studies for exposed soils in appropriate surface conditions. With the upcoming launch of the next generation of spaceborne hyperspectral sensors within the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. This potential can be achieved only if adequate software tools are available, as shown by the increasing demand for the availability/accessibility of hyperspectral soil products from the geoscience community that have neither the capacity nor the expertise to deliver these soil products. In this context, recently many international efforts were tuned toward the development of robust and easy-to-access soil algorithms to allow non-remote sensing experts to obtain geoscience information based on non-expensive software packages where repeatability of the results is an important prerequisite. In particular, several algorithms for geological and mineral mapping were recently released such as the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software, or the GFZ EnMAP Geological Mapper. For quantitative soil mapping and monitoring, the HYSOMA (Hyperspectral Soil Mapper) software interface was developed at GFZ under the EUFAR (www.eufar.net) and the EnMAP (www.enmap.org) programs. HYSOMA was specifically oriented toward digital soil mapping applications and has been distributed since 2012 for free as IDL plug-ins under the IDL-virtual machine at www.gfz-potsdam.de/hysoma under a close source license. The HYSOMA interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. With more than 100 users around the world

  12. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-07-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the

  13. Advances in the Hyperspectral Thermal Emission Spectrometer (HyTES) and Application to the Remote Sensing of Fires and Trace Gases

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Hulley, G. C.; Hook, S. J.; Eng, B. T.

    2014-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and currently configured on the Twin Otter aircraft. The instrument utilizes 256 spectral channels between 7.5 and 12 micrometers in the Earth observing thermal infrared range of the electromagnetic spectrum and 512 spatial pixels cross-track. Given a 50 degree full angle field of view and the relatively low flight altitude of the Twin Otter aircraft, the instrument provides a wide swath with high spatial resolution (approximately 1.5 m at 1 km AGL). The available spatial and spectral resolution of HyTES represents a significant advance in airborne TIR remote sensing capability and considerable improvements to instrument performance have been made between the 2013 and 2014 science flights. The TIR wavelength range enables a wide range of remote sensing applications, including the detection of atmospheric trace gases (such as SO2, NH3, H2S, and N2O). The current performance, overall science objectives, and recent trace gas observations of the HyTES instrument will be presented. Results from a 2014 flight over a southern Utah wildfire will be discussed. Current work involving the miniaturization of the HyTES instrument for future deployment in the ER-2 high-altitude aircraft will also be presented.

  14. Airborne infrared remote sensing characterization of submesoscale eddies

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey; Marmorino, George; Miller, W. David; North, Ryan; Angel-Benavides, Ingrid; Baschek, Burckard

    2016-11-01

    Airborne remote sensing surveys off Santa Catalina Island, CA (33°30' N118°31' W) were conducted as part of a larger study of the occurrence and behavior of submesoscale phenomena. This builds upon previous work by DiGiacomo and Holt, who utilized SAR imagery to characterize the size and distribution of predominately cyclonic 'spiral eddies' in the Southern California Bight. In the present work the thermal surface expression of a single cyclonic eddy captured in February 2013 will be investigated. Advances made in methods to estimate eddy circulation and vorticity directly from the thermal imagery will be discussed and compared with in situ measurements. Inferences about localized mixing and flow instabilities can also be drawn from the imagery, and these too will be discussed in the context of in situ data. A simple model will be offered describing the three dimensional flow in the core of the eddy and how that can be used to explain the surface imagery. Connections between the signatures surrounding the eddy and the core itself will also be discussed in the context of the model.

  15. Past, present, and future of the INTA airborne remote sensing laboratory

    NASA Astrophysics Data System (ADS)

    Diaz de Aguilar, Javier; Fernandez Renau, Alix; Gomez Sanchez, Jose A.; Gutierrez de la Camara, Oscar

    2003-04-01

    The remote sensing laboratory belongs to the Earth Observation, Remote Sensing and Atmospheric Research division of INTA. INTA is a government research organization of the Spanish Department of Defense. INTA has been performing airborne remote sensing campaigns since 1975. The Remote Sensing Laboratory is devoted to the application and development of both aerial and space remote sensing technqiues. It owns both, personnel and technology suitable to perform flight campaigns in order to acquire remote sensing images and, with the help of precise image processing techniques, extract useful information. Currently has two different airborne platforms, for remote sensing and for atmospheric research, and is in the process of specification of a new platform for generation research. INTA is partner of the Concerted Action 'European Fleet for Airborne Research'. This paper describes the INTA platform, sensors, systems and its integration in the aircraft. The experience in airborne remote sensing campaigns also described. The research campaigns performed show their application in comparison with satellite remote sensing. Some examples of this are, evaluation of future space sensors, calibration and validation of images acquired by operative space platforms, environmental impact of ecological distasters, ocean surfaces characteristics, wetland mapping and fire analysis.

  16. Remote sensing of forest damage in the Czech Republic using hyperspectral methods

    NASA Astrophysics Data System (ADS)

    Entcheva, Petya K.

    The current study assesses the potential of hyperspectral data for monitoring the initial stages of damage in Norway spruce forests characterized by subtle changes in foliar chlorophyll and chemistry. Both field and airborne high spectral resolution reflectance measurements were obtained for selected study sites in the Krusne hory, Czech Republic. High spectral resolution airborne canopy data and field foliar samples were acquired simultaneously in August 1998 for a total of 51 study sites within the Krusne hory. The sites were selected to represent a full range of damage conditions in even-aged Norway spruce (Picea abies (L.) Karst) stands located between 820--920m elevation. Reflectance, foliar pigments, nitrogen and chemical constituents were determined for first-, second- and third-year needles. A strong correlation to damage was established for the foliar chemistry. A significant increase in polar compounds (such as tannins, sugars and starch) and a reduced needle lignification occurs with increasing damage. Foliar chemical constituents appear to be effective indicators of long-term environmental conditions. The strong relationship between damage level and polar compounds suggests high potential for use of these constituents as bio-indicators of stress. Both field and airborne high spectral resolution data separate the initial forest damage classes. Based on field reflectance measurements for third-year needles, derivative indices from the red edge region were most strongly correlated to damage level, followed by indices ratioing damage-sensitive and damage-insensitive bands and a parameter describing the fit of an Inverted Gaussian curve. Red/red edge spectral data from the Airborne Solid State Array Spectrometer (ASAS) had the highest potential for separation of initial levels of damage, which corresponds with the region suggested as most sensitive to damage as seen in conducting the field reflectance measurements. Both optical and derivative indices

  17. Field Hyperspectral Remote Sensing of Target Region in Xiemisitai Mountain, Xinjiang Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Wei, Y. M.; Chen, Y.; Ma, X. L.; Zhou, H. Y.

    2017-02-01

    A fine mineral identification model using the field Hyperspectral remote sensing was proposed to solve the problem of low mineral identification accuracy. Results show that the accuracy was improved by spectral noises removal, endmember optimization and mineral absorptions enhancement. A regional endmember library was established to improve the reliability by systematically considering of the mineral assemblage relationships. A fine mineral identification system (FMIS) was developed to help geologists to quickly identify minerals and it was applied in the Xiemisitai Mountain, Xinjiang province, China in 2014 to newly find copper mineralized points. The improved model and the FMIS system are therefore not only of great significance to improve efficiency and save cost in remote sensing mineral exploration, but also of great economic value of the local economy development in the future.

  18. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data

    PubMed Central

    Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing

    2015-01-01

    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842

  19. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data.

    PubMed

    Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing

    2015-01-01

    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550-560nm) and red edge (680-750nm) regions; chlorophyll b on the red, (630-660nm), red edge (670-710nm) and the near-infrared (800-810nm); carotenoids on the 500-580nm region; and anthocyanins on the green (550-560nm), red edge (700-710nm) and near-infrared (780-790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.

  20. Integrating remote sensing hyperspectral data and point measurements to map soil properties across a landscape

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Gallery, R. E.

    2016-12-01

    Our ability to accurately predict ecosystem responses to climate change is enhanced by integrating microbial processes. Inclusion of these processes, however, is not yet widespread in our earth system models in part due to uncertainties surrounding how to appropriately scale them. Small-scale heterogeneity of soil microorganism distribution and activity present challenges to understanding the magnitude, variation, and seasonality of microbial processes. Continual advancements in remote sensing technologies and increased public access to open-source data offer exciting possibilities of better integration between landscape scale responses and microbial-controlled processes. This research uses a cross-disciplinary approach to combine these resources to better inform ecological models of nutrient cycling in terrestrial ecosystems. Hyperspectral remote sensing data products, extending 380 to 2510 nanometers (nm) with spectral sampling of five nm and one nm spatial resolution, and point measurements including coarse and fine root biomass, total carbon and nitrogen, and nitrogen transformations in soil were used to map properties over space and time. Multivariate analysis was performed to extract biogeochemical patterns. We hypothesize correlations to exist between foliar chemistry, obtained from hyperspectral data, and soil chemistry variables. Variation in soil properties were associated with topographic variables, plant diversity, and foliar chemistry. This research highlights how a better understanding of factors that influence soil biogeochemical properties and their distribution can help us refine model inputs to better predict climate change effects on ecosystems.

  1. Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data - A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2017-04-01

    Hyperspectral remote sensing data carry information on the leaf area index (LAI) of forests, and thus in principle, LAI can be estimated based on the data by inverting a forest reflectance model. However, LAI is usually not the only unknown in a reflectance model; especially, the leaf spectral albedo and understory reflectance are also not known. If the uncertainties of these parameters are not accounted for, the inversion of a forest reflectance model can lead to biased estimates for LAI. In this paper, we study the effects of reflectance model uncertainties on LAI estimates, and further, investigate whether the LAI estimates could recover from these uncertainties with the aid of Bayesian inference. In the proposed approach, the unknown leaf albedo and understory reflectance are estimated simultaneously with LAI from hyperspectral remote sensing data. The feasibility of the approach is tested with numerical simulation studies. The results show that in the presence of unknown parameters, the Bayesian LAI estimates which account for the model uncertainties outperform the conventional estimates that are based on biased model parameters. Moreover, the results demonstrate that the Bayesian inference can also provide feasible measures for the uncertainty of the estimated LAI.

  2. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill

    USGS Publications Warehouse

    Leifer, Ira; Lehr, William J.; Simecek-Beatty, Debra; Bradley, Eliza; Clark, Roger N.; Dennison, Philip E.; Hu, Yongxiang; Matheson, Scott; Jones, Cathleen E; Holt, Benjamin; Reif, Molly; Roberts, Dar A.; Svejkovsky, Jan; Swayze, Gregg A.; Wozencraft, Jennifer M.

    2012-01-01

    The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required accurate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a spill response's mainstay, few trained observers and confounding factors including weather, oil emulsification, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by extensive airborne and spaceborne passive and active remote sensing.Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup and were derived quantitatively for thick (> 0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick. A multispectral expert system used a neural network approach to provide Rapid Response thickness class maps.Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions; however, SAR generally cannot discriminate thick (> 100 μm) oil slicks from thin sheens (to 0.1 μm). The UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional surface coverage, and emulsification.In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for confirmation.Airborne hyperspectral, thermal infrared data have nighttime and

  3. Hyperspectral remote sensing of Cyanobacteria: successes and challenges

    NASA Astrophysics Data System (ADS)

    Mishra, Deepak R.; Mishra, Sachidananda; Narumalani, Sunil

    2014-11-01

    Cyanobacterial harmful algal blooms (CHABs) is a major water quality issue in surface water bodies because of its scum and bad odor forming and toxin producing abilities. Terminations of blooms also cause oxygen depletion leading to hypoxia and widespread fish kills. Therefore, continuous monitoring of CHABs in recreational water bodies and surface drinking water sources is highly required for their early detection and subsequent issuance of a health warning and reducing the economic loss. We present a comparative study between a modified quasi-analytical algorithm (QAA) and a novel three-band algorithm (PC3) to retrieve phycocyanin (PC) pigment concentration in cyanobacteria laden inland waters. An extensive dataset, consisting of radiometric measurements, absorption measurements of phytoplankton, organic matter, detritus, and pigment concentration, was used to optimize the algorithms. The QAA algorithm isolates the PC signal from the remote sensing reflectance data using a set of radiative transfer equations and retrieves PC concentration in the water bodies through bio-optical inversion. Validation of the QAA algorithm, using an independent dataset, produced a mean relative error (MRE) of 34%. For the PC3 algorithm, we propose a coefficient (ψ) for isolating the PC absorption component at 620 nm. Results show that inclusion of the model coefficient relating chlorophyll-a (chla) absorption at 620 nm to 665 nm enables PC3 to compensate for the confounding effect of chl-a and considerably increases the accuracy of the PC prediction algorithm. The MRE of prediction for PC3 was 27%. Moreover, PC3 eliminates the nonlinear sensitivity issue of PC algorithms at high range.

