Science.gov

Sample records for airborne in-situ measurements

  1. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  2. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  3. Data composite of airborne in-situ sulfur dioxide measurements

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Wissmüller, Katharina; Arnold, Frank; Aufmhoff, Heinfried; Baumann, Robert; Reiter, Anja; Roiger, Anke

    2015-04-01

    We present sulfur dioxide (SO2) data summaries from a large number of aircraft campaigns performed during the years 2004 to 2014 covering a geographical range from 83°N to 65°S and 105°W to 135°E. The SO2 data have been sampled from the Falcon and Halo research aircraft by the Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen and the Max-Planck-Institut für Kernphysik, Heidelberg using chemical ionization mass spectrometry and cover altitudes up to 15 km. The SO2 measurements were gridded onto a 5° latitude by 5° longitude horizontal grid with a 1-km vertical resolution. For selected regions with sufficient data also averaged vertical profiles were generated. The maps and profiles provide information about the SO2 distribution at mid-latitudes, tropical and polar regions for different seasons and are very valuable for comparison with model and satellite data. Median SO2 mixing ratios measured in the different regions will be presented. We also discuss emission sources and transport pathways for specific observations in the upper troposphere and lower stratosphere with strongly enhanced SO2 mixing ratios.

  4. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  5. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  6. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  7. Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering.

    PubMed

    Dolgos, Gergely; Martins, J Vanderlei

    2014-09-01

    Global satellite remote sensing of aerosols requires in situ measurements to enable the calibration and validation of algorithms. In order to improve our understanding of light scattering by aerosol particles, and to enable routine in situ airborne measurements of aerosol light scattering, we have developed an instrument, called the Polarized Imaging Nephelometer (PI-Neph). We designed and built the PI-Neph at the Laboratory for Aerosols, Clouds and Optics (LACO) of the University of Maryland, Baltimore County (UMBC). This portable instrument directly measures the ambient scattering coefficient and phase matrix elements of aerosols, in the field or onboard an aircraft. The measured phase matrix elements are the P(11), phase function, and P(12). Lasers illuminate the sampled ambient air and aerosol, and a wide field of view camera detects scattered light in a scattering angle range of 3° to 176°. The PI-Neph measures an ensemble of particles, supplying the relevant quantity for satellite remote sensing, as opposed to particle-by-particle measurements that have other applications. Comparisons with remote sensing measurements will have to consider aircraft inlet effects. The PI-Neph first measured at a laser wavelength of 532nm, and was first deployed successfully in 2011 aboard the B200 aircraft of NASA Langley during the Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project. In 2013, we upgraded the PI-Neph to measure at 473nm, 532nm, and 671nm nearly simultaneously. LACO has deployed the PI-Neph on a number of airborne field campaigns aboard three different NASA aircraft. This paper describes the PI-Neph measurement approach and validation by comparing measurements of artificial spherical aerosols with Mie theory. We provide estimates of calibration uncertainties, which show agreement with the small residuals between measurements of P(11) and -P(12)/P(11) and Mie theory. We demonstrate the capability of the PI-Neph to measure

  8. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  9. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  10. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  11. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  12. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    NASA Astrophysics Data System (ADS)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  13. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  14. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    DOE PAGESBeta

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; Bansemer, A.; Borrmann, S.; Brown, P.; Bundke, U.; Chuang, P. Y.; Cziczo, D.; Field, P.; et al

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently undermore » review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.« less

  15. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    SciTech Connect

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; Bansemer, A.; Borrmann, S.; Brown, P.; Bundke, U.; Chuang, P. Y.; Cziczo, D.; Field, P.; Gallagher, M.; Gayet, J. -F.; Korolev, A.; Kraemer, M.; McFarquhar, G.; Mertes, S.; Moehler, O.; Lance, S.; Lawson, P.; Petters, M. D.; Pratt, K.; Roberts, G.; Rogers, D.; Stetzer, O.; Stith, J.; Strapp, W.; Twohy, C.; Wendisch, M.

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently under review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.

  16. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  17. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  18. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    NASA Astrophysics Data System (ADS)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  19. Airborne In-Situ Trace Gas Measurements of Multiple Wildfires in California (2013-2014)

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Yates, E. L.; Tanaka, T.; Roby, M.; Gore, W.; Clements, C. B.; Lareau, N.; Ambrosia, V. G.; Quayle, B.; Schroeder, W.

    2014-12-01

    Biomass burning emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. We report here in-situ measurements of carbon dioxide, methane, ozone and water vapor from the plumes of a variety of wildfires sampled in California in the fire seasons of 2013 and 2014. Included in the analysis are the Rim Fire (August - October 2013, near Yosemite National Park), the Morgan Fire (September 2013, near Clayton, CA), and the El Portal Fire (July - August 2014, in Yosemite National Park), among others. When possible, fires were sampled on multiple days. Emission ratios and estimated emission factors will be presented and discussed in the context of fuel composition, plume structure, and fire phase. Correlations of plume chemical composition to MODIS/VIIRS Fire Radiative Power (FRP) and other remote sensing information will be explored. Furthermore, the role of plumes in delivery of enhanced ozone concentrations to downwind municipalities will be discussed.

  20. First Results from the COFFEE Instrument: Airborne In-Situ Measurements of Formaldehyde over California

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; St Clair, J.; Marrero, J. E.; Gore, W.; Swanson, A. K.; Hanisco, T. F.

    2015-12-01

    The Compact Formaldehyde Fluorescence Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of formaldehyde as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. COFFEE, developed at NASA-GSFC, has a sensitivity of 100 pptv (1 sec) and can operate over a wide range of altitudes from the boundary layer to the lower stratosphere. It is mounted in an external wing pod on the Alpha Jet aircraft based at NASA-ARC, which can access altitudes from the surface up to 40,000 ft. We will present results from test flights performed in Fall 2015 over the Central Valley of California. Targets include an oil field, agricultural areas, and highways. Formaldehyde is one of the few urban pollutants that can be measured from space, and we will present plans to compare COFFEE in-situ data with space-based formaldehyde observations such as those from OMI (Aura) and OMPS (SuomiNPP).

  1. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  2. Fast in situ airborne and ground-based flux measurement of ammonia using a quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Yu, X.; Hubbe, J.; Kluzek, C. D.; Tomlinson, J. M.; Fischer, M. L.; Reichl, K.; Gupta, M.

    2012-12-01

    are airborne feasible and capable of eddy covariance measurements provided by fast in situ observations of ammonia to advance our understanding of atmospheric compositions and aerosol formation.

  3. Fast In Situ Airborne Measurement of Ammonia Using a Mid-Infrared Off-Axis ICOS Spectrometer

    SciTech Connect

    Leen, J. Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S.; Hubbe, John M.; Kluzek, Celine D.; Tomlinson, Jason M.; Hubbell, Mike R.

    2013-08-23

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0–101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Finally, our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  4. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  5. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

    PubMed

    Leen, J Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S; Hubbe, John M; Kluzek, Celine D; Tomlinson, Jason M; Hubbell, Mike R

    2013-09-17

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation. PMID:23869496

  6. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    with (1) Envisat RA-2 returns retracked optimally for sea ice and (2) in situ measurements of sea ice thickness and snow depth gathered from ice camp surveys. Particular attention is given to lead identification and classification using the continuous photo-imaging system along the Envisat underflight as well as the performance of the snow radar over the ice camp survey lines.

  7. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGESBeta

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  8. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  9. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40

  10. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  11. Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Krautwurst, S.; Kolyer, R.; Jonsson, H.; Krings, T.; Horstjann, M.; Leifer, I.; Schuettemeyer, D.; Fladeland, M. M.; Burrows, J. P.; Bovensmann, H.

    2014-12-01

    During three flights performed with the MAMAP (Methane Airborne MAPper) airborne remote sensing instrument in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of HyspIRI and CarbonSat mission definition activities - large scale methane plumes were detected over the Kern River and Kern Front Oil fields in the period between June 3 and 13, 2014. MAMAP was installed for these flights aboard of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operate by the Ames Research Center, ARC), a 5 hole turbulence probe as well as a atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point and other atmospheric parameters. Data collected with the in-situ GHG analyzer will be used for validation of MAMAP remotely sensed data by acquiring vertical cross sections of the discovered plumes at a fixed downwind distance. Precise airborne wind information from the turbulence probe together with ground based wind data from the nearby airport will be used to estimate emission rates from the remote sensed and in-situ measured data. Remote sensed and in-situ data as well as initial flux estimates for the three flights will be presented.

  12. An airborne infrared laser spectrometer for in-situ trace gas measurements: application to tropical convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.; Jacquet, P.; Guimbaud, C.; Hamer, P. D.; Marécal, V.

    2015-09-01

    A three-channel laser absorption spectrometer called SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere and lower stratosphere. More than three different species can be measured simultaneously with high time resolution (each 1.6 s) using three individual CW-DFB-QCLs (Continuous Wave Distributed FeedBack Quantum Cascade Lasers) coupled to a single Robert multipass optical cell. The lasers are operated in a time-multiplexed mode. Absorption of the mid-infrared radiations occur in the cell (2.8 L with effective path lengths of 134 to 151 m) at reduced pressure, with detection achieved using a HgCdTe detector cooled by Stirling cycle. The performances of the instrument are described, in particular precisions of 1, 1 and 3 %, and volume mixing ratio (vmr) sensitivities of 0.4, 6 and 2.4 ppbv are determined at 1.6 s for CO, CH4 and N2O, respectively (at 1σ confidence level). Estimated accuracies without calibration are about 6 %. Dynamic measuring ranges of about four decades are established. The first deployment of SPIRIT was realized aboard the Falcon-20 research aircraft operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt) within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) European project in November-December 2011 over Malaysia. The convective outflows from two large convective systems near Borneo Island (6.0° N-115.5° E and 5.5° N-118.5° E) were sampled above 11 km in altitude on 19 November and 9 December, respectively. Correlated enhancements in CO and CH4 vmr were detected when the aircraft crossed the outflow anvil of both systems. These enhancements were interpreted as the fingerprint of transport from the boundary layer up through the convective system and then horizontal advection in the outflow. Using these observations, the fraction of boundary layer air contained in fresh convective outflow was calculated to range

  13. Airborne in situ computation of the wind shear hazard index

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.; Robinson, Paul A.

    1992-01-01

    An algorithm for airborne in situ computation of the wind shear hazard index (F-factor) was developed and evaluated in simulation and verified in flight. The algorithm was implemented on NASA's B-737-100 airplane, and tested under severe maneuvering, nonhazardous wind conditions, and normal takeoffs and landings. The airplane was flown through actual microburst conditions in Orlando, FL, where the algorithm produced wind shear measurements which were confirmed by an independent, ground-based radar measurement. Flight test results indicated that the in situ F-factor algorithm correctly measured the effect of the wind environment on the airplane's performance, and produced no nuisance alerts.

  14. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  15. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  16. Development of a new methodology for the retrieval of in-situ stratospheric trace gases concentration from airborne limb-absorption measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Giovanelli, Giorgio; Ravegnani, Fabrizio; Bortoli, Daniele; Kostadinov, Ivan K.; Castelli, Elisa; Bonafe, U.; Oulanovsky, A.; Yushkov, Vladimir

    2002-01-01

    The UV-Vis DOAS spectrometer GASCOD/A4p (Gas Analyzer Spectrometer Correlating Optical Differences, Airborne version) was installed on board the stratospheric Geophysica aircraft during the APE-THESEO and APE-GAIA campaign in February-March and September-October 1999 respectively. The instrument is provided by five input windows, three of which measure scattered solar radiation from the zenith and from two horizontal windows, 90 degree(s) away from the zenith to perform limb-absorption measurements. Spectra from 290 to 700 nm were processed through DOAS technique to obtain trace gases column amounts. Data from horizontal windows, which are performed for the first time from an airborne spectrometer, are used to retrieve an average concentration of the gases along a characteristic length of the line of sight. An atmospheric Air Mass Factor model (AMEFCO) is used to calculate the probability density function and the characteristic length used to reduce the slant column amounts to in-situ concentration values. The validation of the method is performed through a comparison of the values obtained, with a in-situ chemiluminescent ozone analyzer (FOZAN) which performed synchronous measurements on board Geophysica aircraft. Data from the APE-GAIA campaign was presented and discussed.

  17. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; Oestroem, Elisabeth; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paolo; Andreae, Meinrat O.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  18. Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Fahey, D. W.; Gilligan, J. M.; Dutton, G. S.; Baring, T. J.; Volk, C. M.; Dunn, R. E.; Myers, R. C.; Montzka, S. A.; Wamsley, P. R.; Hayden, A. H.; Butler, J. H.; Thompson, T. M.; Swanson, T. H.; Dlugokencky, E. J.; Novelli, P. C.; Hurst, D. F.; Lobert, J. M.; Ciciora, S. J.; McLaughlin, R. J.; Thompson, T. L.; Winkler, R. H.; Fraser, P. J.; Steele, L. P.; Lucarelli, M. P.

    A new instrument, the Airborne Chromatograph for Atmospheric Trace Species IV (ACATS-IV), for measuring long-lived species in the upper troposphere and lower stratosphere is described. Using an advanced approach to gas chromatography and electron capture detection, the instrument can detect low levels of CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2F-CClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), nitrous oxide (N2O), sulfur hexafluoride (SF6), Halon-1211 (CBrClF2), hydrogen (H2), and methane (CH4) acquired in ambient samples every 180 or 360 s. The instrument operates fully-automated onboard the NASA ER-2 high-altitude aircraft on flights lasting up to 8 hours or more in duration. Recent measurements include 24 successful flights covering a broad latitude range (70°S-61°N) during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in 1994.

  19. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  20. In-situ Ground-Based and Airborne Formaldehyde Measurements in the Houston Area During TexAQS-II

    NASA Astrophysics Data System (ADS)

    Rappenglueck, B.; Byun, D.; Alvarez, S.; Buhr, M.; Coarfa, V.; Czader, B.; Dasgupta, P.; Estes, M.; Kim, S.; Leuchner, M.; Luke, W.; Shauck, M.; Zanin, G.

    2007-12-01

    Formaldehyde is considered to play a significant role in summertime photochemistry in the Houston area, in particular it is considered an important source for radicals. Secondary formation seems to be the most important fraction of ambient HCHO. Enhanced nighttime values may indicate primary sources. Potential sources may include mobile sources such as traffic exhaust, in particular not well maintained Diesel engines. Other possible sources may include point sources such as coffee roasting and flares from refineries. In this study we focused on the TexAQS-II continuous in-situ formaldehyde data set based on Hantzsch reaction which was obtained in the Ship Channel area (HRM3 and Lynchburg Ferry site) and at the Moody Tower for several weeks. We also include in-situ HCHO measurements obtained with the same technique aboard the Baylor aircraft during TexAQS-II flight missions. Formaldehyde data was compared to several trace gases that are supposed to be coemitted including CO (traffic), ethylene (flares), and SO2 (industry). In order to keep photochemical processes at a minimum special focus was on nighttime data. Case studies will be discussed where meteorological conditions including recirculation and boundary layer developments seem to play a major role in the redistribution of HCHO. Observations will be compared to CMAQ model studies.

