Science.gov

Sample records for airborne imaging system

  1. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  2. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  3. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  4. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  5. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  6. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  7. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  8. Advanced Airborne Hyperspectral Imaging System (AAHIS)

    NASA Astrophysics Data System (ADS)

    Topping, Miles Q.; Pfeiffer, Joel E.; Sparks, Andrew W.; Jim, Kevin T. C.; Yoon, Dugan

    2002-11-01

    The design, operation, and performance of the fourth generation of Science and Technology International's Advanced Airborne Hyperspectral Imaging Sensors (AAHIS) are described. These imaging spectrometers have a variable bandwidth ranging from 390-840 nm. A three-axis image stabilization provides spatially and spectrally coherent imagery by damping most of the airborne platform's random motion. A wide 40-degree field of view coupled with sub-pixel detection allows for a large area coverage rate. A software controlled variable aperture, spectral shaping filters, and high quantum efficiency, back-illuminated CCD's contribute to the excellent sensitivity of the sensors. AAHIS sensors have been operated on a variety of fixed and rotary wing platforms, achieving ground-sampling distances ranging from 6.5 cm to 2 m. While these sensors have been primarily designed for use over littoral zones, they are able to operate over both land and water. AAHIS has been used for detecting and locating submarines, mines, tanks, divers, camouflage and disturbed earth. Civilian applications include search and rescue on land and at sea, agricultural analysis, environmental time-series, coral reef assessment, effluent plume detection, coastal mapping, damage assessment, and seasonal whale population monitoring

  9. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  10. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  11. A high-resolution airborne four-camera imaging system for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  12. Advanced Airborne Hyperspectral Imaging System (AAHIS): an imaging spectrometer for maritime applications

    NASA Astrophysics Data System (ADS)

    Voelker, Mark A.; Resmini, Ronald G.; Mooradian, Gregory C.; McCord, Thomas B.; Warren, Christopher P.; Fene, Michael W.; Coyle, Christopher C.; Anderson, Richard

    1995-06-01

    The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, lightweight visible and near IR pushbroom hyperspectral imaging spectrometer flown on a Piper Aztec aircraft. AAHIS is optimized for use in shallow water, littoral, and vegetation remote sensing. Data are collected at up to 55 frames/second and may be displayed and analyzed inflight or recorded for post-flight processing. Swath width is 200 meters at a flight altitude of 1 km. Each image pixel contains hyperspectral data simultaneously recorded in up to 288 contiguous spectral channels covering the 432 to 832 nm spectral region. Pixel binning typically yields pixels 1.0 meter square with a spectral channel width of 5.5 nm. Design and performance of the AAHIS is presented, including processed imagery demonstrating feature detection and materials discrimination on land and underwater at depths up to 27 meters.

  13. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  14. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  15. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  16. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  17. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Christopher J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Wilkinson, Timothy S.

    2010-06-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  18. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Chris J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Willkinson, Timothy S.

    2008-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  19. HSI mapping of marine and coastal environments using the advanced airborne hyperspectral imaging system (AAHIS)

    NASA Astrophysics Data System (ADS)

    Holasek, Rick E.; Portigal, Frederick P.; Mooradian, Gregory C.; Voelker, Mark A.; Even, Detlev M.; Fene, Michael W.; Owensby, Pamela D.; Breitwieser, David S.

    1997-08-01

    The advanced airborne hyperspectral imaging system (AAHIS) is an operational, high signal-to-noise ratio, high resolution, integrated hyperspectral imaging spectrometer. The compact, lightweight and portable AAHIS system is normally flown in Piper Aztec aircraft. AAHIS collect 'push- broom' data with 385 spatial channels and 288 simultaneous spectral channels from 433 nm to 832 nm, recording at 12 bits up to 55 frames/second. Typical operation incorporates on-chip pixel binning of four pixels spectrally and two pixels spatially, increasing the signal-to-noise ratio and reducing data rate. When binned, the spectral resolution is 5.5 nm and the instantaneous field-of-view is 1 mrad, resulting in a ground sample distance of 0.5 m from 500 m altitude. The sensor is optimized for littoral region remote sensing for a variety of civilian and defense applications including ecosystem surveying and inventory, detection and monitoring of environmental pollution, infrastructure mapping, and surveillance. Since August 1994, AAHIS has acquired over 120 GB of hyperspectral image data of littoral, urban, desert and tropical scenes. System upgrades include real-time spectral image processing, integrated flight navigation and 3-axis image stabilization. A description of the sensor system, its performance characteristics, and several processed images demonstrating material discrimination are presented. The remote assessment, characterization, and mapping of coral reef health and species identification and floral species at Nu'upia Ponds, are shown and compared to extensive ground truthing in and around Kaneohe Bay, Oahu, Hawaii. SETS emphasizes providing georegistered, GIS-integrated, value- added data products for customers to help them solve real- world problems.

  20. A Nadir-adjusted Airborne Multi Spectral Imaging System (NAMSIS) for high-resolution remote sensing of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Scott, S.; Rahman, A. F.

    2012-12-01

    Satellite remote sensing is widely used in vegetation monitoring, water stress detection and carbon cycle modeling. However, image pixels from high temporal resolution satellite sensors (such as MODIS) have coarse spatial resolution, much larger than the canopies they are supposed to characterize. An alternative solution for on-demand high spatial resolution remote sensing is sensors onboard low-flying aircrafts. Airborne remote sensing has been traditionally used in crop management studies. In this presentation we demonstrate the application of a relatively low-cost airborne sensor system with customized spectral band combinations for studying forest carbon fluxes. Our team has developed an Inertia Measurement Unit (IMU) controlled automated system to detach aircraft movements (pitch and roll) and engine vibration from the six-band programmable imager, in order to maintain the sensor at nadir view at all times during the flight. Flight lines are configured by a GPS-controleld system to simulate MODIS pixels. A feature-based algorithm is used to automatically generate a mosaic of individual images along the flight lines. This algorithm eliminates the need to mosiac and georeference images manually. An empirical line method is used to calculate reflectance from the raw data. Images from this airborne system produce reflectance values that are comparable with MODIS reflectance product. These high spatial resolution (~0.5 m) images deliver detailed information about tree species and phenological conditions within each MODIS pixel, and thus permit a high resolution spatio-temporal assessment of forest carbon fluxes.

  1. Airborne ultraviolet imaging system for oil slick surveillance: oil-seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model.

    PubMed

    Shi, Zhenhua; Yu, Lei; Cao, Diansheng; Wu, Qingwen; Yu, Xiangyang; Lin, Guanyu

    2015-09-01

    The airborne ultraviolet imaging system, which assesses oil slick areas better than visible and infrared optical systems, was designed to monitor and track oil slicks in coastal regions. A model was built to achieve the upwelling radiance distribution of oil-covered sea and clean seawater, based on the radiance transfer software. With this model, the oil-seawater contrast, which affects the detection of oil-covered coastal areas, was obtained. The oil-seawater contrast, fundamental imaging concept, analog calculation of SNR, optical design, and optomechanical configuration of the airborne ultraviolet imaging system are illustrated in this paper. The study of an airborne ultraviolet imaging system with F-number 3.4 and a 40° field of view (FOV) in near ultraviolet channel (0.32-0.38 μm) was illustrated and better imaging quality was achieved. The ground sample distance (GSD) is from 0.35 to 0.7 m with flight height ranges from 0.5 to 1 km. Comparisons of detailed characteristics of the airborne ultraviolet imaging system with the corresponding characteristics of previous ultraviolet systems were tabulated, and these comparisons showed that this system can achieve a wide FOV and a relative high SNR. A virtual mechanical prototype and tolerances analysis are illustrated in this paper to verify the performance of fabrication and assembly of the ultraviolet system.

  2. System for processing of airborne images of forest ecosystems using high spectral and spatial resolution data

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Dmitriev, E. V.; Kamentsev, V. P.

    2014-12-01

    The developed hardware and software system for the recognition of natural and man-made objects based on the airborne hyperspectral sensing implements flight tasks on selected survey routes and computational procedures for solving applied problems that occur in data processing. The basics of object recognition based on obtained images of high spectral and spatial resolution in mathematical terms of sets of sites and labels and the basics of interrelations between separate resolution elements (pixels) for selected object classes are presented. Features of energy minimization of the processed scene are depicted as a target function of the optimization of computation and regularization of the solution of the considered problems as a theoretical basis for distinguishing between classes of objects in the presence of boundaries between them. Examples of the formation of information layers of recorded spectra for selected "pure species" of pine and birch forests are cited, with the separation of illuminated and shaded pixels, which increases the accuracy of object recognition in the processing of the images.

  3. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  4. Comprehensive analysis of imaging quality degradation of an airborne optical system for aerodynamic flow field around the optical window.

    PubMed

    Hao, Chenglong; Chen, Shouqian; Zhang, Wang; Ren, Jinhan; Li, Chong; Pang, Hongjun; Wang, Honghao; Liu, Qian; Wang, Chao; Zou, Huiying; Fan, Zhigang

    2013-11-20

    We investigated the influences exerted by the nonuniform aerodynamic flow field surrounding the optical window on the imaging quality degradation of an airborne optical system. The density distribution of flow fields around three typical optical windows, including a spherical window, an ellipsoidal window, and a paraboloidal window, were calculated by adopting the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras model provided by FLUENT. The fourth-order Runge-Kutta algorithm based ray-tracing program was used to simulate the optical transmission through the aerodynamic flow field. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the entrance pupil, point spread function, encircled energy, and modulation transfer function. The results show that the imaging quality of the airborne optical system was affected by the shape of the optical window and angle of attack of the aircraft.

  5. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  6. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters.

    PubMed

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-07-20

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels.

  7. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  8. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  9. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  10. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  11. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  12. Airborne Fraunhofer line discriminator (FLD) luminescence imaging systems and its application to exploration problems

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.; Hemphill, William R.; Barringer, Anthony R.

    1980-01-01

    Experiments with an imaging airborne Fraunhofer line discriminator (FLD) are being conducted to establish the feasibility of delineating the areal extent of luminescent materials on the earth's surface from aircraft and spacecraft. All luminescence measurements are related to a standard set of conditions with rhodamine wt dye used as a reference standard. The FLD has a minimum detectable rhodamine wt concentration of 0.1 parts per billion (ppb) at a signal-to-noise ratio of 5.0. Luminescence, when expressed in a signal-to-noise ratio (R) is related to equivalent ppb rhodamine wt through the relationship ppb=(0.1R-0.4). Luminescent materials imaged from an aircraft altitude of approximately 2400 m above terrain include fluorite in association with molybdenum, Pinenut Mountains, Nevada (R=62.0); mineralized playas, Claunch, New Mexico (R=960.0); uranium and vanadium-bearing outcrops, Big Indian Valley, Utah (R=105.0); uranophane sandstones, Sandia Mountains, New Mexico (R=60.0); phosphate outcrops, Pine Mountain, California (R=76.0); and marine oil slicks, Santa Barbara Channel, California (R=24.0). Correlation between the amount of fluorite in the rocks and soils of the Pinenut Mountains and luminescence, measured by the FLD, is as high as 0.88 at the 95 percent confidence level.

  13. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  14. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  15. Development of a Next Generation Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Frearson, N.; Gogineni, P.; Braaten, D.

    2007-12-01

    Key elements in Earth's geodynamic and climatic systems, the polar regions are very sensitive to changing global environmental conditions such as increasing sea surface temperatures and have the potential to trigger significant global sea level rise as large volumes of ice melt. Locked within these icy regions are the records of past global climate shifts and novel ecosystems sealed from open interactions with the atmosphere for millions of years. While satellite missions can image the surface of the polar ice sheet, many of the key processes occur beneath the surface beyond the reach of space based observations. These crucial processes can only be efficiently examined through airborne instrumentation designed to study the vast expanses of snow and ice of the Antarctic continent, the sub-continent of Greenland and the surrounding oceans. The expanding logistical infrastructure associated with the International Polar Year (2007-2009) will enable the scientific community access major new portions of the polar regions. We are developing a state-of-the-art integrated multidisciplinary aerogeophysical instrumentation package for deployment during multi-national expeditions as part of the International Polar Year. This development project brings together the recent developments in radar sounding by the University of Kansas CReSIS (Center for Remote Sensing of Ice Sheets), that now permit the full characterization of the entire ice sheet and the major advances in the accuracy, resolution and efficiency of airborne gravity technology emerging from the private sector. Integrating the full spectrum of ice sheet imaging with high-resolution gravity and magnetics will enable the imaging of the previously invisible world of subglacial hydrodynamics.

  16. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  17. Image Based Synthesis for Airborne Minefield Data

    DTIC Science & Technology

    2005-12-01

    applications of image synthesis include artificial texture generation [1], image repairing [2], photometric image rendering [3] and ultrasound imaging...1999. 4. M. Song, R. M. Haralick, F.H. Sheehan, " Ultrasound imaging simulation and echocardiographic image synthesis ", Proceedings of the IEEE...Night Vision and Electronic Sensors Directorate AMSRD-CER-NV-TR-246I Image Based Synthesis for Airborne Minefield Data December 2005 Approved for

  18. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  19. Imaging Hidden Water in Three Dimensions Using an Active Airborne Electromagnetic System

    NASA Astrophysics Data System (ADS)

    Wynn, J.

    2001-05-01

    The San Pedro Basin aquifer in southeastern Arizona and northern Mexico is important not only for local agriculture and residential communities, but also because it is the source of the San Pedro River. Declared a Riparian Conservation Area by Congress in 1988, the San Pedro is a critical element of one of four major migratory bird fly-ways over North America. The basin crosses the international frontier, extending into northern Mexico, where about 12,000 acre-ft of water is withdrawn yearly by the Cananea Mine. An additional 11,000 acre-ft is withdrawn by the US Army base at Fort Huachuca and surrounding towns including Sierra Vista. About 6,000 to 8,000 acre-ft of water is also estimated as lost to evapotranspiration, while recharge (mainly from the Huachuca Mountains) ranges from 12,500 to 15,000 acre-ft per year. This apparent net deficit is considered a serious threat by environmental groups to the integrity of the Riparian Conservation Area. Efforts have been underway to develop catchments and to implement water-conservation measures, but these have been hampered by a lack of detailed knowledge of the three-dimensional geometry and extent of the aquifer beneath the entire basin - at least until recently. In an effort to identify subcomponents and interconnectivities within the San Pedro Basin aquifer, the US Army funded several airborne EM surveys, conducted in 1997 and 1999 under the supervision of the US Geological Survey east of Fort Huachuca. These surveys used the Geoterrex GEOTEM system with 20 gated time-domain windows in three perpendicular orientations. The 60+ channel information was inverted using two different methods into conductivity-depth transforms, i.e., conductivity vs. depth along each flight-line. The resulting inversions have been assembled into a three-dimensional map of the aquifer, which in this arid region is quite conductive (the average is 338 micro-S/cm, around 30 ohm-meters). The coverage is about 1,000 square kilometers down to a

  20. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  1. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  2. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  3. The enhanced MODIS airborne simulator hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Guerin, Daniel C.; Fisher, John; Graham, Edward R.

    2011-06-01

    The EMAS-HS or Enhanced MODIS Airborne Simulator is an upgrade to the solar reflected and thermal infrared channels of NASA's MODIS Airborne Simulator (MAS). In the solar reflected bands, the MAS scanner functionality will be augmented with the addition of this separate pushbroom hyperspectral instrument. As well as increasing the spectral resolution of MAS beyond 10 nm, this spectrometer is designed to maintain a stable calibration that can be transferred to the existing MAS sensor. The design emphasizes environmental control and on-board radiometric stability monitoring. The system is designed for high-altitude missions on the ER-2 and the Global Hawk platforms. System trades optimize performance in MODIS spectral bands that support land, cloud, aerosol, and atmospheric water studies. The primary science mission driving the development is high altitude cloud imaging, with secondary missions possible for ocean color. The sensor uses two Offner spectrometers to cover the 380-2400 nm spectral range. It features an all-reflective telescope with a 50° full field-of-view. A dichroic cold mirror will split the image from the telescope, with longer radiation transmitted to the SWIR spectrometer. The VNIR spectrometer uses a TE-cooled Si CCD detector that samples the spectrum at 2.5 nm intervals, while the SWIR spectrometer uses a Stirling-cooled hybrid HgCdTe detector to sample the spectrum at 10 nm per band. Both spectrometers will feature 1.05 mRad instantaneous fields-of-view registered to the MAS scanner IFOV's.

  4. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  5. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  6. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  7. Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Dietz, J. B.

    1993-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps showing the principal surface mineralogy from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Linear spectral unmixing of the AVIRIS data allowed further determination of relative mineral, abundances and identification of mineral assemblages and mixtures. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rockforming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface.

  8. A Web-Based Library and Algorithm System for Satellite and Airborne Image Products

    DTIC Science & Technology

    2011-06-28

    Sequoia Scientific, Inc., and Dr. Paul Bissett at FERI, under other 6.1/6.2 program funding. 2 A Web-Based Library And Algorithm System For...of the spectrum matching approach to inverting hyperspectral imagery created by Drs. C. Mobley ( Sequoia Scientific) and P. Bissett (FERI...algorithms developed by Sequoia Scientific and FERI. Testing and Implementation of Library This project will result in the delivery of a WeoGeo

  9. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  10. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  11. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  12. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  13. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  14. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  15. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  16. AESMIR: A New NASA Airborne Microwave Imager

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Hood, Robbie; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer under development by NASA. The AESMIR design is unique in that it will perform dual-polarized imaging at all AMSR frequency bands (6.9 through 89 GHz) using only one sensor head/scanner package, providing an efficient solution for AMSR-type science applications (snow, soil moisture/land parameters, precip, ocean winds, SST, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s and the Proteus. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, and ground-based deployments. Thus AESMIR can provide low-, mid-, and high altitude microwave imaging.

  17. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  18. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  19. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  20. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  1. An Airborne Ultrasonic Imaging System Based on 16 Elements: 150 kHz Piezopolymer Transducer Arrays—Preliminary Simulated and Experimental Results for Cylindrical Targets Detection

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Bulletti, A.; Calzolai, M.; Giannelli, P.

    2016-12-01

    This paper describes the design and fabrication of a 16-element transducer array for airborne ultrasonic imaging operating at 150 kHz, that can operate both at close range (50 mm) in the near field of a synthetic aperture, and up to 250 mm. The proposed imaging technique is based on a modified version of the delay and sum algorithm implemented with a synthetic aperture where each pixel amplitude is determined by the integration of the signal obtained by the coherent summation of the acquired signals over a delayed window with fixed length. The image reconstruction methods using raw data provides the possibility to detect targets with smaller feature size on the order of one wavelength because the coherent signals summation over the selected window length while the image reconstruction methods using the summation of enveloped signals increases the amplitude response at the expenses of a lower spatial resolution. For the implementation of this system it is important to design compact airborne transducers with large field of view and this can be obtained with a new design of hemi-cylindrical polyvinylidene fluoride film transducers directly mounted on a printed circuit board. This new method is low cost and has repeatable transducer characteristics. The complete system is compact, with a modular architecture, in which eight boards with dual ultrasonic channels are mounted on a mother board. Each daughter board hosts a microcontroller unit and can operate with transducers in the bandwidth 40-200 kHz with on-board data acquisition, pre-processing and transfer on a dedicated bus.

  2. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  3. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...

  4. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  5. Design and implementation of digital airborne multispectral camera system

    NASA Astrophysics Data System (ADS)

    Lin, Zhaorong; Zhang, Xuguo; Wang, Li; Pan, Deai

    2012-10-01

    The multispectral imaging equipment is a kind of new generation remote sensor, which can obtain the target image and the spectra information simultaneously. A digital airborne multispectral camera system using discrete filter method had been designed and implemented for unmanned aerial vehicle (UAV) and manned aircraft platforms. The digital airborne multispectral camera system has the advantages of larger frame, higher resolution, panchromatic and multispectral imaging. It also has great potential applications in the fields of environmental and agricultural monitoring and target detection and discrimination. In order to enhance the measurement precision and accuracy of position and orientation, Inertial Measurement Unit (IMU) is integrated in the digital airborne multispectral camera. Meanwhile, the Temperature Control Unit (TCU) guarantees that the camera can operate in the normal state in different altitudes to avoid the window fogging and frosting which will degrade the imaging quality greatly. Finally, Flying experiments were conducted to demonstrate the functionality and performance of the digital airborne multispectral camera. The resolution capability, positioning accuracy and classification and recognition ability were validated.

  6. Airborne electromagnetic imaging of discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Abraham, Jared D.; Smith, Bruce D.; Cannia, James C.; Voss, Clifford I.; Jorgenson, M. Torre; Walvoord, Michelle A.; Wylie, Bruce K.; Anderson, Lesleigh; Ball, Lyndsay B.; Deszcz-Pan, Maryla; Wellman, Tristan P.; Ager, Thomas A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ˜1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ˜4 million years and the configuration of permafrost to depths of ˜100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface - groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ˜1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  7. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ∼1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ∼4 million years and the configuration of permafrost to depths of ∼100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ∼1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  8. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  9. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  10. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  11. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  12. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  13. Landsat radiometric continuity using airborne imaging spectrometry

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Angal, A.; Thome, K.; Cook, B.

    2015-12-01

    NASA Goddard's Lidar, Hyperspectral and Thermal Imager (G-LiHT) includes a scanning lidar, an imaging spectrometer and a thermal camera. The Visible Near-Infrared (VNIR) Imaging Spectrometer acquires high resolution spectral measurements (1.5 nm resolution) from 0.4 to 1.0 µm. The SIRCUS-based calibration facility at NASA's Goddard Space Flight Center was used to measure the absolute spectral response (ASR) of the G-LiHT's imaging spectrometer. Continuously tunable lasers coupled to an integrating sphere facilitated a radiance-based calibration for the detectors in the reflective solar bands. The transfer of the SIRCUS-based laboratory calibration of G-LiHT's Imaging Spectrometer to the Landsat sensors (Landsat 7 ETM+ and Landsat 8 OLI) is demonstrated using simultaneous overpasses over the Red Lake Playa and McClaw's Playa sites during the commissioning phase of Landsat 8 in March 2013. Solar Lunar Absolute Imaging Spectrometer (SOLARIS) is the calibration demonstration system for the reflected solar instrument of CLARREO. A portable version of SOLARIS, known as Suitcase SOLARIS, also calibrated using a SIRCUS-based setup, was deployed for ground measurements as a part of both the field campaigns. Simultaneous measurements of SOLARIS allow cross-comparison with G-LiHT and Landsat sensors. The transfer of the lab-based calibration of G-LiHT to Landsat sensors show that the sensors agree within 5% with a 1-3% calibration uncertainty of G-LiHT's Imaging Spectrometer.

  14. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  15. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  16. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  17. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  18. Progressive piecewise registration of orthophotos and airborne scanner images

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Chi; Yang, T. T.

    1994-08-01

    From the image-to-image registration point of view, we propose a scheme to iteratively register airborne multi-spectral imagery onto its counterpart, i.e., orthographic photography. The required registration control point pairs are automatically augmented first. Then a local registration procedure is applied according to the generated registration control point pairs. The coordinate transformation uses thin plate spline function. Through a consistency check, if the disparities between the reference image and the transformed airborne multi-spectral image is too large to accept, next iteration is performed. During the second iteration, some best matched feature points used in the consistency check of the first iteration append to the existing registration control points. This iteration procedure continues until the disparities are small enough. Experimental results indicate that the output image attain an excellent geometrical similarity with respect to the reference image. The rms of the disparities is less than 0.5 pixels.

  19. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  20. Hierarchical classifier design for airborne SAR images of ships

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Klepko, Robert

    1998-09-01

    We report about a hierarchical design for extracting ship features and recognizing ships from SAR images, and which will eventually feed a multisensor data fusion system for airborne surveillance. The target is segmented from the image background using directional thresholding and region merging processes. Ship end-points are then identified through a ship centerline detection performed with a Hough transform. A ship length estimate is calculated assuming that the ship heading and/or the cross-range resolution are known. A high-level ship classification identifies whether the target belongs to Line (mainly combatant military ships) or Merchant ship categories. Category discrimination is based on the radar scatterers' distribution in 9 ship sections along the ship's range profile. A 3-layer neural network has been trained on simulated scatterers distributions and supervised by a rule- based expert system to perform this task. The NN 'smoothes out' the rules and the confidence levels on the category declaration. Line ship type (Frigate, Destroyer, Cruiser, Battleship, Aircraft Carrier) is then estimated using a Bayes classifier based on the ship length. Classifier performances using simulated images are presented.