  4. Prediction of soil stability and erosion in semiarid regions using numerical hydrological model (MCAT) and airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Wittenberg, Lea

    2015-04-01

    promising models is the MCAT, which is a MATLAB library of visual and numerical analysis tools for the evaluation of hydrological and environmental models. The model applied in this paper presents an innovative infrastructural system for predicting soil stability and erosion impacts. This integrated model is applicable to mixed areas with spatially varying soil properties, landscape, and land-cover characteristics. Data from a semiarid site in southern Israel was used to evaluate the model and analyze fundamental erosion mechanisms. The findings estimate the sensitivity of the suggested model to the physical parameters and encourage the use of hyperspectral remote sensing imagery (HSI). The proposed model is integrated according to the following stages: 1. The soil texture, aggregation, soil moisture estimated via airborne HSI data, including soil surface clay and calcium carbonate erosions; 2. The mechanical stability of soil assessed via pedo-transfer function corresponding to load dependent changes in soil physical properties due to pre-compression stress (set of equations study shear strength parameters take into account soil texture, aggregation, soil moisture and ecological soil variables); 3. The precipitation-related runoff model program (RMP) satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation; 4. The Monte Carlo Analysis Toolbox (MCAT), a library of visual and numerical analysis tools for the evaluation of hydrological and environmental models, is proposed as a tool for integrate all the approaches to an applicable model. The presented model overcomes the limitations of existing modeling methods by integrating physical data produced via HSI and yet stays generic in terms of space and time independency.

  5. Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements

    PubMed Central

    Song, Ahram; Chang, Anjin; Choi, Jaewan; Choi, Seokkeun; Kim, Yongil

    2015-01-01

    Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA) and Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials. PMID:25625907

  6. Automatic extraction of optimal endmembers from airborne hyperspectral imagery using iterative error analysis (IEA) and spectral discrimination measurements.

    PubMed

    Song, Ahram; Chang, Anjin; Choi, Jaewan; Choi, Seokkeun; Kim, Yongil

    2015-01-23

    Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA) and Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials.

  7. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  8. The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico

    2017-06-01

    In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in

  9. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  10. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  11. THE USE OF HYPERSPECTRAL REMOTE SENSING FOR THE DEVELOPMENT OF OPTICAL WATER QUALITY INDICATORS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    Hyperspectral remote sensing for the assessment of inland water quality can be used in enhancing the capabilities of resource managers to monitor water bodies in a timely and cost-effective manner. The key factor in assessing the accuracy of water quality assessments based on re...

  12. CLASSIFICATION OF HIGH SPATIAL RESOLUTION, HYPERSPECTRAL REMOTE SENSING IMAGERY OF THE LITTLE MIAMI RIVER WATERSHED IN SOUTHWEST OHIO, USA (FINAL)

    EPA Science Inventory

    The document and associated land use/land cover (LULC) coverage, entitled Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA, is the result of a collaborative effort among an interdisci...

  13. THE USE OF HYPERSPECTRAL REMOTE SENSING FOR THE DEVELOPMENT OF OPTICAL WATER QUALITY INDICATORS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    Hyperspectral remote sensing for the assessment of inland water quality can be used in enhancing the capabilities of resource managers to monitor water bodies in a timely and cost-effective manner. The key factor in assessing the accuracy of water quality assessments based on re...

  14. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  15. The Relationship Between Fossil and Dairy Greenhouse Gas Emissions and Complex Urban Land-Use Patterns by In Situ and Remote Sensing Data from Surface Mobile, Airborne, and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Kuze, A.; Buckland, K. N.; Butz, A.; Deguchi, A.; Eastwood, M. L.; Fischer, M. L.; Frash, J.; Fladeland, M. M.; Gore, W.; Iraci, L. T.; Johnson, P. D.; Kataoka, F.; Kolyer, R.; Leen, J. B.; Quattrochi, D. A.; Shiomi, K.; Suto, H.; Tanaka, T.; Thompson, D. R.; Yates, E. L.; Van Damme, M.; Yokota, T.

    2015-12-01

    The GOSAT-COMEX-IASI Experiment (Greenhouse gases Observing SATellite-CO2and Methane EXperiment) demonstrated a novel approach to airborne-surface mobile in situ data fusion for interpretation and validation of satellite and airborne remote sensing data of greenhouse gases and direct calculation of flux. Key data were collected for the Chino Dairy in the Los Angeles Basin, California and for the Kern River Oil Fields adjacent to Bakersfield, California. In situ surface and remote sensing greenhouse gas and ammonia observations were compared with IASI and GOSAT retreivals, while hyperspectral imaging data from the AVIRIS, AVIRIS NG, and Mako airborne sensors were analyzed to relate emissions and land use. Figure - platforms participating in the experiment. TANSO-FTS aboard the Ibuki satellite (GOSAT) provided targeted pixels to measure column greenhouse gases. AMOG is the AutoMObile Gas Surveyor which supports a suite of meteorology and in situ trace gas sensors for mobile high speed measurement. AVIRIS, the Airborne Visual InfraRed Imaging Spectrometer aboard the NASA ER-2 airplane collected hyperspectral imaging data at 20 m resolution from 60,000 ft. Mako is a thermal infrared imaging spectrometer that was flown on the Twin Otter International. AJAX is a fighter jet outfitted for science sporting meteorology and greenhouse gas sensors. RAMVan is an upward looking FTIR for measuring column methane and ammonia and other trace gases.

  16. Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Davis, Curtiss O.

    1998-11-01

    The Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) are currently in the design phase of a program called the Hyperspectral Remote Sensing Technology (HRST) program. HRST will demonstrate the utility of a hyperspectral earth-imaging system to support Naval needs for characterization of the littoral regions of the world. One key component of the HRST program is the development of the Naval EarthMap Observer (NEMO) satellite system to provide a large hyperspectral data base. NEMO will carry the Coastal Ocean Imaging Spectrometer (COIS) which will provide images of littoral regions with 210 spectral channels over a bandpass of 0.4 to 2.5 micrometer. Since ocean environments have reflectances typically less than 5%, this system requires a very high signal-to-noise ratio (SNR). COIS will sample over a 30 km swath width with a 60 m Ground Sample Distance (GSD) with the ability to go to a 30 m GSD by utilizing the systems attitude control system to 'nod' (i.e., use ground motion compensation to slow down the ground track of the field of view). Also included in the payload is a co-registered 5m Panchromatic Imager (PIC) to provide simultaneous high spatial resolution imagery. A sun-synchronous circular orbit of 605 km allows continuous repeat coverage of the whole earth. One unique aspect of NEMO is an on board processing system, a feature extraction and data compression software package developed by NRL called the Optical Real-Time Spectral Identification System (ORASIS). ORASIS employs a parallel, adaptive hyperspectral method for real time scene characterization, data reduction, background suppression, and target recognition. The use of ORASIS is essential for management of the massive amounts of data expected from the NEMO HSI system, and for developing Naval products under HRST. The combined HSI and panchromatic images will provide critical phenomenology to aid in the operation of Naval systems in the littoral environment. The imagery can also

  17. An Autopilot Design for the United States Marine Corps’ Airborne Remotely Operated Device

    DTIC Science & Technology

    1987-09-01

    remotely piloted vehicle, RPV , optimal control, Riccati, control systems 𔄃 ABSTRACT (Contonve On ’eweame of hft#Ua#V adI sdenfta oy bW )0k nMWOber An...rapidly. Even the best of control designers is not apt to hit a bullseye on his first shot. Control system design theory does not guarantee success on...endeavor is an airborne remotely piloted vehicle ( RPV ) called AROD. The acronym stands for Airborne Remotely Operated Device. The United States

  18. Airborne multisensor remote sensing systems for subsurface feature detection in littoral zones

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.

    2012-09-01

    This paper describes low altitude mobile imaging of near coastal waters in the Northern Gulf of Mexico. A suite of mobile multispectral and hyperspectral sensors were flown between ~1,000m to ~3000m altitudes in order detect subsurface features in nearby wetlands and littoral zone areas following the Deepwater Horizon oil spill. In this paper techniques used to develop, integrate and calibrate the airborne sensors are described. The sensors include a multispectral digital frame camera system, a traditional photogrammetric camera, and a small custom hyperspectral imaging system with custom software. Ancillary sensors include include multiple differential GPS and inertial motion unit (IMU) sensing systems and twin high definition video cameras for parallax related estimations. The correction of hyperspectral pushbroom imagery that utilizes Kalman filtering and smoothing is described and examples of georeferenced imagery is presented. The ability to image subsurface features is described and demonstrates not only the hyperspectral imaging system, but the value of utilizing simultaneous multisensor mobile sensing systems for environmental monitoring and surveillance of shorelines, water and nearby vegetation environments in littoral zones.

  19. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing.

    PubMed

    Tan, Songxin; Narayanan, Ram M

    2004-04-10

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  20. A 868MHz-based wireless sensor network for ground truthing of soil moisture for a hyperspectral remote sensing campaign - design and preliminary results

    NASA Astrophysics Data System (ADS)

    Näthe, Paul; Becker, Rolf

    2014-05-01

    Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor

  1. Development and processing of hyperspectral images in optical-electronic remote sensing systems

    NASA Astrophysics Data System (ADS)

    Kozinov, I. A.; Maltsev, G. N.

    2016-12-01

    The development and processing of three-dimensional images as a "hypercube" of spectral data in hyperspectral optical-electronic remote sensing systems are described in a formalized manner. The correlation identification of observed objects on the basis of spectral features is considered. The criterion for determining of similarity between vectors of recorded and reference spectral images of objects is based on their cross-correlation. Taking into the fact that the total spectral data array recorded by currently applicable hyperspectrometers is excessive for the solution of many issues related to remote sensing of the Earth, this paper proposes a method making it possible to reduce spectral data redundancy by selection of the most informative spectral channels. The essential dimension of the spectral data makes it possible to solve issues related to identification and classification of objects by spectral features through a limited number of very informative spectral channels selected in the areas where the function describing a spectral image of the observed object undergoes well-defined changes in behavior. The algorithm for selection of the most informative spectral channels, which is based on the determination of jump coordinates (major changes) of a spectral image, is substantiated. The selected channels meet the maximum likelihood criterion. The obtained experimental research data on object identification quality with involvement of real hyperspectral data of aerospace Earth remote sensing systems are reported. Five to twenty spectral readouts are needed to provide identification by a limited number of very informative spectral channels. This confirms the idea of existing essential dimensionality of the spectral data.

  2. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Luo, Shezhou; Wang, Cheng; Xi, Xiaohuan; Pan, Feifei; Qian, Mingjie; Peng, Dailiang; Nie, Sheng; Qin, Haiming; Lin, Yi

    2017-06-01

    Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.

  3. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.

    2015-12-01

    The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.

  4. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  5. A research on coalfield fire detection in Daliuta mining area at Inner Mongolia based on hyperspectral thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Yang, Guo-fang; Zhou, Jia-jing; Tian, Xin-guang

    2016-10-01

    Daliuta mining coal fires at Inner Mongolia were not reported at present in remote sensing. However, they still pose a serious threat to the surroundings. In order to extract combustion range of the coal mine, we used the wintertime thermal airborne infrared hyperspectral images of TASI acquired in 2016 to detect the coal fire of Daliuta mining. The synchronous in situ measured temperature was used to establish space-to-ground regression equation with the image temperature for retrieving land surface temperature. Extracted coal fire through the reasonable threshold by the processed image data, identified a region where the surface temperatures was -0.5°C to 300°C. MODTRAN4 code was used to estimate the upward and downward radiation and transmission of the atmosphere. On this basis, the non-coal fire anomaly areas, such as the cooling water of power plant, heat buildings, chimney, were separated from the coal fire heat anomaly areas by the characteristic difference of the emissivity spectrum in the objectives. The results show that the bands 1-16 of TASI are suitable for infrared inversion temperature for the coalfield fire. There was a linear relationship between synchronous in situ observation temperature and the image temperature, and the determination coefficient R2 was 0.9938. The extracted coal fire anomaly range is able to provide some decision support for underground coal fire extinguishing. A detailed fire map of shallow coal areas can help to prioritize fire fighting operations in order to avoid the chance of starting a new coal fire.