  1. SPECIES: a versatile spectrometer based on optical-feedback cavity-enhanced absorption for in situ balloon-borne and airborne measurements

    NASA Astrophysics Data System (ADS)

    Jacquet, Patrick; Catoire, Valery; Robert, Claude; Chartier, Michel; Huret, Nathalie; Desbois, Thibault; Marocco, Nicola; Kassi, Samir; Kerstel, Eric; Romanini, Daniele

    2015-04-01

    Over the last twenty years, thanks to significant technological advances in measurement techniques, our understanding of the chemistry and dynamics of the upper troposphere and stratosphere has progressed significantly. However some key questions remain unsolved, and new ones arise in the changing climate context. The full recovery of the ozone layer and the delay of recovery, the impact of the climate change on the stratosphere and the role of this one as a feedback are almost unknown. To address these challenges, one needs instruments able to measure a wide variety of trace gas species simultaneously with a wide vertical range. In this context, LPC2E and LIPHY are developing a new balloon-borne and airborne instrument: SPECIES (SPECtromètre Infrarouge à lasErs in Situ, i.e. in-Situ Infrared lasEr SPECtrometer). Based on the Optical Feedback Cavity Enhanced Spectroscopy technique, combined with mid-infrared quantum cascade lasers, this instrument will offer unprecedented performances in terms of the vertical extent of the measurements, from ground to the middle stratosphere, and the number of molecular species simultaneously measured with sub-ppb detection limits (among others: NO, N2O, HNO3, H2O2, HCl, HOCl, CH3Cl, COF2, HCHO, HCOOH, O3, NH3 NO2, H2O, OCS, SO2). Due to high frequency measurement (>0.5 Hz) it shall offer very high spatial resolution (a few meters).

  2. Fast-response airborne in situ measurements of HNO3 during the Texas 2000 Air Quality Study

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Huey, L. G.; Dissly, R. W.; Fehsenfeld, F. C.; Flocke, F.; Holecek, J. C.; Holloway, J. S.; Hübler, G.; Jakoubek, R.; Nicks, D. K.; Parrish, D. D.; Ryerson, T. B.; Sueper, D. T.; Weinheimer, A. J.

    2002-10-01

    Nitric acid (HNO3) was measured from an aircraft in the planetary boundary layer and free troposphere up to 7 km on 14 flights during the Texas Air Quality Study in August and September 2000. HNO3 mixing ratios were measured at 1 Hz using a fast-response chemical ionization mass spectrometer with SiF5- reagent ions. HNO3 measurement using this highly selective ion chemistry is insensitive to water vapor and is not degraded by interferences from other species. Rapid time response (1 s) was achieved using a heated Teflon inlet. In-flight standard addition calibrations from a HNO3 permeation source were used to determine the instrument sensitivity of 1.1 ± 0.1 ion counts pptv-1 s-1 over the duration of the study. Contributions to the HNO3 signal from instrument artifacts were accounted for by regularly performing in-flight instrument background checks, where HNO3 was removed from the ambient air sample by diverting the sampled air though a nylon wool scrubber. Measurement inaccuracy, which is determined from uncertainties in the standard addition calibrations, was ±10%. Measurement precision at low HNO3 levels was ±25 pptv (1σ) for the 1 Hz data and ±9 pptv for 10 s averages of the 1 s measurements. Coincident in situ measurements of other reactive nitrogen species are used to examine NOy partitioning and HNO3 formation during this month long measurement campaign. The sum of the individually measured reactive nitrogen species is shown to be in agreement with the measured NOy. HNO3 formation in plumes from electric utility power plants, urban areas, and petrochemical facilities was studied. The observed differences in the fractional contribution of HNO3 to NOy in plumes from different anthropogenic source types are discussed.

  3. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  4. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation

  5. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette; St. Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  6. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  7. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  8. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  9. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  10. Atmospheric Transport Studies Using In-situ Airborne Gas Chromatograph Measurements: An Overview of the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) Contribution.

    NASA Astrophysics Data System (ADS)

    Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.

    2005-12-01

    Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species

  11. Decorrelation analysis of L-band interferometry over the Piton de la Fournaise volcano (France) using airborne LiDAR data and in situ measurements

    NASA Astrophysics Data System (ADS)

    Sedze, M.; Bretar, F.; Heggy, E.; Berveiller, D.; Jacquemoud, S.

    2012-12-01

    length, and the higher the standard deviation of height, as well as Z_s. This helps us better understand how electromagnetic waves interact with such surfaces: very rough and porous surfaces, such as a'a lava flows, produce multiple scattering whereas the backscatter signals for a smoother surface, such as pahoehoe lava flows, are more coherent. The decorrelation over the flat pyroclastic deposits is mainly caused by volume scattering which depends on the dielectric constant of the medium. To assess the penetration depth, the complex relative permittivity of volcanic products has been measured in the lab. The preliminary results suggest that the radar waves can penetrate deeper into lapillis than into lava flows. To study vegetation density, we determined the LAI of different vegetation canopies in situ. Moreover, we produced a NDVI (Normalized Difference Vegetation Index) map from a SPOT 5 calibrated image. Both field and satellite data helped us establish the LAI-NDVI relationship and then generate the LAI map of the volcanic area. The LAI negatively correlates with the radar coherence. For LAI values higher than 7, the coherence is very low which means that InSAR measurements become difficult to do or even impossible.

  12. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  13. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  14. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  15. Decadal changes in ozone and precursor emissions in the Los Angeles California region using in-situ airborne and ground-based field observations, roadside monitoring data, and surface network measurements

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Atlas, E. L.; Blake, D. R.; Flynn, J. H.; Frost, G. J.; Grossberg, N.; Harley, R. A.; Holloway, J. S.; Lefer, B. L.; Lueb, R.; Parrish, D. D.; Peischl, J.

    2011-12-01

    In-situ observations from the Photochemical Assessment Monitoring Stations (PAMS) and the California Air Resources Board (CARB) surface network show decreases in ozone (O3), nitrogen oxide (NOx=NO+NO2), carbon monoxide (CO), and select volatile organic compounds (VOCs) in California's South Coast Air Basin (SoCAB). Decreases in CO, NOx, and VOCs reflect changes, such as improved catalytic converters and reformulated fuels etc., that have been implemented in response to increasingly strict emissions standards placed upon on-road vehicles in the state of California. Here, we compare changes in emissions ratios of NOx and VOCs to CO determined from surface network data collected since 1994 to changes in emissions ratios from biennial roadside studies conducted in west Los Angeles since 1999 and airborne and ground-based measurements from three independent field campaigns conducted in California in 2002, 2008, and 2010. Using the more extensive in-situ surface network data set, we show that decreasing ozone is positively correlated with decreasing abundances of NOx and VOCs and with decreasing VOC/NOx ratio over time. The changes observed from 1994 to present suggest that reductions in both NOx and VOCs and the VOC/NOx ratio over the years have been effective in reducing ozone in the SoCAB.

  16. Using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific to improve the understanding of atmospheric halogen loading.

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Engel, A.

    2012-04-01

    In this work, we present measurement data from the field campaign "SHIVA - Stratospheric Halogens in a Varying Atmosphere". One part of this campaign was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri/Malaysia, performing research flights from the boundary layer up to 11km altitude. The dataset we present was obtained by a total amount of sixteen local flights in the area of Borneo in November and December 2011. Onboard the aircraft we used a sophisticated in-situ GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air. Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the Tropical Tropopause Layer (TTL). Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL by deep convective systems. Our main goal during SHIVA was to improve the understanding of emissions, atmospheric transport and the chemical degradation of halogenated VSLS. Detailed measurements in the boundary layer as well as data from survey flights in the free upper troposphere are used to deflect a local budget bromine species in this tropical region. Measurements in areas of

  17. Comparison of Water Vapor Measurements by Airborne Sun photometer and Near-Coincident In Situ and Satellite Sensors during INTEX-ITCT 2004

    SciTech Connect

    Livingston, J.; Schmid, Beat; Redemann, Jens; Russell, P. B.; Ramirez, Samuel; Eilers, J.; Gore, W.; Howard, Samuel; Pommier, J.; Fetzer, E. J.; Seemann, S. W.; Borbas, E.; Wolfe, Daniel; Thompson, Anne M.

    2007-06-06

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes, and with water vapor profiles retrieved from AIRS measurements during 8 Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during 5 Aqua and 5 Terra overpasses. For 35 J31 vertical profiles mean (bias) and rms AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1% and 8.8%, respectively. For 22 aircraft profiles within 1 h and 130 km of radiosonde soundings, AATS-minus-sonde bias and rms LWV differences are -5.4% and 8.8%, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3% and 8.4%, respectively. AIRS LWV retrievals within 80 km of J31 profiles yield lower bias and rms differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8% to 5.8%, and the rms difference decreases from 21.5% to 16.4%. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2% to +6% and rms differences of ~20% below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5-km at nadir) are biased wet by 10.4% compared to AATS over-ocean near surface retrievals. The MODIS Aqua subset (79 grid cells) exhibits a wet bias of 5.1%, and the MODIS-Terra subset (126 grid cells) yields a wet bias of 13.2%.

  18. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Near-Coincident in Situ and Satellite Sensors during INTEX/ITCT 2004

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Redemann, J.; Russell, P. B.; Ramirez, S. A.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Fetzer, E. J.; Seeman, S. W.; Borbas, E.; Wolfe, D. E.; Thompson, A. M.

    2007-01-01

    We have retrieved columnar water vapor (CWV) from measurements acquired by the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS-14) during 19 Jetstream 31 (J31) flights over the Gulf of Maine in summer 2004 in support of the Intercontinental Chemical Transport Experiment (INTEX)/Intercontinental Transport and Chemical Transformation (ITCT) experiments. In this paper we compare AATS-14 water vapor retrievals during aircraft vertical profiles with measurements by an onboard Vaisala HMP243 humidity sensor and by ship radiosondes and with water vapor profiles retrieved from AIRS measurements during eight Aqua overpasses. We also compare AATS CWV and MODIS infrared CWV retrievals during five Aqua and five Terra overpasses. For 35 J31 vertical profiles, mean (bias) and RMS AATS-minus-Vaisala layer-integrated water vapor (LWV) differences are -7.1 percent and 8.8 percent, respectively. For 22 aircraft profiles within 1 hour and 130 km of radiosonde soundings, AATS-minus-sonde bias and RMS LWV differences are -5.4 percent and 10.7 percent, respectively, and corresponding J31 Vaisala-minus-sonde differences are 2.3 percent and 8.4 percent, respectively. AIRS LWV retrievals within 80 lan of J31 profiles yield lower bias and RMS differences compared to AATS or Vaisala retrievals than do AIRS retrievals within 150 km of the J31. In particular, for AIRS-minus-AATS LWV differences, the bias decreases from 8.8 percent to 5.8 percent, and the RMS difference decreases from 2 1.5 percent to 16.4 percent. Comparison of vertically resolved AIRS water vapor retrievals (LWVA) to AATS values in fixed pressure layers yields biases of -2 percent to +6 percent and RMS differences of -20 percent below 700 hPa. Variability and magnitude of these differences increase significantly above 700 hPa. MODIS IR retrievals of CWV in 205 grid cells (5 x 5 km at nadir) are biased wet by 10.4 percent compared to AATS over-ocean near-surface retrievals. The MODIS-Aqua subset (79 grid cells

  19. In situ sensors for measurements in the global trosposphere

    NASA Technical Reports Server (NTRS)

    Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.

    1981-01-01

    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.

  20. Airborne and surface-level in situ observations of wintertime clouds in the Southern Rockies

    NASA Astrophysics Data System (ADS)

    Dorsi, Samuel Winchester

    The phase of cloud water has important impacts on cloud radiative properties, cloud lifetime, and the formation of precipitation. Mixed-phase clouds, or those in which liquid droplets, ice particle and water vapor co-exist, are of particular importance in the Southern Rockies of the United States, where these clouds enhance wintertime mountain precipitation mass and annual water storage in the snowpack. The interaction between multiple water phases within a cloud presents challenges for in situ observation. I describe the existing in situ cloud microphysical instrumentation, and introduce a new instrument for the in situ measurement of total water concentration: the second-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH-2). This compact instrument can be flown within a scientific aircraft under-wing canister and is designed for operation in diverse environmental conditions. During the winter 2010-2011, the CLH-2 was installed on a wind vane at Storm Peak Laboratory (SPL) in the Park Range of Colorado as a part of the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) campaign. I apply a new method for determining the bulk mass-dimensional relationship of ice particles from ground-based observations. Despite important difference between airborne and ground-based particle measurements, my parameterization yields particle masses close to those from recent airborne studies that take into account the effect of ice particle shattering on observed number concentrations. Variations in particle density over the course of a storm are suggested by time variations between the observed and parameterized ice water concentrations. Using observations from the Wyoming King Air research aircraft collected during the Colorado Airborne Multi-Phase Cloud Study (CAMPS) in winter 2010-2011, cloud water phase is identified using in situ microphysical measurements. While mixed-phase clouds are identified throughout the study area, the

  1. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA.

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Engel, Andreas

    2013-04-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL (Tropical Tropopause Layer) by deep convective systems. In this work, we present results derived by our measurement data from the field campaign which was part of the SHIVA (Stratospheric Halogens in a Varying Atmosphere) Project. One aspect of this campaign, which took place in November and December 2011, was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri in Malaysia. From there we performed sixteen local flights in total; these flights covered a spatial range from the boundary layer up to 11km altitude around the area of Borneo. Our contribution to the campaign was the deployment of a newly developed GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air onboard the aircraft. The long lived halocarbons H1301, H1211, H1202, H2402 as well as CH3Br and the very short lived substances CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl were be analyzed with the instrument. We derive a detailed budget of total organic

  2. Optical properties of aerosols obtained from airborne lidar and several in-situ instruments during RACE

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin B.; Li, Shao-Meng

    1997-05-01

    Two aircraft, the National Research Council of Canada (NRCC) Convair 580 (CV580) and NRCC DHC-6 Twin Otter, along with the Yarmouth and Digby Ferries, a ground site near Yarmouth and coordination with satellite overpasses (AVHRR and LANDSAT) provided an exceptionally well rounded compliment of observing platforms to meet the project objectives for the radiation, aerosols and cloud experiment (RACE) (refer to http://www.on.doe.ca/armp/RACE/RACE.html for a complete list of instrumentation and investigators involved). The general flight plans involved upwind measurements of a selected target by the CV580 lidar, followed by coincident flights allowing the Twin Otter to perform in-situ measurements while the Convair used a variety of remote sensors from above. The CV580 then descended to perform in-situ measurements including size segregated samples through the use of a micro-orifice uniform deposit impactor (MOUDI). This paper focuses on the airborne lidar results during RACE and in particular introduces two case studies comparing the lidar with a MOUDI impactor and ASASP particle probe using Mie theory.