  1. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  2. Calibration Of Airborne Visible/IR Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.

    1990-01-01

    Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.

  3. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  4. Airborne HCl - CO sensing system

    NASA Technical Reports Server (NTRS)

    Bartle, E. R.; Hall, G.

    1977-01-01

    A system for measuring air pollutants in-situ using an aircraft was designed, fabricated, and tested. The system is based upon a technique called Gas Filter Correlation (GFC) which provides for high sensitivity and specificity in the presence of interfering species. This particular system was designed for measuring hydrochloric acid and carbon monoxide gases emitted from rocket exhaust effluents.

  5. Airborne Turbulence Warning System Development

    NASA Technical Reports Server (NTRS)

    Bogue, Rod

    2003-01-01

    This viewgraph presentation provides information on the development of a system by which aircraft pilots will be warned of turbulence. This networked system of in situ sensors will be mounted on various aircraft all of which are linked through a ground based parabolic antenna. As its end result, this system will attempt to reduce the number of accidents arising from turbulence.

  6. Vine variety discrimination with airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreiro-Armán, M.; Alba-Castro, J. L.; Homayouni, S.; da Costa, J. P.; Martín-Herrero, J.

    2007-09-01

    We aim at the discrimination of varieties within a single plant species (Vitis vinifera) by means of airborne hyperspectral imagery collected using a CASI-2 sensor and supervised classification, both under constant and varying within-scene illumination conditions. Varying illumination due to atmospheric conditions (such as clouds) and shadows cause different pixels belonging to the same class to present different spectral vectors, increasing the within class variability and hindering classification. This is specially serious in precision applications such as variety discrimination in precision agriculture, which depends on subtle spectral differences. In this study, we use machine learning techniques for supervised classification, and we also analyze the variability within and among plots and within and among sites, in order to address the generalizability of the results.

  7. Application of the airborne ocean color imager for commercial fishing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.

    1993-01-01

    The objective of the investigation was to develop a commercial remote sensing system for providing near-real-time data (within one day) in support of commercial fishing operations. The Airborne Ocean Color Imager (AOCI) had been built for NASA by Daedalus Enterprises, Inc., but it needed certain improvements, data processing software, and a delivery system to make it into a commercial system for fisheries. Two products were developed to support this effort: the AOCI with its associated processing system and an information service for both commercial and recreational fisheries to be created by Spectro Scan, Inc. The investigation achieved all technical objectives: improving the AOCI, creating software for atmospheric correction and bio-optical output products, georeferencing the output products, and creating a delivery system to get those products into the hands of commercial and recreational fishermen in near-real-time. The first set of business objectives involved Daedalus Enterprises and also were achieved: they have an improved AOCI and new data processing software with a set of example data products for fisheries applications to show their customers. Daedalus' marketing activities showed the need for simplification of the product for fisheries, but they successfully marketed the current version to an Italian consortium. The second set of business objectives tasked Spectro Scan to provide an information service and they could not be achieved because Spectro Scan was unable to obtain necessary venture capital to start up operations.

  8. Airborne Collision Avoidance System X

    DTIC Science & Technology

    2015-06-01

    avoidance system on behalf of the Federal Aviation Adminis- tration (FAA). The current Traffic Alert and Collision Avoidance System II (TCAS II...which are used on board an aircraft. The tables provide a cost for each action—no alert , a traffic advisory alerting pilots about nearby aircraft, or a...suitabil- ity than does TCAS II; studies show that ACAS X reduces mid-air collision risk by 59% and unnecessary disruptive alerts by 25% when

  9. A prospectus on airborne laser mapping systems

    NASA Technical Reports Server (NTRS)

    Link, L. E.; Krabill, W. B.; Swift, R. N.

    1983-01-01

    Airborne laser systems have demonstrated enormous potential for topographic and bathymetric mapping. Both profiling and scanning systems have been evaluated for terrain elevation mapping, stream valley cross-section determination, and nearshore bottom profiling. Performance of the laser systems has been impressive and for some applications matches current operational accuracy requirements. Determining the position of individual laser measurements remains a constraint for most applications. Laser technology constrains some terrain and bathymetric applications, particularly for water penetration and frequency of measurements for high-spatial resolution over large areas.

  10. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  11. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-07-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320×256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.788027.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  12. Data assimilation of an airborne multiple-remote-sensor system and of satellite images for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Trieschmann, Olaf; Hunsaenger, Thomas; Tufte, Lars; Barjenbruch, Ulrich

    2004-02-01

    Marine pollution in the sensible North and Baltic Sea forces an international aerial surveillance. Within this framework the German aerial surveillance operates an advanced instrumentation on board of two 'Dornier 228" aircrafts. The instrumentation consists of a set of state-of-the-art imaging remote sensors, like side looking airborne radar (SLAR), IR/UV line scanner and particularly a microwave radiometer (MWR) and a laser-fluoro-sensor (LFS). The most important aim is to detect oil discharges on the water surface, emitted accidentally or illegally. In case of discharge, the pollution has to be classified and quantified with a high accuracy. Another aim is to monitor biological and hydrological parameters, as there are the concentration of chlorophyll and dissolved organic matter (DOM) or the growth of phytoplancton. This paper describes the set of instruments and their potential to fulfill these demands. The SLAR operates to locate oil discharges and phytoplancton, whereas the IR/UV scanner allows to distinct the detected area. The IR/UV and especially the MWR sensor allow to quantify the thickness of the oil film. Finally, the LFS classifies the oil species as well as organic material. Emphasis is placed on the results of the sensor measurements and their synergy effects. The combination of the sensor data yields value added information for the operational users. An use of satellite data to improve the operational surveillance will be discussed. The potential and limitations of satellite and airborne data for the surveillance tasks will be compared.

  13. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  14. Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis

    2006-01-01

    This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.

  15. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  16. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  17. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  18. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  19. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    NASA Astrophysics Data System (ADS)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  20. Airborne Imaging Spectroscopy of Forest Canopy Chemistry in the Andes-Amazon Corridor

    NASA Astrophysics Data System (ADS)

    Martin, R.; Anderson, C.; Knapp, D. E.; Asner, G. P.

    2013-12-01

    The Andes-Amazon corridor is one of the most biologically diverse regions on Earth. Elevation gradients provide opportunities to explore the underlying sources and environmental controls on functional diversity of the forest canopy, however plot-based studies have proven highly variable. We used airborne imaging spectroscopy from the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) to quantify changes canopy functional traits in a series of eleven 25-ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Each landscape encompassed a 1 ha field plot in which all trees reaching the canopy were climbed and leaves were sampled for 20 chemical traits. We used partial least squares regression to relate plot-level chemical values with airborne spectroscopy from the 1 ha area. Sixteen chemical traits produced predictable relationships with the spectra and were used to generate maps of the 25 ha landscape. Ten chemical traits were significantly related to elevation at the 25 ha scale. These ten traits displayed 35% greater accuracy (R2) and precision (rmse) when evaluated at the 25 ha scale compared to values derived from tree climbing alone. The results indicate that high-fidelity imaging spectroscopy can be used as surrogate for laborious tree climbing and chemical assays to understand chemical diversity in Amazonian forests. Understanding how these chemicals vary among forest communities throughout the Andes-Amazon corridor will facilitate mapping of functional diversity and the response of canopies to climate change.

  1. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  2. Preliminary evaluation of the airborne imaging spectrometer for vegetation analysis

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1984-01-01

    The primary goal of the project was to provide ground truth and manual interpretation of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) for a naturally vegetated test site. Two field visits were made; one trip to note snow conditions and temporally related vegetation states at the time of the sensor overpass, and a second trip following acquisition of prints of the AIS images for field interpretation. Unfortunately, the ability to interpret the imagery was limited by the quality of the imagery due to the experimental nature of the sensor.

  3. Visualisation of urban airborne laser scanning data with occlusion images

    NASA Astrophysics Data System (ADS)

    Hinks, Tommy; Carr, Hamish; Gharibi, Hamid; Laefer, Debra F.

    2015-06-01

    Airborne Laser Scanning (ALS) was introduced to provide rapid, high resolution scans of landforms for computational processing. More recently, ALS has been adapted for scanning urban areas. The greater complexity of urban scenes necessitates the development of novel methods to exploit urban ALS to best advantage. This paper presents occlusion images: a novel technique that exploits the geometric complexity of the urban environment to improve visualisation of small details for better feature recognition. The algorithm is based on an inversion of traditional occlusion techniques.

  4. A multiprocessor airborne lidar data system

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    1988-01-01

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  5. A multiprocessor airborne lidar data system

    NASA Astrophysics Data System (ADS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  6. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  7. Column atmospheric water vapor retrievals from airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1989-01-01

    High-spatial-resolution column atmospheric water vapor amounts were derived from spectral data collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14- and 0.94-micron water-vapor band absorption regions with a nonlinear least-squares technique. The precision of the retrieved column water vapor is approximately 5 percent. The derived column water vapor amounts are independent of the absolute surface reflectance. Curve fitting of spectra near 1 micron from areas covered with vegetation indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously. It should be possible to measure column water vapor over land areas from satellite altitude with the proposed high-resolution imaging spectrometer or even the moderate-resolution imaging spectrometer.

  8. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  9. Helicopter Airborne Laser Positioning System (HALPS)

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  10. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Vane, G. (Editor); Goetz, A. F. H. (Editor)

    1985-01-01

    The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.

  11. Airborne Hyperspectral Imaging of Supraglacial Lakes in Greenland's Ablation Zone

    NASA Astrophysics Data System (ADS)

    Adler, J.; Behar, A. E.; Jacobson, N. T.

    2010-12-01

    In 2010 an airborne instrument was assembled to image supraglacial lakes near the Jakobshavn Isbrae of the Greenland Ice Sheet. The instrument was designed to fly on a helicopter, and consists of a hyperspectral imager, a GPS/inertial measurement unit (GPS/IMU), and a data-logging computer. A series of narrow visible optical channels ~13nm wide, such as found in a hyperspectral imager, are theorized to be useful in determining the depths of supraglacial lakes using techniques based on the Beer-Lambert-Bouguer Law. During June, several supraglacial lakes were selected for study each day, based upon MODIS imagery taken during the previous week. Flying over a given lake, several track lines were flown to image both shallow and deep sections of the lake, imaging the full range of depth for future algorithm development. The telescoping instrument mount was constructed to allow the sensor package to be deployed from a helicopter in-flight, with an unobstructed downward-facing field of view. The GPS/IMU records the pointing orientation, altitude, and geographical coordinates of the imager to the data-logger, in order to allow post-flight geo-referencing of the raw hyperspectral imagery. With this geo-referenced spectrum data, a depth map for a given lake can be calculated through reference to a water absorptivity model. This risk-reduction expedition to fly a helicopter-borne hyperspectral imager over the supraglacial lakes of Greenland was a success. The instrument mount for the imager worked as designed, and no vibration issues were encountered. As a result, we have confidence in the instrument platform's performance during future surveys of Greenland's supraglacial lakes. The hyperspectral imager, data acquisition computer, and geo-referencing services are provided by Resonon, Inc. of Bozeman, MT, and the GPS/IMU is manufactured by Cloudcap Technology of Hood River, OR.

  12. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  13. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  14. Overview of Austrian Airborne Imaging Spectrometer (AIS) programme and first results

    NASA Technical Reports Server (NTRS)

    Banninger, C.

    1987-01-01

    Airborne Imaging Spectrometer (AIS) data collected from eight test areas in Austria were evaluated for their usefulness in forest damage assessment, geobotany, alpine vegetation mapping, and land use classification. Difficulties encountered in installing the SPAM spectral analysis software for use on the image display system and the necessity to adapt existing programs for this task impeded and delayed the analysis of the AIS data. Spectral reflectance curves obtained from a geobotanical test site show a marked increase in reflectance across most of the measured spectrum for metal stressed spruce trees compared with nonstressed spruce trees.

  15. Identification of hydrothermal alteration assemblages using airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data, field and laboratory spectra and samples for X-ray diffraction analysis were collected in argillically altered Tertiary volcanic rocks in the Hot Creek Range, Nevada. From laboratory and field spectral measurements in the 2.0 to 2.4 micron range and using a spectroradiometer with a 4 nm sampling interval, the absorption band centers for kaolinite were loacted at 2.172 and 2.215 microns, for montmorillonite at 2.214 micron and for illite at 2.205. Based on these values and the criteria for resolution and separtion of spectral features, a spectral sampling interval of less than 4 nm is necessary to separate the clays. With an AIS spectral sampling interval of 9.3 nm, a spectral matching algorithm is more effective for separating kaolinite, montmorillonite, ad illite in Hot Creek Range than using the location of absorption minima alone.

  16. Traffic monitoring with serial images from airborne cameras

    NASA Astrophysics Data System (ADS)

    Reinartz, Peter; Lachaise, Marie; Schmeer, Elisabeth; Krauss, Thomas; Runge, Hartmut

    The classical means to measure traffic density and velocity depend on local measurements from induction loops and other on site instruments. This information does not give the whole picture of the two-dimensional traffic situation. In order to obtain precise knowledge about the traffic flow of a large area, only airborne cameras or cameras positioned at very high locations (towers, etc.) can provide an up-to-date image of all roads covered. The paper aims at showing the potential of using image time series from these cameras to derive traffic parameters on the basis of single car measurements. To be able to determine precise velocities and other parameters from an image time series, exact geocoding is one of the first requirements for the acquired image data. The methods presented here for determining several traffic parameters for single vehicles and vehicle groups involve recording and evaluating a number of digital or analog aerial images from high altitude and with a large total field of view. Visual and automatic methods for the interpretation of images are compared. It turns out that the recording frequency of the individual images should be at least 1/3 Hz (visual interpretation), but is preferably 3 Hz or more, especially for automatic vehicle tracking. The accuracy and potentials of the methods are analyzed and presented, as well as the usage of a digital road database for improving the tracking algorithm and for integrating the results for further traffic applications. Shortcomings of the methods are given as well as possible improvements regarding methodology and sensor platform.

  17. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR.

    PubMed

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-09-24

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourierbased focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR).

  18. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR

    PubMed Central

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-01-01

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourier-based focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR). PMID:27873847

  19. Geodetic imaging with airborne LiDAR: the Earth's surface revealed.

    PubMed

    Glennie, C L; Carter, W E; Shrestha, R L; Dietrich, W E

    2013-08-01

    The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution 'bare Earth' geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.

  20. Airborne Hyperspectral Infrared Imaging Survey of the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Johnson, P. D.

    2014-12-01

    The San Andreas Fault (SAF) between Desert Hot Springs and Bombay Beach has been surveyed with Mako, an airborne hyperspectral imager operating across the wavelength range 7.6-13.2 μm in the thermal-infrared (TIR) spectral region. The data were acquired with a 4-km swath width centered on the SAF, and many tectonic features are recorded in the imagery. Spectral analysis using diagnostic features of minerals can identify rocks, soils and vegetation. Mako imagery can also locate rupture zones and measure slip distances. Designed and built by The Aerospace Corporation, the innovative and highly capable airborne imaging spectrometer used for this work enables low-noise performance (NEΔT ≲ 0.1 K @ 10 μm) at small pixel IFOV (0.55 mrad) and high frame rates, making possible an area-coverage rate of 20 km2 per minute with 2-m ground resolution from 12,500 ft (3.8 km) above-ground altitude. Since its commissioning in 2010, Mako has been used in numerous studies involving other earthquake fault systems (Hector Mine, S. Bristol Mts.), mapping of surface geology, geothermal sources (fumaroles near the Salton Sea), urban surveys, and the detection, quantification, and tracking of natural and anthropogenic gaseous emission plumes. Mako is available for airborne field studies and new applications are of particular interest. It can be flown at any altitude below 20,000 ft to achieve the desired GSD.

  1. Geodetic imaging with airborne LiDAR: the Earth's surface revealed

    NASA Astrophysics Data System (ADS)

    Glennie, C. L.; Carter, W. E.; Shrestha, R. L.; Dietrich, W. E.

    2013-08-01

    The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution ‘bare Earth’ geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.

  2. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  3. Galaxy: a new state of the art airborne lidar system

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    Recent advancements in lidar technologies have led to significant improvements in Teledyne Optech's airborne lidar systems. This paper will present the performance enhancements that have led to the creation of the Galaxy, a compact scanning lidar system. Unlike the previous generation of conventional airborne lidar, the Galaxy offers fundamentally improved specifications for long-range airborne lidar systems. The Galaxy system is capable of acquiring high-density, multiple-return data with unique pulse separation characteristics and exceptional precision. Utilizing discrete time-of-flight measurement electronics, this new system is capable of seamlessly operating at very high laser repetition rates through blind zones and with multiple pulses in the air. By utilizing even higher scan products , the system outperforms previous generations of systems and optimizes point density during collection.

  4. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science

  5. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  6. Kalman Filter Based Feature Analysis for Tracking People from Airborne Images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Reinartz, P.

    2011-09-01

    Recently, analysis of man events in real-time using computer vision techniques became a very important research field. Especially, understanding motion of people can be helpful to prevent unpleasant conditions. Understanding behavioral dynamics of people can also help to estimate future states of underground passages, shopping center like public entrances, or streets. In order to bring an automated solution to this problem, we propose a novel approach using airborne image sequences. Although airborne image resolutions are not enough to see each person in detail, we can still notice a change of color components in the place where a person exists. Therefore, we propose a color feature detection based probabilistic framework in order to detect people automatically. Extracted local features behave as observations of the probability density function (pdf) of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf. First, we use estimated pdf to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in non-crowd regions automatically for each image in the sequence. We benefit from Kalman filtering to track motion of detected people. To test our algorithm, we use a stadium entrance image data set taken from airborne camera system. Our experimental results indicate possible usage of the algorithm in real-life man events. We believe that the proposed approach can also provide crucial information to police departments and crisis management teams to achieve more detailed observations of people in large open area events to prevent possible accidents or unpleasant conditions.

  7. Airborne Collision Avoidance Systems and Air Traffic Management Safety

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-01-01

    A new ICAO Policy on Airborne Collision Avoidance Systems is needed, which recognizes it to be an integrated part of the air traffic management system's safety defences; and that should be fully included in hazard analyses for the total system's design safety targets.

  8. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  9. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  10. Remote classification from an airborne camera using image super-resolution.

    PubMed

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  11. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  12. The development of airborne video system for monitoring of river environments

    SciTech Connect

    Yoshikawa, Shigeya; Mizutani, Nobuyuki; Mizukami, Masumi; Koyano, Toshirou

    1996-11-01

    Recently, airborne videography is widely used by many monitoring for environmental resources, such as rivers, forests, ocean, and so on. Although airborne videography has a low resolution than aerial photographs, it can effectively reduce the cost of continuous monitoring of wide area. Furthermore video images can easily be processed with personal computer. This paper introduces an airborne video system for monitoring of Class A river environment. This system consists of two sub-systems. One is the data collection system that is composed of a video camera, a Global Positioning System(GPS) and a personal computer. This sub-system records information of rivers by video images and their corresponding location data. A GPS system is used for calculating location data and navigating the airplane to the destination of monitoring site. Other is a simplified digital video editing system. This system runs on a personal computer with Microsoft Windows 3.1. This system can also be used for management and planning of road environment, marine resources, forest resources and for prevention of disasters. 7 refs., 4 figs.

  13. Formal methods and digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992.

  14. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  15. Mako airborne thermal infrared imaging spectrometer: performance update

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  16. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  17. Automated Data Production For A Novel Airborne Multiangle Spectropolarimetric Imager (AIRMSPI)

    NASA Technical Reports Server (NTRS)

    Jovanovic, V .M.; Bull, M.; Diner, D. J.; Geier, S.; Rheingans, B.

    2012-01-01

    A novel polarimetric imaging technique making use of rapid retardance modulation has been developed by JPL as a part of NASA's Instrument Incubator Program. It has been built into the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) under NASA's Airborne Instrument Technology Transition Program, and is aimed primarily at remote sensing of the amounts and microphysical properties of aerosols and clouds. AirMSPI includes an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera that measures polarization in a subset of the bands (470, 660, and 865 nm). The camera is mounted on a gimbal and acquires imagery in a configurable set of along-track viewing angles ranging between +67 deg and -67 deg relative to nadir. As a result, near simultaneous multi-angle, multi-spectral, and polarimetric measurements of the targeted areas at a spatial resolution ranging from 7 m to 20 m (depending on the viewing angle) can be derived. An automated data production system is being built to support high data acquisition rate in concert with co-registration and orthorectified mapping requirements. To date, a number of successful engineering checkout flights were conducted in October 2010, August-September 2011, and January 2012. Data products resulting from these flights will be presented.

  18. [Winter wheat growth spatial variation study based on temporal airborne high-spectrum images].

    PubMed

    Song, Xiao-yu; Wang, Ji-hua; Yan, Guang-jian; Huang, Wen-jiang; Liu, Liang-yun

    2010-07-01

    Precision agriculture technology is defined as an information-and technology-based agriculture management system to identify, analyze and manage crop spatial and temporal variation within fields for optimum profitability, sustainability and protection of the environment. In the present study, push-broom hyperspectral image sensor (PHI) image was used to investigate the spatial variance of winter wheat growth. The variable-rate fertilization contrast experiment was carried out on the National Experimental Station for Precision Agriculture of China during 2001-2002. Three airborne PHI images were acquired during the wheat growth season of 2002. Then contrast analysis about the wheat growth spatial variation was applied to the variable-rate fertilization area and uniformity fertilization area. The results showed that the spectral reflectance standard deviation increased significantly in red edge and short infrared wave band for all images. The wheat milky stage spectral reflectance has the maximum standard deviation in short infrared wave band, then the wheat jointing stage and wheat filling stage. Then six spectrum parameters that sensitive to wheat growth variation were defined and analyzed. The results indicate that parameters spatial variation coefficient for variable-rate experiment area was higher than that of contrast area in jointing stage. However, it decreased after the variable-rate fertilization application. The parameters spatial variation coefficient for variable-rate area was lower than that of contrast area in filling and milking stages. In addition, the yield spatial variation coefficient for variable-rate area was lower than that of contrast area. However, the yield mean value for variable-rate area was lower than that of contrast area. The study showed that the crop growth spatial variance information can be acquired through airborne remote sensing images timely and exactly. Remote sensing technology has provided powerful analytical tools for

  19. A Low-Cost Imaging System for Aerial Applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  20. Research Applications and Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Hindson, William S.

    1996-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60 Black Hawk helicopter that is being modified by NASA and the US Army for flight systems research. The principal systems that are being installed in the aircraft are a Helmet-Mounted Display (HMD) and associated imaging systems, and a programmable full-authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. This paper describes the design features of this modern rotorcraft in-flight simulation facility and their current state of development. A brief description of initial research applications is included.

  1. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  2. A Combined Texture-principal Component Image Classification Technique For Landslide Identification Using Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, M.; Giles, D.; Murphy, W.

    The Jurassic strata of the Cotswolds escarpment of southern central United Kingdom are associated with extensive mass movement activity, including mudslide systems, rotational and translational landslides. These mass movements can pose a significant engineering risk and have been the focus of research into the use of remote sensing techniques as a tool for landslide identification and delineation on clay slopes. The study has utilised a field site on the Cotswold escarpment above the village of Broad- way, Worcestershire, UK. Geomorphological investigation was initially undertaken at the site in order to establish ground control on landslides and other landforms present at the site. Subsequent to this, Airborne Thematic Mapper (ATM) imagery and colour stereo photography were acquired by the UK Natural Environment Research Coun- cil (NERC) for further analysis and interpretation. This paper describes the textu- ral enhancement of the airborne imagery undertaken using both mean euclidean dis- tance (MEUC) and grey level co-occurrence matrix entropy (GLCM) together with a combined texture-principal component based supervised image classification that was adopted as the method for landslide identification. The study highlights the importance of image texture for discriminating mass movements within multispectral imagery and demonstrates that by adopting a combined texture-principal component image classi- fication we have been able to achieve classification accuracy of 84 % with a Kappa statistic of 0.838 for landslide classes. This paper also highlights the potential prob- lems that can be encountered when using high-resolution multispectral imagery, such as the presence of dense variable woodland present within the image, and presents a solution using principal component analysis.