  6. Biological control and hyperspectral remote sensing of leafy spurge (Euphorbia esula L.) an exotic plant species in North America

    NASA Astrophysics Data System (ADS)

    Parker Williams, Amy Elizabeth

    Leafy spurge (Euphorbia esula L.) is an adventive, invasive, plant species in North America. Aphthona lacertosa and A. nigriscutis are flea beetles (Coleoptera: Chrysomelidae) introduced for biological control of leafy spurge in North America. This research directly addresses the need for quantitative assessment of biological control and for regional scale mapping of leafy spurge infestations. This research had three main objectives. The first was to document the establishment and impact on leafy spurge populations of introduced Aphthona flea beetles. In 1998, 3,000 beetles of each species (6,000 total per site) were released on 76 of 101 monitoring sites in Wyoming. Flea beetle abundance, leafy spurge canopy cover, and flea beetle impact area were measured in 1999 and 2000. After two years, Aphthona releases resulted in significant reductions in leafy spurge canopy cover (from 49% to 6%) with suppression of leafy spurge averaging 285 m2. Flea beetles were effective in controlling leafy spurge regardless of the site characteristics (vegetation type, topographical position, soil type, and aspect) and initial leafy spurge canopy cover. The second objective was to develop methods for detecting and estimating leafy spurge abundance from remotely sensed data. Ground spectrometer data demonstrated that leafy spurge was spectrally distinct due to its conspicuous yellow-green bracts. Mixture Tuned Matched Filtering was used to estimate leafy spurge canopy cover and map leafy spurge distribution from Airborne Visible/Infrared Imaging Spectrometer imagery acquired in 1999. Overall performance of MTMF for estimating percent cover of leafy spurge for all sites was good (r2 = 0.69) with better performance in prairie areas (r 2 = 0.79) and poorer performance occurring on wooded sites (r 2 = 0.57). The third objective was to assess the accuracy of using remotely sensed data for mapping leafy spurge in various habitat types. Leafy spurge was mapped with an overall accuracy ranging

  7. Hyperspectral remote sensing for mineral mapping of structural related mineralizations around Mount Isa, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Jakob, Sandra; Salati, Sanaz; Gloaguen, Richard

    2015-04-01

    Alone or combined with other remote sensing data, hyperspectral mineral mapping can be used to investigate mineralizations and deposits via alteration minerals. Their kind, abundance and spatial distribution can deliver important statements about the occurrence and formation of mineralizations and their relation to structural features. The high spectral and spatial resolution of HyMap data exceeds multispectral data distinctly and makes the recognition of even smaller geological structures possible. The spectral unmixing of single endmembers can be used for the accurate mapping of specific materials or minerals. The support of hyperspectral imaging by spectral data gathered in the field and the analysis of the composition of rock samples can help to determine endmembers and to identify absorption features. This study demonstrates the possibilities and limitations of remote sensing, especially hyperspectral data, for mineral mapping purposes, using the example of the Mount Isa Inlier. This geological area is situated in Northern Queensland, Australia, and is known for its considerable ore deposits and consequent mining of predominantly copper, zinc, lead, silver and gold. Beside hyperspectral HyMap data, multispectral Landsat 8 and SRTM digital elevation data were analyzed. A three-week field study in 2014 supported the investigations. After preprocessing and vegetation masking the data were analyzed using Spectral Feature Fitting (SFF) and Mixture Tuned Matched Filtering (MTMF) for alteration mineral mapping. The outcomes were combined with results from decorrelation stretch, band ratioing, topographic indices and automated lineament analysis. Additional information was provided by field spectrometer measurements and the XRF and XRD analysis of rock samples. Throughout the study, mineral mapping using remote sensing data, especially hyperspectral data, turned out to deliver high qualitative results when it is supported by additional information. In situ

  8. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].

    PubMed

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui

    2014-01-01

    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  9. Discrimination of wheat and oat crops using field hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Kaiser, Allison; Duchesne-Onoro, Rocio

    2017-04-01

    In this study we attempt to identify the most suitable spectral bands to discriminate among wheat and oat crops using field hyperspectral remote sensing. Discrimination of these crops using ordinary aerial or multispectral satellite imagery can be challenging. Even though multispectral images could have a high spatial resolution, their few wide spectral bands hinder crop discrimination. Therefore, both high spatial resolution and spectral resolution are necessary to accurately discriminate between visually similar crops. One field each of oats and spring wheat, each at least 10 acres in size, was selected in southeastern Wisconsin. Biweekly spectral readings were taken using a spectroradiometer during the growing season from May to July. In each field, seven 10 m x 10 m quadrants were randomly placed and in each quadrants five points were selected from which 20 radiometric readings were taken. Radiometric measurements taken at each sampling point were averaged to derive a single reflectance curve per sampling date, covering the spectral range of 300 nm to 2,500 nm. Each spectral curve was divided into hyperspectral bands each 3 nm wide. The Mann-Whitney U-test was used to estimate how separable the two crops were. Results show that selected regions of the visible light and infrared radiation spectrum have the potential to discriminate between these crops. Crop discrimination is one of the first steps to support crop monitoring and agricultural surveys efforts.

  10. Exploring the impact of wavelet-based denoising in the classification of remote sensing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco

    2016-10-01

    The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.

  11. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].

    PubMed

    Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong

    2013-03-01

    Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.

  12. Novel Hyperspectral Sun Photometer for Satellite Remote Sensing Data Radiometeic Calibration and Atmospheric Aerosol Studies

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy

    2006-01-01

    A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers but also the potential of hyperspectral optical depth and diffuse-to-global products. As compared to traditional sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross-calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.

  13. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  14. Prediction of senescent rangeland canopy structural attributes with airborne hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Canopy structural and chemical data are needed for senescent, mixed-grass prairie landscapes in autumn, yet models driven by image data are lacking for rangelands dominated by non-photosynthetically active vegetation (NPV). Here, we report how aerial hyperspectral imagery might be modeled to predic...

  15. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    SciTech Connect

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  16. Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations

    USGS Publications Warehouse

    Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob

    2016-01-01

    Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.

  17. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing].

    PubMed

    Meng, Qing-ye; Dong, Heng; Qin, Qi-ming; Wang, Jin-liang; Zhao, Jiang-hua

    2012-08-01

    The chlorophyll content of plant has relative correlation with photosynthetic capacity and growth levels of plant. It affects the plant canopy spectra, so the authors can use hyperspectral remote sensing to monitor chlorophyll content. By analyzing existing mature vegetation index model, the present research pointed out that the TCARI model has deficiencies, and then tried to improve the model. Then using the PROSPECT+SAIL model to simulate the canopy spectral under different levels of chlorophyll content and leaf area index (LAI), the related constant factor has been calculated. The research finally got modified transformed chlorophyll absorption ratio index (MTCARI). And then this research used optimized soil background adjust index (OSAVI) to improve the model. Using the measured data for test and verification, the model has good reliability.

  18. Novel Hyperspectral Sun Photometer for Satellite Remote Sensing Data Radiometric Calibration and Atmospheric Aerosol Studies

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy

    2006-01-01

    A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.

  19. Spatial-Spectral Classification Based on the Unsupervised Convolutional Sparse Auto-Encoder for Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Han, Xiaobing; Zhong, Yanfei; Zhang, Liangpei

    2016-06-01

    Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE) with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE). Convolution mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE algorithm was validated by two common hyperspectral imagery (HSI) datasets - Pavia University dataset and the Kennedy Space Centre (KSC) dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods.

  20. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  1. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  2. Correlating species and spectral diversities using hyperspectral remote sensing in early-successional fields.

    PubMed

    Aneece, Itiya P; Epstein, Howard; Lerdau, Manuel

    2017-05-01

    Advances in remote sensing technology can help estimate biodiversity at large spatial extents. To assess whether we could use hyperspectral visible near-infrared (VNIR) spectra to estimate species diversity, we examined the correlations between species diversity and spectral diversity in early-successional abandoned agricultural fields in the Ridge and Valley ecoregion of north-central Virginia at the Blandy Experimental Farm. We established plant community plots and collected vegetation surveys and ground-level hyperspectral data from 350 to 1,025 nm wavelengths. We related spectral diversity (standard deviations across spectra) with species diversity (Shannon-Weiner index) and evaluated whether these correlations differed among spectral regions throughout the visible and near-infrared wavelength regions, and across different spectral transformation techniques. We found positive correlations in the visible regions using band depth data, positive correlations in the near-infrared region using first derivatives of spectra, and weak to no correlations in the red-edge region using either of the two spectral transformation techniques. To investigate the role of pigment variability in these correlations, we estimated chlorophyll, carotenoid, and anthocyanin concentrations of five dominant species in the plots using spectral vegetation indices. Although interspecific variability in pigment levels exceeded intraspecific variability, chlorophyll was more varied within species than carotenoids and anthocyanins, contributing to the lack of correlation between species diversity and spectral diversity in the red-edge region. Interspecific differences in pigment levels, however, made it possible to differentiate these species remotely, contributing to the species-spectral diversity correlations. VNIR spectra can be used to estimate species diversity, but the relationships depend on the spectral region examined and the spectral transformation technique used.

  3. [Comparison and analysis of hyperspectral remote sensing identifiable models for different vegetation under waterlogging stress].

    PubMed

    Jiang, Jin-Bao; Steven, Michael D; He, Ru-Yan; Cai, Qing-Kong

    2013-11-01

    With the global climate warming, flooding disasters frequently occurred and its influence scope constantly increased in China. The objective of the present paper was to study the leaf spectral features of vegetation (maize and beetroot) under waterlogging stress and design a hyperspectral remote sensing model to monitor the flooding disasters through a field simulated experiment. The experiment was carried out in the Sutton Bonington Campus of University of Nottingham (52.8 degrees N, 1. 2 degrees W) from May to August in 2008, and samples were collected one time every week and spectra were measured in the laboratory. The result showed that the reflectance of the maize and beetroot decreased in the 550 and 800-1 300 nm region, and the reflectance slightly increased in the 680 nm region. This paper chose NDVI, SIPI, PRI, SRPI, GNDVI and R800 * R550/R680 to identify the vegetation under waterlogging stress, respectively. The result suggested that the SIPI and R800 * R550/R680 was sensitive for maize under waterlogging stress, and then SIPI and PRI and R800 * R550/R680 was sensitive for beetroot under waterlogging stress. In order to seek the best identifiable model, the normalized distances between means of control and stressed vegetation indices were calculated and analyzed, the result indicated that the distance of R800 * R550/R680 is more than that of indices' in the early stress stage, illustrated that the index identifiable ability for waterlogging stress is better than other indices, then the index has the strong sensitivity and stability. Therefore, the index R800 * R550/R680 could be used to quickly extract flooding disaster area by using hyperspectral remote sensing, and would provide information support for disaster relief decisions.

  4. Hyperspectral remote sensing of vegetation: knowledge gain and knowledge gap after 50 years of research (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thenkabail, Prasad S.

    2017-04-01

    This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher:Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advances made in processing when handling large volumes of hyperspectral data have generated tremendous interest in advancing the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing more sensitive wavebands and indices to study vegetation characteristics. The presentation will discuss topics such as: (1) hyperspectral sensors and their characteristics, (2) methods of overcoming the Hughes phenomenon, (3) characterizing biophysical and biochemical properties, (4) advances made in using hyperspectral data in modeling evapotranspiration or actual water use by plants, (5) study of phenology, light use efficiency, and gross primary productivity, (5) improved accuracies in species identification and land cover classifications, and (6) applications in precision farming.