  3. Airborne in-situ spectral characterization and concentration estimates of fluorescent organics as a function of depth

    NASA Technical Reports Server (NTRS)

    Tittle, R. A.

    1988-01-01

    The primary purpose of many in-situ airborne light scattering experiments in natural waters is to spectrally characterize the subsurface fluorescent organics and estimate their relative concentrations. This is often done by shining a laser beam into the water and monitoring its subsurface return signal. To do this with the proper interpretation, depth must be taken into account. If one disregards depth dependence when taking such estimates, both their spectral characteristics and their concentrations estimates can be rather ambiguous. A simple airborne lidar configuration is used to detect the subsurface return signal from a particular depth and wavelength. Underwater scatterometer were employed to show that in-situ subsurface organics are very sensitive to depth, but they also require the use of slow moving boats to cover large sample areas. Also, their very entry into the water disturbs the sample it is measuring. The method described is superior and simplest to any employed thus far.

  4. Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Barnes, J. W.; McKay, C. P.; Lemke, L.; Beyer, R. A.; Radebaugh, J.; Adamkovics, M.; Atkinson, D. H.; Burr, D. M.; Colaprete, T.; Foch, R.; Le Mouélic, S.; Merrison, J.; Mitchell, J.; Rodriguez, S.; Schaller, E.

    2010-10-01

    Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance - is a small (120 kg), nuclear-powered Titan airplane in the Discovery/New Frontiers class based on the concept of Lemke (2008 IPPW). The scientific goals of the mission are designed around the unique flexibility offered by an airborne platform: to explore Titan's diversity of surface landforms, processes, and compositions, as well as to study and measure the atmospheric circulation, aerosols, and humidity. AVIATR would address and surpass many of the science goals of hot-air balloons in Titan flagship studies. The strawman instrument payload is narrowly focused on the stated scientific objectives. The optical remote sensing suite comprises three instruments - an off-nadir high-resolution 2-micron camera, a horizon-looking 5-micron imager, and a 1-6 micron pushbroom near-infrared spectrometer. The in situ instruments include atmospheric structure, a methane humidity sensor, and a raindrop detector. An airplane has operational advantages over a balloon. Its piloted nature allows a go-to capability to image locations of interest in real time, thereby allowing for directed exploration of many features of primary geologic interest: Titan's sand dunes, mountains, craters, channels, and lakes. Subsequent imaging can capture changes in these features during the primary mission. AVIATR can fly predesigned routes, building up large context mosaics of areas of interest before swooping down to low altitude to acquire high-resolution images at 30-cm spatial sampling, similar to that of HiRISE at Mars. The elevation flexibility of the airplane allows us to acquire atmospheric profiles as a function of altitude at any desired location. Although limited by the direct-to-Earth downlink bandwidth, the total scientific data return from AVIATR will be >40 times that returned from Huygens. To maximize the science per bit, novel data storage and downlink techniques will be employed, including lossy compression

  5. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria.

    PubMed Central

    Lange, J L; Thorne, P S; Lynch, N

    1997-01-01

    Current limitations in the methodology for enumeration and identification of airborne bacteria compromise the precision and accuracy of bioaerosol exposure assessment. In this study, flow cytometry and fluorescent in situ hybridization (FISH) were evaluated for the assessment of exposures to airborne bacteria. Laboratory-generated two-component bioaerosols in exposures chambers and complex native bioaerosols in swine barns were sampled with two types of liquid impingers (all-glass impinger-30 and May 3-stage impinger). Aliquots of collection media were processed and enumerated by a standard culture technique, microscopy, or flow cytometry after nucleic acid staining with 4',6-diamidino-2-phenylindole (DAPI) and identified taxonomically by FISH. DAPI-labeled impinger samples yielded comparable estimates of bioaerosol concentrations when enumerated by microscopy or flow cytometry. The standard culture method underestimated bioaerosol concentrations by 2 orders of magnitude when compared to microscopy or flow cytometry. In the FISH method, aliquots of collection media were incubated with a probe universally complementary to eubacteria, a probe specific for several Pseudomonas species, and a probe complementary to eubacteria for detection of nonspecific binding. With these probes, FISH allowed quantitative identification of Pseudomonas aeruginosa and Escherichia coli bioaerosols in the exposure chamber without measurable nonspecific binding. Impinger samples from the swine barn demonstrated the efficacy of the FISH method for the identification of eubacteria in a complex organic dust. This work demonstrates the potential of emerging molecular techniques to complement traditional methods of bioaerosol exposure assessment. PMID:9097451

  6. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  7. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  8. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  9. Analysis of in situ measurements of cirrus anvil outflow dynamics

    NASA Astrophysics Data System (ADS)

    Lederman, J. I.; Whiteway, J. A.

    2012-12-01

    The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.

  10. Investigation of Arctic mixed-phase clouds during VERDI and RACEPAC: Combining airborne remote sensing and in situ observations

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Wendisch, Manfred

    2015-04-01

    To improve our understanding of Arctic mixed-phase clouds in sea-ice covered areas the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) were initiated by a collaboration of German and French research institutes. The aircraft operated by the Alfred Wegener Institute for Polar and Marine Research, Germany were based in Inuvik, Canada from where the research flights of in total 149 flight hours (62 h during VERDI, 87 h during RACEPAC) were able to cover a wide area above the Canadian Beaufort. The aim of both campaigns was to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. Remote sensing instrumentation contained a backscatter lidar and spectral solar radiation measurements including a hyperspectral camera. In-situ sampling was highlighted by a suit of comprehensive cloud particle probes, aerosol particle counters and mass spectroscopy as well as trace gas detectors. While during VERDI remote sensing and in-situ measurements were performed by one aircraft (Polar 5) subsequently, for RACEPAC two identical aircraft (Polar 5 & 6, Basler BT-67) were coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. In this way not only the combined analysis of radiative and microphysical processes in the clouds can by studied more reliably, also remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of both projects including instrumentation and flight patterns of the research flights. Beside flight missions dedicated to sample low level clouds by remote sensing and in situ probing, flights were also coordinated with satellite overpasses and ground based stations. Exemplary results will be highlighted.

  11. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  12. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendalow, Jacob S

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  13. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendelow, Jacob S; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    Efficient PEM (Polymer Electrolyte Membrane) fuel cell performance requires effective water management. To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operations. High Frequency Resistance (HFR), AC Impedance and Neutron imaging were used to measure water content in operating fuel cells, with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable Gas Diffusion Layer (GDL) properties. High resolution neutron radiography was used to image fuel cells during a variety of conditions. The effect of specific operating conditions, including flow direction (co-flow or counter-flow) was examined. Counter-flow operation was found to result in higher water content than co-flow operation, which correlates to lower membrane resistivity. A variety of cells were used to quantify the membrane water in situ during exposure to saturated gases, during fuel cell operation, and during hydrogen pump operation. The quantitative results show lower membrane water content than previous results suggested.

  14. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement. PMID:12899892

  15. In-situ measurements of total carbon

    NASA Astrophysics Data System (ADS)

    Smythe, W.; Boryta, M.; Nelson, R.

    2009-04-01

    Quantitative assessment of the equilibration of biotic and pre-biotic materials and of the mechanisms leading to their presence in a planetary context requires knowledge of the relative concentrations of the organic species within a sample. The measurement of these relative concentrations is not practical for many remote sensing and in-situ techniques because of the large number of potential compounds having high variance in (for example) volatility, spectral response and/or molecular weight. One approach is to compare the concentration of identified materials to the total carbon and total organic carbon in a sample. The traditional two-stage approach for this measurement is acidification to convert "inorganic" carbon to CO2 and pyrolysis to convert the remaining "organic" carbon and carbon-based compounds the CO2. Measurement of the evolved CO2 provides a measure of organic and total carbon in the sample. These measurements are relatively successful in a laboratory context, but are difficult to implement robotically, particularly in challenging environments. A variety of alternative approaches for achieving total carbon measurements with acceptable accuracy are examined for feasibility of use in a field or robotic environment, with particular emphasis on soils on Mars.

  16. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  17. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  18. In situ measurements of ship tracks

    NASA Technical Reports Server (NTRS)

    Radke, Lawrence F.; Lyons, Jamie H.; Hobbs, Peter V.; Coakley, James E.

    1990-01-01

    It has long been known that cloud droplet concentrations are strongly influenced by cloud condensation nuclei (CCN) and that anthropogenic sources of pollution can affect CCN concentrations. More recently it has been suggested that CCN may play an important role in climate through their effect on cloud albedo. A interesting example of the effect of anthropogenic CCN on cloud albedo is the so-called 'ship track' phenomenon. Ship tracks were first observed in satellite imagery when the ship's emissions were evidently needed for the formation of a visible cloud. However, they appear more frequently in satellite imagery as modifications to existing stratus and stratocumulus clouds. The tracks are seen most clearly in satellite imagery by comparing the radiance at 3.7 microns with that at 0.63 and 11 microns. To account for the observed change in radiance, droplet concentrations must be high, and the mean size of the droplets small, in ship tracks. Researchers describe what they believe to be the first in situ measurements in what appears to have been a ship track.

  19. Study of SGD along the French Mediterranean coastline using airborne TIR images and in situ analyses

    NASA Astrophysics Data System (ADS)

    van Beek, Pieter; Stieglitz, Thomas; Souhaut, Marc

    2015-04-01

    Although submarine groundwater discharge (SGD) has been investigated in many places of the world, very few studies were conducted along the French coastline of the Mediterranean Sea. Almost no information is available on the fluxes of water and chemical elements associated with these SGD and on their potential impact on the geochemical cycling and ecosystems of the coastal zones. In this work, we combined the use of airborne thermal infrared (TIR) images with in situ analyses of salinity, temperature, radon and radium isotopes to study SGD at various sites along the French Mediterranean coastline and in coastal lagoons. These analyses allowed us to detect SGD sites and to quantify SGD fluxes (that include both the fluxes of fresh groundwater and recirculated seawater). In particular, we will show how the Ra isotopes determined in the La Palme lagoon were used to estimate i) the residence time of waters in the lagoon and ii) SGD fluxes.

  20. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Adamkovics, Mate; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  1. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  2. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  3. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  4. In situ exhaust cloud measurements. [particle size distribution and cloud physics of rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Wornom, D.

    1980-01-01

    Airborne in situ exhaust cloud measurements were conducted to obtain definitions of cloud particle size range, Cl2 content, and HCl partitioning. Particle size distribution data and Cl2 measurements were made during the May, August, and September 1977 Titan launches. The measurements of three basic effluents - HCl, NO sub X, and particles - against minutes after launch are plotted. The maximum observed HCl concentration to the maximum Cl2 concentration are compared and the ratios of the Cl2 to the HCl is calculated.

  5. In situ measurement of conductivity during nanocomposite film deposition

    NASA Astrophysics Data System (ADS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-05-01

    Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (Tg) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing Tg. Proper selection of the host polymer in combination with in situ resistance monitoring therefore enable the optimal preparation of conductive nanocomposite films.

  6. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  7. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    -based). In situ measurements include aerosol number density, size, scattering, absorption and hygroscopicity (aerosol scattering as a function of relative humidity). The PI-Neph will provide the first airborne in situ measurements of aerosol polarized phase function for comparison to the RSP retrievals. As this is the first airborne use of the PI-Neph, aerosol scattering measurements from the PI-Neph will be compared to an integrating nephelometer to provide a primary indication of instrument functionality. Specific flights will be performed to study a range of aerosol classifications including fresh anthropogenic pollution (flights over populated regions), aged pollution (tracking pollution as it moves off shore), sea salt (low altitude ocean flights by the in situ aircraft) and biogenic (flights over forest canopies). In addition, the DLH and a wing-mounted cloud aerosol precipitation spectrometer will provide insight into aerosol retrievals above and near clouds.

  8. The role of airborne eddy correlation measurements in global change studies

    NASA Technical Reports Server (NTRS)

    Ritter, J. A.; Barrick, J. D. W.; Sachse, G. W.; Collins, J. E., Jr.; Anderson, B. E.; Hill, G. F.; Woerner, M. A.; Harkleroad, J. E., Jr.

    1994-01-01

    We have obtained measurements of the mean and turbulent quantities of heat, moisture, momentum, O3, CO, and CH4 from an airborne platform. Species flux measurements obtained from these data provide unique regional-scale information which can be used to evaluate 'scaled-up' flux estimates based on smaller scale observations. Airborne flux data also provide a basis for assessing the uncertainties associated with large-scale ground level flux extrapolations. Airborne constituent budget analyses are possible with this suite of measurements. The local change in the mean value of a parameter can be explained in terms of horizontal advection, vertical turbulent transport, and, in the case of chemically reactive species (i.e., O3), in situ production or destruction. This technique is used to indicate a direct relationship between O3 precursors and the measured in situ production rate.

  9. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  10. The analysis and application of satellite-airborne-in situ observation synchronized test data in Henan province

    NASA Astrophysics Data System (ADS)

    Chen, Huai-liang; Zhang, Hong-wei; Liu, Zhongyang

    2010-10-01

    To correct erroneous data arising from a variety of methods for monitoring soil drought, the paper presents the analysis of the crop-canopy spectral characteristics and measured field moisture in the mid-late stage of wheat grain filling by means of observations of synchronously monitoring drought at Satellite -airborne - in situ observation in an experiment made in the low land of the Yellow River reach in a Zhoukou farm of the province on 23 May, 2009. Results suggest that (1) In the later time of wheat grain filling, there was no clear absorption valley in the domain of 1175nm, and it is different from the spectral chart in the period of turning green to heading. (2) There are data distortions in the domain of 1541nm and 2053nm which make out that the spectral in these domain are disable for retrieved the wheat canopy character. (3) The relationship of one depth to adjacent is better and the soil moisture in deeper depth could be deduced from its relationship with surface water content. (4) The retrieved results of FY-3A are not better than MODIS', but the accuracy has been to meet the current demand for services, and can be applied to operation.

  11. Balloonborne in situ gas chromatograph for measurements in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Moore, F. L.; Elkins, J. W.; Ray, E. A.; Dutton, G. S.; Dunn, R. E.; Fahey, D. W.; McLaughlin, R. J.; Thompson, T. L.; Romashkin, P. A.; Hurst, D. F.; Wamsley, P. R.