  3. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  4. Indoor Unmanned Airship System Airborne Control Module Design

    NASA Astrophysics Data System (ADS)

    YongXia, Gao; YiBo, Li

    By adopting STC12C5A60S2 SCM as a system control unit, assisted by appropriate software and hardware resources, we complete the airborne control module's design of unmanned airship system. This paper introduces hardware control module's structure, airship-driven composition and software realization. Verified by the China Science and Technology Museum special-shaped airship,this control module can work well.

  5. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  6. Airborne multisensor pod system (AMPS) data: Multispectral data integration and processing hints

    SciTech Connect

    Leary, T.J.; Lamb, A.

    1996-11-01

    The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airborne Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.

  7. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  8. Alien plant monitoring with ultralight airborne imaging spectroscopy.

    PubMed

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380-1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5-8 pixels/m(2) at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user's and producer's accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m(2) (50% of pixels 0.5 × 0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management.

  9. Alien Plant Monitoring with Ultralight Airborne Imaging Spectroscopy

    PubMed Central

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380–1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5–8 pixels/m2 at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user’s and producer’s accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m2 (50% of pixels 0.5×0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management. PMID:25010601

  10. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS): A New Airborne Instrument for Quantifying Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Frankenberg, C.; Verma, M.; Berry, J. A.; Schimel, D.; Geier, S.; Schwochert, M.

    2015-12-01

    Recent demonstrations of the retrieval of vegetation solar-induced fluorescence (SIF) emission from satellite platforms have opened up the possibility of remotely monitoring photosynthetic function, in addition to the structural and biochemical parameters that characterize the current capabilities of vegetation observing systems. These satellite retrievals, from platforms such as GOSAT, GOME-2, and most recently NASA's Orbiting Carbon Observatory 2 (OCO-2), provide powerful evidence of the correlation between vegetation productivity and SIF at seasonal to annual timescales, and at spatial resolutions of tens to hundreds of kilometers. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS) was recently developed for OCO-2 validation purposes and provides an airborne capability to help fill the spatial gap between leaf- or canopy-level observations of SIF flux and extensive satellite footprints. The flexibility of an airborne instrument likewise allows for studies of the temporal variability of SIF emission over consecutive days, or with meteorological variability throughout a day. CFIS is a high resolution (<0.1nm) spectrometer covering the 740-770nm wavelength range, optimized for SIF quantification. Here we present an overview of the instrument design and capabilities, along with the retrieval methodology. An evaluation of data collected during initial campaigns conducted during the spring and summer of 2015 are also presented, demonstrating variability within and between days for campaigns spanning multiple days in the Midwest US and Northern California. Results will be compared to OCO-2 data as well as flux-tower measurements made during the CFIS flights.

  11. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface.

  12. The position and orientation system (POS) for airborne survey applications

    SciTech Connect

    Reid, B.; Scherzinger, B.; Lithopoulos, E.

    1996-10-01

    The Position and Orientation System (POS) is an integrated inertial/GPS system that generates accurate position (latitude, longitude, altitude) and orientation (roll, pitch, heading) for airborne survey/mapping applications as well as various other land and marine applications. POS is a GPS-aided strapdown inertial navigator that uses a Kalman filter and a closed-loop error controller to provide an optimally blended position and orientation solution from inertial data from an IMU and aiding data from a GPS receiver. This paper gives a brief description of POS and compares it to other available technologies. It then describes the various application areas of POS for airborne vehicles (POS/AV). Some applications from other POS variants, POS/LV for Land Vehicles, POS/MV for Marine Vessels, are also described. 4 refs., 4 figs., 1 tab.

  13. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  14. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  15. Imaging and radiometric performance simulation for a new high-performance dual-band airborne reconnaissance camera

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Yu, Jinhee; Ryu, Dongok; Hong, Jinsuk; Yoon, Jee-Yeon; Kim, Sug-Whan; Lee, Jun-Ho; Shin, Myung-Jin

    2009-05-01

    In recent years, high performance visible and IR cameras have been used widely for tactical airborne reconnaissance. The process improvement for efficient discrimination and analysis of complex target information from active battlefields requires for simultaneous multi-band measurement from airborne platforms at various altitudes. We report a new dual band airborne camera designed for simultaneous registration of both visible and IR imagery from mid-altitude ranges. The camera design uses a common front end optical telescope of around 0.3m in entrance aperture and several relay optical sub-systems capable of delivering both high spatial resolution visible and IR images to the detectors. The camera design is benefited from the use of several optical channels packaged in a compact space and the associated freedom to choose between wide (~3 degrees) and narrow (~1 degree) field of view. In order to investigate both imaging and radiometric performances of the camera, we generated an array of target scenes with optical properties such as reflection, refraction, scattering, transmission and emission. We then combined the target scenes and the camera optical system into the integrated ray tracing simulation environment utilizing Monte Carlo computation technique. Taking realistic atmospheric radiative transfer characteristics into account, both imaging and radiometric performances were then investigated. The simulation results demonstrate successfully that the camera design satisfies NIIRS 7 detection criterion. The camera concept, details of performance simulation computation, the resulting performances are discussed together with future development plan.

  16. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  17. Compact Superconducting Power Systems for Airborne Applications (Postprint)

    DTIC Science & Technology

    2009-01-01

    Timothy J. Haugan, George A. Levin, and Edward B. Durkin Power Generation Branch Power Division JANUARY 2009 Approved...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Power Generation Branch (AFRL/RZPG) . REPORT NUMBER Power Division AFRL-RZ-WP-TP-2010-2061 Air Force...future airborne megawatt-class power generation , it is important to minimize both the size and the weight of the system. The primary means of

  18. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  19. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  20. New calibration techniques for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.; Chovit, Chris; Eastwood, Mike; Faust, Jessica; Hajek, Pavel; Johnson, Howell; Novack, H. Ian; Sarture, Charles

    1995-01-01

    Recent laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) include new methods for the characterization of the geometric, spectral, temporal and radiometric properties of the sensor. New techniques are desired in order to: (1) increase measurement accuracy and precision, (2) minimize measurement time and expense, (3) prototype new field and inflight calibration systems, (4) resolve measurement ambiguities, and (5) add new measurement dimensions. One of the common features of these new methods is the use of the full data collection and processing power of the AVIRIS instrument and data facility. This allows the collection of large amounts of calibration data in a short period of time and is well suited to modular data analysis routines.

  1. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change.

  2. Airborne imaging sensors for environmental monitoring & surveillance in support of oil spills & recovery efforts

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Jones, James; Frystacky, Heather; Coppin, Gaelle; Leavaux, Florian; Neyt, Xavier

    2011-11-01

    Collection of pushbroom sensor imagery from a mobile platform requires corrections using inertial measurement units (IMU's) and DGPS in order to create useable imagery for environmental monitoring and surveillance of shorelines in freshwater systems, coastal littoral zones and harbor areas. This paper describes a suite of imaging systems used during collection of hyperspectral imagery in northern Florida panhandle and Gulf of Mexico airborne missions to detect weathered oil in coastal littoral zones. Underlying concepts of pushbroom imagery, the needed corrections for directional changes using DGPS and corrections for platform yaw, pitch, and roll using IMU data is described as well as the development and application of optimal band and spectral regions associated with weathered oil. Pushbroom sensor and frame camera data collected in response to the recent Gulf of Mexico oil spill disaster is presented as the scenario documenting environmental monitoring and surveillance techniques using mobile sensing platforms. Data was acquired during the months of February, March, April and May of 2011. The low altitude airborne systems include a temperature stabilized hyperspectral imaging system capable of up to 1024 spectral channels and 1376 spatial across track pixels flown from 3,000 to 4,500 feet altitudes. The hyperspectral imaging system is collocated with a full resolution high definition video recorder for simultaneous HD video imagery, a 12.3 megapixel digital, a mapping camera using 9 inch film types that yields scanned aerial imagery with approximately 22,200 by 22,200 pixel multispectral imagery (~255 megapixel RGB multispectral images in order to conduct for spectral-spatial sharpening of fused multispectral, hyperspectral imagery. Two high spectral (252 channels) and radiometric sensitivity solid state spectrographs are used for collecting upwelling radiance (sub-meter pixels) with downwelling irradiance fiber optic attachment. These sensors are utilized for

  3. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  4. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  5. Improved Hurricane Boundary Layer Observations with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Changy, P.; Carswell, J.; Contreras, R.; Chu, T.

    2006-01-01

    During the NOAA/NESDIS 2005 Hurricane Season (HS2005) and the 2006 Winter Experiment, the University of Massachusetts (UMass) installed two instruments on the NOAA N42RF WP-3D research aircraft: the Imaging Wind and Rain Airborne Profiler (IWRAP) and the Simultaneous Frequency Microwave Radiometer (SFMR). IWRAP is a dual-band (C- and Ku), dual-polarized pencil-beam airborne radar that profiles the volume backscatter and Doppler velocity from rain and that also measures the ocean backscatter response. It simultaneously profiles along four separate incidence angles while conically scanning at 60 RPM. SFMR is a C-band nadir viewing radiometer that measures the emission from the ocean surface and intervening atmosphere simultaneously at six frequencies. It is designed to obtain the surface wind speed and the column average rain rate. Both instruments have previously been flown during the 2002, 2003 and 2004 hurricane seasons. For the HS2005, the IWRAP system was modified to implement a raw data acquisition system. The importance of the raw data system arises when trying to profile the atmosphere all the way down to the surface with a non-nadir looking radar system. With this particular geometry, problems arise mainly from the fact that both rain and ocean provide a return echo coincident in time through the antenna s main lobe. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the atmospheric boundary layer (ABL) wind field within the inner core of hurricanes to much lower altitudes than the ones the original system was capable of, and to analyze the spectral response of the ocean backscatter and the rain under different wind and rain conditions.

  6. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  7. Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.

    PubMed

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  8. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  9. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  10. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  11. Airborne water vapor DIAL system development

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Grossmann, Benoist E.

    1990-01-01

    A differential absorption lidar (DIAL) system developed at NASA Langley Research Center for the remote measurement of atmospheric H2O and aerosols from an aircraft is briefly discussed. This DIAL system utilizes a Nd:YAG laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. A 1-m monochromator and a multipass absorption cell are used to position the on-line laser to the center of the H2O line. The receiver system has a 14-in. diameter, f/7 Celestron telescope to collect the backscattered laser light and focus in into the detector optics. Return signals are converted to electrical signals by the optical detector and are digitalized and stored on magnetic tape. The results of fligh tests of the system are shown.

  12. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  13. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  14. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  15. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  16. Instrumentation Development of an Airborne Recording System.

    DTIC Science & Technology

    1978-01-01

    calculator and suitable peripheral equipment. Accelerometer time histories from an analog recorder are digitized and processed on the programmable calculator system...spectral data in support of materiel air transportability and air delivery testing missions. The new data processing is based on a programmable

  17. Demonstration and Validation of an Improved Airborne Electromagnetic System for UXO Detection and Mapping

    DTIC Science & Technology

    2010-05-01

    basalt flows or other iron-bearing soils and rocks impede the performance of magnetometer systems. Although this is not a universal problem, it occurs...sensors at less than 0.5 m above ground level (AGL). Airborne and ground magnetometer systems are susceptible to interference from magnetic rocks and...where magnetite bearing basaltic rocks are problematic. The airborne TEM-8 system demonstrates a similar advantage over airborne magnetometer systems

  18. Spectral difference analysis and airborne imaging classification for citrus greening infected trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were acquired to detect citrus greening infected trees in 20...

  19. Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Lang, H.; Baloga, S.

    1999-01-01

    We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.

  20. Recent modifications, enhancements, and measurements with an airborne lidar system

    NASA Astrophysics Data System (ADS)

    DeCoursey, Robert J.; Osborn, Mary T.; Winker, David M.; Woods, David C.

    1996-06-01

    The NASA Langley Research Center's 14-inch airborne aerosol lidar system, which is routinely flown on several NASA aircraft including the DC-8 and the P-3, has been upgraded with several modifications to enhance its measurement capabilities. A new 900 mJ, 10 pps Nd:YAG laser was added with the capability of producing 5 watts of power at 1064 nm, 2.5 watts at 532 nm and 1.5 watts at 355 nm. The existing detector package has been modified to accommodate the three wavelengths and to permit cross-polarization measurements at 532 nm. New software was developed for on- line data visualization and analysis, and computer- controlled laser alignment is being incorporated. The system is now capable of producing real-time color modulated backscatter plots. Other additions include a Pentium/90 processor, GPS (Global Positioning System) and ARINC (Aeronautical Radio Inc.) receivers for acquiring accurate aircraft position data. In 1992 and 1993 this system was flown on several airborne missions to map and characterize the stratospheric aerosol cloud produced by the 1991 eruption of the Mount Pinatubo volcano. Efforts to map the global distribution of Pinatubo were made on both daytime as well as nighttime flights from Moffett Field in California to the South Pacific, to Central and South America, to Australia and to Alaska. In September 1994, the system (aboard NASA's P-3) made correlative measurements along shuttle orbit ground tracks in support of the Lidar In-space Technology Experiment flown on the Space Shuttle. In this paper the system upgrades will be discussed and selected data obtained during these recent airborne campaigns will be presented.

  1. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Astrophysics Data System (ADS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  2. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  3. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  4. Diffused Matrix Format: a new storage and processing format for airborne hyperspectral sensor images.

    PubMed

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Ma; Schmid, Thomas; Hernández, Luz M

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used.

  5. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  6. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  7. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  8. Conductivity depth imaging of Airborne Electromagnetic data with double pulse transmitting current based on model fusion

    NASA Astrophysics Data System (ADS)

    Li, Jing; Dou, Mei; Lu, Yiming; Peng, Cong; Yu, Zining; Zhu, Kaiguang

    2017-01-01

    The airborne electromagnetic (AEM) systems have been used traditionally in mineral exploration. Typically the system transmits a single pulse waveform to detect conductive anomaly. Conductivity-depth imaging (CDI) of data is generally applied in identifying conductive targets. A CDI algorithm with double-pulse transmitting current based on model fusion is developed. The double-pulse is made up of a half-sine pulse of high power and a trapezoid pulse of low power. This CDI algorithm presents more shallow information than traditional CDI with a single pulse. The electromagnetic response with double-pulse transmitting current is calculated by linear convolution based on forward modeling. The CDI results with half-sine and trapezoid pulse are obtained by look-up table method, and the two results are fused to form a double-pulse conductivity-depth imaging result. This makes it possible to obtain accurate conductivity and depth. Tests on synthetic data demonstrate that CDI algorithm with double-pulse transmitting current based on model fusion maps a wider range of conductivities and does a better job compared with CDI with a single pulse transmitting current in reflecting the whole geological conductivity changes.

  9. Rotorcraft aircrew systems concepts airborne laboratory (RASCAL) helmet-mounted display flight research

    NASA Astrophysics Data System (ADS)

    Hindson, William S.; Njaka, Chima E.; Aiken, Edwin W.; Barnhart, Warren A.

    1994-06-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. One of the objectives of the research is to develop and integrate technologies for Automated Nap-of-the Earth (ANOE) flight. The principal elements of this system include video imaging sensors, advanced real-time image processing capabilities, a graphics supercomputer, a wide field-of-view color helmet mounted display (HMD), and an advanced fly-by-wire flight control system. The development methodology and the current status of the ANOE Flight Program are summarized, a description of the visionics system is provided, and the plans for the initial applications of the color HMD are presented.

  10. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

  11. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  12. New generation VNIR/SWIR/TIR airborne imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Yueming; Wei, Liqin; Yuan, Liyin; Li, Chunlai; Lv, Gang; Xie, Feng; Han, Guicheng; Shu, Rong; Wang, Jianyu

    2016-10-01

    Imaging spectrometer plays an important role in the remote sensing application. Imaging spectrometer can collects and provides a unique spectral signature of many materials. The spectral signature may be absorbing, reflecting, and emitting. Generally, optical spectral bands for earth observing consist of VNIR, SWIR, TIR/LWIR. VNIR band imaging spectrometer is well-known in vegetation remote sensing and ocean detection. SWIR band imaging spectrometer is widely applied in mineralogy investigation. For its uniquely capability of spectral radiance measurement, TIR/LWIR imaging spectrometer attracts much attention these years. This paper will present a new generation VNIR/SWIR/TIR imaging spectrometer. The preliminary result of its first flight will also be shared. The spectral sampling intervals of VNIR/SWIR/TIR are 2.4nm/3nm/30nm, respectively. The spatial pixel numbers are 2800/1400/700,respectively. It's a push-broom imaging spectrometer.

  13. Some applications of the turbulence amplifier to airborne systems

    NASA Astrophysics Data System (ADS)

    Taylor, D. L.

    1981-06-01

    The turbulence amplifier relies on the disruption of a laminar air stream by a small actuating signal that consists of a transverse jet. The dynamic pressure head, generated by the passage of an aircraft through the atmosphere will provide sufficient supply pressure at 130 mph and sufficient control pressure at 30 mph. This means that, in certain applications, no external power source is required, which is of significant interest to airborne applications. As a result of this feature, three systems were investigated for practicability. A description is presented of the development and performance of laboratory models of these three applications. An ice detection and de-icing control system was designed to sense icing conditions on a wing leading edge, and to use the sensed data to operate a de-icing control system. A demonstration model for a control surface asymmetry detection and rectification system was built, and a stall warning system was studied.

  14. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  15. Integrating Smartphone Images and Airborne LIDAR Data for Complete Urban Building Modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Shenman; Shan, Jie; Zhang, Zhichao; Yan, Jixing; Hou, Yaolin

    2016-06-01

    A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  16. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Astrophysics Data System (ADS)

    Parsons, C. L.

    1989-07-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  17. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  18. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  19. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  20. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    PubMed Central

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces. PMID:22399963

  1. Novel Airborne Imaging Polarimeter Undergoes High-Altitude Flight Testing

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Pingree, Paula J.; Chipman, Russell A.

    2015-01-01

    Optical and signal processing technologies for high-accuracy polarimetric imaging, aimed at studying the impact of atmospheric haze and clouds on Earth's climate, have been demonstrated on checkout flights aboard NASA's ER-2 aircraft.

  2. Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Buchhorn, M.; Cristobal, J.; Kokaly, R. F.; Graham, P. R.; Waigl, C. F.; Hampton, D. L.; Werdon, M.; Guldager, N.; Bertram, M.; Stuefer, M.

    2015-12-01

    Hyperspectral imagery acquired using Hyspex VNIR-1800 and SWIR-384 camera systems have provided unique information on terrestrial and aquatic biogeochemical parameters, and diagnostic mineral properties in exposed outcrops in selected sites in the state of Alaska. The Hyspex system was configured for in-situ and field scanning by attaching it to a gimbal-mounted rotational stage on a robust tripod. Scans of vertical faces of vegetation and rock outcrops were made close to the campus of the University of Alaska Fairbanks, in an abandoned mine near Fairbanks, and on exposures of Orange Hill in Wrangell-St. Elias National Park. Atmospherically corrected integrated VNIR_SWIR spectra were extracted which helped to study varying nitrogen content in the vegetation, and helped to distinguish the various micas. Processed imagery helped to pull out carbonates, clays, sulfates, and alteration-related minerals. The same instrument was also mounted in airborne configuration on two different aircrafts, a DeHavilland Beaver and a Found Bush Hawk. Test flights were flown over urban and wilderness areas that presented a variety of landcover types. Processed imagery shows promise in mapping man-made surfaces, phytoplankton, and dissolved materials in inland water bodies. Sample data and products are available on the University of Alaska Fairbanks Hyperspectral Imaging Laboratory (HyLab) website at http://hyperspectral.alaska.edu.

  3. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  4. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  5. Development of Real-Time Image Stabilization for an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Fedeler, Samuel; Samra, Jenna; Guth, Giora

    2017-01-01

    The total solar eclipse of August 21, 2017 offers a unique opportunity for study of the infrared solar corona. The Airborne Infrared Spectrometer (AIR-Spec), currently under development, is an infrared telescope and spectrometer that will search for several magnetically sensitive coronal emission lines between 1.4 and 4 micrometers. This instrument will be the first to observe several of these lines, and the measurement campaign will determine whether any lines may be useful for future direct observations of the coronal magnetic field. AIR-Spec will be mounted on an NSF/NCAR Gulfstream V jet and will observe the eclipse from an altitude greater than 14.9 km, above the bulk of IR-absorbing atmospheric water vapor.To ensure that the images taken for analysis have adequate spatial resolution, the AIR-Spec line-of-sight must be stabilized to 1.9 arc-seconds RMS over a 1 second exposure time. Image stabilization is achieved by using a fiber-optic gyroscope to measure aircraft rotation and a fast-steering mirror to adjust the line-of-sight accordingly. The stabilization algorithm runs in a programmable automation controller, which interfaces with the gyroscope and mirror. Software was developed to implement the stabilization algorithm in the controller and to integrate the controller with a user interface, allowing for data display and logging, user guided attitude calibration, and manual control of the fast-steering mirror. The current system stabilizes images to 1.9 arc-seconds in 60 percent of 1 second camera exposures under laboratory conditions. This software will be operational during test flights in Fall 2016 and Spring 2017, and will be optimized for the eclipse flight in Summer 2017.

  6. Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    Summaries of 17 papers presented at the workshop are published. After an overview of the imaging spectrometer program, time was spent discussing AIS calibration, performance, information extraction techniques, and the application of high spectral resolution imagery to problems of geology and botany.

  7. Clocks for airborne systems. [performance of rubidium oscillators

    NASA Technical Reports Server (NTRS)

    Houlding, N.

    1982-01-01

    The potential performance of compact oscillators, needed for the development of accurate clocks for future airborne systems (such as Identification Friend or Foe schemes), is addressed. In particular, extensive testing of rubidium oscillators manufactured by Efratom is discussed. The results indicate that an accuracy of better than 10 microseconds should be achievable in tactical aircraft provided that appropriate measures are adopted to counter the many environmental factors. In a favorable environment a stability of better than 5 x 10 to the -13th power for one day is achievable with present commercial units, but improvements are required to suit operation in an aircraft. With further development of rubidium controlled clocks the ultimate limitation on time accuracy in aircraft will probably be associated with time dissemination, maintenance difficulties and doctrinal hurdles.

  8. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  9. The necessity of exterior orientation parameters for the rigorous geometric correction of MEIS-II airborne digital images

    SciTech Connect

    Bannari, A.; Morin, D.; Gibson, J.R.

    1996-11-01

    The Canada Land Use Monitoring Program is attempting to replace aerial photographs by remote sensing imagery (satellite or airborne). The Canada Center for Remote Sensing (CCRS) is implementing an airborne multi-detector electro-optical imaging system (MEIS-II). The acceptance of airborne scanners has been slow principally due to poor spatial resolution and distortions induced by aircraft motion. To address this geometric problem, CCRS has developed a rigorous correction method based on fundamental photogrammetric principles (collinearity and coplanarity) and auxiliary navigation data (attitude, altitude and aircraft speed) measured in relation to time by an inertial navigation system (INS). The method can process images in monoscopy or stereoscopy. It uses primarily a low-order polynomial function for correcting auxiliary data based on the method of least squares and a few control points. The results are then used in the geometric correction procedure. In this study, we discuss the effect of geometric distortions caused by aircraft motion and we test two geometric correction methods. The first method is the one developed by CCRS mentioned above. The second method is based on a second order polynomial function. The effect of control point precision on the reliability of the geometric correction using geodetic points and other points derived from the 1/20 000 topographical map is examined. The results show a noticeable difference between the two approaches tested. The photogrammetric method, based on the condition of collinearity and coplanarity, and related to navigation data, results in precision in the order of one pixel with geodetic control points. The use of geodetic control points permits the elimination of the planimetric error characteristic of the topographical map. The polynomial method provides precision which is in the order of five pixels whatever the type and precision of the control points. 18 refs., 6 figs., 2 tabs.

  10. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  11. Development and test of video systems for airborne surveillance of oil spills

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.