  5. Hyperspectral remote sensing protocol development for submerged aquatic vegetation in shallow waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Ghir, Teddy; Bassetti, Luce; Hall, Carlton; Reyeier, E.; Lowers, R.; Holloway-Adkins, K.; Virnstein, Robert

    2004-02-01

    Submerged aquatic vegetation (SAV) is an important indicator of freshwater and marine water quality in almost all shallow water aquatic environments. Throughout the world the diversity of submerged aquatic vegetation appears to be in decline, although sufficient historical data, of sufficient quantitative quality is lacking. Hyperspectral remote sensing technology, available from low altitude aircraft sensors, may provide a basis to improve upon existing photographic regional assessments and monitoring concerned with the aerial extent and coverage of SAV. In addition, modern low altitude remote sensing may also help in the development of environmental satellite requirements for future satellite payloads. This paper documents several important spectral reflectance signature features which may be useful in developing a protocol for remote sensing of SAV, and which is transferable to other shallow water aquatic habitats around the world. Specifically, we show that the shape or curvature of the spectral reflectance absorption feature centered near the chlorophyll absorption region of ~ 675 nm is strongly influenced not only by the relative backscatter region between 530-560 nm, but by a "submerged vegetation red edge" that appears in the 695 to 700 nm region in extremely high density vegetative areas in very shallow waters (= 0.5m depth). This "aquatic biomass red edge" is also observable in deeper waters where there is a shallow subsurface algal boom as demonstrated in this paper. Use of this submerged aquatic red edge feature will become an important component of SAV remote sensing in shallow aquatic habitats, as well as in phytoplankton-related water quality remote sensing applications of surface phytoplankton blooms.

  6. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  7. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  8. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  9. [Application of hyperspectral remote sensing in research on ecological boundary in north farming-pasturing transition in China].

    PubMed

    Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong

    2009-06-01

    Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.

  10. Mapping Ungulate Habitats in Yellowstone National Park with Airborne Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Warner, Amanda; Spruce, Joseph

    2001-01-01

    Mapping vegetation habitats of ungulates (e.g., bison, elk, and deer) is critical to the development of efficient wildlife management and monitoring practices in Yellowstone National Park. Image endmembers were chosen using the ENVI minimum noise fraction, pixel purity index, N-dimensional visualizer approach. The spectral angle mapper algorithm was used to classify the image. This process was applied to low altitude AVIRIS and Probe-1 hyperspectral imagery of the Lamar River/Soda Butte Creek confluence to map several ungulate habitats (e.g., grasses, sedge, sage, aspen, willow, and cottonwood. The results are being compared to field measurements and large-scale color infrared aerial photography to assess mapping accuracy. The use of AVIRIS and Probe-1 data enabled the examination of hyperspectral data collected at different spatial and spectral resolutions.

  11. Airborne Demonstration of FPGA Implementation of Fast Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sartures, C.; Dolman, D.

    2014-01-01

    Efficient on-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware.

  12. Airborne Demonstration of FPGA Implementation of Fast Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sartures, C.; Dolman, D.

    2014-01-01

    Efficient on-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware.

  13. Mapping Ungulate Habitats in Yellowstone National Park with Airborne Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Warner, Amanda; Spruce, Joseph

    2001-01-01

    Mapping vegetation habitats of ungulates (e.g., bison, elk, and deer) is critical to the development of efficient wildlife management and monitoring practices in Yellowstone National Park. Image endmembers were chosen using the ENVI minimum noise fraction, pixel purity index, N-dimensional visualizer approach. The spectral angle mapper algorithm was used to classify the image. This process was applied to low altitude AVIRIS and Probe-1 hyperspectral imagery of the Lamar River/Soda Butte Creek confluence to map several ungulate habitats (e.g., grasses, sedge, sage, aspen, willow, and cottonwood. The results are being compared to field measurements and large-scale color infrared aerial photography to assess mapping accuracy. The use of AVIRIS and Probe-1 data enabled the examination of hyperspectral data collected at different spatial and spectral resolutions.

  14. Land cover classification based on object-oriented with airborne lidar and high spectral resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Liu, Zhengjun; Xu, Qiangqiang; Ren, Haicheng; Zhou, Xingyu; Yuan, Yonghua

    2016-10-01

    In order to improve land cover classification accuracy of the coastal tidal wetland area in Dafeng, this paper take advantage of hyper-spectral remote sensing image with high spatial resolution airborne Lidar data. The introduction of feature extraction, band selection and nDSM models to reduce the dimension of the original image. After segmentation process that combining FNEA segmentation with spectral differences segmentation method, the paper finalize the study area through the establishment of the rule set classification of land cover classification. The results show that the proposed classification for land cover classification accuracy has improved significantly, including housing, shadow, water, vegetation classification of high precision. That is to say that the method can meet the needs of land cover classification of the coastal tidal wetland area in Dafeng. This innovation is the introduction of principal component analysis, and the use of characteristic index, shape and characteristics of various types of data extraction nDSM feature to improve the accuracy and speed of land cover classification.

  15. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  16. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  17. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  18. SpecBase - A Virtual Research Environment for Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Haubrock, Sören-Nils

    2010-05-01

    Remote sensing methods are able to quantify the electromagnetic reflections or emissions of the Earth's surface materials and artefacts. The properties of these materials affect the reflectance, absorption or transmission of electromagnetic radiation at specific wavelengths. As a consequence, each material generates characteristic electromagnetic spectra that can be quantitatively analysed. For research purposes, the compilation and comparison of so-called reference spectra as well as the management of spectra from laboratory and field studies is essential. The workflows underlying the creation of reference spectra share characteristics with many other research fields in earth sciences in that they have many elements in common but sometimes require ad-hoc changes. In practice, the process that leads to the creation of a reference spectrum is often only poorly documented and the resulting data are accessible to only a small group of users. The increasing application of hyperspectral remote sensing techniques calls for a better dissemination and documentation of available reference spectra. The aim of SpecBase is to offer researchers in hyperspectral remote sensing a virtual research environment (VRE) for the creation, documentation and dissemination of reference spectra. A core component is a data repository that allows versioning and roll-back of intermediate products in the workflow leading to new reference spectra. Once a reference spectrum is ready for publication it can be published and made citeable by assigning a Digital Object Identifier (DOI ®) through the DataCite service for publication of scientific data. The repository is supplemented by web 2.0 tools (user blog, wiki) to support the documentation, discussion and review of the newly created reference spectra. Important parts of the SpecBase project are the evaluation of the available web 2.0 tools and the analysis of the workflows leading to the creation of new reference spectra. Through the evaluation

  19. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  20. Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya

    NASA Astrophysics Data System (ADS)

    Kodikara, Gayantha R. L.; Woldai, Tsehaie; van Ruitenbeek, Frank J. A.; Kuria, Zack; van der Meer, Freek; Shepherd, Keith D.; van Hummel, G. J.

    2012-02-01

    Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed. Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner.

  1. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  2. Airborne Dial Remote Sensing of the Arctic Ozone Layer

    NASA Technical Reports Server (NTRS)

    Wirth, Martin; Renger, Wolfgang; Ehret, Gerhard

    1992-01-01

    A combined ozone and aerosol LIDAR was developed at the Institute of Physics of the Atmosphere at the DLR in Oberpfaffenhofen. It is an airborne version, that, based on the DIAL-principle, permits the recording of two-dimensional ozone profiles. This presentation will focus on the ozone-part; the aerosol subsection will be treated later.

  3. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  4. GPU implementation of fully constrained linear spectral unmixing for remotely sensed hyperspectral data exploitation

    NASA Astrophysics Data System (ADS)

    Sánchez, Sergio; Martín, Gabriel; Plaza, Antonio; Chang, Chein-I.

    2010-08-01

    Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. The spectral signatures collected in natural environments are invariably a mixture of the pure signatures of the various materials found within the spatial extent of the ground instantaneous field view of the imaging instrument. Spectral unmixing aims at inferring such pure spectral signatures, called endmembers, and the material fractions, called fractional abundances, at each pixel of the scene. A standard technique for spectral mixture analysis is linear spectral unmixing, which assumes that the collected spectra at the spectrometer can be expressed in the form of a linear combination of endmembers weighted by their corresponding abundances, expected to obey two constraints, i.e. all abundances should be non-negative, and the sum of abundances for a given pixel should be unity. Several techniques have been developed in the literature for unconstrained, partially constrained and fully constrained linear spectral unmixing, which can be computationally expensive (in particular, for complex highdimensional scenes with a high number of endmembers). In this paper, we develop new parallel implementations of unconstrained, partially constrained and fully constrained linear spectral unmixing algorithms. The implementations have been developed in programmable graphics processing units (GPUs), an exciting development in the field of commodity computing that fits very well the requirements of on-board data processing scenarios, in which low-weight and low-power integrated components are mandatory to reduce mission payload. Our experiments, conducted with a hyperspectral scene collected over the World Trade Center area in New York City, indicate that the proposed implementations provide relevant speedups over the corresponding serial versions in latest-generation Tesla C1060 GPU architectures.

  5. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    USDA-ARS?s Scientific Manuscript database

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  6. Remote sensing for non-renewable resources - Satellite and airborne multiband scanners for mineral exploration

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    1986-01-01

    The application of remote sensing techniques to mineral exploration involves the use of both spatial (morphological) as well as spectral information. This paper is directed toward a discussion of the uses of spectral image information and emphasizes the newest airborne and spaceborne sensor developments involving imaging spectrometers.

  7. A high-resolution airborne four-camera imaging system for agricultural remote sensing

    USDA-ARS?s Scientific Manuscript database

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  8. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    USDA-ARS?s Scientific Manuscript database

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  9. Remote sensing for non-renewable resources - Satellite and airborne multiband scanners for mineral exploration

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    1986-01-01

    The application of remote sensing techniques to mineral exploration involves the use of both spatial (morphological) as well as spectral information. This paper is directed toward a discussion of the uses of spectral image information and emphasizes the newest airborne and spaceborne sensor developments involving imaging spectrometers.

  10. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection

    NASA Astrophysics Data System (ADS)

    Qin, Qiming; Zhang, Zili; Chen, Li; Wang, Nan; Zhang, Chengye

    2016-01-01

    This paper proposes a method that combined hyperspectral remote sensing with super-low-frequency (SLF) electromagnetic detection to extract oil and gas reservoir characteristics from surface to underground, for the purpose of determining oil and gas exploration target regions. The study area in Xinjiang Karamay oil-gas field, China, was investigated. First, a Hyperion dataset was used to extract altered minerals (montmorillonite, chlorite, and siderite), which were comparatively verified by field survey and spectral measurement. Second, the SLF electromagnetic datasets were then acquired where the altered minerals were distributed. An inverse distance weighting method was utilized to acquire two-dimensional profiles of the electrical feature distribution of different formations on the subsurface. Finally, existing geological data, field work, and the results derived from Hyperion images and SLF electromagnetic datasets were comprehensively analyzed to confirm the oil and gas exploration target region. The results of both hyperspectral remote sensing and SLF electromagnetic detection had a good consistency with the geological materials in this study. This paper demonstrates that the combination of hyperspectral remote sensing and SLF electromagnetic detection is suitable for the early exploration of oil and gas reservoirs, which is characterized by low exploration costs, large exploration areas, and a high working efficiency.

  11. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  12. Airborne hyperspectral sensor radiometric self-calibration using near-infrared properties of deep water and vegetation

    NASA Astrophysics Data System (ADS)

    Barbieux, Kévin; Nouchi, Vincent; Merminod, Bertrand

    2016-10-01

    Retrieving the water-leaving reflectance from airborne hyperspectral data implies to deal with three steps. Firstly, the radiance recorded by an airborne sensor comes from several sources: the real radiance of the object, the atmospheric scattering, sky and sun glint and the dark current of the sensor. Secondly, the dispersive element inside the sensor (usually a diffraction grating or a prism) could move during the flight, thus shifting the observed spectra on the wavelengths axis. Thirdly, to compute the reflectance, it is necessary to estimate, for each band, what value of irradiance corresponds to a 100% reflectance. We present here our calibration method, relying on the absorption features of the atmosphere and the near-infrared properties of common materials. By choosing proper flight height and flight lines angle, we can ignore atmospheric and sun glint contributions. Autocorrelation plots allow to identify and reduce the noise in our signals. Then, we compute a signal that represents the high frequencies of the spectrum, to localize the atmospheric absorption peaks (mainly the dioxygen peak around 760 nm). Matching these peaks removes the shift induced by the moving dispersive element. Finally, we use the signal collected over a Lambertian, unit-reflectance surface to estimate the ratio of the system's transmittances to its near-infrared transmittance. This transmittance is computed assuming an average 50% reflectance of the vegetation and nearly 0% for water in the near-infrared. Results show great correlation between the output spectra and ground measurements from a TriOS Ramses and the water-insight WISP-3.