    2003-03-01

    An in situ gas chromatograph (GC) instrument on a balloonborne package is described in detail and data from seven science deployments are presented. This instrument, the Lightweight Airborne Chromatograph Experiment (LACE), operates on the Observations of the Middle Stratosphere (OMS) in situ gondola and has taken data from the upper troposphere to near 32 km with a vertical resolution of better than 300 m. LACE chromatography has been developed to measure halon-1211, the chlorofluorocarbons (CFC-11, CFC-113, CFC-12), nitrous oxide (N2O), and sulfur hexafluoride (SF6) every 70 s and methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), hydrogen (H2), methane (CH4), and carbon monoxide (CO) every 140 s. In the introduction we present scientific motivation for choosing this suite of molecules and for the use of faster sample rates resulting in unprecedented vertical resolution from an in situ GC. Results from an intercomparison with the Airborne Chromatograph for Atmospheric Trace Species (ACATS-IV) instrument are shown to quantitatively connect this LACE data set to the complementary data set generated on board the NASA ER-2 aircraft.

  12. In Situ Ellipsometry for Shock Compression Measurements

    NASA Astrophysics Data System (ADS)

    Bakshi, L.; Eliezer, S.; Appelbaum, G.; Nissim, N.; Perelmutter, L.; Mond, M.

    2009-12-01

    Knowledge about the optical properties of materials at high pressure and high temperature is needed for EOS research. Ellipsometry measures the change in the polarization of a probe beam reflected from a surface. From the change in polarization, the real and imaginary parts of the time dependent complex index of refraction can be extracted. From the measured optical properties, fundamental physical properties of the material, such as emissivity, phase transitions, and electrical conductivity can be extracted. A dynamic ellipsometry measurement system with nanosecond resolution was built in order to measure all four stocks parameters. Gas gun was used to accelerate the impact flyer. Our experiments concentrated on the optical properties of 1020 steel targets with impact pressure range of 40-250 kbar. Although there are intrinsic difficulties with dynamic ellipsometric measurements, distinct changes were observed for 1020 steel under shock compression larger than 130 kbar, the α→ɛ phase transition.

  13. IN SITU ELLIPSOMETRY FOR SHOCK COMPRESSION MEASUREMENTS

    SciTech Connect

    Bakshi, L.; Eliezer, S.; Appelbaum, G.; Nissim, N.; Perelmutter, L.; Mond, M.

    2009-12-28

    Knowledge about the optical properties of materials at high pressure and high temperature is needed for EOS research. Ellipsometry measures the change in the polarization of a probe beam reflected from a surface. From the change in polarization, the real and imaginary parts of the time dependent complex index of refraction can be extracted. From the measured optical properties, fundamental physical properties of the material, such as emissivity, phase transitions, and electrical conductivity can be extracted. A dynamic ellipsometry measurement system with nanosecond resolution was built in order to measure all four stocks parameters. Gas gun was used to accelerate the impact flyer. Our experiments concentrated on the optical properties of 1020 steel targets with impact pressure range of 40-250 kbar. Although there are intrinsic difficulties with dynamic ellipsometric measurements, distinct changes were observed for 1020 steel under shock compression larger than 130 kbar, the alpha->epsilon phase transition.

  14. In-situ measurements of lunar heat flow

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Keihm, S. J.

    1974-01-01

    During the Apollo program two successful heat flow measurements were made in situ on the lunar surface. At the Apollo 15 site a value of 0.0000031 watts/sqcm was measured and at the Apollo 17 site a value of 0.0000022 watts/sqcm was determined. Both measurements have uncertainty limits of + or - 20% and have been corrected for perturbing topographic effects. The apparent difference between the observations may correlate with observed variations in the surface abundance of thorium. Comparison with earlier determinations of heat flow, using the microwave emission spectrum from the moon, gives support to the high gradients and heat flows observed in situ.

  15. In-situ measurements of lunar heat flow

    NASA Technical Reports Server (NTRS)

    Langseth, M. B.; Keihm, S. J.

    1977-01-01

    During the Apollo program two successful heat flow measurements were made in situ on the lunar surface. At the Apollo 15 site a value of .0000031 W/sq cm was measured, and at the Apollo 17 site a value of .0000022 W/sq cm was determined. Both measurements have uncertainty limits of + or - 20 percent and have been corrected for perturbing topographic effects. The apparent difference between the observations may correlate with observed variations in the surface abundance of thorium. Comparison with earlier determinations of heat flow, using the microwave emission spectrum from the moon, gives support to the high gradients and heat flows observed in situ.

  16. Measuring Thicknesses With In Situ Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Dunn, Daniel E.; Cerino, Joseph R.

    1995-01-01

    Several pulsed ultrasonic transducers attached to workpiece for measurement of changes in thicknesses of workpiece at transducer locations during grinding and polishing, according to proposal. Once attached, each transducer remains attached at original position until all grinding and polishing operations complete. In typical application, workpiece glass or ceramic blank destined to become component of optical system.

  17. Aerosol-Induced Radiative Flux Changes Off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sunphotometer and In Situ Data with Those Measured by Airborne Pyranometer

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.

    2000-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.

  18. In situ performance measurements of the mitre photovoltaic array

    NASA Technical Reports Server (NTRS)

    Cherdak, A. S.; Haas, G. M.

    1977-01-01

    A data acquisition system was developed to provide more accurate and consistent measurement of the degradation of solar arrays. A technique was developed for in-situ measurement of photovoltaic panels of sufficient quality to permit evaluation of electrical performance over extended periods of several years.

  19. In-situ physical properties measurements using crosswell acoustic data

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1985-01-01

    Crosswell acoustic surveys enable the in-situ measurements of elastic moduli, Poisson's ratio, porosity, and apparent seismic Q of gas-bearing low-permeability formations represented at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. These measurements, except for Q, are compared with laboratory measurements on core taken from the same depths at which the crosswell measurements are made. Seismic Q determined in situ is compared to average values for sandstone. Porosity was determined from crosswell data using the empirical relationship between acoustic velocity, porosity, and effective pressure developed by Domenico. Domenico, S.N., ''Rock Lithology and Porosity Determination from Shear and compressional Wave Velocity,'' Geophysics, Vol. 49, No. 9, Aug. 1984, pp. 1188-1195. In-situ porosities are significantly greater than the core-derived values. Sources of the discrepancy may arise from (i) the underestimation of porosity that can result when Boyle's Law measurements are made on low-permeability core and (ii) the application of Dominico's relationship, which is developed for clean sands, to the mixed sandstone and shale lithologies represented at the MWX site. Values for Young's modulus and Poisson's ratio derived from crosswell measurements are comparable to values obtained from core. Apparent seismic Q measured in situ between wells is lower than Q measured on core and clearly shows the heterogeneity of sandstone deposited in a fluvial environment. 16 refs., 4 figs., 2 tabs.

  20. In situ measurements of thunderstorm electrical properties

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.

    1982-01-01

    An airplane sensor to measure the charge, size and two dimensional shape of precipitation particles and large cloud particles was developed. The basic design of the instrument includes: the transducers and analog electronics, the analog to digital conversion electronics and a microprocessor based system to run the electronics and load the digital data onto magnetic tape. Prototype instrumentation for the proposed lightning mapper satellite was tested by flying it in a U-2 aircraft over severe storms in Oklahoma. Flight data are compared to data from ground based instruments.

  1. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  2. In-situ stress measurements during drilling

    SciTech Connect

    Daneshy, A.A.; Chisholm, P.T.; Cox, R.; Magee, D.; Slusher, G.

    1984-09-01

    This paper describes results of six microfracturing experiments in a gas well in South Texas. The experiments were conducted in open-hole and during the drilling operation. Microfracturing consisted of pumping very small volumes of drilling mud (tens of gallons) at very low rates (3-30 gpm). Three of these microfractures extended below the bottom of the hole and were cored out while obtaining oriented cores. Created fracture orientation was obtained from the fractures observed in the oriented core. Several instantaneous shut-in pressures were recorded in each zone. These showed variations of about 200-300 psi. This magnitude change is attributable to changes in the mechanical properties of each formation. Measured values of instantaneous shut-in pressure did not show any trend with lithology (shale or sandstone), mechanical properties, or tensile strength.

  3. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  4. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  5. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    USGS Publications Warehouse

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  6. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel S.; Wright, Dana L.

    2013-01-01

    Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger. PMID:23783738

  7. IN SITU FIELD PORTABLE FINE PARTICLE MEASURING DEVICE

    EPA Science Inventory

    The report describes the design, development, and testing of an in situ fine particle measuring device--the Fine Particle Stack Spectrometer System (FPSSS). It is a laser-fed optical system with detection by near-forward light scattering. Sample volume is established by a high-re...

  8. IN SITU Device for Real-Time Catalyst Deactivation Measurements

    SciTech Connect

    Fossil Energy Research

    2008-03-31

    SCR catalyst management has become an important operations and maintenance activity for coal-fired utility boilers in the United States. To facilitate this activity, a method to determine Catalyst Activity in situ is being developed. This report describes the methodology and presents the results of a two ozone season demonstration conducted at Alabama Power Company's Gorgas Unit 10 during the 2005 and 2006 ozone seasons. The results showed that the in situ measurements are in good agreement with the laboratory measurements and the technique has some advantages over the traditional laboratory method of determining Catalyst Activity and Reactor Potential. SCR Performance is determined by the overall Reactor Potential (the product of the Catalyst Activity and the available surface area per unit of flue gas). The in situ approach provides a direct measurement of Reactor Potential under actual operating conditions, whereas laboratory measurements of Catalyst Activity need to be coupled with estimates of catalyst pluggage and flue gas flowrate in order to assess Reactor Potential. The project also showed that the in situ activity results can easily be integrated into catalyst management software to aid in making informed catalyst decisions.

  9. European methodology for testing the airborne sound insulation characteristics of noise barriers in situ: experimental verification and comparison with laboratory data

    PubMed

    Garai; Guidorzi

    2000-09-01

    In the frame of the 1994-1997 Standard, Measurement and Testing program, the European Commission funded a research project, named Adrienne, to define new test methods for measuring the intrinsic characteristics of road traffic noise reducing devices in situ. The research team produced innovative methods for testing the sound reflection/absorption and the airborne sound insulation characteristics of noise barriers. These methods are now under consideration at CEN (European Committee for Standardization), to become European standards. The present work reports a detailed verification of the test method for airborne sound insulation over a selection of 17 noise barriers, representative of the Italian and European production. The samples were tested both outdoors, using the new Adrienne method, and in laboratory, following the European standard EN 1793-2. In both cases the single number rating for airborne sound insulation recommended by the European standard was calculated. The new method proved to be easy to use and reliable for all kinds of barriers. It has been found sensitive to quality of mounting, presence of seals, and other details typical of outdoor installations. The comparison between field and laboratory results shows a good correlation, while existing differences can be explained with the different sound fields and mounting conditions between the outdoor and laboratory tests. It is concluded that the Adrienne method is adequate for its intended use. PMID:11008808

  10. The Relationship Between Fossil and Dairy Greenhouse Gas Emissions and Complex Urban Land-Use Patterns by In Situ and Remote Sensing Data from Surface Mobile, Airborne, and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Kuze, A.; Buckland, K. N.; Butz, A.; Deguchi, A.; Eastwood, M. L.; Fischer, M. L.; Frash, J.; Fladeland, M. M.; Gore, W.; Iraci, L. T.; Johnson, P. D.; Kataoka, F.; Kolyer, R.; Leen, J. B.; Quattrochi, D. A.; Shiomi, K.; Suto, H.; Tanaka, T.; Thompson, D. R.; Yates, E. L.; Van Damme, M.; Yokota, T.

    2015-12-01

    The GOSAT-COMEX-IASI Experiment (Greenhouse gases Observing SATellite-CO2and Methane EXperiment) demonstrated a novel approach to airborne-surface mobile in situ data fusion for interpretation and validation of satellite and airborne remote sensing data of greenhouse gases and direct calculation of flux. Key data were collected for the Chino Dairy in the Los Angeles Basin, California and for the Kern River Oil Fields adjacent to Bakersfield, California. In situ surface and remote sensing greenhouse gas and ammonia observations were compared with IASI and GOSAT retreivals, while hyperspectral imaging data from the AVIRIS, AVIRIS NG, and Mako airborne sensors were analyzed to relate emissions and land use. Figure - platforms participating in the experiment. TANSO-FTS aboard the Ibuki satellite (GOSAT) provided targeted pixels to measure column greenhouse gases. AMOG is the AutoMObile Gas Surveyor which supports a suite of meteorology and in situ trace gas sensors for mobile high speed measurement. AVIRIS, the Airborne Visual InfraRed Imaging Spectrometer aboard the NASA ER-2 airplane collected hyperspectral imaging data at 20 m resolution from 60,000 ft. Mako is a thermal infrared imaging spectrometer that was flown on the Twin Otter International. AJAX is a fighter jet outfitted for science sporting meteorology and greenhouse gas sensors. RAMVan is an upward looking FTIR for measuring column methane and ammonia and other trace gases.

  11. Compact airborne lidar for tropospheric ozone: description and field measurements.

    PubMed

    Ancellet, G; Ravetta, F O

    1998-08-20

    An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5-4-km) and upper tropospheric (4-12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10-15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone. PMID:18286036

  12. Tracing arctic hydrology with observations of water vapor isotopes from in situ, airborne, and satellite platforms

    NASA Astrophysics Data System (ADS)

    Cherry, J. E.; Klein, E. S.; Herman, R. L.; Young, J. M.; Leffler, J.; Worden, J.; Welker, J. M.

    2014-12-01

    During 2013, a multi-scale campaign was undertaken on Alaska's North Slope to characterize the sources and mixing of water in the atmosphere, surface waters, and ecosystems through the use of water vapor isotopes. A 3-m micrometerological tower was installed at the Toolik Lake Field Station in Northern Alaska in late winter that collected continuous measurements of (δ2H and δ18O) at four levels (surface, in canopy, above canopy, and at 3 m) from early May to late August using a Picarro laser spectrometer. A second Picarro instrument flew onboard a research aircraft, sampling water vapor at altitudes from 100 to 5000 m during three campaigns (June, July, August). These campaigns were coordinated with special collections from the Tropospheric Emissions Spectrometer (TES) onboard the Aura satellite. Finally, water isotopes from a database of measurements of surface waters and vegetation were also used to describe a climatological isoscape. Measurements were compared across spatial and temporal scales and numerical weather model trajectories were used to help analyze vapor source regions and modes of variability. There were three critical findings: a) in situ, continuous water vapor isotope δ2H, δ18O and d-excess values reflected the diurnal patterns of transpiration by moist tussock tundra and the daily to weekly variation in synoptic climatology associated with switching meteoric moisture sources; b) aircraft measurements suggested that the traceable isotopic signature of the ecohydrosphere may be limited to near ground measurements in the Arctic; c) simultaneous TES water vapor isotope values were significantly recalibrated by the aircraft measurements, showing a-priori algorithms need adjusting in the Arctic. Collectively, this multiscale approach reflects the temporal and spatial complexity of the Alaskan water isotope cycle and the value of stationary and mobile research platform coordination.