    1975-01-01

    Five video systems - potentially useful for airborne surveillance of oil spills - were developed, flight tested, and evaluated. The systems are: (1) conventional black and white TV, (2) conventional TV with false color, (3) differential TV, (4) prototype Lunar Surface TV, and (5) field sequential TV. Wavelength and polarization filtering were utilized in all systems. Greatly enhanced detection of oil spills, relative to that possible with the unaided eye, was achieved. The most practical video system is a conventional TV camera with silicon-diode-array image tube, filtered with a Corning 7-54 filter and a polarizer oriented with its principal axis in the horizontal direction. Best contrast between oil and water was achieved when winds and sea states were low. The minimum detectable oil film thickness was about 0.1 micrometer.

  12. End-to-end simulation of the image stability for the airborne telescope SOFIA

    NASA Astrophysics Data System (ADS)

    Schoenhoff, Ulrich; Eisentraeger, Peter; Wandner, Karl; Kaercher, Hans J.; Nordmann, Rainer

    2000-06-01

    To provide astronomers access to infrared wavelength unavailable from the ground the airborne telescope SOFIA is in development. This paper focuses on the image stability of the telescope, its modeling and simulation. The operation of the telescope under the harsh environmental conditions in the aircraft makes the prediction of the image stability during the design process necessary. For this purpose an integrated mathematical simulation model, which includes the optics, the structural dynamics and the control loops has been constructed. Because of the high relevance of the structural dynamics for image stability and control design, special attention is paid to the import and reduction of the finite element model of the telescopes mechanical structure. Different control approaches are considered for the attitude control and the compensation of the impact of the structural flexibility on the image motion. Additionally the secondary mirror servo-mechanism is utilized to optimize the image stability. Simulation results are shown.

  13. Group sparsity based airborne wide angle SAR imaging

    NASA Astrophysics Data System (ADS)

    Wei, Zhonghao; Zhang, Bingchen; Bi, Hui; Lin, Yun; Wu, Yirong

    2016-10-01

    In this paper, we develop a group sparsity based wide angle synthetic aperture radar (WASAR) imaging model and propose a novel algorithm called backprojection based group complex approximate message passing (GCAMP-BP) to recover the anisotropic scene. Compare to conventional backprojection based complex approximate message passing (CAMP-BP) algorithm for the recovery of isotropic scene, the proposed method accommodates aspect dependent scattering behavior better and can produce better imagery. Simulated and experimental results are presented to demonstrate the validity of the proposed algorithm.

  14. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  15. ICARE-HS: atmospheric correction of airborne hyperspectral urban images using 3D information

    NASA Astrophysics Data System (ADS)

    Ceamanos, Xavier; Briottet, Xavier; Roussel, Guillaume; Gilardy, Hugo

    2016-10-01

    The algorithm ICARE-HS (Inversion Code for urban Areas Reflectance Extraction using HyperSpectral imagery) is presented in this paper. ICARE-HS processes airborne hyperspectral images for atmospheric compensation taking into account the strong relief of urban areas. A digital surface model is used to provide the 3D information, which is key to simulating relief-related effects such as shadow casting, multiple reflections between objects and variable illumination depending on local solid angle of view of the sky. Some of these effects are modeled using ray tracing techniques. ICARE-HS is applied to airborne hyperspectral data of the city center of Toulouse, which are also processed by a standard atmospheric correction method for comparison.

  16. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  17. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  18. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  19. Disaster phenomena of Wenchuan earthquake in high resolution airborne synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Hong; Wu, Fan; Zhang, Bo; Tang, Yixian; Wu, Hongan; Wen, Xiaoyang; Yan, Dongmei

    2009-05-01

    The devastating Wenchuan Earthquake occurred in Sichuan Province, Southwestern China, with a magnitude of 8.0 on May 12, 2008. Most buildings along the seismic zone were ruined, resulting in infrastructure damage to factories, traffic facilities and power supplies. The earthquake also triggered geological disasters, such as landslides, debris flow, landslide lakes, etc. During the rescue campaign the remote sensing aircrafts of the Chinese Academy of Sciences (CAS), equipped with synthetic aperture radar (SAR) and optical sensors, flew over the disaster area and acquired many high resolution airborne SAR images. We first describe the basic characteristics of SAR imagery. The SAR images of buildings are simulated, and the backscattering mechanism of the buildings is analyzed. Finally, the various disaster phenomena are described and analyzed in the high resolution airborne SAR images. It is shown that certain phenomena of ruins could be identified clearly in high resolution SAR images in proper imaging conditions, while the functional destruction is quite difficult to detect. With calibrated data, the polarmetric SAR interferometry could be used to analyze the scattering mechanism and 3D distribution of the scattering center, which are redound to earthquake damage assessment.

  20. Verification of 3d Building Models Using Mutual Information in Airborne Oblique Images

    NASA Astrophysics Data System (ADS)

    Nyaruhuma, A. P.; Gerke, M.; Vosselman, G.

    2012-07-01

    This paper describes a method for automatic verification of 3D building models using airborne oblique images. The problem being tackled is identifying buildings that are demolished or changed since the models were constructed or identifying wrong models using the images. The models verified are of CityGML LOD2 or higher since their edges are expected to coincide with actual building edges. The verification approach is based on information theory. Corresponding variables between building models and oblique images are used for deriving mutual information for individual edges, faces or whole buildings, and combined for all perspective images available for the building. The wireframe model edges are projected to images and verified using low level image features - the image pixel gradient directions. A building part is only checked against images in which it may be visible. The method has been tested with models constructed using laser points against Pictometry images that are available for most cities of Europe and may be publically viewed in the so called Birds Eye view of the Microsoft Bing Maps. Results are that nearly all buildings are correctly categorised as existing or demolished. Because we now concentrate only on roofs we also used the method to test and compare results from nadir images. This comparison made clear that especially height errors in models can be more reliably detected in oblique images because of the tilted view. Besides overall building verification, results per individual edges can be used for improving the 3D building models.

  1. Estimation of the Atmospheric Refraction Effect in Airborne Images Using Radiosonde Data

    NASA Astrophysics Data System (ADS)

    Beisl, U.; Tempelmann, U.

    2016-06-01

    The influence of the atmospheric refraction on the geometric accuracy of airborne photogrammetric images was already considered in the days of analogue photography. The effect is a function of the varying refractive index on the path from the ground to the image sensor. Therefore the effect depends on the height over ground, the view zenith angle and the atmospheric constituents. It is leading to a gradual increase of the scale towards the borders of the image, i.e. a magnification takes place. Textbooks list a shift of several pixels at the borders of standard wide angle images. As it was the necessity of that time when images could only be acquired at good weather conditions, the effect was calculated using standard atmospheres for good atmospheric conditions, leading to simple empirical formulas. Often the pixel shift caused by refraction was approximated as linear with height and compensated by an adjustment of the focal length. With the advent of sensitive digital cameras, the image dynamics allows for capturing images at adverse weather conditions. So the influence of the atmospheric profiles on the geometric accuracy of the images has to be investigated and the validity of the standard correction formulas has to be checked. This paper compares the results from the standard formulas by Saastamoinen with the results calculated from a broad selection of atmospheres obtained from radiosonde profile data. The geometric deviation is calculated by numerical integration of the refractive index as a function of the height using the refractive index formula by Ciddor. It turns out that the effect of different atmospheric profiles (including inversion situations) is generally small compared to the overall effect except at low camera heights. But there the absolute deviation is small. Since the necessary atmospheric profile data are often not readily available for airborne images a formula proposed by Saastamoinen is verified that uses only camera height, the pressure

  2. Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Erinš, Gatis; Taskovs, Juris

    2014-10-01

    Airborne hyperspectral imaging is widely used for remote sensing of environment. The choice of spectral region usually depends on the availability and cost of the sensor. Visible-to-near infrared (400-1100 nm) spectral range corresponds to spectral sensitivity of relatively cheap Si detectors therefore it is the most commonly used. The implementation of shortwave infrared (1100-3000 nm) requires more expensive solutions, but can provide valuable information about the composition of the substance. Mid wave infrared (3000-8000 nm) is rarely used for civilian applications, but it provides information on the thermal emission of materials. The fusion of different sensors allows spectral analysis of a wider spectral range combining and improving already existing algorithms for the analysis of chemical content and classification. Here we introduce our Airborne Surveillance and Environmental Monitoring System (ARSENAL) that was developed by fusing seven sensors. The first test results from the fusion of three hyperspectral imaging sensors in the visible-to-mid wave infrared (365-5000 nm) are demonstrated. Principal component analysis (PCA) is applied to test correlation between principal components (PCs) and common vegetation indices.

  3. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  4. Preliminary assessment of airborne imaging spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    Herrmann, Karin; Ammer, Ulrich; Rock, Barrett; Paley, Helen N.

    1988-01-01

    This study evaluated the utility of data collected by the high-spectral resolution airborne imaging spectrometer (AIS-2, tree mode, spectral range 0.8-2.2 microns) and the broad-band Daedalus airborne thematic mapper (ATM, spectral range 0.42-13.0 micron) in assessing forest decline damage at a predominantly Scotch pine forest in the FRG. Analysis of spectral radiance values from the ATM and raw digital number values from AIS-2 showed that higher reflectance in the near infrared was characteristic of high damage (heavy chlorosis, limited needle loss) in Scotch pine canopies. A classification image of a portion of the AIS-2 flight line agreed very well with a damage assessment map produced by standard aerial photointerpretation techniques.

  5. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  6. Discriminating phytoplankton functional types (PFTs) in the coastal ocean using the inversion algorithm PHYDOTax and airborne imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Schafer, C. B.; Broughton, J.; Guild, L. S.; Kudela, R. M.

    2013-12-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  7. Exposure to airborne particulate matter in the subway system.

    PubMed

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system.

  8. A low-cost single-camera imaging system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  9. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  10. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification

    NASA Astrophysics Data System (ADS)

    Gerke, Markus; Xiao, Jing

    2014-01-01

    Automatic urban object detection from airborne remote sensing data is essential to process and efficiently interpret the vast amount of airborne imagery and Laserscanning (ALS) data available today. This paper combines ALS data and airborne imagery to exploit both: the good geometric quality of ALS and the spectral image information to detect the four classes buildings, trees, vegetated ground and sealed ground. A new segmentation approach is introduced which also makes use of geometric and spectral data during classification entity definition. Geometric, textural, low level and mid level image features are assigned to laser points which are quantified into voxels. The segment information is transferred to the voxels and those clusters of voxels form the entity to be classified. Two classification strategies are pursued: a supervised method, using Random Trees and an unsupervised approach, embedded in a Markov Random Field framework and using graph-cuts for energy optimization. A further contribution of this paper concerns the image-based point densification for building roofs which aims to mitigate the accuracy problems related to large ALS point spacing. Results for the ISPRS benchmark test data show that to rely on color information to separate vegetation from non-vegetation areas does mostly lead to good results, but in particular in shadow areas a confusion between classes might occur. The unsupervised classification strategy is especially sensitive in this respect. As far as the point cloud densification is concerned, we observe similar sensitivity with respect to color which makes some planes to be missed out, or false detections still remain. For planes where the densification is successful we see the expected enhancement of the outline.

  11. Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.; Vargas, R.; Hein, R.; Sobel, H.; Eastwood, M.

    2010-01-01

    PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.

  12. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  13. First results from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1987-01-01

    After engineering flights aboard the NASA U-2 research aircraft in the winter of 1986 to 1987 and spring of 1987, extensive data collection across the United States was begun with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the summer of 1987 in support of a NASA data evaluation and technology assessment program. This paper presents some of the first results obtained from AVIRIS. Examples of spectral imagery acquired over Mountain View and Mono Lake, California, and the Cuprite Mining District in western Nevada are presented. Sensor performance and data quality are described, and in the final section of this paper, plans for the future are discussed.

  14. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  15. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  16. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    On board of the NASA's Global Hawk (AV1) aircraft there are two microwave, namely: the passive microwave Hurricane Imaging Radiometer (HIRAD), and the active microwave High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). This paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when the Global Hawk aircraft flew over an intense tropical squall-line that was simultaneously observed, by the Tampa NEXRAD meteorological radar. During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. NEXRAD 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. In this paper, results are presented of the three-way inter-comparison of HIRAD Tb, HIWRAP dbZ and NEXRAD rain rate imagery.

  17. The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry

    NASA Technical Reports Server (NTRS)

    Swanberg, Nancy A.; Matson, Pamela A.

    1987-01-01

    It was experimentally determined whether induced differences in forest canopy chemical composition can be detected using data from the Airborne Imaging Spectrometer (AIS). Treatments were applied to an even-aged forest of Douglas fir trees. Work to date has stressed wet chemical analysis of foilage samples and correction of AIS data. Plot treatments were successful in providing a range of foliar N2 concentrations. Much time was spent investigating and correcting problems with the raw AIS data. Initial problems with groups of drop out lines in the AIS data were traced to the tape recorder and the tape drive. Custom adjustment of the tape drive led to recovery of most missing lines. Remaining individual drop out lines were replaced using average of adjacent lines. Application of a notch filter to the Fourier transform of the image in each band satisfactorily removed vertical striping. The aspect ratio was corrected by resampling the image in the line direction using nearest neighbor interpolation.

  18. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  19. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  20. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  1. Orientation of Oblique Airborne Image Sets - Experiences from the Isprs/eurosdr Benchmark on Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Hu, H.; Ostrowski, W.

    2016-06-01

    During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto

  2. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  3. A Parametric Approach for the Geocoding of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data in Rugged Terrain

    NASA Technical Reports Server (NTRS)

    Peter, M.

    1993-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulances, variations in ground speed, changes in altitude, attitude variations, and surface topography.

  4. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    SciTech Connect

    Alonzo, G M; Sanford, N M

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  5. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  6. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  7. Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants

    NASA Astrophysics Data System (ADS)

    Harig, Roland; Matz, Gerhard; Rusch, Peter

    2002-02-01

    Remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection, identification, and quantification of airborne pollutants. In the case of leaks in pipelines or leaks in chemical plants, chemical accidents, terrorism, or war, hazardous compounds are often released into the atmosphere. Various Fourier-transform infrared spectrometers have been developed for the remote detection and identification of hazardous clouds. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the size of a cloud is essential. Therefore, an imaging passive remote sensing system comprised of an interferometer (Bruker OPAG 22), a data acquisition, processing, and control system with a digital signal processor (FTIR DSP), an azimuth-elevation-scanning mirror, a video system with a DSP, and a personal computer has been developed. The FTIR DSP system controls the scanning mirror, collects the interferograms, and performs the Fourier transformation. The spectra are transferred to a personal computer and analyzed by a real-time identification algorithm that does not require background spectra for the analysis. The results are visualized by a video image, overlaid by false color images. For each target compound of a spectral library, images of the coefficient of correlation, the signal to noise ratio, the brightness temperature of the background, the difference between the temperature of the ambient air and the brightness temperature of the background, and the noise equivalent column density are produced. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and an additional false color image is displayed. The system has a high selectivity, low noise equivalent spectral radiance, and it allows identification, visualization, and quantification of pollutant clouds.

  8. Spatial Modeling and Variability Analysis for Modeling and Prediction of Soil and Crop Canopy Coverage Using Multispectral Imagery from an Airborne Remote Sensing System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on a previous study on an airborne remote sensing system with automatic camera stabilization for crop management, multispectral imagery was acquired using the MS-4100 multispectral camera at different flight altitudes over a 115 ha cotton field. After the acquired images were geo-registered an...

  9. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the

  10. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  11. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  12. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates.

  13. Detection of hydrothermal alteration at Virginia City, Nevada using Airborne Imaging Spectrometry (AIS)

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, A.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over Virginia City, Nevada; an area of gold and silver mineralization with extensive surface exposures of altered volcanic rocks. The data were corrected for atmospheric effects by a flat-field method, and compared to library spectra of various alteration minerals using a spectral analysis program SPAM. Areas of strong clay alteration were identified on the AIS images that were mapped as kaolinitic, illitic, and sericitic alterations zones. Kaolinitic alteration is distinguishable in the 2.1 to 2.4 and 1.2 to 1.5 micrometer wavelength regions. Montmorillonite, illite, and sericite have absorption features similar to each other at 2.2 micrometer wavelength. Montnorillonite and illite also may be present in varying proportions within one Ground Instantaneous Field of View (GIFOV). In general AIS data is useful in identifying alteration zones that are associated with or lie above precious metal mineralization at Virginia City.

  14. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  15. Examination of Airborne FDEM System Attributes for UXO Mapping and Detection

    DTIC Science & Technology

    2009-11-01

    process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation...the semi-airborne configuration. We propose to extend the current SAIC codes to address this need, and to perform additional modeling using codes...transmitter with the existing receivers on the TEM-8 system. Additional airborne measurements will be made with Cases 2 and 4 receiver

  16. An Introduction to Coastal Zone Mapping With Airborne Lidar: The Shoals System

    DTIC Science & Technology

    2000-01-01

    AN INTRODUCTION TO COASTAL ZONE MAPPING WITH AIRBORNE LIDAR : THE SHOALS SYSTEM Jennifer L. Irish US Army Engineer Research and Development...Center Coastal and Hydraulics Laboratory Joint Airborne Lidar Bathymetry Technical Center of Expertise 109 St. Joseph Street, Mobile, AL 36602-3630...USA http://shoals.sam.usace.army.mil ABSTRACT Recent advancements in lidar sensors now allow for near-synoptic, regional-scale mapping of the

  17. A Portable Airborne Scanning Lidar System for Ocean and Coastal Applications

    DTIC Science & Technology

    2009-06-26

    has been quantified in many studies with several different airborne lidar systems. Robertson et al. (2007) measured beach erosion caused by Hurricane...Mech., 156, 505–531. Robertson , W., K. Zhang, and D. Whitman, 2007: Hurricane- induced beach change derived from airborne laser mea- surements near...level changes on Southern California beaches. Ph.D. thesis, University of California, San Diego, 155 pp. ——, R. Guza, R. Gutierrez, and R. Seymour

  18. Airborne prototype instrument suite test flight of a low-light high-dynamic range imager and visible spectrometer

    NASA Astrophysics Data System (ADS)

    Kuester, Michele A.; Lasnik, James K.; Ramond, Tanya; Lin, Tony; Johnson, Brian; Kaptchen, Paul; Good, William

    2007-09-01

    The Airborne Sensors Initiative (ASI) at Ball Aerospace and Technologies Corp. (BATC) specializes in airborne demonstration of internally-developed instrument concepts and innovative remote sensing technologies. In December 2006, ASI flew an environmental remote sensing suite consisting of the Low Light Imager (LLI) and Prototype Airborne Visible Imaging Spectrometer (PAVIS), both of which are operated using a pushbroom approach. LLI is designed for nighttime or high dynamic range imaging. It is capable of yielding 10 7 dynamic range and offers quality images amid illumination extending from a 1/ 4 moon to full sunlight and with autonomous operation. PAVIS is an imaging spectrometer based on the Dyson design and exhibits a 200 nm spectral bandwidth tunable within 400 - 850 nm. Developed internally to demonstrate promising remote sensing capabilities, these small, low-mass and low-power instruments are prepared for aircraft flight and are currently being used in the field to acquire scientific data. The LLI/PAVIS instrument suite has been utilized to collect airborne urban and rural imagery, as well as spectral information about the Great Salt Lake area, western Colorado, and ancient lava flows in southern Idaho. Highlights of the instrument design and ensuing data from previous flights are presented herein.

  19. Supervised and unsupervised MRF based 3D scene classification in multiple view airborne oblique images

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Xiao, J.

    2013-10-01

    In this paper we develop and compare two methods for scene classification in 3D object space, that is, not single image pixels get classified, but voxels which carry geometric, textural and color information collected from the airborne oblique images and derived products like point clouds from dense image matching. One method is supervised, i.e. relies on training data provided by an operator. We use Random Trees for the actual training and prediction tasks. The second method is unsupervised, thus does not ask for any user interaction. We formulate this classification task as a Markov-Random-Field problem and employ graph cuts for the actual optimization procedure. Two test areas are used to test and evaluate both techniques. In the Haiti dataset we are confronted with largely destroyed built-up areas since the images were taken after the earthquake in January 2010, while in the second case we use images taken over Enschede, a typical Central European city. For the Haiti case it is difficult to provide clear class definitions, and this is also reflected in the overall classification accuracy; it is 73% for the supervised and only 59% for the unsupervised method. If classes are defined more unambiguously like in the Enschede area, results are much better (85% vs. 78%). In conclusion the results are acceptable, also taking into account that the point cloud used for geometric features is not of good quality and no infrared channel is available to support vegetation classification.

  20. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  1. Evaluation of the airborne imaging spectrometer for remote sensing of forest stand conditions

    NASA Technical Reports Server (NTRS)

    Olson, Charles E., Jr.

    1986-01-01

    Five pairs of plots were established in forest stands with one of each pair trenched and covered to prevent precipitation from reaching the tree roots. High winds and falling limbs destroyed the covers on three of the plots. The two remaining plots were in a red pine plantation and in a natural stand of sugar maple. Trees in both plots developed levels of moisture stress more than nine bars higher than control trees on the dates of overflights with the Airborne Imaging Spectrometer (AIS) and the Collins' Airborne Spectroradiometer (CAS). Hemispherical reflectance from stressed and control trees was measured with a Beckman DK2A spectrophotometer. On the day of the AIS overflight, stressed maple foliage was less reflective than the control from 1000 to 1300 nm, but more reflective at wavelengths longer than 1300 nm. Pine foliage was less reflective than the control from 1000 to 1600 nm, but the difference was small at wavelengths longer than 1350 nm. AIS data collected showed brightness values for both maple and pine to be lower than for the controls from 1000 to 1300 nm. CAS data were used to determine the gain in species identification accuracy obtainable with high spectral resolution data.

  2. Design and performance simulations for an airborne DIAL system for long-range remote sensing applications

    NASA Astrophysics Data System (ADS)

    Dowling, James A.; Kelly, Brian T.; Gonglewski, John D.; Fox, Marsha J.; Shilko, Michael L.; Higdon, Noah S.; Highland, Ronald G.; Senft, Daniel C.; Dean, David R.; Blackburn, John P.; Pierrottet, Diego F.

    1997-01-01

    The U.S. Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. To date, the Phillips Laboratory program has been concerned with the preliminary design and performance analysis of a commercially available CO(subscript 2) laser-based DIAL system operating from mountain-top-observatory and airborne platform and more recently with long-range ground testing using a 21.8 km slant path from 3.05 km ASL to sea level as the initial steps in the design and development of an airborne system capability. Straightforward scaling of the performance of a near-term technology direct-detection LIDAR system with propagation range to a topographic target and with the average atmospheric absorption coefficient along the path has been performed. Results indicate that useful airborne operation of such a system should be possible for slant path ranges between 20 km and 50 km, depending upon atmospheric transmission at the operating wavelengths of the (superscript 13)C(superscript 16)O(subscript 2) source. This paper describes the design of the airborne system which will be deployed on the Phillips Laboratory NC-135 research aircraft for DIAL system performance tests at slant ranges of 20 km to 50 km, scheduled for the near future. Performance simulations for the airborne tests will be presented and related to performance obtained during initial ground-based tests.

  3. The airborne volcanic object imaging detector (AVOID): A new tool for airborne atmospheric remote sensing of clouds

    NASA Astrophysics Data System (ADS)

    Prata, F.; Durant, A.; Kylling, A.

    2012-04-01

    A new dual thermal imaging infrared camera system has been developed for aircraft in order to investigate water and volcanic clouds ahead. The system, AVOID, uses interference filters to discriminate clouds of water and ice from volcanic substances (silicates) by utilising the spectral features of these substances at wavelengths between 8-12 µm. Tests of the system were recently conducted in Sicily, in the vicinity of Mt Etna volcano and at Stromboli volcano, during emission of ash and SO2. The data were acquired from altitudes up to 12,000 ft, sampling from two cameras at frequencies down to 1 Hz. Corrections for the aircraft attitude were made using a very fast sampling attitude sensor, collocated with the imaging system. About 30 hours of data were acquired - over 90% of these measurements were of meteorological clouds of water droplets and ice. Using a radiative transfer model and information on the spectral refractive indices of water, ice and silicate ash, a retrieval scheme has been devised to determine the mass loading and effective particle radius of these substances and some preliminary results are presented. We have also developed a sophisticated simulation tool that allows us to model the 3D structure of clouds based on Monte Carlo radiative transfer. By utilising a narrow bandpass filter centred on 8.6 µm, AVOID can also detect SO2 gas and some illustrative examples are shown. During March 2012 the AVOID system will be mounted onto an AIRBUS A340 and flown at altitudes up to 38,000 ft. These tests will include measurements of clouds, as well as drifting volcanic ash and SO2 gas. We intend to present some of these initial results.