  13. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  14. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  15. Validation of Satellite Ammonia Retrievals using Airborne Hyperspectral Thermal-Infrared Spectrometry

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Hall, J. L.; Chang, C. S.; Qian, J.; Clarisse, L.; Van Damme, M.; Clerbaux, C.; Hurtmans, D.; Coheur, P.

    2011-12-01

    We demonstrate the utility of a new airborne sensor with the requisite spatial, spectral, and radiometric resolution to characterize "point" sources of ammonia emission. Flights were conducted over California's San Joaquin Valley, which is a region of intensive agriculture and animal husbandry that has been identified as one of the single largest sources of atmospheric free ammonia worldwide. Airborne data acquisition operations were coordinated with daytime overpasses of the Infrared Atmospheric Sounding Interferometer (IASI) aboard the European Space Agency's MetOp-A platform. IASI is capable of measuring total columns of ammonia and the primary purpose of this investigation was to compare and validate the IASI ammonia product against high-spatial-resolution airborne retrievals acquired contemporaneously over the same footprint. The ~12-km pixel size of the IASI satellite measurements cannot resolve the local-scale variability of ammonia abundance and consequently cannot characterize the often compact source emissions. The nominal 2-m pixel size of the airborne data revealed variability of ammonia concentration at several different scales within the IASI footprint. At this pixel size, well-defined plumes issuing from individual dairy facilities could be imaged and their dispersion characteristics resolved. Retrieved ammonia concentrations in excess of 50 ppb were inferred for some of the strongest discrete plumes.

  16. Comparison of four methods of aerodynamic roughness length parameterization in semi-arid shrublands with airborne LiDAR, hyperspectral, and meteorological data

    NASA Astrophysics Data System (ADS)

    Li, A.; Mitchell, J. J.; Glenn, N. F.; Zhao, W.; Germino, M. J.; Allen, R.; Sankey, J. B.

    2013-12-01

    The aerodynamic roughness length (z0) plays an important role in the flux exchange between the land surface and atmosphere. Especially in semiarid shrublands, z0 is a key parameter for physical models of aeolian transport. z0 is influenced by the height, geometry, density and pattern of roughness elements. Light detection and ranging (LiDAR) is well suited to measure the vegetation height and has been used to estimate z0 across large areas. In this study, we combined airborne LiDAR, hyperspectral imagery and meteorological measurements to estimate z0, and assessed the ability of airborne LiDAR to estimate z0 over semi-arid shrublands. Airborne LiDAR data was used to derive the height of Wyoming big sagebrush (Artemisia tridentate subsp. wyomingensis) over a study area in the Great Basin, Idaho. Roughness density was related with percent vegetation cover which was estimated by integrating LiDAR and hyperspectral data, both collected in August 2011. Four methods of parameterization of z0 were applied and compared with the vegetation height from LiDAR; roughness from LiDAR and hyperspectral; NDVI and LAI from HyMap; and a geometric approach using meteorological data (e.g. wind speed). Micrometeorological measurements at two eddy covariance sites in the study area were used for validation of parameterized z0. The spatial variability of z0 was analyzed and the relationship with vegetation density was explored. The results demonstrated the potential of using airborne LiDAR data to estimate z0 at a regional scale in semi-arid shrublands. Furthermore, z0 showed a tight relationship with local variance of vegetation height and vegetation density.

  17. Development of Hyperspectral Remote Sensing Capability For the Early Detection and Monitoring of Harmful Algal Blooms (HABs) in the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lekki, John; Anderson, Robert; Nguyen, Quang-Viet; Demers, James; Leshkevich, George; Flatico, Joseph; Kojima, Jun

    2013-01-01

    Hyperspectral imagers have significant capability for detecting and classifying waterborne constituents. One particularly appropriate application of such instruments in the Great Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two generations of small hyperspectral imagers have been built and tested for aircraft based monitoring of harmful algal blooms. In this paper a discussion of the two instruments as well as field studies conducted using these instruments will be presented. During the second field study, in situ reflectance data was obtained from the Research Vessel Lake Guardian in conjunction with reflectance data obtained with the hyperspectral imager from overflights of the same locations. A comparison of these two data sets shows that the airborne hyperspectral imager closely matches measurements obtained from instruments on the lake surface and thus positively supports its utilization for detecting and monitoring HABs.

  18. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-26

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  19. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  20. Improved estimation of soil clay content by the fusion of remote hyperspectral and proximal geophysical sensing

    NASA Astrophysics Data System (ADS)

    Ciampalini, Andrea; André, Frédéric; Garfagnoli, Francesca; Grandjean, Gilles; Lambot, Sébastien; Chiarantini, Leandro; Moretti, Sandro

    2015-05-01

    Planning sustainable soil exploitation and land resource evaluation require up-to-date and accurate maps of soil properties. In that respect, geophysical techniques present particular interests given their non-invasiveness and their fast data acquisition capacity, which permit to characterize large areas with fine spatial and/or temporal resolutions. We investigated the relevancy of combining data from airborne hyperspectral (Hs), electromagnetic induction (EMI) and far-field ground-penetrating radar (GPR) for mapping soil properties, in particular soil clay content, at the field scale. Data from the three techniques were acquired at a test site in Mugello (Italy) characterized by relatively strong spatial variations of soil texture. Soil samples were collected for determining ground truth clay content. For the frequencies used in this study (200-650 MHz), the GPR surface reflection is mainly determined by soil dielectric permittivity, itself primarily influenced by soil moisture. In contrast, EMI is mostly sensitive to soil electrical conductivity, which integrates several soil properties including in particular soil moisture and clay content. Taking advantage of the complementary information provided by the two instruments, the GPR and EMI data were combined and correlated to local ground-truth clay content data to provide high-resolution clay content maps over the entire field area. Besides, a relationship was also observed between Hs data and clay content measurements, which permitted to produce a Hs-derived clay content map. EMI-GPR and Hs maps showed close spatial patterns and a relatively high correlation was observed between both clay content estimates, as well as between clay content estimates and ground-truth clay content measurements. Moreover, data fusion allowed constraining the EMI-GPR and Hs information and reduced the uncertainty of mapped clay content estimates. These results demonstrated great promise for integrated, digital soil mapping

  1. Monitoring rangeland plant community composition using spectral mixture analysis of hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Rochdi, Nadia; Eddy, Peter; Staenz, Karl; Zhang, Jinkai; Lutz, Christian

    2008-10-01

    This paper investigates the abundance mapping of rangeland plant communities using hyperspectral remote sensing data. Spectral Mixture Analysis (SMA) was used to estimate the cover fraction of five rangeland components: green grass, yellow grass, litter, shrubs and soil. Two types of endmembers were assessed using canopy reflectance modeling and tested over real data. The first type is the leaf endmember based on the laboratory reflectance measurements of different samples of leaves. The second is the canopy endmember based on reflectance simulation using the canopy radiative transfer model SAIL. These two endmember types were first assessed in SMA using a number of homogenous canopy simulations with different Leaf Area Index (LAI). Subsequently, the leaf and the canopy endmembers were evaluated using ground spectra, and cover fractions were compared to actual data. Finally, both endmember types were applied in SMA to CHRIS/PROBA data to estimate the rangeland component cover fractions. Performances of leaf and canopy endmembers were evaluated based on the field knowledge of the area of interest. Results showed overall that the cover fraction estimates using the canopy endmembers tend to better agree with actual data.

  2. A Neural Network Approach For Volcanic Monitoring Of Sulpher Dioxide Using Hyperspectral Remote Sensed Data

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Carboni, Elisa; Don Granger, Roy; Del Frate, Fabio

    2013-12-01

    This paper describes an application of ANN for the simultaneous estimation of the columnar content and height of the SO2 plume from volcanic eruptions using hyperspectral remotely sensing data. ANN have been trained using all IASI channels between 1000-1200 and 1300-1410 cm-1, as inputs, and the corresponding values of SO2 amount and plume's height obtained using the Oxford retrieval scheme as outputs. As a case study we have chosen the Eyjafjallajökull volcano (Iceland), in particular the eruption took place during the months of April and May 2010, which had an enormous impact on the world economy. ANNs have been validated on some independent data sets belonging to the same eruption and also on IASI images of Grímsvötn eruption, occurred on May 2011. The results have provided values of RMSE between ANN outputs and targets always less than 20 DU for SO2 and 200 mb for height, so demonstrating the good performance in retrieval achieved by the ANN technique.

  3. Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers.

    PubMed

    Talone, Marco; Zibordi, Giuseppe; Ansko, Ilmar; Banks, Andrew Clive; Kuusk, Joel

    2016-05-20

    Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from -1% to +1% in the 400-700 nm spectral region for downward irradiance and sky radiance, and from -1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between -0.5% and +1% in the blue-green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue-green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.

  4. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data

    NASA Astrophysics Data System (ADS)

    Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun

    2017-02-01

    The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.

  5. Laser airborne remote sensing real-time acquisition, processing, and control system

    NASA Astrophysics Data System (ADS)

    Kelly, Brian T.; Pierson, Robert E.; Dropka, T. J.; Dowling, James A.; Lang, L. M.; Fox, Marsha J.

    1997-10-01

    The US Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. Extensive system integration in the laboratory and an airborne test are leading to remote sensing ground test and airborne missions within the next year. This paper describes the design, external interfaces. and initial performance of the Laser Airborne Remote Sensing acquisition, processing, and control system to be deployed on the Phillips Laboratory NC-135 research aircraft for differential absorption lidar system performance tests. The dual-CPU VME-based real-time computer system synchronizes experiment timing and pulsed CO2 laser operation up to 30 Hz while controlling optical subsystem components such as a laser grating, receiver gain, mirror alignment, and laser shutters. This real-time system acquires high rate detector signals from the outgoing and return laser pulses as well as a low rate health and status signals form the optical bench and the aircraft. Laser pulse and status data are processed and displayed in real time on one of four graphical user interfaces: one devoted to system control, one to remote mirror alignment, and two other interfaces for real-time data analysis and diagnostics. The dual-CPU and multi- layered software decouple time critical and non-critical tasks allowing great flexibility in flight-time display and processing.

  6. Airborne remote sensing to detect greenbug stress to wheat

    USDA-ARS?s Scientific Manuscript database

    Vegetation indices calculated from the quantity of reflected electromagnetic radiation have been used to quantify levels of stress to plants. Greenbugs cause stress to wheat plants and therefore multi-spectral remote sensing may be useful for detecting greenbug infested wheat fields. The objective...

  7. [Monitoring of wheat leaf pigment concentration with hyper-spectral remote sensing].

    PubMed

    Feng, Wei; Zhu, Yan; Yao, Xia; Tian, Yong-Chao; Yao, Xin-Feng; Cao, Wei-Xing

    2008-05-01

    In a two-year field experiment with wheat cultivars under different application rates of fertilizer N, the wheat leaf pigment concentrations were monitored with hyper-spectral remote sensing, and quantitative monitoring models were established. The results showed that the pigment concentrations in wheat leaves increased with increasing N application rate, and differed significantly among test cultivars. With the growth of wheat, the relative concentration of chlorophyll a + b varied more obviously than those of chlorophyll b and carotenoid (Car), and the sensitive bands of the pigments occurred mostly within visible light range, especially in red-edge district. The analyses on the relationships between eight existing vegetation indices and leaf pigment concentrations indicated that the concentrations of chlorophyll a, chlorophyll b, and chlorophyll a + b were highly correlated with red edge position, and the relationships to REP(LE) were better than to REP(IG), giving the determination coefficient R2 as 0.835, 0.841 and 0.840, and standard error SE as 0.264, 0.095 and 0.353, respectively. However, the R2 values between Car and different spectral indices decreased significantly, and the differences among the spectrum indices were very small. The tests of the monitoring models with independent datasets indicated that REP(LE) and REP(IG) were the best to predict leaf pigment concentrations. The R2 of chlorophyll a, chlorophyll a + b, and Car for REP(LE) were 0.805, 0.744 and 0.588, with the RE being 9.0%, 9.7% and 14.6%, respectively, and the R2 and RE of chlorophyll b for REP(IG) were 0.632 and 18.2%, respectively. It was suggested that the red-edge parameters of hyper-spectral reflectance had stable relationships with the pigment concentrations in wheat leaves, and especially, REP(LE) could be used to reliably estimate the concentrations of leaf chlorophyll a and chlorophyll a + b.