  13. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  15. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  16. In situ and remote measurements of ions escaping from Venus

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.

    2013-12-01

    Venus is thought to lose a large fraction of its atmosphere in the form ions, mainly via pickup. The relative loss rate of the exosphere as neutrals or ions is not known, nor is the flux of escaping ions well constrained. Knowledge of these processes will shed light on the role an intrinsic magnetic field has in atmospheric erosion. We use the complementary in-situ plasma and energetic neutral atom (ENA) measurements from the Venus Express (VEx) spacecraft in order to constrain the ion escape. VEx completed about 2500 orbits to date and reached altitudes as low as 200km. The ASPERA/IMA instrument measured directional proton and oxygen ion spectra in the 10eV to 40keV range. We bin the data accumulated over the mission in space and bulk flow direction, yielding a direct measure of the local ion escape flux. While such in-situ measurements provide data without ambiguity, they are limited by the orbital coverage. This is why we include remote ENA measurements from the ASPERA/NPD (100eV to 10keV) instrument to our study. ENAs are created when escaping ions charge exchange with the high atmosphere atoms or molecules. We have done an exhaustive analysis of the data, excluding time periods of instrument contamination. Most ENA emission originates from low altitudes above Venus' limb. These measurements will be compared with the in-situ data, which allows constraining the atmospheric density at high altitudes. Interestingly, there are also ENA emissions from other directions, which were not sampled in-situ. This allows us to put a lower limit to the escape from these regions.

  17. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  18. In situ surface roughness measurement during PECVD diamond film growth

    SciTech Connect

    Zuiker, C.D.; Gruen, D.M.; Krauss, A.R.

    1995-06-01

    To investigate the development of surface morphology and bulk optical attenuation in diamond films, we have followed diamond film growth on silicon by in-situ laser reflection interferometry in a microwave plasma chemical vapor deposition system. A model for the interpretation of the reflectivity data in terms of film thickness, rms surface roughness and bulk losses due to scattering and absorption is presented. Results are compared with ex situ measurements of these quantities and found to be in good agreement.

  19. Transport into the Northern Hemisphere lowermost stratosphere revealed by in situ tracer measurements

    NASA Astrophysics Data System (ADS)

    Ray, Eric A.; Moore, Fred L.; Elkins, James W.; Dutton, Geoffrey S.; Fahey, David W.; VöMel, Holger; Oltmans, Samuel J.; Rosenlof, Karen H.

    1999-11-01

    The Lightweight Airborne Chromatograph Experiment (LACE) has made in situ measurements of several long-lived trace gases in the upper troposphere and lower to middle stratosphere as part of the Observations of the Middle Stratosphere (OMS) balloon program. The tracers measured by LACE include several photolytic species (CFC-11, CFC-12, and halon-1211) as well as SF6. LACE measurements of these long-lived tracers as well as nearly simultaneous measurements of water vapor and CO2 are used to investigate transport into the lowermost stratosphere, a region where few in situ measurements exist. The measured photolytic species and water vapor are used in a simple mass balance calculation to estimate the mixture of tropospheric and overworld (θ>380 K) air in the lowermost stratosphere. In the northern midlatitudes during September 1996, most of the air in the lowermost stratosphere sampled at the flight location (34.5°N) was transported quasi-isentropically from the troposphere. Measurements from both a May 1998 midlatitude flight and a June 1997 high-latitude flight (64.5°N) revealed the air sampled in the lowermost stratosphere to be dominated by downward advection from the overworld. Atmospheric SF6 and CO2 can uniquely reveal timescales and spatial scales of transport due to these species' large growth rates and subsequent latitudinal surface and free tropospheric gradients. Measurements in the lowermost stratosphere from the September northern midlatitude flight coupled with surface measurements of these species revealed a transport timescale of no more than 1.5 months from the surface to the lowermost stratosphere. The SF6 and CO2 mixing ratios were also consistent with mostly Northern Hemisphere tropospheric air in the lowermost stratosphere. These results point out the usefulness of high-resolution in situ measurements of long-lived tracers to help determine timescales and spatial scales of transport in the region of the upper troposphere and lowermost

  20. In situ measurement of tritium permeation through stainless steel

    SciTech Connect

    Walter G. Luscher; David J. Senor; Kevin K. Clayton; Glen R. Longhurst

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 degrees C and 330 degrees C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 degrees C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  1. In situ measurement of tritium permeation through stainless steel

    NASA Astrophysics Data System (ADS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  2. First Airborne Laser Remote Measurements of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobbs, M. E.; Dobler, J.; Kooi, S.; Choi, Y.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2008-12-01

    A unique, multi-frequency, single-beam, laser absorption spectrometer (LAS) that operates at 1.57 μm has been developed for a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A prototype of the space-based LAS system was developed by ITT, and it has been successfully flight tested in five airborne campaigns conducted in different geographic regions over the last three years. Flight tests were conducted over Oklahoma, Michigan, New Hampshire, and Virginia under a wide range of atmospheric conditions. Remote LAS measurements were compared to high-quality in situ measurements obtained from instrumentation on the same aircraft on spirals under the ground track of the LAS. LAS flights were conducted over a wide range of land and water reflectances and in the presence of scattered clouds. An extensive data set of CO2 measurements has been obtained for evaluating the LAS performance. LAS CO2 measurements with a signal-to-noise in excess of 250 were obtained for a 1-s average over land and for a 10-s average over water. Absolute comparisons of CO2 remote and in situ measurements showed agreement over a range of altitudes to better than 2 percent. LAS oxygen (O2) measurements, which are needed to convert LAS CO2 density measurements to CO2 mixing ratios (XCO2), have been made in the 1.26-μm region in horizontal ground-based experiments and in initial flight tests. Details of flight test campaigns and measured versus modeled results are presented in this paper.

  3. IN-SITU MEASUREMENT OF TRITIUM PERMEATION THROUGH STAINLESS STEEL

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  4. In Situ Measurement of Tritium Permeation Through Stainless Steel

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292° and 330°C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330°C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  5. Dissolved-oxygen quenching of in-situ fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Chudyk, Wayne; Tonaszuck, David; Pohlig, Kenneth

    1993-04-01

    In-situ fluorescence measurements of aromatic organic ground water contaminants do not always agree with gas chromatographic methods. Dissolved oxygen quenching of fluorescence may be an interferant in field measurements. Two standard fluorescent aromatics, quinine sulfate and naphthalene, were evaluated in this study. Over the range of dissolved oxygen concentrations expected to be encountered in the field, no effects of oxygen quenching on fluorescence of these compounds was observed. Quenching of quinine sulfate fluorescence by sodium chloride was observed using this system. Sodium chloride quenching was shown to follow the Stern-Volmer relation.

  6. In situ refractometry for concentration measurements in refrigeration systems

    SciTech Connect

    Newell, T.A.

    1997-12-31

    An in situ refractometer was developed that is capable of measuring both the concentrations of oil in refrigerants, and the concentrations of aqueous coolant brines. A description of the technique, and example data are presented for R-134a/PAG oil, aqueous ethylene glycol, and aqueous propylene glycol solutions. The R-134a/PAG oil sensor data show a measurement sensitivity of less than 0.1% oil in the refrigerant, although error between data sets shows an uncertainty of approximately {+-}0.8%. Ethylene glycol and propylene glycol data show high signal level variations due to the large variation of the index of refraction between water and the glycols.

  7. AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. A Titan airplane mission concept

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Ádámkovics, Máté; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2012-03-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments—2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector—AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel `gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so

  8. Development of in-situ micro-debris measurement system

    NASA Astrophysics Data System (ADS)

    Nakamura, Maki; Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Hanada, Toshiya; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Tetsuo; Hasegawa, Sunao; Kobayashi, Masanori

    2015-08-01

    The in-situ debris environment awareness system has been developed. The objective of the system is to measure small debris (between 100 μm and several cm) in orbit. The orbital distribution and the size distribution of the debris are not well understood. The size distribution is difficult to measure from the ground, although the size distribution is very important for the risk evaluation of the impact of debris on spacecraft. The in-situ measurement of the size distribution is useful for: (1) verification of meteoroid and debris environment models, (2) verification of meteoroid and debris environment evolution models, (3) real time detection of unexpected events, such as explosions and/or collisions on an orbit. This paper reports the development study of the in-situ debris measurement system and shows demonstration experiments and their results to describe the performance of the micro-debris sensor system. The sensor system for monitoring micro-debris with sizes ranging from 100 μm to a few mm must have a large detection area, while the constraints of space deployment require that these systems be low in mass, low in power, robust and have low telemetry requirements. For this reason, we have been developing a simple trans-film sensor. Thin and conductive stripes (copper) are formed with fine pitch (100 μm) on a thin film of nonconductive material (12.5-μm thick polyimide). A hypervelocity micro-particle impact is detected when one or more stripes are severed by perforation of the film. We designed a debris detector specialized for measuring the micro-debris size and collision rate. We then manufactured and calibrated the detector.

  9. In-Situ Dust Measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Gruen, E.; Hamilton, D. P.

    2003-04-01

    Jupiter's ring system -- the archetype of ethereal ring systems -- consists of at least three components: the main ring, the vertically extended halo and the gossamer ring(s). The small moonlets Thebe and Amalthea orbit Jupiter within the gossamer ring region and structure in the intensity obtained from imaging observations indicates that these moons are the dominant sources of the gossamer ring material. The current picture implies that particles ejected from a source moon evolve inward under the Poynting-Robertson drag. Beyond Thebe's orbit, a very faint outward extension of the gossamer ring has also been observed which is not yet explained. Typical grain radii derived from optical imaging are a few micrometers. In November 2002 the Galileo spacecraft traversed the gossamer ring for the first time and had a close flyby at Amalthea. With the in-situ dust detector on board, dust measurements were collected throughout the gossamer ring and close to Amalthea. Several hundred impacts of dust grains were recorded and the data sets (impact charges, rise times, impact directions, etc.) of about 70 impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly provide dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. This allows to test and refine current models of ring particle dynamics (see D. P. Hamilton et al., this conference). In particular, the direct measurement of grain sizes and dust spatial density in different regions of the gossamer ring allow to better constrain the forces dominating the grains' dynamics. The Galileo measurements in Jupiter's gossamer ring pave the way towards the in-situ dust measurements with Cassini in Saturn's E ring beginning in 2004.

  10. Galileo in-situ dust measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Grün, E.; Hamilton, D. P.

    2003-05-01

    Jupiter's ring system -- the archetype of ethereal ring systems -- consists of at least three components: the main ring, the vertically extended halo and the gossamer ring(s). The small moonlets Thebe and Amalthea orbit Jupiter within the gossamer ring region and structure in the intensity obtained from imaging observations indicates that these moons are the dominant sources of the gossamer ring material. The current picture implies that particles ejected from a source moon evolve inward under the Poynting-Robertson drag. Beyond Thebe's orbit, a very faint outward extension of the gossamer ring has also been observed which is not yet explained. Typical grain radii derived from optical imaging are a few micrometers. In November 2002 the Galileo spacecraft traversed the gossamer ring for the first time and had a close flyby at Amalthea. With the in-situ dust detector on board, dust measurements were collected throughout the gossamer ring and close to Amalthea. Several hundred impacts of dust grains were recorded and the data sets (impact charges, rise times, impact directions, etc.) of about 90 impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly provide dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. This allows to test and refine current models of ring particle dynamics (see D. P. Hamilton et al., this conference). In particular, the direct measurement of grain sizes and dust spatial density in different regions of the gossamer ring allow to better constrain the forces dominating the grains' dynamics. The Galileo measurements in Jupiter's gossamer ring pave the way towards the in-situ dust measurements with Cassini in Saturn's E ring beginning in 2004.

  11. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  12. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer.

    PubMed

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-20

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4pi) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54 degrees 49' S, 68 degrees 18' W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2pi FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation. PMID:12269557

  13. Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Ravegnani, Fabrizio; Giovanelli, Giorgio; Bortoli, Daniele; Bonafè, Ubaldo; Kostadinov, Ivan; Oulanovsky, Alexey

    2002-09-01

    An airborne UV-visible spectrometer, the Gas Analyzer Spectrometer Correlating Optical Differences, airborne version (GASCOD/A4π) was successfully operated during the Airborne Polar Experiment, Geophysica Aircraft in Antarctica airborne campaign from Ushuaia (54°49'S, 68°18'W), Argentina in southern spring 1999. The instrument measured scattered solar radiation through three optical windows with a narrow field of view (FOV), one from the zenith, two from the horizontal, as well as actinic fluxes through 2π FOV radiometric heads. Only a few airborne measurements of scattered solar radiation at different angles from the zenith are available in the literature. With our configuration we attempted to obtain the average line-of-sight concentrations of detectable trace gases. The retrieval method, based on differential optical absorption spectroscopy, is described and results for ozone are shown and compared with measurements from an in situ instrument as the first method of validation.

  14. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  15. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  16. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  17. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  18. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  19. In situ measurements of the mesosphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Crosky, C.

    1976-01-01

    The operation of a subsonic, Gerdien condenser probe for in situ measurements of the mesosphere and stratosphere is presented. The inclusion of a flashing Lyman alpha ultraviolet source provides an artifically produced ionization of particular constituents. Detailed theory of operation is presented and the data results from two flights are shown. A great deal of fine structure in mobility is observed due to the presence of various hydrated positive ions. The effect of the Lyman alpha source in the 35 km region was to dissociate a light hydrate ion rather than produce additional ionization. At the 70 km region, photodissociation of the heaviest ions (probably ice crystals) was also observed.

  20. Saturn's E ring: in-situ measurements and modelling

    NASA Astrophysics Data System (ADS)

    Beckmann, U.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Helfert, S.; Grün, E.

    2007-08-01

    Since July 1st 2004, the Cassini spacecraft has been exploring the Saturnian system, which is distinguished by a pronounced ring system. In particular, Saturn's diffuse E ring is the largest planetary ring of the solar system ranging from 3RS (Saturn's radius RS = 60 330 km) to approximately Titan's orbit. The vertical ring thickness is 8 000 km at Enceladus orbit and 15 000 km at the outer rim of the ring. The ring is not only remarkable for its extend but also for its narrow size distribution. As the particle size distribution is due to grain dynamics, knowledge of the dynamical properties of the ring particles is essential for understanding the ring formation. The Cosmic Dust Analyser (CDA) on Cassini measures the mass, speed, charge, and elemental composition of individual dust particles hitting the detector. The purpose of the High Rate Detector (HRD) sub-unit is to record the dust flux within the densest regions of the E ring. Additionally, the dust ring could be observed by remote sensing instruments, either by cameras on board the spacecraft or by earth bound telescopes during a ring plane crossing. Combination of both methods will leads not only to a fully explanation of the E ring but also to a better understanding of images from dust disk, where in-situ measurements are impossible. Here, we present basic findings of the CDA in-situ observations supported by model calculations of the dust dynamics. We show, that there are some mismatches between in-situ and remote sensing observations.