  4. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  5. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    NASA Astrophysics Data System (ADS)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  6. Crude oil, petroleum product, and water discrimination on terrestrial substrates with airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Allen, C. Scott; Krekeler, Mark P. S.

    2011-06-01

    The Deepwater Horizon explosion and subsequent sinking produced the largest oil spill in U.S. history. One of the most prominent portions of the response is mapping the extent to which oil has reached thousands of miles of shoreline. The most common method of detecting oil remains visual spotting from airframes, supplemented by panchromatic / multispectral aerial photography and satellite imagery. While this imagery provides a synoptic view, it is often ambiguous in its ability to discriminate water from hydrocarbon materials. By employing spectral libraries for material identification and discrimination, imaging spectroscopy supplements traditional imaging techniques by providing specific criteria for more accurate petroleum detection and discrimination from water on terrestrial backgrounds. This paper applies a new hydrocarbon-substrate spectral library to SpecTIR HST-3 airborne imaging spectroscopy data from the Hurricane Katrina disaster in 2005. Using common material identification algorithms, this preliminary analysis demonstrates the applicability and limitations of hyperspectral data to petroleum/water discrimination in certain conditions. The current work is also the first application of the petroleum-substrate library to imaging spectroscopy data and shows potential for monitoring long term impacts of Deepwater Horizon.

  7. Analysis of Debris Flow Behavior Using Airborne LIDAR and Image Data

    NASA Astrophysics Data System (ADS)

    Kim, G.; Yune, C. Y.; Paik, J.; Lee, S. W.

    2016-06-01

    The frequency of debris flow events caused by severe rainstorms has increased in Korea. LiDAR provides high-resolution topographical data that can represent the land surface more effectively than other methods. This study describes the analysis of geomorphologic changes using digital surface models derived from airborne LiDAR and aerial image data acquired before and after a debris flow event in the southern part of Seoul, South Korea in July 2011. During this event, 30 houses were buried, 116 houses were damaged, and 22 human casualties were reported. Longitudinal and cross-sectional profiles of the debris flow path reconstructed from digital surface models were used to analyze debris flow behaviors such as landslide initiation, transport, erosion, and deposition. LiDAR technology integrated with GIS is a very useful tool for understanding debris flow behavior.

  8. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  9. Discrimination of hydrothermal alteration mineral assemblages at Virginia City, Nevada, using the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, Amy

    1988-01-01

    The purpose of this study is to use airborne imaging spectrometer data to discriminate hydrothermal alteration mineral assemblages associated with silver and gold mineralization at Virginia City, NV. The data is corrected for vertical striping and sample gradients, and converted to flat-field logarithmic residuals. Log residual spectra from areas known to be altered are compared to field spectra for kaolinitic, illitic, sericitic, and propylitic alteration types. The areal distributions of these alteration types are estimated using a spectral matching technique. Both visual examination of spectra and the matching techniques are effective in distinguishing kaolinitic, illitic, and propylitic alteration types from each other. However, illitic and sericitic alteration cannot be separated using these techniques because the spectra of illite and sericite are very similar. A principal components analysis of 14 channels in the 2.14-2.38 micron wavelength region is also successful in discriminating and mapping illitic, kaolinitic, and propylitic alteration types.

  10. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  11. The use of Airborne Imaging Spectrometer (AIS) data to differentiate marsh vegetation

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.

    1986-01-01

    The Airborne Imaging Spectrometer (AIS) is a high spectral resolution (9.6-nm-wide bands between 0.9 and 2.4 microns) instrument. Analysis of AIS data revealed significant differences in characteristics of the spectral radiance curves of four types of wetland vegetation canopies (trees, broadleaf herbaceous, Spartina alterniflora, and S. patens/Distichlis spicata) in Delaware, enabling them to be distinguished. The single most useful spectral region was that between 1.40 and 1.90 microns. Differences in radiance values at various wavelengths between samples of the same vegetation type could potentially be used to estimate biomass. Thus, high spectral resolution spectrometry appears to have significant value for remote sensing studies of wetland vegetation.

  12. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  13. Development and testing of a long-range airborne CO2 DIAL chemical detection system

    NASA Astrophysics Data System (ADS)

    Higdon, N. Scott; Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Kelly, Brian T.; Dowling, James A.; Pierrottet, Diego F.; Dean, David R.; Richter, Dale A.; Bousek, Ronald R.

    1998-11-01

    The Air Force Research Laboratory has developed and tested an airborne CO2 differential absorption lidar system for the remote detection of chemicals. The Laser Airborne Remote Sensing DIAL system uses topographic backscatter to provide a long-range measurement of the column-content absorption of chemical plumes in the path of the laser beam. A high-power CO2 laser, capable of operation on multiple isotopes, and a Mersenne telescope constitute the major transceiver components. In addition to the laser, telescope, and transceiver optics, several onboard diagnostic instruments were mounted on the flight bench to monitor and optimize the system performance during airborne operation. The flight bench, electronics racks, and data acquisition and experiment control stations were designed to be integrated onto the AFRL C-135E research aircraft, and to utilize the existing pointing and tracking system on the aircraft.

  14. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B and Class C). The FAA has also published two GPS TSOs augmented by the satellite-based augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  15. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  16. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  17. Airborne sensor systems under development at the NASA/NSTL/Earth Resources Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, James E.; Meeks, Gerald R.

    1988-01-01

    The operational characteristics of the Airborne Bathymetric System (ABS) MSS and the Airborne Multispectral Pushbroom Scanner (AMPS), which are currently being developed at NASA's Earth Resources Laboratory (ERL), are described. The ABS MSS system scans through a swath width of + or - 40 deg from nadir and the sensor incorporates onboard calibration references for the visible and short-wavelength IR channels. The AMPS uses five separate f/1.8 refractive telecentric lens systems, each incorporating nine optical elements, and a replaceable fixed bandwidth filter.

  18. Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL)

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Valentini, Emiliana; Taramelli, Andrea; Filipponi, Federico; Disperati, Leonardo

    2015-04-01

    Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above. Results showed the potential of hyperspectral signals to assess the effect of moisture, grain-size and mineral composition on sediment properties.

  19. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA

  20. Sunglint effects on the characterization of optically active substances in high spatial resolution airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Faria Barbosa, C. Clemente; Soares Galvão, L.; Goodman, J. A.; Silva, T. S.

    2013-05-01

    Sunglint, also known as the specular reflection of light from water surfaces, is a component of sensor-received radiance that represents a confounding factor on the characterization of water bodies by remote sensing. In airborne remote sensing images, the effect of sunglint can be minimized by optimizing the flight paths, directing the sensor towards or away from the Sun, and by keeping solar zenith angles between 30° and 60°. However, these guidelines cannot always be applied, often due to the irregular spatial pattern of lakes, estuaries and coastlines. The present study assessed the impact of sunglint on the relationship between the optically active substances (OAS) concentration, in optically complex waters, and the spectral information provided by an airborne high spatial resolution hyperspectral sensor (SpecTIR). The Ibitinga reservoir, located in southeastern Brazil (state of São Paulo), was selected as the study area because of its meandering shape. As a result, there is demanding constant changes in data acquisition geometry to achieve complete coverage, therefore not allowing sunglint conditions to be minimized during image acquisition. Field data collection was carried out on October 23 and 24, 2011. During these two days, 15 water stations along the reservoir were sampled, concurrently with the SpecTIR image acquisition in 357 bands (398-2455 nm) and at 3 m spatial resolution. Chlorophyll, pheophytin, total suspended solids, organic and inorganic suspended solids and colored dissolved matter were determined in laboratory. The images were corrected for the atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm and then geometrically corrected. In order to evaluate the sunglint effects on the OAS characterization, the images were corrected for such effects using the deglint algorithm from Goodman et al. (2008). The SpecTIR 662-nm band reflectance was selected to be correlated to the OAS due to

  1. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  2. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  3. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  4. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  5. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  6. DoD Weapon Systems Software Management Study. Appendix C. Airborne Systems

    DTIC Science & Technology

    1975-06-01

    s J 2 GOVT ACCESSION NO Subiuiei—I.I..II iPOD WEAPON ffifSTEMS SOFTWARE J^NAGEMENT STÜI« ’APPENDIX C„ AIRBORNE SYSTEMS , 1 ■/]/Special...listings were used as references during the production software development. ( MP3 ) Since system test programs actually comprise three to four times as...program. ( MP3 ) Based on the experience of the P-3C software development, the digital program developers indicate the need for a more structured pro

  7. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  8. Environmental Protection Agency (EPA) airborne gamma spectrometry system for environmental and emergency response surveys

    NASA Astrophysics Data System (ADS)

    Cardarelli, John, II; Thomas, Mark; Curry, Timothy

    2010-08-01

    The EPA Airborne Spectral Photometric Environmental Collection Technology (ASPECT) Program provides airborne ortho-rectified imagery, video, chemical and now radiological information directly to emergency response personnel via a commercial satellite link onboard the aircraft. EPA initiated the ASPECT Gamma Emergency Mapper GEM Project in 2008 to improve its airborne gamma-screening and mapping capability for monitoring any ground-based gamma contamination. This paper will provide an overview of the system, which can be configured to carry six 2"x4"x16" NaI(Tl) detectors and two 3"x3" LaBr3(Ce) detectors or eight 2"x4"x16" NaI(Tl) detectors. The paper will provide an overview of the analysis of gamma radiation spectra, system limitations, and emergency response applications.

  9. Point source emissions mapping using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Roberts, Dar A.; Dennison, Philip E.; Bradley, Eliza S.; Funk, Christopher C.

    2012-06-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected solar radiation in the shortwave infrared and has been used to map methane (CH4) using both a radiative transfer technique [1] and a band ratio method [2]. However, these methods are best suited to water bodies with high sunglint and are not well suited for terrestrial scenes. In this study, a cluster-tuned matched filter algorithm originally developed by Funk et al. [3] for synthetic thermal infrared data was used for gas plume detection over more heterogeneous backgrounds. This approach permits mapping of CH4, CO2 (carbon dioxide), and N2O (nitrous oxide) trace gas emissions in multiple AVIRIS scenes for terrestrial and marine targets. At the Coal Oil Point marine seeps offshore of Santa Barbara, CA, strong CH4 anomalies were detected that closely resemble results obtained using the band ratio index. CO2 anomalies were mapped for a fossil-fuel power plant, while multiple N2O and CH4 anomalies were present at the Hyperion wastewater treatment facility in Los Angeles, CA. Nearby, smaller CH4 anomalies were also detected immediately downwind of hydrocarbon storage tanks and centered on a flaring stack at the Inglewood Gas Plant. Improving these detection methods might permit gas detection over large search areas, e.g. identifying fugitive CH4 emissions from damaged natural gas pipelines or hydraulic fracturing. Further, this technique could be applied to other trace gasses with distinct absorption features and to data from planned instruments such as AVIRISng, the NEON Airborne Observation Platform (AOP), and the visible-shortwave infrared (VSWIR) sensor on the proposed HyspIRI satellite.

  10. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  11. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal

  12. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  13. Evaluation of the airborne visible-infrared imaging spectrometer for mapping subtle lithological variation

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1990-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), flown aboard the NASA ER-2 aircraft in 1987 and 1989, used four linear arrays and four individual spectrometers to collect data simultaneously from the 224 bands in a scanned 614 pixel-wide swath perpendicular to the aircraft direction. The research had two goals. One was to evaluate the AVIRIS data. The other was to look at the subtle lithological variation at the two test sites to develop a better understanding of the regional geology and surficial processes. The geometric characteristics of the data, adequacy of the spatial resolution, and adequacy of the spectral sampling interval are evaluated. Geologic differences at the test sites were mapped. They included lithological variation caused by primary sedimentary layering, facies variation, and weathering; and subtle mineralogical differences caused by hydrothermal alterations of igneous and sedimentary rocks. The investigation used laboratory, field, and aircraft spectral measurements; known properties of geological materials; digital image processing and spectrum processing techniques; and field geologic data to evaluate the selected characteristics of the AVIRIS data.

  14. Lineaments from airborne SAR images and the 1988 Saguenay earthquake, Quebec, Canada

    SciTech Connect

    Roy, D.W.; Schmitt, L.; Woussen, G.; Duberger, R. )

    1993-08-01

    Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineament orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.

  15. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    NASA Technical Reports Server (NTRS)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  16. A building extraction approach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm

    NASA Astrophysics Data System (ADS)

    Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas

    2016-10-01

    In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied "as is" to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.

  17. Automated processing of high resolution airborne images for earthquake damage assessment

    NASA Astrophysics Data System (ADS)

    Nex, F.; Rupnik, E.; Toschi, I.; Remondino, F.

    2014-11-01

    Emergency response ought to be rapid, reliable and efficient in terms of bringing the necessary help to sites where it is actually needed. Although the remote sensing techniques require minimum fieldwork and allow for continuous coverage, the established approaches rely on a vast manual work and visual assessment thus are time-consuming and imprecise. Automated processes with little possible interaction are in demand. This paper attempts to address the aforementioned issues by employing an unsupervised classification approach to identify building areas affected by an earthquake event. The classification task is formulated in the Markov Random Fields (MRF) framework and only post-event airborne high-resolution images serve as the input. The generated photogrammetric Digital Surface Model (DSM) and a true orthophoto provide height and spectral information to characterize the urban scene through a set of features. The classification proceeds in two phases, one for distinguishing the buildings out of an urban context (urban classification), and the other for identifying the damaged structures (building classification). The algorithms are evaluated on a dataset consisting of aerial images (7 cm GSD) taken after the Emilia-Romagna (Italy) earthquake in 2012.

  18. Calibration Design and Assessment of the Airborne Conical Scanning Millimeterwave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Racette, P.; Walker, D. K.; Randa, J.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    The airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) will provide measurements useful for atmospheric studies and satellite calibration and validation (cal/val). Designed to match the tropospheric sounding channels of the Defense Meteorological Satellite Program QMSP) Special Sensor Microwave Imager/Sounder (SSMIS), the CoSMIR consists of four radiometers operating at 50-54 (3 channels - 50.3, 52.8, and 53.6), 91.655 (dual polarization), 150.0, and 193.31 (3 channels 11, 13, and 16.6) GHz. The design of CoSMIR was primarily driven by its intended initial use as an SSMIS cal/val sensor. In particular, three design features were directly affected by this requirement: frequency planning, calibration target design, and the mechanical gimbals. An initial calibration assessment of CoSMIR was performed to determine any needed improvements. We used a combination of laboratory and field measurements to do this. Laboratory measurements included comparisons to a liquid nitrogen standard, IF amplifier and diode linearity tests, LO leakage and reflection testing, and antenna to calibration target coupling tests. Results of these tests will be reported. We also performed a satellite underflight under DM SP F-15 and have compared CoSMIR imagery to SSM/T-2 and SSM/I imagery. Additional information is included in the original extended abstract.

  19. Airborne hyperspectral imaging for sensing phosphorus concentration in the Lake Okeechobee drainage basin

    NASA Astrophysics Data System (ADS)

    Bogrekci, Ismail; Lee, Won Suk; Jordan, Jonathan D.

    2005-05-01

    Eutrophication disturbs the ecological balance in the Lake Okeechobee due to high concentration of phosphorus emanated from the regions in the lake's drainage basin. Ability of measuring phosphorus (P) concentrations of water in the Lake Okeechobee itself is very important. Furthermore, monitoring P in its drainage basins is crucial in order to find the cause of P loading and contributing regions. Also, inexpensive real-time sensing capability for a large area in a short time would help scientist, government agents, and civilians to understand the causes, spot the high-risk areas, and develop management practices for restoring the natural equilibrium. In order to measure P concentrations in the Lake Okeechobee drainage basin, airborne hyperspectral images were taken from five representative target sites by deploying a modified queen air twin engine aircraft. Each flight line covered a swath of approximately 365 m wide. Spatial resolution was about 1 m. Spectral range covered was between 412.65 and 991.82 nm with an approximate of 5 nm spectral resolution. Ground truthing was conducted to collect soil and vegetation samples, GPS coordinates of each location, and reflectance measurement of each sample. On the ground, spectral reflectance was measured using a handheld spectrometer in 400-2500 nm. The samples were sent to a laboratory for chemical analysis. Also diffuse reflectance of the samples was measured in a laboratory setting using a spectrophotometer with an integrating sphere. Images were geocorrected and rectified to reduce geometric effect. Calibration of images was conducted to obtain actual reflectance of the target area. Score, SAM (Spectral Angle Mapping), SFF (Spectral Feature Fitting) were computed for spectral matching with image derived spectral library.

  20. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  1. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  2. Active alignment and vibration control system for a large airborne optical system

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  3. A Moored Airborne Video System with Nearshore Applications

    NASA Astrophysics Data System (ADS)

    Smith, G.; Lippmann, T.

    2004-12-01

    Over the past two decades researchers have developed video-based remote sensing techniques to measure relevant nearshore variables. Measurements made include spatial patterns in sand bar morphology, run-up oscillations, wave breaking distributions, phase speed and wave angle, and most recently, surface currents within the surf zone and swash. In general, vertical (i.e., downward oriented) photography or videography is preferred to high-oblique land-based systems. However, although aircraft-mounted video systems have been under development for several years, the relatively high cost and short dwell time has limited its widespread application. Thus, most video measurements for research applications are obtained through methods whereby arrays of video cameras are fixed on land and oriented obliquely to the surf zone region of interest. The typically high-oblique imagery is limited in spatial ground coverage by rapidly degrading resolution in the far field, as well as lay-over problems associated with a fluctuating sea surface and high incidence look-angle. In order to alleviate these problems, researchers have attempted mounting video (or photographic) sensors on tethered balloons where long time series can be obtained over large regions of the surf zone without limiting resolution in the far field. In our research we have developed a technique for mounting a video system onboard a tethered helikite, a combination kite and helium-filled blimp (Allsopp Helikites, Ltd.). The video system consists of a downward-looking video camera in a custom weather-proof housing mounted on the keel of the helikite. Also included are a differential GPS receiver, tilt and heading sensor for accurate geometrical transformation, micro-processor, onboard power supply, and wireless data link. In this presentation, we will discuss the system in more detail, the image resolution and accuracies, and the expected applications to nearshore processes research. This work is sponsored by the Office

  4. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  5. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  6. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...PEO - Program Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected

  7. Evaluation of air-liquid interface exposure systems for in vitro assessment of airborne pollutants

    EPA Science Inventory

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared fi...

  8. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially

  9. On-board Polarimetric Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Measurements

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Diner, D. J.; Bull, M. A.; Tkatcheva, I. N.; Jovanovic, V. M.; Seidel, F. C.; Garay, M. J.; Xu, F.; Davis, A. B.; Rheingans, B. E.; Chipman, R. A.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) aims at characterizing atmospheric aerosols and clouds using highly accurate imaging polarimetry. The instrument is deployed regularly onboard the NASA ER2 high-altitude aircraft, which is an ideal testbed for satellite remote sensing. Flying at 20 km altitude, AirMSPI's pushbroom camera typically provides 11×11 km images at 10 m resolution. The target is observed from multiple along-track angles within ±67° using a gimbal mount. Eight spectral bands within 355-935 nm are recorded simultaneously in different detector rows, 3 of which also measure linear polarization: 470, 660 and 865 nm. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a wavelike intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This enables an accuracy in the degree of linear polarization of ~0.001, as measured in the lab. To maintain this accuracy in-flight, an optical probe continuously monitors the PEMs' retardances and controls their driving signals. Before and after observing a target, the instrument also observes a validator, which is an extended, polarized light source, located inside the instrument housing. These data are now incorporated in the data processing pipeline to further improve the calibration of the modulation functions. Highly polarized pixels in Earth data are utilized to transfer the validator results to meet the illumination in Earth scenes, as well as to make fine adjustments at higher temporal resolution. The reprocessed polarization products for the PODEX campaign show significant improvements when intercompared with the Research Scanning Polarimeter (RSP, Goddard Institute for Space Studies). We currently evaluate the impact of the on-board polarimetric calibration on aerosol retrievals, and compare against AERONET reference measurements.

  10. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  11. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  12. Mapping Forest Species Composition Using Imaging Spectrometry and Airborne Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Torabzadeh, H.; Morsdorf, F.; Leiterer, R.; Schaepman, M. E.

    2013-09-01

    Accurate mapping of forest species composition is an important aspect of monitoring and management planning related to ecosystem functions and services associated with water refinement, carbon sequestration, biodiversity, and wildlife habitats. Although different vegetation species often have unique spectral signatures, mapping based on spectral reflectance properties alone is often an ill-posed problem, since the spectral signature is as well influenced by age, canopy gaps, shadows and background characteristics. Thus, reducing the unknown variation by knowing the structural parameters of different species should improve determination procedures. In this study we combine imaging spectrometry (IS) and airborne laser scanning (ALS) data of a mixed needle and broadleaf forest to differentiate tree species more accurately as single-instrument data could do. Since forest inventory data in dense forests involve uncertainties, we tried to refine them by using individual tree crowns (ITC) position and shape, which derived from ALS data. Comparison of the extracted spectra from original field data and the modified one shows how ALS-derived shape and position of ITCs can improve separablity of the different species. The spatially explicit information layers containing both the spectral and structural components from the IS and ALS datasets were then combined by using a non-parametric support vector machine (SVM) classifier.

  13. Multi-Agent System for Mission and Situational Awareness Management (MASAM) for Airborne Platforms

    DTIC Science & Technology

    2003-01-01

    UNCLASSIFIED MULTI - AGENT SYSTEM FOR MISSION AND SITUATIONAL AWARENESS MANAGEMENT (MASAM) FOR AIRBORNE PLATFORMS (U) John C. Sciortino, Jr...TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Multi - Agent System for Mission and Situational Awareness Management (MASAM...Parameters Platform Figure 3: (U) Multi - Agent System for Mission and Situational Awareness Management (Left Panel). Use of CoABS Grid (Right Panel

  14. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  15. Accurate 2D/3D electromagnetic modeling for time-domain airborne EM systems

    NASA Astrophysics Data System (ADS)

    Yin, C.; Hodges, G.

    2012-12-01

    The existing industry software cannot deliver correct results for 3D time-domain airborne EM responses. In this paper, starting from the Fourier transform and convolution, we compare the stability of different modeling techniques and analyze the reason for instable calculations of the time-domain airborne EM responses. We find that the singularity of the impulse responses of EM systems at very early time that are used in the convolution is responsible for the instability of the modeling (Fig.1). Based on this finding, we put forward an algorithm that uses step response rather than impulse response of the airborne EM system for the convolution and create a stable algorithm that delivers precise results and maintains well the integral/derivative relationship between the magnetic field B and the magnetic induction dB/dt. A three-step transformation procedure for the modeling is proposed: 1) output the frequency-domain EM response data from the existing software; 2) transform into step-response by digital Fourier/Hankel transform; 3) convolve the step response with the transmitting current or its derivatives. The method has proved to be working very well (Fig. 2). The algorithm can be extended to the modeling of other time-domain ground and airborne EM system responses.Fig. 1: Comparison of impulse and step responses for an airborne EM system Fig. 2: Bz and dBz/dt calculated from step (middle panel) and impulse responses (lower panel) for the same 3D model as in Fig.1.

  16. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  17. Imaging the lymphatic system.

    PubMed

    Munn, Lance L; Padera, Timothy P

    2014-11-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.