  8. Long-term agroecosystem research in the central Mississippi river basin: hyperspectral remote sensing of reservoir water quality.

    PubMed

    Sudduth, Kenneth A; Jang, Gab-Sue; Lerch, Robert N; Sadler, E John

    2015-01-01

    In situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment, and turbidity. The objective of this research was to develop and evaluate relationships between hyperspectral remote sensing and lake water quality parameters-chlorophyll, turbidity, and N and P species. Proximal hyperspectral water reflectance data were obtained on seven sampling dates for multiple arms of Mark Twain Lake, a large man-made reservoir in northeastern Missouri. Aerial hyperspectral data were also obtained on two dates. Water samples were collected and analyzed in the laboratory for chlorophyll, nutrients, and turbidity. Previously reported reflectance indices and full-spectrum (i.e., partial least squares regression) methods were used to develop relationships between spectral and water quality data. With the exception of dissolved NH, all measured water quality parameters were strongly related ( ≥ 0.7) to proximal reflectance across all measurement dates. Aerial hyperspectral sensing was somewhat less accurate than proximal sensing for the two measurement dates where both were obtained. Although full-spectrum calibrations were more accurate for chlorophyll and turbidity than results from previously reported models, those previous models performed better for an independent test set. Because extrapolation of estimation models to dates other than those used to calibrate the model greatly increased estimation error for some parameters, collection of calibration samples at each sensing date would be required for the most accurate remote sensing estimates of water quality. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate

  10. Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide

    2005-06-01

    Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and

  11. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  12. Airborne Remote Sensing for the ONR Sea State DRI Experiment

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Thomson, J.; Ackley, S. F.; Holt, B.

    2016-02-01

    As part of the Office of Naval Research Sea State Departmental Research Initiative, researchers aboard the R/V Sikuliaq will be conducting a broad series of measurements to investigate the processes governing the interaction of the ocean waves with the formation and evolution of the floating sea ice and ocean/ice boundary layers of the Arctic ice pack during the seasonal southward advance of the ice in October 2015. The DRI will also support a series of research flights by the Naval Research Laboratory to measure and characterize the ocean waves and sea ice distribution in a larger region surrounding the ship. A Twin Otter aircraft will be equipped with Multi-Band SAR, scanning lidar, digital photogrammetric system, atmospheric pressure sensor, and KT-19 radiometer. The SAR is a software programmable radar transmitter/receiver with fully polarimetric bandwidth of 215-915 MHz (P-band) and 1000-1500 MHz (L-band). One of the strengths of the airborne SAR compared to satellite systems is the ability to fly an arbitrary trajectory, e.g. linear tracks or boxes/circles around a region. Low frequencies and large bandwidth of the system result in high resolution images of the ice in a part of the spectrum complementary to satellite SARs. The fully polarimetric SAR is also sensitive to different features in HH, VV and the cross polarizations, including the variation of such returns for a given ice area as a function of illumination direction. The SAR, lidar, camera and radiometer maps will allow the discrimination between open water, thinly frozen-over leads, and substantial ice floes. Maps will be analyzed for floe size distributions and a regional estimate of the radiative heat transfer. The lidar will map the ocean wave heights and be used to produce wave height spectra and wave train directional information. After initial reduction, the airborne data will be integrated with the in-situ shipboard and satellite data.

  13. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  14. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  15. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  16. Hyperspectral remote sensing techniques applied to the noninvasive investigation of mural paintings: a feasibility study carried out on a wall painting by Beato Angelico in Florence

    NASA Astrophysics Data System (ADS)

    Cucci, Costanza; Picollo, Marcello; Chiarantini, Leandro; Sereni, Barbara

    2015-06-01

    Nowadays hyperspectral imaging is a well-established methodology for the non-invasive diagnostics of polychrome surfaces, and is increasingly utilized in museums and conservation laboratories for documentation purposes and in support of restoration procedures. However, so far the applications of hyperspectral imaging have been mainly limited to easel paintings or paper-based artifacts. Indeed, specifically designed hyperspectral imagers, are usually used for applications in museum context. These devices work at short-distances from the targets and cover limited size surfaces. Instead, almost still unexplored remain the applications of hyperspectral imaging to the investigations of frescoes and large size mural paintings. For this type of artworks a remote sensing approach, based on sensors capable of acquiring hyperspectral data from distances of the order of tens of meters, is needed. This paper illustrates an application of hyperspectral remote sensing to an important wall-painting by Beato Angelico, located in the San Marco Museum in Florence. Measurements were carried out using a re-adapted version of the Galileo Avionica Multisensor Hyperspectral System (SIM-GA), an avionic hyperspectral imager originally designed for applications from mobile platforms. This system operates in the 400-2500 nm range with over 700 channels, thus guaranteeing acquisition of high resolution hyperspectral data exploitable for materials identification and mapping. In the present application, the SIM-GA device was mounted on a static scanning platform for ground-based applications. The preliminary results obtained on the Angelico's wall-painting are discussed, with highlights on the main technical issues addressed to optimize the SIM-GA system for new applications on cultural assets.

  17. Changing scale: from site thorough landscape to taskscape within airborne remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Kostyrko, Mikołaj; RÄ czkowski, Włodzimierz; Ruciński, Dominik

    2016-08-01

    In consequence of a long tradition, archaeologists focus on individual sites and features and not landscape itself. We propose to perceive the landscape as a taskscapes, a space where tasks are performed, by that its own identity is created. Airborne remote sensing methods establish a possibility of studies on a larger scale of and to perceive places as context for landscapes and vice versa. On the other hand we would like to draw attention to identification of paleoenvironment features in the context of past landscapes. Although it is not always possible to determine the relationship between these element and traces of past human activities, we must be aware that in the past they had and influence on human behavior. In this paper will address the question: how much do airborne remote sensing data through the ability to change the scale of our perspective upon archaeological sites and their local landscapes alter or enrich interpretation of the context of past human activities.

  18. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  19. Airborne remote sensors applied to engineering geology and civil works design investigations

    NASA Technical Reports Server (NTRS)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  20. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  1. Design and performance simulations for an airborne DIAL system for long-range remote sensing applications

    NASA Astrophysics Data System (ADS)

    Dowling, James A.; Kelly, Brian T.; Gonglewski, John D.; Fox, Marsha J.; Shilko, Michael L.; Higdon, Noah S.; Highland, Ronald G.; Senft, Daniel C.; Dean, David R.; Blackburn, John P.; Pierrottet, Diego F.

    1997-01-01

    The U.S. Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. To date, the Phillips Laboratory program has been concerned with the preliminary design and performance analysis of a commercially available CO(subscript 2) laser-based DIAL system operating from mountain-top-observatory and airborne platform and more recently with long-range ground testing using a 21.8 km slant path from 3.05 km ASL to sea level as the initial steps in the design and development of an airborne system capability. Straightforward scaling of the performance of a near-term technology direct-detection LIDAR system with propagation range to a topographic target and with the average atmospheric absorption coefficient along the path has been performed. Results indicate that useful airborne operation of such a system should be possible for slant path ranges between 20 km and 50 km, depending upon atmospheric transmission at the operating wavelengths of the (superscript 13)C(superscript 16)O(subscript 2) source. This paper describes the design of the airborne system which will be deployed on the Phillips Laboratory NC-135 research aircraft for DIAL system performance tests at slant ranges of 20 km to 50 km, scheduled for the near future. Performance simulations for the airborne tests will be presented and related to performance obtained during initial ground-based tests.

  2. Multipurpose hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...

  3. Hyperspectral laboratory and airborne measurements as tools for local mapping of swelling soils in Orléans area (France)

    NASA Astrophysics Data System (ADS)

    Grandjean, Gilles; Dufrechou, Gregory; Hohmann, Audrey

    2013-04-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Based on spatial distribution of infrastructure damages and existing geological maps, the Bureau de Recherches Géologiques et Minières (BRGM, the French Geological Survey) published in 2010 a 1:50 000 swelling hazard map of France. This map indexes the territory to low, intermediate, or high swell susceptibility, but does not display smallest and isolated clays lithologies. At local scale, identification of clay minerals and characterization of swell potential of soils using conventional soil analysis (DRX, chemical, and geotechnical analysis) are slow, expensive, and does not permit integrated measurements. Shortwave infrared (SWIR: 1100-2500 nm) spectral domains are characterized by significant spectral absorption bands that provide an underused tool for estimate the swell potential of soils. Reflectance spectroscopy, using an ASD Fieldspec Pro spectrometer, permits a rapid and less expensive measurement of soil reflectance spectra in the field and laboratory. In order to produce high precision map of expansive soils, the BRGM aims to optimize laboratory reflectance spectroscopy for mapping swelling soils. Geotechnical use of laboratory reflectance spectroscopy for local characterization of swell potential of soils could be assessable from an economical point of view. A new high resolution airborne hyperspectral survey (covering ca. 280 km², 380 channels ranging from 400 to 2500 nm) located at the W of Orléans (Loiret, France) will also be combined with field and laboratory measurements to detect and map swelling soils.

  4. Mapping the Riparian Vegetation Using Multiple Hyperspectral and Thermal Infrared Airborne Imagery over the Republican River, Nebraska

    NASA Astrophysics Data System (ADS)

    Akasheh, O. Z.; Irmak, A.; Martin, D.; Irmak, S.; Awada, T.; Zhou, X.; Huddle, J.

    2009-12-01

    As the dependency on rivers for fresh water increases, rivers ecosystem analysis becomes essential for proper water management and riparian vegetation protection. Changes in river water flow pattern have affected the riparian vegetation distribution and encouraged invasive species to replace the native ones. Mapping riparian vegetation helps quantify changes in species composition. Land managers will be able to use our map to monitor and control invasive species and estimate riparian vegetation water use. Based on water use estimates decision makers can decide on how much water could be diverted from the river and how to distribute it while preserving the river ecosystem. In this study we will show the use of high spectral and spatial resolution imagery to map the riparian vegetation in the Republican River. Eight flights were conducted during the summer of 2009 using AisaEagle Airborne Hyperspectral Imaging System and FLIR SC640 thermal digital camera. The AisaEagle acquires visible and near infrared images in the waver band over 400 - 970 nm of the electromagnetic spectrum, while the thermal infrared captures images in the range of 800-1200 nm. Early and mid-season images were primarily acquired to classify the overstory cottonwood (Populus deltoides) vegetation and late-season images were primarily acquired to classify the understory vegetation and the invasive eastern redcedar (Juniperus virginiana) after the senescence of cottonwood leaves. The land use map was developed using a supervised classification technique. The high resolution imagery delineated the riparian vegetation accurately with an overall classification accuracy of 85 %. Overall, our results indicate that high resolution imagery is very useful in mapping both heterogonous forest systems and woody invasive species along the Republican River.

  5. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  6. Using Hyperspectral Aircraft Remote Sensing to Support Ecosystems Services Research in New England Lakes and Ponds

    NASA Astrophysics Data System (ADS)

    Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.

    2010-12-01

    Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem

  7. Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop

    NASA Astrophysics Data System (ADS)

    Nigam, Rahul; Kot, Rajsi; Sandhu, Sandeep S.; Bhattacharya, Bimal K.; Chandi, Ravinder S.; Singh, Manjeet; Singh, Jagdish; Manjunath, K. R.