  1. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  2. In situ measurements of magnetic nanoparticles after placenta perfusion

    NASA Astrophysics Data System (ADS)

    Müller, Robert; Gläser, Marcus; Göhner, Claudia; Seyfarth, Lydia; Schleussner, Ekkehard; Hofmann, Andreas; Fritzsche, Wolfgang

    2015-04-01

    Nanoparticles (NP) present promising tools for medical applications. However, the investigation of their spatial and temporal distribution is hampered by missing in-situ particle detection and quantification technologies. The placenta perfusion experiment represents an interesting model for the study of the particle distribution at a biological barrier. It allows the ex-vivo investigation of the permeability of the placenta for materials of interest. We introduce an approach based on a magnetic system for an in situ measurement of the concentration of magnetic NPs in such an experiment. A previously off-line utilized magnetic readout device (sensitivity of ≈10-8 Am2) was used for long term measurements of magnetic NP of 100-150 nm size range in a closed circuit of a placenta perfusion. It represents a semiquantitative approach. The behavior of particles in the placenta and in the measurement system was studied, as well as the influence of particle surface modifications. The results suggest a transfer of a low amount of particles from the maternal to the fetal blood circuit.

  3. Phase retrieval in situ measurement for large aperture parabolic mirror

    NASA Astrophysics Data System (ADS)

    Ding, Lingyan; Wu, Yulie; Li, Shengyi; Liao, Yang; Shu, Yong

    2010-10-01

    Phase retrieval is a promising method for in-situ metrology and has been applied to spherical mirror surface metrology successfully. To meet the requirement of in-situ measurement in manufacturing large aperture parabolic mirror, a new method using phase retrieval technology is developed. In this method, an approximately parallel beam is used to illuminate the large parabolic mirror. The beam is produced by a point light source far away from the tested mirror. Then, intensity of diffraction patterns near the focus is measured by CCD. The experiment of testing a parabolic mirror with aperture 400mm and radius of curvature at vertex 2789.7mm is described. And some advices of improving the setup are presented. Errors brought by the approximately parallel beam are compensated by an algorithm derived from GS iterative algorithm. Phase retrieval result is consistent with that measured by interferometer sub-aperture stitching in error distribution, PV value and RMS value. The experiment shows that this method features simple optical path, good anti-vibration ability and acceptable accuracy.

  4. Statistical modeling of in situ hiss amplitudes using ground measurements

    NASA Astrophysics Data System (ADS)

    Golden, D. I.; Spasojevic, M.; Li, W.; Nishimura, Y.

    2012-05-01

    Plasmaspheric hiss is a naturally occurring extremely low frequency electromagnetic emission that is often observed within the Earth's plasmasphere. Plasmaspheric hiss plays a major role in the scattering and loss of electrons from the Earth's radiation belts, thereby contributing to the maintenance of the slot region between the inner and outer electron belt. Traditionally, in situ satellite observations have been the measurement modality of choice for studies of plasmaspheric hiss due to their ability to directly measure the hiss source region. However, satellite studies are relatively short-lived and very few satellite receivers remain operational for an entire 11-year solar cycle. Ground stations, in contrast, may collect multiple solar cycles' worth of data during their lifetime, yet they cannot directly measure the hiss source region. This study aims to determine the extent to which measurements of hiss at midlatitude ground stations may be used to predict the mean amplitude of in situ measurements of plasmaspheric hiss. We use coincident measurements between Palmer Station, Antarctica (L = 2.4, 50°S invariant latitude) and the THEMIS spacecraft from June 2008 through May 2010, during solar minimum. Using an autoregressive multiple regression model, we show that in the local time sector from 00 < MLT < 12, when the ionosphere above Palmer Station is in darkness and hiss is observed at Palmer, the amplitude of plasmaspheric hiss observed by the THEMIS spacecraft is 1.4 times higher than when hiss is not observed at Palmer. In the same local time sector when the ground station is in daylight and hiss is observed, the THEMIS observed amplitudes are not significantly different from those when hiss is not observed on the ground. A stronger relationship is found in the local time sector from 12 < MLT < 24 where, when Palmer is in daylight and hiss is observed, THEMIS plasmaspheric hiss amplitudes are 2 times higher compared to when hiss is not observed at Palmer

  5. In situ Micrometeorological Measurements during RxCADRE

    NASA Astrophysics Data System (ADS)

    Clements, C. B.; Hiers, J. K.; Strenfel, S. J.

    2009-12-01

    The Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) was a collaborative research project designed to fully instrument prescribed fires in the Southeastern United States. Data were collected on pre-burn fuel loads, post burn consumption, ambient weather, in situ atmospheric dynamics, plume dynamics, radiant heat release (both from in-situ and remote sensors), in-situ fire behavior, and select fire effects. The sampling was conducted at Eglin Air Force Base, Florida, and the Joseph W. Jones Ecological Research Center in Newton, Georgia, from February 29 to March 6, 2008. Data were collected on 5 prescribed burns, totaling 4458 acres. The largest aerial ignition totaled 2,290 acres and the smallest ground ignition totaled 104 acres. Quantifying fire-atmospheric interactions is critical for understanding wildland fire dynamics and enhancing modeling of smoke plumes. During Rx-CADRE, atmospheric soundings using radiosondes were made at each burn prior to ignition. In situ micrometeorological measurements were made within each burn unit using five portable, 10-m towers equipped with sonic and prop anemometers, fine-wire thermocouples, and a carbon dioxide probes. The towers were arranged within the burn units to capture the wind and temperature fields as the fire front and plume passed the towers. Due to the interaction of fire lines following ignition, several of the fire fronts that passed the towers were backing fires and thus less intense. Preliminary results indicate that the average vertical velocities associated with the fire front passage were on the order of 3-5 m s-1 and average plume temperatures were on the order of 30-50 °C above ambient. During two of the experimental burns, radiosondes were released into the fire plumes to determine the vertical structure of the plume temperature, humidity, and winds. A radiosonde released into the plume during the burn conducted on 3 March 2008 indicated a definite plume boundary in the

  6. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  7. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  8. Mirror distortion measurements with an in-situ LTP

    NASA Astrophysics Data System (ADS)

    Takacs, Peter Z.; Qian, Shinan; Randall, Kevin J.; Yun, Wenbing; Li, Haizhang

    1998-11-01

    An in-situ long trace profiler developed at Brookhaven National Laboratory under the auspices of a CRADA with Continental Optical Corporation has successfully measured thermal distortion on a side-cooled mirror in a beam line at the Advanced Photon Source. The instrument scanned the central 90 mm of the 200 mm long mirror through a vacuum window while the mirror was subjected to heat loading from the synchrotron beam. Results clearly show transient effects occurring when the mirror is first illuminated that relax after about 15 minutes, in accord with finite element thermal calculations. The steady state curvature of the surface is measured to be slightly concave with an additional 5 km radius relative to the initial nominal curvature of about 1 km. The magnitude of this steady state condition was not expected and was not predicted by the calculations.

  9. In situ laser reflectance measurement of diffuse surfaces.

    PubMed

    Chan, W S; Khan, S U

    1978-08-01

    Report is made on an in situ method of laser reflectance measurement of diffuse surfaces by using a GaAs laser and off-the-shelf optical components not involving radiation integration over a hemisphere as with most conventional reflectometers. The design features and limitations are described. Several diffuse surfaces were evaluated by this method, and the reflectance results obtained were in good agreement with those determined by the method of integrating sphere that used MgCO(3) surface as a standard. The main advantages of this method are: the elimination of the need of a surface standard; the avoidance of having the surfaces in close contact with the measuring equipment; the accuracy better than 10%; and the relatively straightforward alignment. PMID:20203783

  10. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  11. Galileo In-Situ Dust Measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Hamilton, D. P.; Gruen, E.

    Jupiter's ring system consists of at least three components: the inner main ring, the vertically extended halo and the gossamer ring(s) further out. The small moons Thebe and Amalthea orbit Jupiter within the gossamer ring and are believed to be the sources of gossamer ring material. A very faint ring extension has also been observed beyond Thebe's orbit. On 5 November 2002 the Galileo spacecraft traversed Jupiter's gossamer ring system for the first time. High-resolution dust data were obtained with the dust detector on board down to 2.33 R_J , i.e. well inside Amalthea's orbit. A second ring passage occurred on 21 September 2003, a few hours before Galileo impacted Jupiter. This time, dust data were successfully received down to Amalthea's orbit at 2.5 R_J , however, with much reduced time-resolution. Several thousand dust impacts were counted during both ring passages, and the full data sets (impact charges, rise times, impact directions, etc.) of about 90 dust impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly measure dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. Our as yet preliminary analysis %of the gossamer ring data implies particle sizes in the sub-micron and micron range. The size distribution -- increasing towards smaller particles -- is similar in the Thebe ring and the ring's outer extension, whereas in the Amalthea ring it is steeper. Dust number densities are about 104 - 106 km-3 . Our dust data allow for the first time to compare in-situ measurements with the results optical obtained from the inversion of optical images. It appears that small sub-micron grains dominate the number density whereas larger particles with at least a few micron radii contribute most to the optical depth. The dust density shows previously unrecognised fine-structure in the ring between

  12. In-Situ Environmental Measurements Needed for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Wilson, G. R.; Murphy, J. R.; Banfield, D.; Barnes, J. R.; Farrell, W. M.; Haberle, R. M.; Magalhaes, J.; Paige, D. A.; Tillman, J. E.

    2000-01-01

    Existing measurements and modeling studies indicate that the climate and general circulation of the thin, predominately CO2 Martian atmosphere are characterized by large-amplitude variations with a wide range of spatial and temporal scales. Remote sensing observations from Earth-based telescopes and the Mariner 9, Viking, Phobos, and Mars Global Surveyor (MGS) orbiters show that the prevailing climate includes large-scale seasonal variations in surface and atmospheric temperatures (140 to 300 K), dust optical depth (0.15 to 1), and water vapor (10 to 100 precipitable microns). These observations also provided the first evidence for episodic regional and global dust storms that produce even larger perturbations in the atmospheric thermal structure and general circulation. In-situ measurements by the Viking and Mars Pathfinder Landers reinforced these conclusions, documenting changes in the atmospheric pressure on diurnal (5%) and seasonal (>20%) time scales, as well as large diurnal variations in the near-surface temperature (40 to 70 K), wind velocity (0 to 35 m/s), and dust optical depth (0.3 to 6). These in-situ measurements also reveal phenomena with temporal and spatial scales that cannot be resolved from orbit, including rapid changes in near-surface temperatures (+/- 10 K in 10 seconds), large near-surface vertical temperature gradients (+/- 15 K/meter), diurnally-varying slope winds, and dust devils . Modeling studies indicate that these changes are forced primarily by diurnal and seasonal variations in solar insolation, but they also include contributions from atmospheric thermal tides, baroclinic waves (fronts), Kelvin waves, slope winds, and monsoonal flows from the polar caps.

  13. Micro-sensors for in-situ meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.

    1993-01-01

    Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.

  14. Tidal Front Characterization using Airborne Imagery and In-situ Hydrographic Data

    NASA Astrophysics Data System (ADS)

    Scott, N. V.; Hooper, B. A.; Anderson, S. P.

    2011-12-01

    Tidal flats are highly dynamic areas with strong horizontal and vertical density gradients and energetic currents capable of shaping bathymetry, as well as modulating the salinity, temperature, and sediment concentration of the surrounding waters. As part of the ONR Tidal Flat Dynamics program, Areté Associates' Airborne Remote Optical Spotlight System - Multispectral Polarimeter (AROSS-MSP) was flown over a tidal flat in Skagit Bay, Washington to characterize the spatial structure of the velocities and the sediment concentrations. Time-series imagery reveals a robust surface front generated during the flood to ebb tidal cycle. The front is characterized by different optical properties on either side of a foam line, and by horizontal streaks in water clarity perpendicular to the foam line in the muddier, fresher water (Figure 1). These streaks may be the result of shear instabilities which are given visibility by buoyant fine-grained suspensions. Temperature and salinity time series from data stations in the cross-shelf direction were analyzed via empirical orthogonal functions (EOF). Sudden changes in the trend of first temperature EOF at a place behind the tidal front where abundant fresh water channels meet very cool ocean waters associated with the flood tide suggest mixing. The possibility of cross-shelf variability in mixing is also suggested by the changes in the horizontal Richardson number. The horizontal Richardson number shows a minimum value at the same location as the first temperature EOF suggesting that turbulent shear is large enough to cause mixing.

  15. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  16. In-Situ Measurements of Graphene Mechanics During Annealing

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; de Alba, Roberto; Sebastian, Abhilash; Parpia, Jeevak

    Graphene shows great potential as a material for a new generation of mechanical nanodevices. However, current methodologies used for fabricating graphene structures involve polymer resists for transfer and patterning, which degrades mechanical performance. To improve surface quality, high current or high temperature annealing of graphene is commonly employed. Previous studies of graphene mechanics have focused on performance after annealing or temperature-dependent behavior from 4K-300K. Here we present real-time, in-situ measurements of graphene mechanical resonance during high temperature annealing from 300K-600K. Upon heating, reversible changes in mechanical frequency are indicative of graphene thermal contraction. Discontinuous and irreversible changes are also seen, corresponding to graphene slipping and mass desorption. Both reversible and irreversible changes in quality factor are also observed. Characterizing the effects of annealing on the structural properties of graphene will enable more precise engineering for particular applications, such as mass sensing.

  17. BLT Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flight of STS-119. Additional instrumentation was also installed in order to obtain more spatially resolved measurements. This paper will provide an overview of the BLT FE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high level overview of the in-situ flight data will be presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data.

  18. Fault and anthropogenic processes in central California constrained by satellite and airborne InSAR and in-situ observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul

    2016-07-01

    , but are subject to severe decorrelation. The L-band ALOS and UAVSAR SAR sensors provide improved coherence compared to the shorter wavelength radar data. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. Modeling selected fault transects reveals a distinct change in surface creep and shallow slip deficit from the central creeping section towards the Parkfield transition. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. Groundwater related deformation is spatially and temporally variable and is composed of both recoverable elastic and non-recoverable inelastic components. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We are currently developing poroelastic finite element method models to assess the influence of anthropogenic processes on surface deformation and fault mechanics. Ongoing work is to better constrain both tectonic and non-tectonic processes and understand their interaction and implication for regional earthquake hazard.