  18. Multisensor Image Analysis System

    DTIC Science & Technology

    1993-04-15

    AD-A263 679 II Uli! 91 Multisensor Image Analysis System Final Report Authors. Dr. G. M. Flachs Dr. Michael Giles Dr. Jay Jordan Dr. Eric...or decision, unless so designated by other documentation. 93-09739 *>ft s n~. now illlllM3lMVf Multisensor Image Analysis System Final...Multisensor Image Analysis System 3. REPORT TYPE AND DATES COVERED FINAL: LQj&tt-Z JZOfVL 5. FUNDING NUMBERS 93 > 6. AUTHOR(S) Drs. Gerald

  19. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  20. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  1. What We are Learning about Airborne Particles from MISR Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    The NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global observations in 36 angular-spectral channels about once per week for over 14 years. Regarding airborne particles, MISR is contributing in three broad areas: (1) aerosol optical depth (AOD), especially over land surface, including bright desert, (2) wildfire smoke, desert dust, and volcanic ash injection and near-source plume height, and (3) aerosol type, the aggregate of qualitative constraints on particle size, shape, and single-scattering albedo (SSA). Early advances in the retrieval of these quantities focused on AOD, for which surface-based sun photometers provided a global network of ground truth, and plume height, for which ground-based and airborne lidar offered near-coincident validation data. MSIR monthly, global AOD products contributed directly to the advances in modeling aerosol impacts on climate made between the Inter-governmental Panel on Climate Change (IPCC) third and fourth assessment reports. MISR stereo-derived plume heights are now being used to constrain source inventories for the AeroCom aerosol-climate modeling effort. The remaining challenge for the MISR aerosol effort is to refine and validate our global aerosol type product. Unlike AOD and plume height, aerosol type as retrieved by MISR is a qualitative classification derived from multi-dimensional constraints, so evaluation must be done on a categorical basis. Coincident aerosol type validation data are far less common than for AOD, and, except for rare Golden Days during aircraft field campaigns, amount to remote sensing retrievals from suborbital instruments having uncertainties comparable to those from the MISR product itself. And satellite remote sensing retrievals of aerosol type are much more sensitive to scene conditions such as surface variability and AOD than either AOD or plume height. MISR aerosol type retrieval capability and information content have been

  2. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Astrophysics Data System (ADS)

    Hoadley, A. W.; Porter, A. J.

    1992-07-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  3. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  4. Correction of Airborne Pushbroom Images Orientation Using Bundle Adjustment of Frame Images

    NASA Astrophysics Data System (ADS)

    Barbieux, K.; Constantin, D.; Merminod, B.

    2016-06-01

    To compute hyperspectral orthophotos of an area, one may proceed like for standard RGB orthophotos : equip an aircraft or a drone with the appropriate camera, a GPS and an Inertial Measurement Unit (IMU). The position and attitude data from the navigation sensors, together with the collected images, can be input to a bundle adjustment which refines the estimation of the parameters and allows to create 3D models or orthophotos of the scene. But most of the hyperspectral cameras are pushbrooms sensors : they acquire lines of pixels. The bundle adjustment identifies tie points (using their 2D neighbourhoods) between different images to stitch them together. This is impossible when the input images are lines. To get around this problem, we propose a method that can be used when both a frame RGB camera and a hyperspectral pushbroom camera are used during the same flight. We first use the bundle adjustment theory to obtain corrected navigation parameters for the RGB camera. Then, assuming a small boresight between the RGB camera and the navigation sensors, we can estimate this boresight as well as the corrected position and attitude parameters for the navigation sensors. Finally, supposing that the boresight between these sensors and the pushbroom camera is constant during the flight, we can retrieve it by matching manually corresponding pairs of points between the current projection and a reference. Comparison between the direct georeferencing and the georeferencing with our method on three flights performed during the Leman-Baikal project shows great improvement of the ground accuracy.

  5. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  6. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  7. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  8. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  9. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  10. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  11. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  12. NASA/LMSC coherent LIDAR airborne shear sensor: System capabilities and flight test plans

    NASA Technical Reports Server (NTRS)

    Robinson, Paul

    1992-01-01

    The primary objective of the NASA/LMSC Coherent Lidar Airborne Shear Sensor (CLASS) system flight tests is to evaluate the capability of an airborne coherent lidar system to detect, measure, and predict hazardous wind shear ahead of the aircraft with a view to warning flight crew of any impending dangers. On NASA's Boeing 737 Transport Systems Research Vehicle, the CLASS system will be used to measure wind velocity fields and, by incorporating such measurements with real-time aircraft state parameters, identify regions of wind shear that may be detrimental to the aircraft's performance. Assessment is to be made through actual wind shear encounters in flight. Wind shear measurements made by the class system will be compared to those made by the aircraft's in situ wind shear detection system as well as by ground-based Terminal Doppler Weather Radar (TDWR) and airborne Doppler radar. By examining the aircraft performance loss (or gain) due to wind shear that the lidar predicts with that actually experienced by the aircraft, the performance of the CLASS system as a predictive wind shear detector will be assessed.

  13. High-Rate Data-Capture for an Airborne Lidar System

    NASA Technical Reports Server (NTRS)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  14. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  15. Laser airborne remote sensing real-time acquisition, processing, and control system

    NASA Astrophysics Data System (ADS)

    Kelly, Brian T.; Pierson, Robert E.; Dropka, T. J.; Dowling, James A.; Lang, L. M.; Fox, Marsha J.

    1997-10-01

    The US Air Force Phillips Laboratory is evaluating the feasibility of long-standoff-range remote sensing of gaseous species present in trace amounts in the atmosphere. Extensive system integration in the laboratory and an airborne test are leading to remote sensing ground test and airborne missions within the next year. This paper describes the design, external interfaces. and initial performance of the Laser Airborne Remote Sensing acquisition, processing, and control system to be deployed on the Phillips Laboratory NC-135 research aircraft for differential absorption lidar system performance tests. The dual-CPU VME-based real-time computer system synchronizes experiment timing and pulsed CO2 laser operation up to 30 Hz while controlling optical subsystem components such as a laser grating, receiver gain, mirror alignment, and laser shutters. This real-time system acquires high rate detector signals from the outgoing and return laser pulses as well as a low rate health and status signals form the optical bench and the aircraft. Laser pulse and status data are processed and displayed in real time on one of four graphical user interfaces: one devoted to system control, one to remote mirror alignment, and two other interfaces for real-time data analysis and diagnostics. The dual-CPU and multi- layered software decouple time critical and non-critical tasks allowing great flexibility in flight-time display and processing.

  16. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  17. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  18. Development of an airborne hydrocarbon monitoring system based on FTIR technology

    NASA Astrophysics Data System (ADS)

    Mogan, Paul A.; Mattson, Carl B.; Schwindt, Chris J.

    1998-10-01

    The capability to monitor airborne hydrocarbon compounds is essential in order to protect sensitive optical payloads from performance degradation caused by the deposition of surface films. Commonly used hydrocarbon monitoring instrumentation such as flame ionization detectors yield no information about the source or identity of compounds they detect. The Fourier Transform IR Spectrometer (FTIR) with its inherent ability to discriminate a large number of compounds offers a tremendous advantage over other types of instrumentation. The contamination monitoring laboratory at John F. Kennedy Space Center has developed an airborne hydrocarbon monitoring system based on FTIR technology to support the AXAF payload. This system consist of a portable cart suitable for use in Class 1 Division 2 environments. This paper describes the system in detail.

  19. Concept for an airborne real-time ISR system with multi-sensor 3D data acquisition

    NASA Astrophysics Data System (ADS)

    Haraké, Laura; Schilling, Hendrik; Blohm, Christian; Hillemann, Markus; Lenz, Andreas; Becker, Merlin; Keskin, Göksu; Middelmann, Wolfgang

    2016-10-01

    In modern aerial Intelligence, Surveillance and Reconnaissance operations, precise 3D information becomes inevitable for increased situation awareness. In particular, object geometries represented by texturized digital surface models constitute an alternative to a pure evaluation of radiometric measurements. Besides the 3D data's level of detail aspect, its availability is time-relevant in order to make quick decisions. Expanding the concept of our preceding remote sensing platform developed together with OHB System AG and Geosystems GmbH, in this paper we present an airborne multi-sensor system based on a motor glider equipped with two wing pods; one carries the sensors, whereas the second pod downlinks sensor data to a connected ground control station by using the Aerial Reconnaissance Data System of OHB. An uplink is created to receive remote commands from the manned mobile ground control station, which on its part processes and evaluates incoming sensor data. The system allows the integration of efficient image processing and machine learning algorithms. In this work, we introduce a near real-time approach for the acquisition of a texturized 3D data model with the help of an airborne laser scanner and four high-resolution multi-spectral (RGB, near-infrared) cameras. Image sequences from nadir and off-nadir cameras permit to generate dense point clouds and to texturize also facades of buildings. The ground control station distributes processed 3D data over a linked geoinformation system with web capabilities to off-site decision-makers. As the accurate acquisition of sensor data requires boresight calibrated sensors, we additionally examine the first steps of a camera calibration workflow.

  20. Mapping Land Cover in the Taita Hills, se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion

    NASA Astrophysics Data System (ADS)

    Piiroinen, R.; Heiskanen, J.; Maeda, E.; Hurskainen, P.; Hietanen, J.; Pellikka, P.

    2015-04-01

    The Taita Hills, located in south-eastern Kenya, is one of the world's biodiversity hotspots. Despite the recognized ecological importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape. Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes. Simultaneous ALS and IS data were acquired over a 10 km x 10 km area in February 2013 of which 1 km x 8 km test site was selected. The ALS data had mean pulse density of 9.6 pulses/m2, while the IS data had spatial resolution of 1 m and spectral resolution of 4.5-5 nm in the 400-1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be difficult to map using pixel-based methods.

  1. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  2. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  3. Imaging spectrometry of the Earth and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1993-01-01

    Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may

  4. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  5. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  6. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    NASA Astrophysics Data System (ADS)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  7. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  8. Extraction of Urban Trees from Integrated Airborne Based Digital Image and LIDAR Point Cloud Datasets - Initial Results

    NASA Astrophysics Data System (ADS)

    Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.

    2016-10-01

    Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.

  9. Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.

  10. Petrographic image logging system

    SciTech Connect

    Payne, C.J.; Ulrich, M.R.; Maxwell, G.B. ); Adams, J.P. )

    1991-03-01

    The Petrographic Image Logging System (PILS) is a logging system data base for Macintosh computers that allows the merging of traditional wire-line, core, and mud log data with petrographic images. The system is flexible; it allows the user to record, manipulate, and display almost any type of character, graphic, and image information. Character and graphic data are linked and entry in either mode automatically generates the alternate mode. Character/graphic data may include such items as ROP, wire-line log data, interpreted lithologies, ditch cutting lith-percentages, porosity grade and type, grain size, core/DST information, and sample descriptions. Image data may include petrographic and SEM images of cuttings, core, and thin sections. All data are tied to depth. Data are entered quickly and easily in an interactive manner with a mouse, keyboard, and digitizing tablet or may be imported and immediately autoplotted from a variety of environments via modem, network, or removable disk. Color log displays, including petrographic images, are easily available on CRT or as hardcopy. The system consists of a petrographic microscope, video camera, Macintosh computer, video framegrabber and digitizing tablet. Hardcopy is scaleable and can be generated by a variety of color printing devices. The software is written in Supertalk, a color superset of the standard Apple Hypercard programming language, hypertalk. This system is being tested by Mobil in the lab and at the well site. Implementation has provided near 'real-time' core and cuttings images from drilling wells to the geologist back at the office.

  11. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented. PMID:27879875

  12. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  13. Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data

    NASA Astrophysics Data System (ADS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1990-03-01

    High spatial resolution column atmospheric water vapor amounts were derived from spectral data collected by the airborne visible-infrared imaging spectrometer (AVIRIS), which covers the spectral region from 0.4 to 2.5 μm in 10-nm bands and has a ground instantaneous field of view of 20×20 m from an altitude of 20 km. The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14-μm and 0.94-μm water vapor band absorption regions using an atmospheric model, a narrowband spectral model, and a nonlinear least squares fitting technique. The derivation makes use of the facts that (1) the reflectances of many ground targets vary approximately linearly with wavelength in the 0.94- and 1.14-μm water vapor band absorption regions, (2) the scattered radiation near 1 μm is small compared with the directly reflected radiation when the atmospheric aerosol concentrations are low, and (3) the scattered radiation in the lower part of the atmosphere is subjected to the water vapor absorption. The technique is directly applicable for retrieving column water vapor amounts from AVIRIS spectra measured on clear days with visibilities 20 km or greater. The precision of the retrieved column water vapor amounts from several data sets is 5% or better. Based on the analyses of an AVIRIS data set that was acquired within an hour of radiosonde launch, it appears that the accuracy approaches the precision. The derived column water vapor amounts are independent of the absolute surface reflectances. It now appears feasible to derive high spatial resolution column water vapor amounts over land areas from satellite altitude with the proposed high resolution imaging spectrometer (HIRIS). Curve fitting of spectra near 1 μm from areas covered with vegetation, using an atmospheric model and a simplified vegetation reflectance model, indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved

  14. Diagnostic Features of Lava Flows in Satellite and Airborne Images (Invited)

    NASA Astrophysics Data System (ADS)

    Rowland, S. K.; Bruno, B. C.; Comeau, D.; Mouginis-Mark, P. J.; Fagents, S. A.; Harris, A. J.

    2013-12-01

    Characteristic surface features on lava flows can be seen in, and measured from, nadir and oblique airborne and space borne images. Some are diagnostic of volumetric flow rate, lava-transport mode, rheology, and composition. These in turn can be used to infer eruption styles, magma chamber stress regimes, volcanic histories, etc. Where independent methods can determine these properties, the image-based methods can be refined and (tentatively) extended to other planets. For example, the planimetric outline of a lava flow is determined by the lava's volumetric flow rate and rheology, the strength of the cooled skin relative to that of the fluid interior, and the extent to which a flow can conform to, or over-run, pre-existing topography. Fluid, skin-strength-dominated lava such as pāhoehoe, has a very convoluted outline; more viscous, interior-strength-dominated lava such as ';a';ā (as well as more silicic compositions) have more linear outlines. This can be quantified by the fractal dimension, which increases with convolution. Spatial resolution and degradation of the flow margin are important caveats. Flow margins are relatively easy to measure with IKONOS and QuickBird (Earth), HiRISE (Mars), and LROC NAC (Moon) data, all of which have spatial resolutions < 1 m. They become more difficult to measure in Landsat (30 m), THEMIS vis. (Mars; 18 m), or Magellan (75 m; Venus) data. Also useful is the ratio between the radius of curvature of the flow front and the flow length, which is small for long narrow (fluid) flows, and large for short stubby (viscous) flows. Even incipient channels display shear zones across which there were sharp velocity gradients, and these are preserved on flow surfaces. Tube-fed flows may display lines of skylights that indicate master tubes. Whether a flow is channel-fed ';a';ā or tube-fed pāhoehoe is determined by the volumetric flow rate, which is almost always directly related to the eruption rate. This may be related to the driving

  15. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland

    SciTech Connect

    Schwarz, G.F.; Rybach, L.; Klingele, E.E.

    1997-09-01

    Airborne radiometric surveys are finding increasingly wider application in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack-mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma-ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power-plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose-rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Goesgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.

  16. The development of an airborne information management system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, Glenn A.

    1992-01-01

    An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.

  17. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  18. Research on the airborne SINS/CNS integrated navigation system assisted by BD navigation system

    NASA Astrophysics Data System (ADS)

    Xie, Mei-lin; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Yue, Peng; Deng, Xiao-guo; Huang, Wei

    2016-01-01

    When the star navigation system working during the day, the strong sky background radiation lead to a result that the detect target light is too weak, in the field of view, because of the limitation on the number of the navigation star, usually choose the single star navigation work mode. In order to improve the reliability of the airborne SINS/CNS integrated navigation system, meet the demand of the long-endurance and high precision navigation, use the tight combination way, single star patrol algorithm to get the position and attitude. There exists filtering divergence problem because of the model error and the system measurement noise is uncertain, put forward a new fuzzy adaptive kalman filtering algorithm. Adjust the size of measurement noise to prevent the filter divergence; the positioning accuracy of integrated navigation system can be improved through BeiDou satellite. Without the information of BeiDou satellite, based on the level of the virtual reference, the navigation precision of integrated navigation system can be ensured over a period of time.

  19. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  20. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  1. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  2. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  3. Airborne Systems Software Acquisition Engineering Guidebook for Microprocessors and Firmware.

    DTIC Science & Technology

    1980-02-01

    cycle of your system? The cost to your system of loss of mass production support for your devices may be great . * Field support - Especially important if...specification - source of potential devide type proliferation. 0 Environment - devices must be evaluated and slash sheets published. 0 Economics - itis

  4. The NASA/JPL multifrequency, multipolarisation airborne SAR system

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Brown, W. E.; Freeman, A.; Klein, J. D.; Zebker, H. A.; Sato, T.; Miller, T.; Nguyen, Q.; Lou, Y.

    1988-01-01

    Polarimetric synthetic aperture radars, operating at L-, C- and P-band, were designed to replace and upgrade a system destroyed in an aircraft accident. Ground and flight tests were conducted, and the radar was flown over a calibration site in a sequence of experiments designed to calibrate the system. The radar also took part in science campaigns.

  5. The effect of boreal forest canopy to reflectance of snow covered terrain based on airborne imaging spectrometer observations

    NASA Astrophysics Data System (ADS)

    Heinilä, Kirsikka; Salminen, Miia; Pulliainen, Jouni; Cohen, Juval; Metsämäki, Sari; Pellikka, Petri

    2014-04-01

    Optical remote sensing methods for mapping of the seasonal snow cover are often obstructed by the masking effect of forest canopy. Therefore, optical algorithms tend to underestimate the amount of snow cover in forested regions. In this paper, we investigate the influence of boreal forest stand characteristics on the observed scene reflectance under full dry snow cover conditions by applying an advantageous experimental setup combining airborne hyperspectral imaging and LIDAR data sets from a test region in Sodankylä, northern Finland. This is particularly useful to the understanding of the composition of the mixed satellite scene reflectance behavior and it is relation to the natural ground targets' spectral signatures.

  6. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  7. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.

    1990-01-01

    Ways in which computers can aid the decision making of an human operator of an aerospace system are investigated. The approach taken is to aid rather than replace the human operator, because operational experience has shown that humans can enhance the effectiveness of systems. As systems become more automated, the role of the operator has shifted to that of a manager and problem solver. This shift has created the research area of how to aid the human in this role. Published research in four areas is described. A discussion is presented of the DC-8 flight simulator at Georgia Tech.

  8. Concept of Operations for Real-time Airborne Management System

    SciTech Connect

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  9. A fast smoothing algorithm for post-processing of surface reflectance spectra retrieved from airborne imaging spectrometer data.

    PubMed

    Gao, Bo-Cai; Liu, Ming

    2013-10-14

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented.

  10. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  11. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  12. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  13. Low Gravity Guidance System for Airborne Microgravity Research

    NASA Technical Reports Server (NTRS)

    Rieke, W. J.; Emery, E. F.; Boyer, E. O.; Hegedus, C.; ODonoghue, D. P.

    1996-01-01

    Microgravity research techniques have been established to achieve a greater understanding of the role of gravity in the fundamentals of a variety of physical phenomena and material processing. One technique in use at the NASA Lewis Research Center involves flying Keplarian trajectories with a modified Lear Jet and DC-9 aircraft to achieve a highly accurate Microgravity environment by neutralizing accelerations in all three axis of the aircraft. The Low Gravity Guidance System (LGGS) assists the pilot and copilot in flying the trajectories by displaying the aircraft acceleration data in a graphical display format. The Low Gravity Guidance System is a microprocessor based system that acquires and displays the aircraft acceleration information. This information is presented using an electroluminescent display mounted over the pilot's instrument panel. The pilot can select the Microgravity range that is required for a given research event. This paper describes the characteristics, design, calibration and testing of the Low Gravity Guidance System Phase 3, significant lessons from earlier systems and the developmental work on future systems.

  14. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  15. Geologic mapping in Death Valley, California/Nevada using NASA/JPL airborne systems (AVIRIS, TIMS, and AIRSAR)

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.; Kiereinyoung, Kathryn S.

    1991-01-01

    A multi-sensor aircraft campaign called the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 resulted in acquisition of high quality multispectral images in the visible, near infrared, shortwave infrared, thermal infrared, and microwave regions of the electromagnetic spectrum. The airborne data sets include the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Thermal Infrared Multispectral Scanner (TIMS), and the Airborne Synthetic Aperture Radar (SAR). Ancillary data include Landsat Thematic Mapper, laboratory and field spectral measurements, and traditional geologic mapping. The GRSFE data for a site in the northern Death Valley, (California and Nevada) region were calibrated to physical units and geometrically registered to a map base. Various aspects of this experiment are briefly discussed.

  16. Mapped minerals at Questa, New Mexico, using airborne visible-infrared imaging spectrometer (AVIRIS) data -- Preliminary report

    USGS Publications Warehouse

    Livo, K. Eric; Clark, Roger N.

    2002-01-01

    This preliminary study for the First Quarterly Report has spectrally mapped hydrothermally altered minerals useful in assisting in assessment of water quality of the Red River. Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data was analyzed to characterize mined and unmined ground at Questa, New Mexico. AVIRIS data covers the Red River drainage north of the river, from between the town of Questa on the west, to east of the town of Red River. The data was calibrated and analyzed using U.S. Geological Survey custom software and spectral mineral library. AVIRIS data was tested for spectral features that matched similar features in the spectral mineral library. Goodness-of-fit and band-depth were calculated for each comparison of spectral features and used to identify surface mineralogy. Mineral distribution, mineral associations, and AVIRIS pixel spectra were examined. Mineral maps show the distribution of iron hydroxides, iron sulfates, clays, micas, carbonates, and other minerals. Initial results show a system of alteration suites that overprint each other. Quartz-sericite-pyrite (QSP) alteration grading out to propylitic alteration (epidote and calcite) was identified at the Questa Mine (molybdenum porphyry) and a similar alteration pattern was mapped at the landslide (?scar?) areas. Supergene weathering overprints the altered rock, as shown by jarosite, kaolinite, and gypsum. In the spectral analysis, hydrothermally altered ground appears to be more extensive at the unmined Goat Hill Gulch and the mined ground, than the ?scars? to the east. Though the ?scars? have similar overall altered mineral suites, there are differences between the ?scars? in sericite, kaolinite, jarosite, gypsum, and calcite abundance. Fieldwork has verified the results at the central unmined ?scar? areas.

  17. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  18. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  19. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  20. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.

    1983-01-01

    The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.

  1. Quantitative Luminescence Imaging System

    SciTech Connect

    Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

    1992-12-31

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  2. Quantitative luminescence imaging system

    NASA Astrophysics Data System (ADS)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  3. Flight Test Evaluation of Airborne Tire Pressure Indicating Systems.

    DTIC Science & Technology

    1979-09-01

    reasons they were not selected follows: Aoproaeh/Concent 1. Differential Valve - Discrete (Concept I, Part I Report) Differential valve opens when...system sensors are closed loop servo inclinometers, mounted on the bogie beam for main gear and inside the axle for the nose gear. 5. Go-No-Go Discrete...is an indication of a lack of symmetry between wheels of the same category. The differential level is set at 35 psi. If the particular tire is 35 psi

  4. Development of the Advance Warning Airborne System(AWAS)

    NASA Technical Reports Server (NTRS)

    Adamson, H. Patrick

    1992-01-01

    The thermal characteristics of microbursts are utilized by the AWAS IR and OAT features to provide predictive warning of hazardous microbursts ahead of the aircraft during landing or take off. The AWAS was evaluated satisfactorily in 1990 on a Cessna Citation that was intentionally flown into a number of wind shear events. The events were detected, and both the IR and OAT thermal features were shown to be effective. In 1991, AWAS units were flown on three American Airline MD-80's and three Northwest Airlines DC-9's to study and to decrease the nuisance alert response of the system. The AWAS was also flown on the NASA B737 during the summer of 1991. The results of these flights were inconclusive and disappointing. The results were not as promising as before because NASA conducted research flights which were outside of the normal operating envelope for which the AWAS is designed to operate. In an attempt to compensate for these differences in airspeed and mounting location, the automatic features of the system were sometimes overridden by NASA personnel during the flight. Each of these critical factors is discussed in detail. The effect of rain on the OAT signals is presented as a function of the air speed. Use of a 4 pole 1/20 Hertz filter is demonstrated by both the IR and thermal data. Participation in the NASA 1992 program was discussed. FAA direction in the continuing Certification program requires the addition of a reactive feature to the AWAS predictive system. This combined system will not require flight guidance on newer aircraft. The features of AWAS-IV, with the NASA algorithm included, were presented. Expected completion of the FAA Certification plan was also described.