    2016-05-01

    sensing techniques are based on the assumption that plant pest and disease stresses interfere with physical structure and function of plant and influence the absorption of light energy and therefore changes the reflectance spectrum of plants. Moreover, remote sensing provides better means to objectively quantify crop stress than visual methods and it can be used repeatedly to collect sample measurements non-destructively and non-invasively (Nutteret et al., 1990; Nilson, 1995). Recent advances in the field of spectroscopy and other remote sensing techniques offer much needed technology of hyperspectral remote sensing (Prabhakar et al., 2011). Hyperspectral remote sensing for disease detection helps in monitoring the diseases in plants with the help of different plant spectral properties at the visible, near infrared and shortwave infrared regions ranging from 350 - 2500 nm, which develops specific signatures for a specific stress for a given plant (Yang et al., 2009). It has been effectively used in assessment of disease in agricultural crops like wheat, rice, tomato etc across the world. Cotton (Gissypium hirsutum L.) is one of the major commercial crops grown in India, and supports about 60 million people in the country directly or indirectly through the process of production, processing, marketing and trade (Prabhakar et al., 2011). India ranks first in global acreage, occupying about 33% of world cotton area. With regard to production it is ranked second next to China. In recent years, farmers are facing many challenges because of rising incidents of white flies, jassid, leafhoppers, aphids, mealybugs and stainers. Whiteflies are tiny, sap- sucking insects that may become abundant in vegetable and ornamental plantings, especially during warm weather. They excrete sticky honeydew and cause yellowing or death of leaves. Outbreaks often occur when the natural biological control is disrupted. Management is difficult once populations are high. White flies develop rapidly

  8. Assessment of Superflux relative to remote sensing. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1981-01-01

    The state-of-the-art advancements in remote sensor technology due to the Superflux program are examined. Three major individual sensor technologies benefitted from the program: laser fluorosensors, optical-range scanners, and passive microwave sensors. Under Superflux, convincing evidence was obtained that the airborne oceanographic lidar fluorosensor can map chlorophyll, i.e., is linear, over a wide range from less than 0.5 to 5.0 mg/cu m. The lidar oceanographic probe dual-excitation concept for addressing phytoplankton color group composition was also demonstrated convincingly. Algorithm development, real time capabilities, and multisensor integration are also addressed.

  9. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing

    2016-10-01

    Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.

  10. Hyperspectral Remote Sensing of Seasonally-Acquired Imported Fire Ant Mound Features (Hymenoptera: Formicidae) in Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Invasive mound-building imported fire ants (Solenopsis spp.) impact soil quality and turfgrass nutrient management in sod production, recreational, residential, and commercial settings. Ground-based hyperspectral studies focused on the seasonal monitoring of reflectance characteristics of imported f...

  11. GosNIIAS airborne platforms for remote sensing

    NASA Astrophysics Data System (ADS)

    Falkov, Edward J.

    1995-12-01

    The description of the capabilities of Tu-134 and An-2 planes and Mi-6 helicopter testbeds for carrying out remote sensing tasks in the range of 0.4 - 14 micrometer is given. Main features of testbeds are: receipt of synchronous multispectral images with the use of photo-, TV, infrared and laser scanning equipment which is partly installed on gyrostabilized platforms, with registration of data from all optical-electronic devices and navigation equipment into a digital common frame on a high efficient tape recorder; realization of convergent photosurvey and ground objects TV observation in all the upper hemisphere with a possibility of manual or automated (using the correlation algorithm) tracking of selected objects; perfect navigational support, including GPS and GLONASS receivers, inertial system and others and autonomous recording of navigational data.

  12. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  13. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

  14. From airborne cloud remote sensing observations to cloud regime classification

    NASA Astrophysics Data System (ADS)

    Konow, Heike; Ament, Felix

    2017-04-01

    The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations such as the cloud remote sensing configuration NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) on the German research aircraft HALO (High Altitude Long Range Research Aircraft) offer a more detailed insight due to lower altitude and higher sampling rates than satellite data. Part of the NARVAL payload on HALO is the HALO Microwave Package (HAMP) which consists a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz and a cloud radar at 36 GHz. This payload was flown on HALO between 2013 and 2016 on several campaigns: NARVAL-I (2013 and 2014), NARVAL-II (2016), NAWDEX (2016, North Atlantic Waveguide and Downstream Impact Experiment). Cloud regimes can be characterized by cloud macrophysical parameters such as cloud fraction, cloud top height, cloud length, etc. During all campaigns, a range of different cloud regimes were investigated. For example, during NARVAL-I (South) and NARVAL-II, cloud fraction observed by HAMP instruments ranged between 10 % and 40 % over the duration of the individual flights. During NARVAL-I (North) and NAWDEX, cloud fraction was between 50 % and 80 %. This shows the range of cloud parameters in different regimes. Cloud regime classification can be approached in two different ways: regimes can be deduced by analyzing a priori information such as atmospheric thermodynamic profiles and satellite data and then infer the cloud characteristics in these conditions. The second, inductive, approach is to characterize cloudy scenes by cloud macrophysical parameters. We will

  15. Detection of stress factors in crop and weed species using hyperspectral remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Henry, William Brien

    The primary objective of this work was to determine if stress factors such as moisture stress or herbicide injury stress limit the ability to distinguish between weeds and crops using remotely sensed data. Additional objectives included using hyperspectral reflectance data to measure moisture content within a species, and to measure crop injury in response to drift rates of non-selective herbicides. Moisture stress did not reduce the ability to discriminate between species. Regardless of analysis technique, the trend was that as moisture stress increased, so too did the ability to distinguish between species. Signature amplitudes (SA) of the top 5 bands, discrete wavelet transforms (DWT), and multiple indices were promising analysis techniques. Discriminant models created from one year's data set and validated on additional data sets provided, on average, approximately 80% accurate classification among weeds and crop. This suggests that these models are relatively robust and could potentially be used across environmental conditions in field scenarios. Distinguishing between leaves grown at high-moisture stress and no-stress was met with limited success, primarily because there was substantial variation among samples within the treatments. Leaf water potential (LWP) was measured, and these were classified into three categories using indices. Classification accuracies were as high as 68%. The 10 bands most highly correlated to LWP were selected; however, there were no obvious trends or patterns in these top 10 bands with respect to time, species or moisture level, suggesting that LWP is an elusive parameter to quantify spectrally. In order to address herbicide injury stress and its impact on species discrimination, discriminant models were created from combinations of multiple indices. The model created from the second experimental run's data set and validated on the first experimental run's data provided an average of 97% correct classification of soybean and an

  16. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    NASA Astrophysics Data System (ADS)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the

  17. On the additional information content of hyperspectral remote sensing data for estimating ecosystem carbon dioxde and energy exchange

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Hammerle, Albin; Tomelleri, Enrico

    2015-04-01

    Radiation reflected back from an ecosystem carries a spectral signature resulting from the interaction of radiation with the vegetation canopy and the underlying soil and thus allows drawing conclusions about the structure and functioning of an ecosystem. When this information is linked to a model of the leaf CO2 exchange, the ecosystem-scale CO2 exchange can be simulated. A well-known and very simplistic example for this approach is the light-use efficiency (LUE) model proposed by Monteith which links the flux of absorbed photosynthetically active radiation times a LUE parameter, both of which may be estimated based on remote sensing data, to predict the ecosystem gross photosynthesis. Here we explore the ability of a more elaborate approach by using near-surface remote sensing of hyperspectral reflected radiation, eddy covariance CO2 and energy flux measurements and a coupled radiative transfer and soil-vegetation-atmosphere-transfer (SVAT) model. Our main objective is to understand to what degree the joint assimilation of hyperspectral reflected radiation and eddy covariance flux measurements into the model helps to better constrain model parameters. To this end we use the SCOPE model, a combination of the well-known PROSAIL model and a SVAT model, and the Bayesian inversion algorithm DREAM. In order to explicitly link reflectance in the visible light and the leaf CO2 exchange, a novel parameterisation of the maximum carboxylation capacity parameter (Vcmax) on the leaf a+b chlorophyll content parameter of PROSAIL is introduced. Results are discussed with respect to the additional information content the hyperspectral data yield for simulating canopy photosynthesis.

  18. Application of Multispectral and Hyperspectral Remote Sensing For Detection of Freshwater Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Accorsi, E.; Austerberry, D.; Palacios, S. L.

    2013-12-01

    Freshwater Cyanobacterial Harmful algal blooms (CHABs) represent a pressing and apparently increasing threat to both human and environmental health. In California, toxin producing blooms of several species, including Aphanizomenon, Microcystis, Lyngbya, and Anabaena are common; toxins from these blooms have been linked to impaired drinking water, domestic and wild animal deaths, and increasing evidence for toxin transfer to coastal marine environments, including the death of several California sea otters, a threatened marine species. California scientists and managers are under increasing pressure to identify and mitigate these potentially toxic blooms, but point-source measurements and grab samples have been less than effective. There is increasing awareness that these toxic events are both spatially widespread and ephememeral, leading to the need for better monitoring methods applicable to large spatial and temporal scales. Based on monitoring in several California water bodies, it appears that Aphanizomenon blooms frequently precede dangerous levels of toxins from Microcystis. We are exploring new detection methods for identifying CHABs and potentially distinguishing between blooms of the harmful cyanobacteria Aphanizomenon and Microcystis using remote sensing reflectance from a variety of airborne and satellite sensors. We suggest that Aphanizomenon blooms could potentially be used as an early warning of more highly toxic subsequent blooms, and that these methods, combined with better toxin monitoring, can lead to improved understanding and prediction of CHABs by pinpointing problematic watersheds.

  19. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  20. Space-borne hyperspectral remote sensing imagery noise eliminating based on CFFT self-adapted by optimal SNR

    NASA Astrophysics Data System (ADS)

    Liu, Qingjie; Lin, Qizhong; Wang, Liming; Wang, Qinjun; Miao, Fengxian

    2010-09-01

    Space-borne hyperspectral remote sensing imagery, supplying both spatial and spectral information for quantitative remote sensing monitoring, is easily polluted by noises from atmosphere, terrain etc. Based on spectral continuum removing and recovering, traditional fast Fourier Transform (FFT) was extended to Continuum Fast Fourier Transform (CFFT) to separate noise from target information in frequency domain (FD). Thus, low-pass filter for reserving useful information was designed for eliminating noise, with its cut-off frequency selected self-adaptively by optimal signal-tonoise ratio (SNR). Hyperion hyperspectral imageries of Beijing and Xinjiang China were singled out for noise removing to validate the filtering ability of the Continuum Fast Fourier Transform self-adapted by Optimal Signal-noise Ratio(CFFTOSNR) method with qualitative description and quantificational indexs, including mean, variance, entropy, definition and SNR etc. Experiment result shows that CFFTOSNR does well in reducing the gauss white noises in spectral domain and stripe and band-subtracting noise in spatial domain respectively, while the quantificational indexs of filtered imagery are all improved, with entropy of post-processed image obviously increased by 5 db.

  1. Hyperspectral remote sensing of the responses of vegetation ecosystems to physical and biological changes of the environment

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Krezhov, Kiril; Maneva, Svetla; Moskova, Irina; Petrov, Nikolay

    2016-07-01

    Hyperspectral remote sensing technique, based on reflectance measurements acquired in a high number of contiguous spectral bands in the visible and near infrared spectral ranges, was used to detect the influence of some environmental changes to vegetation ecosystems. Adverse physical and biological conditions give rise to morphological, physiological, and biochemical changes in the plants that affect the manner in which they interact with the light. All green vegetation species have unique spectral features, mainly because of the chlorophyll and carotenoid, and other pigments, and water content. Because spectral reflectance is a function of the illumination conditions, tissue optical properties and biochemical content of the plants it may be used to collect information on several important biophysical parameters such as color and the spectral signature of features, vegetation chlorophyll absorption characteristics, vegetation moisture content, etc. Remotely sensed data collected by means of a portable fiber-optics spectrometer in the spectral range 350-1100 nm were used to extract information on the influence of some environmental changes. Stress factors such as enhanced UV-radiation, salinity, viral infections, were applied to some young plants species (potato, tomato, plums). The test data were subjected to different digital image processing techniques. This included statistical (Student's t-criterion), first derivative and cluster analyses and some vegetation indices. Statistical analyses were carried out in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (680-720 nm) and near infrared (720-780 nm). The strong relationship, which was found between the results from the remote sensing technique and some biochemical and serological analyses (stress markers, DAS-ELISA), indicates the importance of hyperspectral reflectance data for conducting, easily and without damage, rapid assessments of plant biophysical

  2. A New Method to Retrieve the Data Requirements of the Remote Sensing Community – Exemplarily Demonstrated for Hyperspectral User Needs

    PubMed Central

    Nieke, Jens; Reusen, Ils

    2007-01-01

    User-driven requirements for remote sensing data are difficult to define, especially details on geometric, spectral and radiometric parameters. Even more difficult is a decent assessment of the required degrees of processing and corresponding data quality. It is therefore a real challenge to appropriately assess data costs and services to be provided. In 2006, the HYRESSA project was initiated within the framework 6 programme of the European Commission to analyze the user needs of the hyperspectral remote sensing community. Special focus was given to finding an answer to the key question, “What are the individual user requirements for hyperspectral imagery and its related data products?”. A Value-Benefit Analysis (VBA) was performed to retrieve user needs and address open items accordingly. The VBA is an established tool for systematic problem solving by supporting the possibility of comparing competing projects or solutions. It enables evaluation on the basis of a multidimensional objective model and can be augmented with expert's preferences. After undergoing a VBA, the scaling method (e.g., Law of Comparative Judgment) was applied for achieving the desired ranking judgments. The result, which is the relative value of projects with respect to a well-defined main objective, can therefore be produced analytically using a VBA. A multidimensional objective model adhering to VBA methodology was established. Thereafter, end users and experts were requested to fill out a Questionnaire of User Needs (QUN) at the highest level of detail - the value indicator level. The end user was additionally requested to report personal preferences for his particular research field. In the end, results from the experts' evaluation and results from a sensor data survey can be compared in order to understand user needs and the drawbacks of existing data products. The investigation – focusing on the needs of the hyperspectral user community in Europe – showed that a VBA is a

  3. Ground-based Hyperspectral Remote Sensing for Mapping Rock Alterations and Lithologies: Case Studies from Semail Ophiolite, Oman and Rush Springs Sandstone, Oklahoma

    NASA Astrophysics Data System (ADS)

    Sun, L.; Khan, S.; Hauser, D. L.; Glennie, C. L.; Snyder, C.; Okyay, U.