  19. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements over a mixed agricultural region

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Baker, B.; Kochendorfer, J.; Dumas, E.; Meyers, T. P.; Guillevic, P. C.; Corda, S.; Muratore, J. F.; Simmons, D.

    2013-12-01

    Land surface temperature (LST) is a key variable in the study of the exchange of energy and water between the land surface and the atmosphere, and it influences land surface physical processes at regional and global scales. With the objective of quantifying the spatial variability and overall representativeness of single-point surface temperature measurements and to improve the accuracy of satellite LST measurements, airborne campaigns were conducted over a mixed agricultural area near Bondville, Illinois during 2012 and 2013. During the campaigns, multiple measurements of surface temperature were made using infra-red temperature sensors at micrometeorological tower sites, which include NOAA's Climate Reference Network (CRN) and nearby flux tower sites, and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, daily LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite-based LST measurements were compared with the in situ, tower-based LST measurements. Observations indicate large spatial and temporal variability of land surface temperature over the Bondville area. Our results show good agreement between in situ, aircraft and satellite measurements. The agreement was better with the LST data from the flux tower than those from CRN tower.

  20. Quantitative comparison of airborne remote-sensed and in situ Rhodamine WT dye and temperature during RIVET & IB09

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.

    2012-12-01

    The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.

  1. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements

    NASA Astrophysics Data System (ADS)

    Baker, B.; Krishna, P.; Meyers, T. P.

    2013-12-01

    and surface temperature (LST) is a key variable used in surface energy budget studies, and in near-real time is assimilated into land surface models for short and medium range forecasts. Observations of LST over multiple years are also critical for climate trend assessment. However, accurate in-situ measurements of LST over continents are not yet available for the whole globe and are not routinely conducted at weather stations. Recently an effort has been underway to validate LST sensed remotely from satellites to the actual measured skin temperature using data from the United States Climate Reference Network (USCRN). The goal of this work is to quantify the spatial variability and the representativeness of the single-point skin temperature measurement already being made at USCRN sites. NOAA/ATDD is collaborating with the University of Tennessee Space Institute's (UTSI) Aviation Systems and Flight Research Department in Tullahoma, TN to utilize an instrumented aircraft to perform measurements of Earth's skin temperature over selected USCRN sites in the continental U.S. Airborne remote sensing is a powerful tool to assess the spatial variability of LST over a location with sufficient sampling density and has the operational flexibility depending on the study requirements. We will present the results from airborne campaigns made concurrently with satellite overpasses over a grassland site and a deciduous forest site, compare the relationship of surface temperature to air temperature at a number of CRN sites and show results of an intercomparison between the JPL reference skin temperature measurement and the CRN sensor.

  2. An intercomparison of airborne nitric acid measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. L.; Hoell, J. M.; Huebert, B. J.; van Bramer, S. E.; Lebel, P. J.; Vay, S. A.; Marinaro, R. M.; Schiff, H. I.; Hastie, D. R.; Mackay, G. I.; Karecki, D. R.

    1990-06-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric acid are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during the summer of 1986. Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a niylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. Intercomparison of investigators' calibration standards were also performed as part of the test protocol. While results were somewhat "soft" and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominately in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. The TDLAS participated in an intercomparison of NO2 instruments (major focus) that was also conducted during the same flights. As a result the TDLAS data set is limited. Further, a significant fraction of the nitric acid measurements were below the TDLAS detection limit (75 pptv as configured for these tests). While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO3 techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO3 at levels often encountered in the

  3. In situ heat exchanger tube fouling thickness measurements using ultrasonics

    NASA Astrophysics Data System (ADS)

    Hirshman, J.; Munier, R. S. C.

    1980-09-01

    The feasibility of establishing a practical microacoustic technique to measure fouling film thickness in situ on typical ocean thermal energy conversion (OTEC) heat exchanger tasks was studied. Seven techniques were studied for this application, including velocity measurements, acoustic diffraction, acoustic interferometer, Doppler flow velocity, pulse echo, critical angle, and surface (shear) wave effects. Of these, the latter five were laboratory tested using conventional microacoustic system components in various configurations. Only the pulse echo technique yielded promising results. On fouled aluminum plates, thin film layers of 40 microns and greater were measured using focused 30 MHz ceramic transducer operated at 25 MHz; this represents a resolution of about 2/3 wavelength. Measurements made on the inside of fouled 1 inch aluminum pipes yielded film thickness of 75 to 125 microns. The thinnest layer resolved was approximately 1-1/4 wavelength. The resolution of slime layer thickness in the magnitudes of OTEC interest (5 to 30 microns) using pulse echo microacoustics will require transducer development.

  4. Evaporation Measured In Situ by Sensible Heat Balance

    NASA Astrophysics Data System (ADS)

    Heitman, Josh; Xiao, Xinhua; Sauer, Thomas; Ren, Tusheng; Horton, Robert

    2016-04-01

    Measurement of evaporation independent from evapotranspiration remains a major challenge for quantifying water fluxes in the soil-plant-atmosphere system. Methodology based on soil sensible heat balance (SHB) has been developed to measure in situ, sub-surface soil water evaporation with heat-pulse sensors. Soil sensible heat flux and change in heat storage are measured at multiple depths near the soil surface, and a simple energy balance calculation is applied to determine latent heat flux (i.e., evaporation) as a residual. For bare surface conditions, comparison of SHB to micrometerological (Bowen ratio) and micro-lysimeter approaches indicates strong correlation (r2 = 0.96) with near 1:1 relationship and root mean square error of 0.2 mm/d. Recent efforts to apply SHB methodology in row-crop (maize) and vineyard systems demonstrate the potential for quantifying evaporation separate from evapotranspiration. For the maize system, SHB evaporation estimates differed from micro-lysimeters by < 0.2 mm/d. The SHB approach is one of very few measurement approaches that may be applied to partition evaporation from evapotranspiration.

  5. Temperature and wind measurements and model atmospheres of the 1989 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Bui, T. P.; Scott, S. G.; Bowen, S. W.; Dean-Day, J.

    1990-01-01

    The ER-2 Meteorological Measurement System provides accurate in situ measurements of atmospheric state variables. During the Airborne Arctic Stratospheric Expedition (AASE) the ER-2 flew over the polar region on 14 occasions in January and February, 1989. Vertical temperature profiles, during aircraft takeoff at about 60 deg N and during midflight descent and ascent at high latitudes, are presented. Latitudinal variations of the horizontal wind measurement are illustrated and discussed. Based on observation data, model atmospheres at 60 deg and 75 deg N, representative of the environment of the AASE campaign, are developed.

  6. In Situ Measurements of Meteoric Ions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aikin, Arthur C.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.

  7. In Situ Magnetic Field Measurement using the Hanle Effect

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2016-05-01

    We have developed a simple method of in situ magnetic field mapping near zero points in magnetic fields. It is ideal for measuring trapping parameters such the field gradient and curvature, and should be applicable in most experiments with a magneto-optical trap (MOT) or similar setup. This method works by probing atomic transitions in a vacuum, and is based on the Hanle effect, which alters the polarization of spontaneous emission in the presence of a magnetic field. Unlike most techniques based on the Hanle effect, however, we look only at intensity. Instead of measuring polarization we use the change in directional radiation patterns caused by a magnetic field. Using one of the cooling beams for our MOT, along with a linear polarizer, a narrow slit, and an inexpensive webcam, we measure the three dimensional position of a magnetic field zero point within our vacuum to within +/-1 mm and the gradient through the zero point to an accuracy of 4%. This work was supported by NSF Grant Number PHY-1205736.

  8. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1984-12-01

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3)=53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D/sub 1//sup +/(E):D/sub 2//sup +/(E):D/sub 3//sup +/(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed.

  9. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  10. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to

  11. ISIS: An Instrument for Measuring Erosion Shear Stress In Situ

    NASA Astrophysics Data System (ADS)

    Williamson, Helen; Ockenden, Mary

    1996-01-01

    An instrument for measuring shear stress for erosion in situ(ISIS) has been developed to measure the erosion shear stress of muddy sediments on intertidal mud flats. Erosion shear stress is defined in this paper as the minimum applied bed shear stress required to initiate erosion and remove sediment from the bed surface. An applied shear stress is generated by the flow through and around a specially shaped bell head, which draws water radially across the bed into the centre of the bell head. The applied shear stress is a function of the distance from the bell head to the bed surface and the discharge through the system. The design of ISIS was assisted by the use of a computational numerical flow modelling package. The operating conditions giving the most even shear stress across the whole test section were discharges of 0·01-0·6 ls -1, and bell-to-bed distance of 4-8 mm giving a shear stress of 0·02-5 Nm -2. The ISIS system was calibrated using hot film shear stress probes. The calibration data gave a 92% fit to the calibration function for shear stress. Laboratory measurements with ISIS of the erosion shear stress of mud beds consolidated for c. 1·5 days, showed surface shear stresses of 0·11-0·24 Nm -2. These were very similar to values of surface erosion shear stress measured for the same mud in an annular flume. The ISIS system was used to measure surface erosion shear stresses on the mud flats at Portishead and Blue Anchor Bay in the Severn Estuary, U.K. Surface erosion shear stresses at Portishead were generally in the range 0·2-0·5 Nm -2. The surface erosion shear stresses measured at Blue Anchor Bay, which included mud and sand, ranged between 0·1-1·9 Nm -2.

  12. Hybrid-type temperature sensor for in situ measurement

    SciTech Connect

    Iuchi, Tohru; Hiraka, Kensuke

    2006-11-15

    A hybrid-type surface temperature sensor combines the contact and noncontact methods, which allows us to overcome the shortcomings of both methods. The hybrid-type surface thermometer is composed mainly of two components: a metal film sheet that makes contact with an object and a radiometer that is used to detect the radiance of the rear surface of the metal film, which is actually a modified radiation thermometer. Temperature measurement using the hybrid-type thermometer with a several tens micrometer thick Hastelloy sheet, a highly heat and corrosion resistant alloy, is possible with a systematic error of -0.5 K and random errors of {+-}0.5 K, in the temperature range from 900 to 1000 K. This thermometer provides a useful means for calibration of in situ temperature measurement in various processes, especially in the silicon semiconductor industry. This article introduces the basic idea of the hybrid-type surface sensor, presents experimental results and discussions, and finally describes some applications.

  13. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  14. Nitrate in situ measurements in the northern Japan Sea

    NASA Astrophysics Data System (ADS)

    Kaplunenko, Dmitry D.; Lobanov, Vyacheslav B.; Tishchenko, Pavel Ya.; Shvetsova, Maria G.

    2013-02-01

    The results of nitrate in situ measurements by the In Situ Ultraviolet Spectrophotometer (ISUS MBARI) in the northern part of the Japan Sea are reported. The observations were implemented in three cruises of R/V Akademik M.A. Lavrentyev during 2009-2010 including SoJaBio expedition. The instrument was attached to CTD/water sampling system and thus allowed to measure high resolution vertical profiles of nitrate concentration as well as profiles of water temperature, salinity, dissolved oxygen and chlorophyll-a content down to 1000 m depth. The ISUS data were calibrated using results of chemical analysis of nitrate content in water samples taken at standard depths. Comparison of discrete samples and vertical profiles showed a good correlation of R=0.93 for 240 pairs of data. On a background of general increasing of nitrate concentration with depth the ISUS profiles showed at many stations an existence of local nitrate extremes which form inversions or step-like structure of the profiles. They had a typical vertical scale from a few tens to hundred meters and were observed in various layers below seasonal pycnocline (40-50 m) and down to 1000 m. These anomalies coincide well with the anomalies in dissolved oxygen, temperature and salinity profiles and thus could be explained by mesoscale advections of low nutrient/high oxygen water associated with mixing processes in the shelf/slope area as well as at the frontal zone and mesoscale eddies. High nutrient/low oxygen intrusions were also detected at depth 40-60 m and were associated with high salinity subsurface water transported from the southern part of the sea. However, a process of organic matter remineralization just below pycnocline could be also responsible for increasing nitrate concentration there as well for the formation of local maximum or step-like structure in the subsurface layer (40-150 m) observed at many stations located close to the shelf area. Anomalies of larger vertical extent (up to 200-300 m) were

  15. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be

  16. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  17. Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent.

    PubMed

    Lang, M; Vain, A; Bunce, R G H; Jongman, R H G; Raet, J; Sepp, K; Kuusemets, V; Kikas, T; Liba, N

    2015-03-01

    Habitat surveillance and subsequent monitoring at a national level is usually carried out by recording data from in situ sample sites located according to predefined strata. This paper describes the application of remote sensing to the extension of such field data recorded in 1-km squares to adjacent squares, in order to increase sample number without further field visits. Habitats were mapped in eight central squares in northeast Estonia in 2010 using a standardized recording procedure. Around one of the squares, a special study site was established which consisted of the central square and eight surrounding squares. A Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image was used for correlation with in situ data. An airborne light detection and ranging (lidar) vegetation height map was also included in the classification. A series of tests were carried out by including the lidar data and contrasting analytical techniques, which are described in detail in the paper. Training accuracy in the central square varied from 75 to 100 %. In the extrapolation procedure to the surrounding squares, accuracy varied from 53.1 to 63.1 %, which improved by 10 % with the inclusion of lidar data. The reasons for this relatively low classification accuracy were mainly inherent variability in the spectral signatures of habitats but also differences between the dates of imagery acquisition and field sampling. Improvements could therefore be made by better synchronization of the field survey and image acquisition as well as by dividing general habitat categories (GHCs) into units which are more likely to have similar spectral signatures. However, the increase in the number of sample kilometre squares compensates for the loss of accuracy in the measurements of individual squares. The methodology can be applied in other studies as the procedures used are readily available. PMID:25648761

  18. In situ measurements of ice saturation in young contrails

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Voigt, Christiane; Jeßberger, Philipp; Jurkat, Tina; Schlager, Hans; Schwarzenboeck, Alfons; Klingebiel, Marcus; Thornberry, Troy

    2014-01-01

    Relative humidity with respect to ice (RHi) is a major factor controlling the evolution of aircraft contrails. High-resolution airborne H2O measurements in and near contrails were made at a rate of 4.2 Hz using the novel water vapor mass spectrometer AIMS-H2O with in-flight calibration during the CONtrail, volcano, and Cirrus ExpeRimenT (CONCERT) 2011. Three 2 min old contrails were sampled near 11 km altitude. Independent of the ambient supersaturation or subsaturation over ice, the mean of the RHi frequency distribution within each contrail is shifted toward ice saturation. This shift can be explained by the high ice surface area densities with corresponding RHi relaxation times on the order of 20 s, which lead to the fast equilibration of H2O between the vapor and ice phase. Understanding the interaction of water vapor with ice particles is essential to investigate the life cycle of contrails and cirrus.