  5. Airborne Antenna System for Minimum-Cycle-Slip GPS Reception

    NASA Technical Reports Server (NTRS)

    Wright, C. Wayne

    2009-01-01

    A system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make

  6. Demonstration and Validation of an Improved Airborne Electromagnetic System for UXO Detection and Mapping

    DTIC Science & Technology

    2009-12-01

    Jefferson (Ohio) site, six acres in size, is located in an area where a glacial till layer, typically 50–200 feet (ft) thick, overlies Silurian age...lower cost per acre than ground-based systems. Furthermore, the data may be acquired in a shorter period of time. Airborne systems are particularly...Figure 6. 22 Alternating positive and negative "on-time" current pulses with linear on- and off-ramps are separated by "off-time" periods during

  7. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    DTIC Science & Technology

    1989-12-01

    Kovacs and J . Scott Holladay PJTIS CRA&I DTIC TAB Unannronced JustiCaton By Distribution I AvaIabilit Cordes AvjII d-dlc, Dist Prepared for U.S...Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results 12. PERSONAL AUTHOR(S) Kovacs, Austin and Holladay, J . Scott 13a...Thickness Measurement System and Field Test Results AUSTIN KOVACS AND J . SCOTT HOLLADAY INTRODUCTION was determined to be desirable. The goals of the 1986-87

  8. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  9. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay

    1987-01-01

    The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.

  10. An Improved Platform Levelling System for Airborne Gravity Meters.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2014-12-01

    Recent advances in sensor technology have enabled Lacoste and Romberg type relative gravity meters to improve in accuracy to the point where other non-sensor related sources of error serve to limit the overall accuracy of the system. One of these sources of error is derived from the inability of the platform, in which the sensor is mounted, to keep the sensor perfectly level during survey flight. Off level errors occur when the aircraft is unable to maintain straight and level flight along a survey line. The levelling platform of a typical Lacoste and Romberg type dynamic gravity meter utilizes a complex feedback loop involving both accelerometers and gyroscopes with an output connected to torque motors mounted to the platform to sense an off level situation and correct for it. The current system is limited by an inability of the platform to distinguish between an acceleration of the platform due to a change in heading, altitude or speed of the aircraft and a true change in the local gravity vertical. Both of these situations cause the platform to tilt in reponse however the aircraft acceleration creates an error in the gravity measurement. These off level errors can be corrected for to a limited degree depending on the algorithm used and the size and duration of the causal acceleration. High precision GPS now provides accurate real time position information which can be used to determine if an accleration is a real level change or due to an anomalous acceleration. The correct implementation of the GPS position can significantly improve the accuracy of the platform levelling including keeping the platform level during course reversals or drape flying during a survey. This can typically improve the quality of the gravity data before any processing corrections. The enhanced platform also reduces the time taken to stabilize the platform at the beginning of a survey line therefore improving the efficiency of the data collection. This paper discusses the method and

  11. The Laser Vegetation Imaging Sensor (LVIS): A Medium-Altitude, Digitization-Only, Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    1999-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter designed and developed at NASA's Goddard Space Flight Center. LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25 m wide footprints. The entire time history of the outgoing and return pulses is digitized, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with decimeter accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 nsec, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the U.S. and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  12. Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran

    NASA Astrophysics Data System (ADS)

    Shirzaditabar, Farzad; Bastani, Mehrdad; Oskooi, Behrooz

    2011-11-01

    A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense. The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.

  13. Optimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles

    PubMed Central

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L.

    2016-01-01

    Abstract The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air–liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm–2) at cell‐free conditions following 2 h exposure was observed for the highest flow rate (390 ml min–1) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm–2) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  14. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.

    PubMed

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L; Elihn, Karine

    2016-10-01

    The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm(-2) ) at cell-free conditions following 2 h exposure was observed for the highest flow rate (390 ml min(-1) ) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm(-2) ) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  15. Imaging Spectroscopy Instrumentation for Earth Science and Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Green, Robert; Vane, Gregg

    2016-07-01

    Spectroscopy is a powerful analytical method based in physics that is used to investigate questions and test hypotheses across an extraordinary range of scientific disciplines as well as for quantitative applications. In the late 1970's the concept for an instrument that measured spectra for every point in an image was conceived and proposed using the most advanced infrared detector array available at the time. The Airborne Imaging Spectrometer as developed and first flew in 1982. New discoveries were made with the first flights of this instrument. Since that time increasingly advanced airborne and space imaging spectrometer have been developed and deployed. These instruments have been used for science and applications on Earth and for science and exploration throughout the solar system. This talk presents the advances in imaging spectrometer instrumentation and key discoveries of imaging spectrometers for Earth and elsewhere in our solar system. It also presents examples of new imaging spectrometer architectures enabled by new detectors and spectrometer design forms as well as some of the science and applications objectives that can be pursued ranging 50 micron spatial imaging for planetary surface rovers to spectroscopic instruments measuring exoplanet composition and structure.

  16. Artificial Immune System Approach for Airborne Vehicle Maneuvering

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor)

    2014-01-01

    A method and system for control of a first aircraft relative to a second aircraft. A desired location and desired orientation are estimated for the first aircraft, relative to the second aircraft, at a subsequent time, t=t2, subsequent to the present time, t=t1, where the second aircraft continues its present velocity during a subsequent time interval, t1.ltoreq.t.ltoreq.t2, or takes evasive action. Action command sequences are examined, and an optimal sequence is chosen to bring the first aircraft to the desired location and desired orientation relative to the second aircraft at time t=t2. The method applies to control of combat aircraft and/or of aircraft in a congested airspace.

  17. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  18. System for rapid detection of antibiotic resistance of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Noiseux, I.; Mouslinkina, L.; Vernon, M. L.; Laflamme, C.; Filion, G.; Duchaine, C.; Ho, J.

    2009-05-01

    This project uses function-based detection via a fundamental understanding of the genetic markers of AR to distinguish harmful organisms from innocuous ones. This approach circumvents complex analyses to unravel the taxonomic details of 1399 pathogen species, enormously simplifying detection requirements. Laval Hospital's fast permeabilization strategy enables AR revelation in <1hr. Packaging the AR protocols in liquid-processing cartridges and coupling these to our in-house miniature fiber optic flow cell (FOFC) provides first responders with timely information on-site. INO's FOFC platform consists of a specialty optical fiber through which a hole is transversally bored by laser micromachining. The analyte solution is injected into the hole of the fiber and the particles are detected and counted. The advantage with respect to classic free space FC is that alignment occurs in the fabrication process only and complex excitation and collection optics are replaced by optical fibers. Moreover, we use a sheathless configuration which has the advantage of increase the portability of the system, to reduce excess biohazard material and the need for weekly maintenance. In this paper we present the principle of our FOFC along with a, demonstration of the basic capability of the platform for detection of bacillus cereus spores using permeabilized staining.

  19. Relationship of surface fuels to fire radiative energy as estimated from airborne lidar and thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.

    2013-12-01

    Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3

  20. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.; Wiscombe, Warren J.

    1993-01-01

    Using special images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at 20 km altitude, we show that wavelengths close to the center of the strong 1.38 micron water vapor band are useful for detecting thin cirrus clouds. The detection makes use of the fact that cirrus clouds are located above almost all the atmospheric water vapor. Because of the strong water vapor absorption in the lower atmosphere, AVIRIS channels near 1.38 micron receive little scattered solar radiance from the surface of low level clouds. When cirrus clouds are present, however, these channels receive large amounts of scattered solar radiance from the cirrus clouds. Our ability to determine cirrus cloud cover using space-based remote sensing will be improved if channels near the center of the 1.38 micron water vapor band are added to future satellites.

  1. A comparison of LOWTRAN-7 corrected Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data with ground spectral measurements

    NASA Technical Reports Server (NTRS)

    Xu, Peng-Yang; Greeley, Ronald

    1992-01-01

    Atmospheric correction of imaging spectroscopy data is required for quantitative analysis. Different models were proposed for atmospheric correction of these data. LOWTRAN-7 is a low-resolution model and computer code for predicting atmospheric transmittance and background radiance from 0 to 50,00 cm(sup -1) which was developed by the Air Force Geophysics Laboratory. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data used are radiometrically calibrated and include the 28 Sep. 1989 Providence Fan flight line segment 07, California. It includes a dark gravel surface defined as a calibration site by the Geologic Remote Sensing Field Experiment (GRSFE). Several ground measurements of portable spectrometer DAEDALUS AA440 Spectrafax were taken during the GRSFE, July 1989 field campaign. Comparisons of the LOWTRAN-7 corrected AVIRIS data with the ground spectrometer measurement were made.

  2. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.

  3. An Integrated Data Acquisition / User Request/ Processing / Delivery System for Airborne Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chapman, B.; Chu, A.; Tung, W.

    2003-12-01

    Airborne science data has historically played an important role in the development of the scientific underpinnings for spaceborne missions. When the science community determines the need for new types of spaceborne measurements, airborne campaigns are often crucial in risk mitigation for these future missions. However, full exploitation of the acquired data may be difficult due to its experimental and transitory nature. Externally to the project, most problematic (in particular, for those not involved in requesting the data acquisitions) may be the difficulty in searching for, requesting, and receiving the data, or even knowing the data exist. This can result in a rather small, insular community of users for these data sets. Internally, the difficulty for the project is in maintaining a robust processing and archival system during periods of changing mission priorities and evolving technologies. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) has acquired data for a large and varied community of scientists and engineers for 15 years. AIRSAR is presently supporting current NASA Earth Science Enterprise experiments, such as the Soil Moisture EXperiment (SMEX) and the Cold Land Processes experiment (CLPX), as well as experiments conducted as many as 10 years ago. During that time, it's processing, data ordering, and data delivery system has undergone evolutionary change as the cost and capability of resources has improved. AIRSAR now has a fully integrated data acquisition/user request/processing/delivery system through which most components of the data fulfillment process communicate via shared information within a database. The integration of these functions has reduced errors and increased throughput of processed data to customers.

  4. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  5. First results from an airborne GPS radio occultation system for atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Murphy, B. J.; Muradyan, P.; Nievinski, F. G.; Larson, K. M.; Garrison, J. L.; Wang, K.-N.

    2014-03-01

    Global Positioning System (GPS) radio occultation (RO) from low Earth-orbiting satellites has increased the quantity of high-vertical resolution atmospheric profiles, especially over oceans, and has significantly improved global weather forecasting. A new system, the Global Navigation Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed for RO sounding from aircraft. GISMOS also provides high-vertical resolution profiles that are insensitive to clouds and precipitation, and in addition, provides greater control on the sampling location, useful for targeted regional studies. The feasibility of the system is demonstrated with a flight carried out during development of an Atlantic tropical storm. The data have been evaluated through a comparison with dropsonde data. The new airborne RO system will effectively increase by more than 50% the number of profiles available for studying the evolution of tropical storms during this campaign and could potentially be deployed on commercial aircraft in the future.

  6. Recent advances in the applications of pulsed lasers in the hydrosphere. [considering airborne bathymetry system

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.

    1975-01-01

    Laboratory and field measurements have been performed on the transmission/scattering characteristics of a pulsed neon laser as a function of water turbidity. These results have been used to establish the criteria for an airborne laser bathymetry system. Extensive measurements have been made of laser induced fluorescence using a pulsed tunable dye laser. Feasibility has been demonstrated for remote detection and possible identification of various types of algae and oils. Similar measurements made on a wide variety of organic dyes have shown this technique to have applications in remote measurements of subsurface currents, temperature and salinity.

  7. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  8. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.

    PubMed

    Elsayed, Khaled A; Chen, Songsheng; Petway, Larry B; Meadows, Byron L; Marsh, Waverly D; Edwards, William C; Barnes, James C; DeYoung, Russell J

    2002-05-20

    Two compact, high-pulse-energy, injection-seeded, 30-Hz frequency-doubled Nd:YAG-laser-pumped Ti: sapphire lasers were developed and operated at infrared wavelengths of 867 and 900 nm. Beams with laser pulse energy >30 mJ at ultraviolet wavelengths of 289 and 300 nm were generated through a tripling of the frequencies of these Ti:sapphire lasers. This work is directed at the replacement of dye lasers for use in an airborne ozone differential absorption lidar system. The ultraviolet pulse energy at 289 and 300 nm had 27% and 31% absolute optical energy conversion efficiencies from input pulse energies at 867 and 900 nm, respectively.

  9. [About the improvement of communication system and information transmission in medical service control in airborne division].

    PubMed

    Korniushko, I G; Shelepov, A M; Zhidik, V V; Berezin, A I

    2007-03-01

    Frequent changes in tactical, rear and medical situations cause the medical service officials of airborne division (ABD) to obtain and transmit the data characterizing the medical service forces and means for a lot of times. It decreases the effectiveness of the control process. Equipping of ABD medical service staff with programming-and-technical systems (PTS), development of algorithm of official interaction, creation of report forms and selection of materials necessary for PTS database input will contribute to the effectiveness of ABD medical service control.

  10. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  11. An Airborne Scanning LiDAR System for Ocean and Coastal Applications

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Castel, D.; Melville, W. K.

    2008-12-01

    We have developed an airborne scanning LiDAR (Light Detection And Ranging) system and demonstrated its functionality for terrestrial and oceanographic measurements. Differential GPS (DGPS) and an Inertial Navigation System (INS) are synchronized with the LiDAR, providing end result vertical rms errors of approximately 6~cm. Flying 170~m above the surface, we achieve a point density of ~ 0.7 m-2 and a swath width of 90 to 120~m over ocean and 200~m over land. Georeferencing algorithms were developed in-house and earth-referenced data are available several hours after acquisition. Surveys from the system are compared with ground DGPS surveys and existing airborne surveys of fixed targets. Twelve research flights in a Piper Twin Comanche from August 2007 to July 2008 have provided topography of the Southern California coastline and sea surface wave fields in the nearshore ocean environment. Two of the flights also documented the results of the October 2007 landslide on Mt.~Soledad in La Jolla, California. Eight research flights aboard a Cessna Caravan surveyed the topography, lagoon, reef, and surrounding seas of Lady Elliot Island (LEI) in Australia's Great Barrier Reef in April 2008. We describe applications for the system, including coastal topographic surveys, wave measurements, reef research, and ship wake studies.

  12. Airborne cable detection with a W-band FMCW imaging sensor

    NASA Astrophysics Data System (ADS)

    Goshi, D. S.; Liu, Y.; Mai, K.; Bui, L.; Shih, Y.

    2010-04-01

    Numerous accidents occur each year due to wire strikes for both military and commercial helicopters leading to a significant number of fatalities. The millimeter-wave sensor presents itself as an ideal candidate for a solution because it can see the very small attributes of the typical power line/cable wire as well as operate when visual conditions worsen due to environmental issues such as fog, smoke or dust. This paper presents recent results on the development of a W-band FMCW imaging sensor with potential application to cable detection and imaging. The sensor front end is integrated with a radar signal generator, processor, and data acquisition unit for the purpose of closing the loop between prototype demonstration and system development. Real-time imaging is achieved at a 10 Hz frame rate with a field of view of 30°. A complete flight demonstration of this system was performed on a Honeywell-operated AStar helicopter to validate the flight-worthiness of the sensor under close to actual operational conditions. The development of such technology that can detect and avoid obstacles such as cables and wires especially for rotorcraft platforms will save lives, assets, and enable the execution of more complex and dangerous tactical missions.

  13. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  14. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  15. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  16. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  17. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  18. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    SciTech Connect

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection. Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.

  19. Assessment of a non-dedicated GPS receiver system for precise airborne attitude determination

    SciTech Connect

    Cannon, M.E.; Sun, H.; Owen, T.E.; Meindl, M.A.

    1994-09-01

    The use of a non-dedicated GPS receiver system for attitude determination was assessed in airborne mode through a test conducted at Sandia National Laboratories. Four independent NovAtel GPSCard{trademark} receivers were installed in Sandia`s Twin Engine Otter with two antennas mounted on the fuselage and two on the wing tips at separations of 6 to 18 m. A strapdown INS was also on board the aircraft in order to provide an independent attitude reference at rates between 4 and 10 Hz. During the multi-day test, GPS measurements were recorded between 1 and 10 Hz. Carrier phase measurements were post-processed using a double difference approach developed at The University of Calgary in which integer ambiguities were resolved in seconds using the known antenna separations as constraints. The tracking capability of the system is demonstrated under dynamics consisting of roll and pitch angles up to 45 and 12 degrees, respectively. Comparisons between the GPS and INS attitude angles are presented for two of the test days and show agreement at the several arcminute level. Conclusions are made with respect to system accuracy and performance in an operational airborne environment.

  20. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  1. Imaging nervous system activity.

    PubMed

    Fields, R D; O'Donovan, M J

    2001-05-01

    Optical imaging methods rely upon visualization of three types of signals: (1) intrinsic optical signals, including light scattering and reflectance, birefringence, and spectroscopic changes of intrinsic molecules, such as NADH or oxyhemoglobin; (2) changes in fluorescence or absorbance of voltage-sensitive membrane dyes; and (3) changes in fluorescence or absorbance of calcium-sensitive indicator dyes. Of these, the most widely used approach is fluorescent microscopy of calcium-sensitive dyes. This unit describes protocols for the use of calcium-sensitive dyes and voltage-dependent dyes for studies of neuronal activity in culture, tissue slices, and en-bloc preparations of the central nervous system.

  2. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  3. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  4. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  5. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  6. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  7. Helmet-Mounted Display Research Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly

  8. Interactive Image Analysis System Design,

    DTIC Science & Technology

    1982-12-01

    This report describes a design for an interactive image analysis system (IIAS), which implements terrain data extraction techniques. The design... analysis system. Additionally, the system is fully capable of supporting many generic types of image analysis and data processing, and is modularly...employs commercially available, state of the art minicomputers and image display devices with proven software to achieve a cost effective, reliable image

  9. A hardware/software simulation for the video tracking system of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Boozer, G. A.; Mckibbin, D. D.; Haas, M. R.; Erickson, E. F.

    1984-01-01

    This simulator was created so that C-141 Kuiper Airborne Observatory investigators could test their Airborne Data Acquisition and Management System software on a system which is generally more accessible than the ADAMS on the plane. An investigator can currently test most of his data acquisition program using the data computer simulator in the Cave. (The Cave refers to the ground-based computer facilities for the KAO and the associated support personnel.) The main Cave computer is interfaced to the data computer simulator in order to simulate the data-Exec computer communications. However until now, there has been no way to test the data computer interface to the tracker. The simulator described here simulates both the KAO Exec and tracker computers with software which runs on the same Hewlett-Packard (HP) computer as the investigator's data acquisition program. A simulator control box is hardwired to the computer to provide monitoring of tracker functions, to provide an operator panel similar to the real tracker, and to simulate the 180 deg phase shifting of the chopper squre-wave reference with beam switching. If run in the Cave, one can use their Exec simulator and this tracker simulator.

  10. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  11. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  12. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  13. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  14. Evaluation of airborne image data and LIDAR main stem data for monitoring physical resources within the Colorado River ecosystem

    USGS Publications Warehouse

    Davis, Philip A.; Rosiek, Mark R.; Galuszka, Donna M.

    2002-01-01

    This study evaluated near-infrared LIDAR data acquired over the main-stem channel at four long-term monitoring sites within the Colorado River ecosystem (CRE) to determine the ability of these data to provide reliable indications in changes in water elevation over time. Our results indicate that there is a good correlation between the LIDAR water-surface elevations and ground measurements of water-edge elevation, but there are also inherent errors in the LIDAR data. The elevation errors amount to about 50 cm and therefore temporal changes in water-surface elevation that exceed this value by the majority of data at a particular location can be deemed significant or real. This study also evaluated airborne image data for producing photogrammetric elevation data and for automated mapping of sand bars and debris flows within the CRE. The photogrammetric analyses show that spatial resolutions of ≤ 10 cm are required to produce vertical accuracies

  15. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-01-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  16. Use of high spectral resolution airborne visible/infrared imaging spectrometer data for geologic mapping: An overview

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1991-01-01

    Specific examples of the use of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) high spectral resolution data for mapping, alteration related to ore deposition and to hydrocarbon seepage, and alluvial fans are presented. Correction for atmospheric effects was performed using flat field correction, log residuals, and radiative transfer modeling. Minerals of interest (alunite, kaolinite, gypsum, carbonate iron oxides, etc.) were mapped based upon the wavelength position, depth and width of characteristic absorption features. Results were checked by comparing to existing maps, results from other sensors (Thematic Mapper (TM) and TIMS (Thermal Infrared Multispectral Scanner)), and laboratory spectra of samples collected in the field. Alteration minerals were identified and mapped. The signal to noise ratio of acquired AVIRIS data, long to 2.0 microns, was insufficient to map minerals of interest.

  17. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    NASA Astrophysics Data System (ADS)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  18. Early algorithm development efforts for the National Ecological Observatory Network Airborne Observation Platform imaging spectrometer and waveform lidar instruments

    NASA Astrophysics Data System (ADS)

    Krause, Keith S.; Kuester, Michele A.; Johnson, Brian R.; McCorkel, Joel; Kampe, Thomas U.

    2011-10-01

    The National Ecological Observatory Network (NEON) will be the first observatory network of its kind designed to detect and enable forecasting of ecological change at continental scales over multiple decades. NEON will collect data at sites distributed at 20 ecoclimatic domains across the United States on the impacts of climate change, land use change, and invasive species on natural resources and biodiversity. The NEON Airborne Observation Platform (AOP) is an aircraft platform carrying remote sensing instrumentation designed to achieve sub-meter to meter scale ground resolution, bridging the scales from organisms and individual stands to satellite-based remote sensing. AOP instrumentation consists of a VIS/SWIR imaging spectrometer, a scanning small-footprint waveform LiDAR, and a high resolution airborne digital camera. AOP data will provide quantitative information on land use change and changes in ecological structure and chemistry including the presence and effects of invasive species. A Pathfinder Flight Campaign was conducted over a two week period during late August to early September 2010 in order to collect representative AOP data over one NEON domain site. NASA JPL flew the AVIRIS imaging spectrometer and NCALM flew an Optech Gemini waveform LiDAR over the University of Florida Ordway-Swisher Biological Station and Donaldson tree plantation near Gainesville Florida. The pathfinder data are discussed in detail along with how the data are being used for early algorithm and product development prototyping activities. The data collected during the campaign and prototype products are openly available to scientists to become more familiar with representative NEON AOP data.

  19. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  20. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  1. Demonstration of a hermetic airborne ozone disinfection system: studies on E. coli.

    PubMed

    Kowalski, W J; Bahnfleth, W P; Striebig, B A; Whittam, T S

    2003-01-01

    An enclosed flow-through system using airborne ozone for disinfection and which removes the ozone with a catalytic converter was tested with a strain of Escherichia coli. Petri dishes containing the microorganisms were inserted in a chamber and exposed for 10-480 min to ozone concentrations between 4 and 20 ppm. Death rates in excess of 99.99% were achieved. Survival data is fitted to a two-stage curve with a shoulder based on the multihit target model. Ozone was removed from the exhaust air to nondetectable levels using a metal oxide based catalyst. The possibility of using ozone as an airborne disinfectant for internal building surfaces and catalytically removing the ozone on exhaust is demonstrated to be feasible. A model for the decay of Bacillus cereus under ozone exposure is proposed as an example for predicting the sterilization of buildings contaminated with anthrax. The potential for disinfecting airstreams and removing ozone to create breathable air is also implied by the results of this experiment.

  2. Airborne thermal infrared imaging of the 2004-2005 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Vallance, J. W.; Logan, M.; Wessels, R.; Ramsey, M.