    2014-12-01

    This study used ground-based hyperspectral remote sensing data to map rock alterations and lithologies at Semail Ophiolite, Oman, as well as hydrocarbon-induced rock alterations at Cement, Oklahoma. The Samail Ophiolite exposed the largest, least-deformed, and the most-studied ophiolite in the world. Hydrocarbon seepages at Cement, Oklahoma brought hydrocarbons to the Rush Springs sandstones at surface, and generated rock alterations including bleaching of red beds, and carbonate cementation. Surficial expressions of rock alterations and different lithofacies are distinct from adjacent rocks, and can be detected by remote sensing techniques. Hyperspectral remote sensing acquires light intensity for hundreds of bands in a continuous electromagnetic spectrum from visible light to short-wave infrared radiation, and holds potential to characterize rocks with great precision. Ground-based hyperspectral study could scan the objects at close ranges thus provide very fine spatial resolutions (millimeters to centimeters). This study mapped all the major iconic outcrops of Semail ophiolite including pillow lava, sheeted dykes, layered gabbros, and peridotites. This study also identified surficial rock alterations induced by hydrocarbons at Cement, Oklahoma. Reddish-brown Rush Spring sandstones are bleached to pink, yellow, and gray colors; pore spaces in the sandstones have been filled with carbonate cementation. Laboratory spectroscopy was used to assist with mineral identification and classification in hyperspectral data. Terrestrial laser scanning (TLS) was used to provide high-accuracy spatial references. Principal component analysis, minimum noise fraction, spectral angle mapper, and band ratios are used in image processing. Combining lithological, remote sensing and geochemical data, this study built a model for petroleum seepage and related rock alterations, and provided a workflow for employing ground-based hyperspectral remote sensing techniques in petrological

  4. Comparation of Typical Wetlands Classification Accuracy in Yellow River Estuary Using Multi-Angle Proba CHRIS Hyperspectral Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Zhang, Jie; Ma, Yi; Ren, Guangbo

    2013-01-01

    In this paper, Multi-angle PROBA CHRIS hyperspectral remote sensing images were used to study on their imaging quality and the ability of classification of Typical Wetlands in Yellow River Estuary, by the cooperation of interpretation and automatic classification. Taking 5-angle (0°, ±36°, ±55°) CHRIS hyperspectral remote sensing images of mode 2 obtained in September 2006 as an example, this paper research results indicate that the 0° image has the best imaging quality, with the highest spatial resolution, the ±36° images come second, the ±55° images are last; 5 typical wetlands, such as reservoir, bulrush, watercourse, barren beach and swamp were selected as study objects, then a Support Vector Machine (SVM) algorithm is used to classify different-angle remote sensing images into these 5 typical wetlands using training samples in the same location, the results of classification were analyzed based on field survey data, which shows that (1) The classification accuracy differs along the viewing angle of images, the overall accuracy and Kappa factor of the 0° image is highest, and the -36° image is lowest. (2) The overall accuracy and Kappa factor of the positive-angle images is higher than which of minus-angle images. (3) The producer accuracy and user accuracy of swamp is the lowest among all 5 typical wetlands in all images. (4) The producer accuracy and user accuracy of reservoir, bulrush and barren beach are relatively stable in all 5-angle images, however, the accuracies of Watercourse and swamp are fluctuant in all 5-angle images, and highest in the 0° image.

  5. Utilizing hyperspectral and hyperspatial remote sensing to track invasive species in BARC wetland ecosystems

    USDA-ARS?s Scientific Manuscript database

    Wetland vegetation is a critical component to the function of and ecological services provided by wetland ecosystems. Two non-native invasive species threaten wetland ecosystems in the Mid Atlantic region, Phragmites australis (giant reed) and Lythrum salicaria (purple loosestrife). Hyperspectral ...

  6. [Research on hyperspectral remote sensing inversion of barrier factors in saline-alkaline land use].

    PubMed

    Han, Ji-Chang; Li, Xiao-Ming

    2013-07-01

    In the present paper, the meliorated saline-alkaline land by mixing sand in the north of Shaanxi province was chosen as the study area. The growth situation of the corn in the study area was measured, and soil samples and hyperspectral data were collected. The barrier factors for saline-alkaline land use were obtained by analysing the properties of soil samples. And the hyperspectral characteristics of the barrier factors were studied to elicit the quantitative inverse model, and the accuracy was verified. The study results indicated that the salt content in soil was the primary factor restricting the saline-alkaline land use, and capillary porosity was also the barrier factor because of its good correlation with the salt content. The precisions of quantitative inverse model of salt content and capillary porosity with hyperspectral data were good (the determinate coefficients R2 were 0.938 and 0.973). The test result with testing points showed that there were good correlations between the measured value and predicted value of salt content and capillary porosity (the slope was near to 1, and R2 was 0.840 4 and 0.796 5), the accuracy was good. It is of great promotion for guiding the saline-alkaline land consolidation and use that the barrier factors for saline-alkaline land use were interpreted quantitatively by hyperspectral data.

  7. Remote classification from an airborne camera using image super-resolution.

    PubMed

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  8. Hyperspectral Thermal Infrared Remote Sensing of the Land Surface and Target Identification using Airborne Interferometry

    DTIC Science & Technology

    2009-10-01

    Interferometer ( IASI ) measures the radiance spectrum between 3 and 15 microns at a spectral resolution of 0.25cm-1 resulting in some 8461 radiance channels...global network of satellites used for meteorological observation. The Infared Atmospheric Sounding Interferometer ( IASI ) is one of the suite of...instruments on Metop. IASI measures infrared radiances between 3 and 15 microns with 8461 spectral channels. The data is widely used by NWP centres

  9. Prediction of a future washover landscape based on airborne remote sensing techniques

    SciTech Connect

    Eleveld, M.A.

    1997-06-01

    International recognition and protection of the Wadden Sea area was established after the {open_quote}Ramsar Convention on Wetlands of International Importance, Especially as Waterfowl Habitat{close_quote}. The Dutch government policy of dynamic preservation of the Dutch coast gives nature almost a free reign at locations designated as natural areas, e.g. the extremes of the Dutch Wadden islands. Management is involved in monitoring the coastal development with the purpose of gaining more insight in the processes affecting these areas, subsequently allowing prediction. An important process observed on the eastern ends of the Wadden islands is the occurrence of washovers. This geomorphological phenomenon, resulting in sand transport from the foredunes to the saltmarsh and tidal flats, has a major ecological impact, influencing among other things the species composition of the saltmarsh. To monitor the washovers several airborne sensors were used. Information on the formation and stabilization of washovers by vegetation, was extracted from multitemporal airborne videography and scanned aerial photographs. Based on the trends derived from these sequential images, digital elevation data and morphological parameters derived from laser altimetry, dynamic modelling in a GIS environment was applied, which resulted in the prediction of the place of washovers and the amount sediment that could be deposited on saltmarsh in the coming years. The general conclusion is that, the presence of washovers causes environmental heterogeneity resulting in a high species diversity. Multitemporal airborne remote sensing data are not only useful for monitoring the landscape but the data also support spatio-temporal modelling.

  10. Compact Hyperspectral Imaging System (cosi) for Small Remotely Piloted Aircraft Systems (rpas) - System Overview and First Performance Evaluation Results

    NASA Astrophysics Data System (ADS)

    Sima, A. A.; Baeck, P.; Nuyts, D.; Delalieux, S.; Livens, S.; Blommaert, J.; Delauré, B.; Boonen, M.

    2016-06-01

    This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g), and captures 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm) allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level) where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry-Pérot interferometer.

  11. Interpretation of Observations of Trans-Spectral Phenomena Acquired Using Hyperspectral Sensors Aboard a Remotely Operated Vehicle in Exuma Sound

    NASA Technical Reports Server (NTRS)

    Costello, D.; Carder, Kendall L.; Ivey, J.; English, D.

    2001-01-01

    Hyper-spectral (512-channel) optical data acquired during a relatively deep (102m) dive of our ROSEBUD Remotely Operated Vehicle (ROV) in the clear waters of Exuma Sound, Bahamas provided the opportunity to investigate the trans-spectral shift of photonic energy (inelastic scattering) as a function of water depth. Results show a convolution of several spectral processes (e.g. absorption, scattering) involving water molecules, dissolved material and particulates as well as trans-spectral (inelastic) processes involving fluorescence by water molecules (Raman), dissolved material and chlorophyll. The spectral signatures of these convolved causes and effects allow deconvolution with a hyperspectral approach. Intrinsic to the convolution was the ability to position the vehicle at depths where Raman fluorescence dominated at red wavelengths. Results show that the calculated Raman absorption coefficients are generally consistent with historical values (i.e. 0.9 x 10(sup)-4 at 525 nm excitation) and that an angstrom exponent of 5 is more appropriate than the often cited value of 4.

  12. Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic.

    PubMed

    Castillo, Elena; Pereda, Raúl; Luis, Julio Manuel de; Medina, Raúl; Viguri, Javier

    2011-10-01

    Remote sensing has been used since the 1980s to study parameters in relation with coastal zones. It was not until the beginning of the twenty-first century that it started to acquire imagery with good temporal and spectral resolution. This has encouraged the development of reliable imagery acquisition systems that consider remote sensing as a water management tool. Nevertheless, the spatial resolution that it provides is not adapted to carry out coastal studies. This article introduces a new methodology for estimating the most fundamental physical property of intertidal sediment, the grain size, in coastal zones. The study combines hyperspectral information (CASI-2 flight), robust statistic, and simultaneous field work (chemical and radiometric sampling), performed over Santander Bay, Spain. Field data acquisition was used to build a spectral library in order to study different atmospheric correction algorithms for CASI-2 data and to develop algorithms to estimate grain size in an estuary. Two robust estimation techniques (MVE and MCD multivariate M-estimators of location and scale) were applied to CASI-2 imagery, and the results showed that robust adjustments give acceptable and meaningful algorithms. These adjustments have given the following R(2) estimated results: 0.93 in the case of sandy loam contribution, 0.94 for the silty loam, and 0.67 for clay loam. The robust statistic is a powerful tool for large dataset.

  13. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  14. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  15. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  16. The GEISA Spectroscopic Database as a Tool for Hyperspectral Earth' Tropospheric Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain

    2010-05-01

    Remote sensing of the terrestrial atmosphere has advanced significantly in recent years, and this has placed greater demands on the compilations in terms of accuracy, additional species, and spectral coverage. The successful performances of the new generation of hyperspectral Earth' atmospheric sounders like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, which have a better vertical resolution and accuracy, compared to the previous satellite infrared vertical sounders, depend ultimately on the accuracy to which the spectroscopic parameters of the optically active gases are known, since they constitute an essential input to the forward radiative transfer models that are used to interpret their observations. In this context, the GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible dat