    2005-12-01

    A helicopter-mounted forward-looking infrared imaging radiometer (FLIR) documented the explosive and effusive activity at Mount St. Helens during the 2004-2005 eruption. A gyrostabilzed gimbal controlled by a crew member houses the FLIR radiometer and an optical video camera attached at the lower front of the helicopter. Since October 1, 2004 the system has provided an unprecedented data set of thermal and video dome-growth observations. Flights were conducted as frequently as twice daily during the initial month of the eruption (when changes in the crater and dome occurred rapidly), and have been continued on a tri-weekly basis during the period of sustained dome growth. As with any new technology, the routine use of FLIR images to aid in volcano monitoring has been a learning experience in terms of observation strategy and data interpretation. Some of the unique information that has been derived from these data to date include: 1) Rapid identification of the phreatic nature of the early explosive phase; 2) Observation of faulting and associated heat flow during times of large scale deformation; 3) Venting of hot gas through a short lived crater lake, indicative of a shallow magma source; 4) Increased heat flow of the crater floor prior to the initial dome extrusion; 5) Confirmation of new magma reaching the surface; 6) Identification of the source of active lava extrusion, dome collapse, and block and ash flows. Temperatures vary from ambient, in areas insulated by fault gouge and talus produced during extrusion, to as high as 500-740 degrees C in regions of active extrusion, collapse, and fracturing. This temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques as such features are sub-pixel size in satellite images.

  3. Interoperable Data Systems for Satellite, Airborne, and Terrestrial LiDAR Data

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Baru, C.; Blair, B.; Crosby, C. J.; Haran, T. M.; Harding, D. J.; Hofton, M. A.; Khalsa, S. S.; McWhirter, J.

    2010-12-01

    LiDAR (Light Detection and Ranging) technology is being widely applied to scientific problems on global to local scales using a range of laser technologies mounted on satellite, low- and high-altitude airborne and terrestrial platforms. Modern laser ranging instruments are increasingly capable of providing full waveform data, multiple detectors, higher sample rates and longer ranges. Accompanying these improvements, however, are rapidly growing data volumes and ever more complex data formats and processing algorithms. This presents significant challenges for existing Earth science data systems serving these data and creates barriers to the efficient use of these data by a growing and diverse community of scientific and other users who are studying deformation of the solid Earth, the cryosphere, vegetation structure, and land form evolution. To address these challenges, a group of data centers is collaborating under a project funded by the NASA ROSES ACCESS Program to develop interoperable LiDAR data access systems to provide integrated access to data and derived products in common data formats via simple-to-navigate web interfaces. The web service-based systems created by this project, called NLAS, will enhance access to existing laser data sources hosted at the National Snow and Ice Data Center DAAC, Goddard Space Flight Center LVIS Data Center, UNAVCO, and the OpenTopography Facility at the San Diego Supercomputer Center (SDSC). Through the OpenTopography portal, NLAS systems will provide access to satellite laser altimetry data from ICESat and high altitude airborne laser scanning data from LVIS, as well as low altitude airborne LiDAR and terrestrial laser scanning data hosted at OpenTopography and UNAVCO. NLAS will develop new web service interfaces for NASA data archives at GSFC/LVIS and NSIDC in an effort to improve and streamline access to these data archives. The OpenTopography portal will act as a client to the NLAS services and will provide integrated

  4. Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded Ordnance

    DTIC Science & Technology

    2008-08-01

    FINAL REPORT Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System...Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded...Demonstration of the difference between a single component total field magnetometer and intrinsic gradiometer . (From Clarke, 1994). 4 Figure 3

  5. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  6. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  7. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria Marta; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    The NASA Hurricane and Severe Storm Sentinel (HS3) mission is an aircraft field measurements program using NASA's unmanned Global Hawk aircraft system for remote sensing and in situ observations of Atlantic and Caribbean Sea hurricanes. One of the principal microwave instruments is the Hurricane Imaging Radiometer (HIRAD), which measures surface wind speeds and rain rates. For validation of the HIRAD wind speed measurement in hurricanes, there exists a comprehensive set of comparisons with the Stepped Frequency Microwave Radiometer (SFMR) with in situ GPS dropwindsondes [1]. However, for rain rate measurements, there are only indirect correlations with rain imagery from other HS3 remote sensors (e.g., the dual-frequency Ka- & Ku-band doppler radar, HIWRAP), which is only qualitative in nature. However, this paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when HIRAD flew over an intense tropical squall line that was simultaneously observed by the Tampa NEXRAD meteorological radar (Fig. 1). During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. Using the well-documented NEXRAD Z-R relationship, 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. A preliminary comparison of HIRAD rain rate retrievals (image) for the first pass and the corresponding closest NEXRAD rain image is presented in Fig. 2 & 3. This paper describes the HIRAD instrument, which 1D synthetic-aperture thinned array radiometer (STAR) developed by NASA Marshall Space Flight Center [2]. The rain rate retrieval algorithm, developed by Amarin et al. [3], is based on the maximum likelihood estimation (MLE) technique, which compares the observed Tb's at the HIRAD operating frequencies of 4, 5, 6 and 6.6 GHz with

  8. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  9. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  10. Multiband optics for imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sanghera, Jasbinder S.; Gibson, Daniel J.; Bayya, Shyam S.; Nguyen, Vinh Q.; Kotov, Mikhail; McClain, Collin

    2016-10-01

    There is a strong desire to reduce size and weight of single and multiband IR imaging systems in Intelligence, Surveillance and Reconnaissance (ISR) operations on hand-held, helmet mounted or airborne platforms. NRL is developing new IR glasses that expand the glass map and provide compact solutions to multispectral imaging systems. These glasses were specifically designed to have comparable glass molding temperatures and thermal properties to enable lamination and co-molding of the optics which leads to a reduction in the number of air-glass interfaces (lower Fresnel reflection losses). Our multispectral optics designs using these new materials demonstrate reduced size, complexity and improved performance. This presentation will cover discussions on the new optical materials, multispectral designs, as well fabrication and characterization of new optics. Additionally, graded index (GRIN) optics offer further potential for both weight savings and increased performance but have so far been limited to visible and NIR bands (wavelengths shorter than about 0.9 µm). NRL is developing a capability to extend GRIN optics to longer wavelengths in the infrared by exploiting diffused IR transmitting chalcogenide glasses. These IR-GRIN lenses are compatible with all IR wavebands (SWIR, MWIR and LWIR) and can be used alongside conventional materials. The IR-GRIN lens technology, design space and anti-reflection considerations will be presented in this talk.

  11. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  12. Mapping hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California with the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1987-01-01

    Seven flightlines of Airborne Imaging Spectrometer (AIS) data were analyzed for an area of hydrothermally altered rocks. The data were reduced to reflectance relative to an average spectrum, and an automated procedure was used to produce a color coded image displaying absorption band information. Individual spectra were extracted from the AIS images to determine the detailed mineralogy. Two alteration types were mapped based upon mineralogy identified using the AIS data. The primary alteration type is quartz sericite pyrite alteration which occurs in northwest-trending zones in quartz monzonite porphyry. The AIS data allow identification of sericite (muscovite) based upon a strong absorption feature near 2.21 micron and weaker absorption features near 2.35 and 2.45 micron. The second alteration type occurs as a zone of argillic alteration associated with a granitic intrusion. Montmorillonite was identified based on a weak to moderate absorption feature near 2.2 micron and the absence of the two absorption features at longer wavelengths characteristic of sericite. Montmorillonite could be identified only where concentrations of sericite did not mask the montmorillonite spectrum.

  13. A spatially variable light-frequency-selective component-based, airborne pushbroom imaging spectrometer for the water environment

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Anderson, J. M.

    1993-03-01

    A design of a variable interference filter imaging spectrometer (VIFIS) system is described. A set of systematic concepts, including continuous spectral image encoding using a spatially variable light-frequency-selective principle; spectral image data reconstruction using a transputer co-processed video rate pushbroom queue processing algorithm; and complete spectral image information storages and retrieval using video recording, have been adopted in the system. These result in a system that can supply up to 640 spectral bands of 8-bit images within the spectral range from 400 to 700 nm after one flyby. Many other attributes such as compactness of the sensor, simplicity in operation, availability of in-flight image inspection, accessibility in flight height and velocity are other advantages of the system. A preliminary test over the Tay Estuary was performed aboard a Cessna 152 aircraft. The images and spectral profiles obtained show the system to be an effective tool for remote sensing.

  14. Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology

    NASA Astrophysics Data System (ADS)

    Moller, D.; Pavelsky, T.; Arvesen, J. C.

    2015-12-01

    Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.

  15. Development and implementation of software systems for imaging spectroscopy

    USGS Publications Warehouse

    Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.

    2006-01-01

    Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.

  16. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  17. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-12-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  18. Statistical model for atmospheric limb radiance structure: application to airborne infrared surveillance systems

    NASA Astrophysics Data System (ADS)

    Quang, Carine; Dalaudier, Francis; Roblin, Antoine; Rialland, Valérie; Chervet, Patrick

    2008-10-01

    Infrared (IR) detectors can be used as airborne limb-viewing surveillance systems for missile detection. These systems' performances are impacted by the atmospheric inhomogeneous background. In fact, the probability of target detection can be heavily affected. Consequently, the knowledge of these radiance small-scale fluctuations and their statistical properties is required to assess these systems' detection capability. A model of two-dimensional radiance spatial fluctuations autocorrelation function (ACF) is developed. This model is dedicated to airborne limb-viewing conditions in the thermal IR. In the stratosphere and in clear-sky conditions, the structured background is mainly due to internal-gravity-wave-induced temperature and density spatial fluctuations. Moreover, in the particular case of water vapour absorption bands, the mass fraction fluctuations play a non negligible role on the radiative field. Thereby, considering the temperature field and the water vapour field as stochastic processes, the radiance ACF can be expressed as a function of the temperature ACF and the water vapor mass fraction ACF. A local thermodynamic equilibrium model is sufficient for stratospheric conditions and sunlight scattering is neglected in the thermal IR. In addition, determination of the radiance fluctuations ACF requires the knowledge of the absorption coefficient and its first derivatives with respect to the temperature and water vapour mass fraction. Thus, a line-by-line model specific to water vapor absorption bands has been developed. This model is used to precalculate the absorption coefficients and their derivatives. This look-up table method allows circumventing the computational cost of a line-by-line calculation. A detailed description of the radiance fluctuations ACF model is presented and first results are discussed.

  19. Imaging Systems: What, When, How.

    ERIC Educational Resources Information Center

    Lunin, Lois F.; And Others

    1992-01-01

    The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)

  20. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control.

    PubMed

    Yang, J; Sekhar, S C; Cheong, K W D; Raphael, B

    2015-04-01

    In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)-personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV-PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV-PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone.

  1. Imaging of Urinary System Trauma.

    PubMed

    Gross, Joel A; Lehnert, Bruce E; Linnau, Ken F; Voelzke, Bryan B; Sandstrom, Claire K

    2015-07-01

    Computed tomography (CT) imaging of the kidney, ureter, and bladder permit accurate and prompt diagnosis or exclusion of traumatic injuries, without the need to move the patient to the fluoroscopy suite. Real-time review of imaging permits selective delayed imaging, reducing time on the scanner and radiation dose for patients who do not require delays. Modifying imaging parameters to obtain thicker slices and noisier images permits detection of contrast extravasation from the kidneys, ureters, and bladder, while reducing radiation dose on the delayed or cystographic imaging. The American Association for the Surgery of Trauma grading system is discussed, along with challenges and limitations.

  2. Failure detection of liquid cooled electronics in sealed packages. [in airborne information management system

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1991-01-01

    The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.

  3. Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania

    NASA Astrophysics Data System (ADS)

    Roberts, Doug; Chowdhury, Priyanka Roy; Lowe, Sharon Jenny; Christensen, Asbjorn Norlund

    2016-02-01

    The Lake Tanganyika South petroleum exploration block covers the southern portion of the Tanzanian side of Lake Tanganyika and is located within the East African Rift System. The rifting process has formed rotated fault blocks which provide numerous play types in the resulting basins. Interpretation of 2D seismic data from 1984 indicated that sufficient sediment thickness is present for hydrocarbon generation. The prospectivity of the lake sediment sequence is enhanced by large oil discoveries further north along the rift system at Lake Albert in Uganda. Airborne gravity gradiometry (AGG) has been used in the Lake Albert region to delineate the structural framework of sedimentary basins. Based on this analogy, in 2010 Beach Energy commissioned CGG to fly a FALCON AGG and high-resolution airborne magnetic survey over the Lake Tanganyika South block to provide data for mapping the basin architecture and estimating the depth to magnetic basement. A total of nearly 28000 line kilometres of data were acquired. The subsequent interpretation incorporated the AGG and magnetic data with available 2D seismic data, elevation model data, bathymetry, Landsat and regional geology information. The integrated data interpretation revealed that the Lake Tanganyika rifting structures occur as half-grabens that were formed through reactivation of Precambrian fault structures. Two major depocentres were identified in the magnetic depth-to-basement map in the north and in the west-central part of the survey area with sediment thicknesses in excess of 4 km and 3 km, respectively. Smaller, shallower depocentres (with less than 3 km of sediment) occur in the south-western region. This information was used to plan a 2100 km 2D marine seismic survey that was recorded in 2012. An interpretation of the results from the seismic survey confirmed a rifting structure similar to that encountered further north at Lake Albert in Uganda. Several targets were identified from the seismic sections for

  4. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling

  5. Flight and Ground Results from Long-Wave and Mid-wave Airborne Hyperspectral Spectrographic Images

    DTIC Science & Technology

    2009-10-01

    hyperspectral imager for landmine detection ,” in Detection and Remediation Technologies for Mines and Mine-like Targets X, R.S.Harmon, J.T.Broach... hyperspectral imaging of land mines,” in Detection and Remediation Technologies for Mines and Mine-Like Targets XII, R.S.Harmon, J.T.Broach, and... hyperspectral pushbroom imagers which are ideally suited for landmine detection , but which also have numerous applications outside the defence community

  6. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  7. Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Rottensteiner, Franz; Trinder, John; Clode, Simon; Kubik, Kurt

    In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of airborne laser scanner (ALS) data and multi-spectral images. For this purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic models for the probability mass assignments are validated and improved, and rules for tuning the parameters are discussed. The sensitivity of the results to the most important control parameters of the method is assessed. Further we evaluate the contributions of the individual cues used in the classification process to determine the quality of the results. Applying our method with a standard set of parameters on two different ALS data sets with a spacing of about 1 point/m 2, 95% of all buildings larger than 70 m 2 could be detected and 95% of all detected buildings larger than 70 m 2 were correct in both cases. Buildings smaller than 30 m 2 could not be detected. The parameters used in the method have to be appropriately defined, but all except one (which must be determined in a training phase) can be determined from meaningful physical entities. Our research also shows that adding the multi-spectral images to the classification process improves the correctness of the results for small residential buildings by up to 20%.

  8. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification.

  9. Land cover classification based on object-oriented with airborne lidar and high spectral resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Liu, Zhengjun; Xu, Qiangqiang; Ren, Haicheng; Zhou, Xingyu; Yuan, Yonghua

    2016-10-01

    In order to improve land cover classification accuracy of the coastal tidal wetland area in Dafeng, this paper take advantage of hyper-spectral remote sensing image with high spatial resolution airborne Lidar data. The introduction of feature extraction, band selection and nDSM models to reduce the dimension of the original image. After segmentation process that combining FNEA segmentation with spectral differences segmentation method, the paper finalize the study area through the establishment of the rule set classification of land cover classification. The results show that the proposed classification for land cover classification accuracy has improved significantly, including housing, shadow, water, vegetation classification of high precision. That is to say that the method can meet the needs of land cover classification of the coastal tidal wetland area in Dafeng. This innovation is the introduction of principal component analysis, and the use of characteristic index, shape and characteristics of various types of data extraction nDSM feature to improve the accuracy and speed of land cover classification.

  10. PITBUL: a physics-based modeling package for imaging and tracking of airborne targets for HEL applications including active illumination

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2013-05-01

    Aimpoint acquisition and maintenance is critical to high energy laser (HEL) system performance. This study demonstrates the development by the AFIT/CDE of a physics-based modeling package, PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor effects and active illumination, which is a focus of this work. High-resolution simulated imagery of the 3D airborne target in-flight as seen from the laser position is generated using the HELSEEM model, and includes solar illumination, laser illumination, and thermal emission. Both CW and pulsed laser illumination are modeled, including the effects of illuminator scintillation, atmospheric backscatter, and speckle, which are treated at a first-principles level. Realistic vertical profiles of molecular and aerosol absorption and scattering, as well as optical turbulence, are generated using AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model. The spatially and temporally varying effects of turbulence are calculated and applied via a fast-running wave optical method known as light tunneling. Sensor effects, for example blur, sampling, read-out noise, and random photon arrival, are applied to the imagery. Track algorithms, including centroid and Fitts correlation, as a part of a closed loop tracker are applied to the degraded imagery and scored, to provide an estimate of overall system performance. To gauge performance of a laser system against a UAV target, tracking results are presented as a function of signal to noise ratio. Additionally, validation efforts to date involving comparisons between simulated and experimental tracking of UAVs are presented.

  11. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  12. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  13. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  14. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  15. Intelligent web image retrieval system

    NASA Astrophysics Data System (ADS)

    Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook

    2001-07-01

    Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.

  16. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  17. VLSI in biomedical imaging systems.

    PubMed

    Sridhar, R; Jones, T

    1995-01-01

    This paper explores the nature of Very Large Scale Integration (VLSI) systems as applied to the area of medical imaging systems. A general discussion of imaging systems and the techniques employed therein will be presented. With this, the merits of VLSI solutions to the medical imaging problem are presented. Consideration is also given to programmable processors, such as off the shelf DSP processors, semi-custom, and full custom VLSI devices. Through the use of VLSI devices, many image processing algorithms can be integrated into a hardware solution. This has the advantage of increased computational capacity over solutions that would normally employ software techniques.

  18. Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP lidar system

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Raut, J.-C.; Dulac, F.; Berthier, S.; Kim, S.-W.; Royer, P.; Sanak, J.; Loaëc, S.; Grigaut-Desbrosses, H.

    2010-08-01

    We present an original experiment with multiple lidar systems operated simultaneously to study the capability of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the Cloud-Aerosol Lidar Pathfinder Satellite Observation (CALIPSO), to infer aerosol optical properties in the lower troposphere over a midlatitude continental site where the aerosol load is low to moderate. The experiment took place from 20 June to 10 July 2007 in southern France. The results are based on three case studies with measurements coincident to CALIOP observations: the first case study illustrates a large-scale pollution event with an aerosol optical thickness at 532 nm (τa532) of ˜0.25, and the two other case studies are devoted to background conditions due to aerosol scavenging by storms with τa532 <0.1. Our experimental approach involved ground-based and airborne lidar systems as well as Sun photometer measurements when the conditions of observation were favorable. Passive spaceborne instruments, namely the Spinning Enhanced Visible and Infrared Imager (SEVERI) and the Moderate-resolution Imaging Spectroradiometer (MODIS), are used to characterize the large-scale aerosol conditions. We show that complex topographical structures increase the complexity of the aerosol analysis in the planetary boundary layer by CALIOP when τa532 is lower than 0.1 because the number of available representative profiles is low to build a mean CALIOP profile with a good signal-to-noise ratio. In a comparison, the aerosol optical properties inferred from CALIOP and those deduced from the other active and passive remote sensing observations in the pollution plume are found to be in reasonable agreement. Level-2 aerosol products of CALIOP are consistent with our retrievals.

  19. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  20. High speed imaging television system

    DOEpatents

    Wilkinson, William O.; Rabenhorst, David W.

    1984-01-01

    A television system for observing an event which provides a composite video output comprising the serially interlaced images the system is greater than the time resolution of any of the individual cameras.

  1. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  2. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; Ortiz, Joseph; Royce, Anthony; Ruberg, Steve; Sawtell, Reid; Sayers, Michael; Schiller, Stephen; Shuchman, Robert; Simic, Anita; Stuart, Dack; Sullivan, Glenn; Tavernelli, Paul; Tokars, Roger; Vander Woude, Andrea

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  3. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  4. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  5. The analysis of signal-to-noise ratio of airborne LIDAR system under state of motion

    NASA Astrophysics Data System (ADS)

    Hao, Huang; Lan, Tian; Zhang, Yingchao; Ni, Guoqiang

    2010-11-01

    This article gives an overview of airborne LIDAR (laser light detection and ranging) system and its application. By analyzing the transmission and reception process of laser signal, the article constructs a model of echo signal of the LIDAR system, and gives some basic formulas which make up the relationship of signal-to-noise ratio, for example, the received power, the dark noise power and so on. And this article carefully studies and analyzes the impact of some important parameters in the equation on the signal-to-noise ratio, such as the atmospheric transmittance coefficient, the work distance. And the matlab software is used to simulate the detection environment, and obtains a series values of signal-to-noise (SNR) ratio under different circumstances such as sunny day, cloudy day, day, night. And the figures which describe how the SNR of LIDAR system is influenced by the critical factors are shown in the article. Finally according to the series values of signal-to-noise ratio and the figures, the SNR of LIDAR system decreases as the distance increases, and the atmospheric transmittance coefficient caused by bad weather, and also high work temperature drops the SNR. Depending on these conclusions, the LIDAR system will work even better.

  6. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  7. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  8. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  9. Array imaging system for lithography

    NASA Astrophysics Data System (ADS)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  10. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Atzberger, Clement; Darvishzadeh, Roshanak; Immitzer, Markus; Schlerf, Martin; Skidmore, Andrew; le Maire, Guerric

    2015-12-01

    Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models.

  11. High Speed Buffered Injection Readout for Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Pain, B.; Shaw, T.; Eastwood, M.; Green, R. O.

    1998-01-01

    Design and operation of a high speed, low noise, wide dynamic range linear infrared multiplexer array for readout of infrared detectors with large detector capacitance is presented. Image lag related to abrupt transitions of signal currents is analyzed.

  12. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  13. Detection of windows in building textures from airborne and terrestrial infrared image sequences

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Hoegner, L.; Stilla, U.

    2011-12-01

    Infrared (IR) images depict thermal radiation of physical objects. Imaging the building façades and the roofs with an IR camera, thermal inspections of the buildings can be carried out. In such inspections a spatial correspondence between IR-images and the existing 3D building models can be helpful. Texturing 3D building models with IR images this spatial correspondence can be created. Furthermore in textures heat leakages can be detected and the heat bridges can be stored together with 3D building data. However, before extracting leakages, the windows should be located. In IR images glass reflects the surrounding and shows false results for the temperature measurements. Consequently, the windows should be detected in IR images and excluded for the inspection. The most common algorithms for window detection were developed for the images in the visual band. In this paper, an algorithm for window detection in textures extracted from terrestrial IR images is proposed. In the first step, small objects have to be removed by scaling down the image (texture). Then in the scaled image, regions are detected using a local dynamic threshold. Morphological operations are used to remove false detections and unify substructures of the windows. For every extracted region, which is a candidate for a window, the center of gravity is calculated. It is assumed that windows on façades are ordered in regular rows and columns. First the points are grouped into rows using histogram of height created from extracted gravity centers. Then masked correlation is used to detect the position and size of the windows. Finally, the gaps in the grid of windows are completed. For the first experiments we use a dataset from densely build urban area captured in Munich, Germany. The IR image sequences were taken from a vehicle driving on the street around the test area. Camera was directed to the building in oblique view. According to the acquisition geometry, no façade could be completely seen in

  14. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  15. Performance characterization and ground testing of an airborne CO2 differential absorption LIDAR system

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Fox, Marsha J.; Bousek, Ronald R.; Dowling, James A.; Richter, Dale A.; Kelly, Brian T.

    1998-01-01

    The Phillips Laboratory Remote Optical Sensors (ROS) program is developing the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based upon a high-power CO(subscript 2) laser which can use either the standard (superscript 12)C(superscript 16)O(subscript 2) or the (superscript 13)C(superscript 16)O(subscript 2) carbon dioxide isotopes as the lasing medium, and has output energies in excess of 4 J on the stronger laser transitions. The laser, transmitter optics, receiver telescope and optics, and monitoring equipment are mounted on a flight-qualified optical breadboard designed to mount in the Argus C-135E optical testbed aircraft operated by Phillips Laboratory. The LARS system is being prepared for initial flight experiments at Kirtland AFB, NM, in August 1997, and for chemical detection flight experiments at the Idaho National Engineering Laboratory (INEL) in September 1997. This paper briefly describes the system characterization, and presents some results from the pre- flight ground testing.