  19. Airborne flux measurements of trace species in an Arctic boundary layer

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Sachse, Glen W.; Gregory, Gerald L.; Woerner, Mary A.; Watson, Catherine E.; Hill, Gerald F.; Collins, James E., Jr.

    1992-01-01

    In situ airborne flux values for O3, CO, an CH4 over selected wetlands of Alaska are reported, and airborne CH4 flux measurements are presented for the first time. The source/sink distribution over the Yukon-Kuskokwim Delta (YKD) is qualitatively correlated with surface vegetation type. The CH4 source strength over the YKD ranged from 25 to 85 mg/sq m/d. A spatially averaged, seasonally adjusted source strength of 51 mg/sq m/d was established for the YKD. Indirect CH4 flux estimates obtained over the Alaskan North Slope indicate a much lower source strength. The global CH4 emission from tundra are estimated to be 44 Tg/a at an upper limit. Airborne CO flux measurements over the YKD indicate low negative flux values over the coastal areas, while some positive fluxes were observed in the inland sparsely forested regions. An inspection of the cospectrum of CO with vertical velocity for sample runs in coastal areas indicate the possibility of in situ photochemical destruction/production of CO.

  20. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  1. Assessing methods to measure motor efficiency in situ

    SciTech Connect

    Douglass, J.; Wohlgemuth, C.; Wainwright, G.

    1997-07-01

    Managing electric motor systems is one of the most important aspects of improving reliability and increasing energy efficiency in the industrial environment. Unfortunately, unknown performance data for existing motors often frustrates good motor systems management intentions. Determining motor efficiency is not easy. Nonetheless, several existing methods and dedicated instruments estimated in-situ efficiency well enough to support economic decisions. The off-voltage conditions did not subvert results as much as the authors have expected. However, performance of the different methods varied by the motor under test, revealing that developers need to tune their designs for better accuracy with older, rewound, and/or damaged motors. For most methods, the best correlation with lab-determined efficiency was for the new energy efficient 300 HP motor. With the diverse veteran motors the methods diverged more, not only from lab efficiency, but also from each other. The most accurate methods were more invasive, requiring shutdown and uncoupling. However, with a structured motor systems management program, these procedures could be accomplished conveniently at different times with the results combined later to compute efficiency. For example, winding resistance could be measured and recorded at the receiving inspection of new and repaired motors. No-load power consumption could be accomplished either at the repair shop or during initial or post-repair installation. Performance under load could be recorded any time the motor is installed and operating at normal load. The authors believe that all methods can benefit from more validation studies with a diversity of typical veteran motors (i.e. other than new, efficient, and healthy motors). Where divergence occurs, case studies should pursue the causes of divergence. Several methods perform well enough that their adoption should be encouraged. However, the need to keep the techniques simple and user friendly for use in the

  2. An intercomparison of airborne nitric acid measurements

    SciTech Connect

    Gregory, G.L.; Hoell, J.M. Jr.; LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Van Bramer, S.E. ); Marinaro, R.M. ); Schiff, H.I.; Hastie, D.R. ); Mackay, G.I.; Karecki, D.R. )

    1990-06-20

    Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a nylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. While results were somewhat soft and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominantly in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1,000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO{sub 3} techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO{sub 3} at levels often encountered in the free troposphere (e.g., 100 pptv). However, at the more elevated levels of HNO{sub 3} (e.g., >150 pptv), both the FILTER and DENUDER techniques reported the same levels of nitric acid, while as suggested by the results from the standards intercomparison, the TDLAS reported higher nitric acid values than the other two techniques.

  3. In situ measurement of atomic hydrogen in the upper mesosphere

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Kita, D.

    1987-01-01

    In situ measurements of H abundance between 73 and 93 km are reported for conditions of winter solstice, magnetic quiet, and a solar depression angle of 12 deg. The data were obtained by a rocket-borne instrument using the resonance fluorescence technique. A discharge source emitting photons at 1216 A was an integral part of the instrument. The instrument was radially deployed 80 cm by a boom from the front of the payload in order to avoid the shock created by the gas flow over the front of the payload. An attitude control system oriented the payload so that the gas flow was nearly perpendicular to the plane containing the incident and scattered photons, thus minimizing any correction for Doppler shift. The resonance radiation detector viewed a black backstop in order to minimize background radiation from the hydrogen geocorona; however, the background was not entirely eliminated. The signal-to-noise ratio was improved by summing the data in 1.8-s bins. The observed hydrogen concentration maximized at 85 km at 1.5 + or - 1.1 x 10 to the 8th atoms/cu cm.

  4. Coordinated airborne and satellite measurements of equatorial plasma depletions

    SciTech Connect

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-12-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18/sup 0/ MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O/sup +/, were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O/sup +//sub 2/ for 6300 A and radiative recombination of O/sup +/ for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O/sup +/ biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar.

  5. Measuring auroral precipitation parameters without in situ microchannel plate instrumentation

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Hampton, D. L.; Zettergren, M. D.; Conde, M.; Lessard, M.; Michell, R.; Samara, M.

    2013-12-01

    Recent advances in groundbased detector technology have resulted in accurate, high-sensitivity, emission-line filtered images of aurora with sub- to a few- km resolution over a few 100 km region collected at a few second to a few Hz cadence. By combining these images with information from other groundbased instrumentation (ISR, remote photometers, and FPIs) and using well-documented empirical relationships between intensity and precipitating electron characteristics, these images hold the potential for providing an accurate, mesoscale, 2-D time history of the key parameters (characteristic energy and energy flux) of the precipitating electrons that caused the optical aurora within the imager's field of view. In situ measurements can be more accurate, but they are limited to highly localized 1-D line trajectories and are of limited use for meso-scale modeling. However, a limitation of the groundbased technique is that subvisual (low energy) precipitation is not captured. Onboard measurements of total number flux provide low resource measurements capturing specific boundary crossings and gradients as well as net precipitation including the portion not observed optically. The combination of minimal onboard instrumentation supplementing rigorous groundbased inversions can provide an optimal set of inputs for ionospheric modelling tools. Thus we are investigating the capabilities and limitations of using inversions of groundbased observations in the place of in situ precipitation monitors. While several inversion techniques are possible we will discuss two methods used in the analysis of recent rocket experiments. The first, used for the Cascades2 rocket, compares measured altitude profiles of auroral emissions to those from a 1-D electron transport code to confirm optically that two arcs transited by the rocket were produced by significantly different electron spectra. The second method, for the MICA rocket, uses the 2-D temperature maps from the Scanning Doppler

  6. Factors influencing in situ gamma-ray measurements

    NASA Astrophysics Data System (ADS)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  7. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  8. In situ correlative measurements for the ultraviolet differential absorption lidar and the high spectral resolution lidar air quality remote sensors: 1980 PEPE/NEROS program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.

    1981-01-01

    In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.

  9. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  10. Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT

    NASA Astrophysics Data System (ADS)

    Hoor, P.; Gurk, C.; Brunner, D.; Hegglin, M. I.; Wernli, H.; Fischer, H.

    2004-03-01

    We present airborne in-situ trace gas measurements which were performed on eight campaigns between November 2001 and July 2003 during the SPURT-project (SPURenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region). The measurements on a quasi regular basis allowed an overview on the seasonal variations of the trace gas distribution in the tropopause region over Europe from 35°-75° N to investigate the influence of transport and mixing across the extratropical tropopause on the lowermost stratosphere. From the correlation of CO and O3 irreversible mixing of tropospheric air into the lowermost stratosphere is identified. The CO distribution indicates that transport and subsequent mixing of tropospheric air across the extratropical tropopause predominantely affects a layer, which closely follows the shape of the local tropopause. In addition the seasonal cycle of CO2 illustrates the strong coupling of that layer to the extratropical troposphere. Both, horizontal gradients of CO on isentropes as well as the CO-O3-distribution in the lowermost stratosphere reveal that the influence of quasi-horizontal transport and subsequent mixing weakens with distance from the local tropopause. However, at large distances from the tropopause a significant influence of tropospheric air is still evident. The relation between N2O and CO2 indicates that a significant contribution of air originating from the tropical tropopause contributes to the background air in the extratropical lowermost stratosphere.

  11. Predicting the aquatic stage sustainability of a restored backwater channel combining in-situ and airborne remotely sensed bathymetric models.

    NASA Astrophysics Data System (ADS)

    Jérôme, Lejot; Jérémie, Riquier; Hervé, Piégay

    2014-05-01

    As other large river floodplain worldwide, the floodplain of the Rhône has been deeply altered by human activities and infrastructures over the last centuries both in term of structure and functioning. An ambitious restoration plan of selected by-passed reaches has been implemented since 1999, in order to improve their ecological conditions. One of the main action aimed to increase the aquatic areas in floodplain channels (i.e. secondary channels, backwaters, …). In practice, fine and/or coarse alluvium were dredged, either locally or over the entire cut-off channel length. Sometimes the upstream or downstream alluvial plugs were also removed to reconnect the restored feature to the main channel. Such operation aims to restore forms and associated habitats of biotic communities, which are no more created or maintained by the river itself. In this context, assessing the sustainability of such restoration actions is a major issue. In this study, we focus on 1 of the 24 floodplain channels which have been restored along the Rhône River since 1999, the Malourdie channel (Chautagne reach, France). A monitoring of the geomorphologic evolution of the channel has been conducted during a decade to assess the aquatic stage sustainability of this former fully isolated channel, which has been restored as a backwater in 2004. Two main types of measures were performed: (a) water depth and fine sediment thickness were surveyed with an auger every 10 m along the channel centerline in average every year and a half allowing to establish an exponential decay model of terrestrialization rates through time; (b) three airborne campaigns (2006, 2007, 2012) by Ultra Aerial Vehicle (UAV) provided images from which bathymetry were inferred in combination with observed field measures. Coupling field and airborne models allows us to simulate different states of terrestrialization at the scale of the whole restore feature (e.g. 2020/2030/2050). Raw results indicate that terrestrialization

  12. Integration of satellite data and in situ measurements to improve coastal water quality monitoring

    NASA Astrophysics Data System (ADS)

    Lacava, Teodosio

    2015-04-01

    Coastal areas are "sensitive" zones exposed to different natural hazards and anthropic risks. The increasing level of urbanization, the even more irrational exploitation of those areas and, more generally, climate changes are some of the most relevant phenomena able to strongly change such sites. For these reasons, it is necessary to implement an adequate water quality monitoring system able to give a reliable description of water status for reducing the negative effects which coastal marine waters are exposed to. Remote sensing data offer a relevant contribution in this framework, providing, with a quite good level of accuracy, information about the spatial distribution of sea water constituents over large areas with high temporal rates and at relatively low costs. On the other hand, in situ measurements allow to analyze the history of these elements at a very small scale, both in terms of investigated area and period. The integration of these two kind of information may improve the monitoring in the space-time domain of a specific area, allowing also for a calibration, at local scale, of the satellite data/products. In this paper results achieved in such a context while carrying out two projects on Mediterranean Sea water quality will be described. More than 15 years of MODIS Ocean Colour data have been analyzed and compared with different specific in-situ and airborne data concerning different areas of Mediterranean Sea collected in the framework of the following projects: IOSMOS (IOnian Sea water quality MOnitoring by Satellite data, OP ERDF Basilicata) and MOMEDAS (MOnitoraggio delle acque del mar MEditerraneo mediante DAti Satellitari, OP Basilicata ESF). Specifically, preliminary achievements regarding the analysis of Chlorophyll-a (Chl-a) and diffuse attenuation coefficient at 490 nm (Kd 490) products as well as suspended sediment material (SSM) transport phenomena and the Sea Surface Temperature (SST) variations occurring in the analyzed areas will be

  13. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  14. In-situ stress measurement in an earthquake focal area

    NASA Astrophysics Data System (ADS)

    Tsukahara, H.; Ikeda, R.; Omura, K.

    1996-09-01

    A 2-km-deep borehole was drilled into granitic rock where many shallow earthquakes, with focal depths from 2 to 15 km, have occurred. The drill site, Ashio, is 100 km north of Tokyo. Downhole testing and measurements were conducted five times: four times after each 500 m drilling and the fifth time after completing the 2000 m borehole. Measurements of in-situ stress orientation and magnitude were conducted by the hydraulic fracturing method, stress-induced well bore breakout analysis, and drilling-mud pressure induced hydraulic fracturing analysis. Breakouts and mud pressure induced hydraulic fractures were observed below 650 m and 1250 m, respectively. The circular well bore is maintained only in limited spots below 650 m because of breakouts indicating a large differential stress condition between the maximum and the minimum principal stresses. The differential stress is calculated at 90 ± 20 MPa at the depth of 2000 m based on the condition under which the breakout with some degree of width appears. It is interpreted that this large differential stress is representative of the regional crustal stress condition in the earthquake swarm area. Each spot of the circular well bore is always adjacent to a fracture zone. This suggests that the fracture zone has small differential stress. The stress values were measured where the well bore is circular by the hydraulic fracturing method. For example, the maximum and the minimum horizontal compressive stresses are about 35 MPa and about 25 MPa, respectively, at the depth of 1650 m; giving the differential stress of 10 MPa. The water pressure in pre-existing fractures was also measured, and found that they were nearly equal to the hydrostatic water pressure at the corresponding depths. The stress direction estimated from the azimuth of the breakouts and the hydraulic fracture is consistent with that estimated from the earthquake focal mechanisms. These results support the following conclusions. The differential stress is

  15. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  16. In situ measurement of odor compound production by benthic cyanobacteria.

    PubMed

    Chen, Yan-Min; Hobson, Peter; Burch, Michael D; Lin, Tsair-Fuh

    2010-03-01

    A simple technique was developed to make in situ measurements of emission rates of two common odorants, 2-MIB and geosmin, and was validated with different natural communities of benthic cyanobacterial mats in Hope Valley Reservoir (HVR), South Australia, and Kin-Men Water Treatment Plant (TLR-WTP), Taiwan. A pair of parallel columns was used to differentiate between emission and loss rates caused by biodegradation, volatilization, and other mechanisms. Experimental results indicated that the loss rates followed a first-order relationship for all cases tested, with biodegradation and volatilization being the key mechanisms. The loss rates were comparable to those reported in the literature for biodegradation and those calculated from two-film theory for volatilization. After accounting for the loss rates, the net emission of geosmin and 2-MIB was estimated from experimental data. Odorant emission rates on the basis of column surface area, cyanobacterial cell number, and chlorophyll a (chl-a) were 4.2-4.4 ng h(-1) cm(-2), 1.0-5.5 x 10(-6) ng h(-1) cell(-1), and 3.2-3.5 ng h(-1)microg-chl(-1), respectively for 2-MIB released from benthic mats in TLR-WTP, and, 18-190 ng h(-1) cm(-2), 0.053-1.8 x 10(-3) ng h(-1) cell(-1), and 48-435 ng h(-1)microg-chl(-1) respectively for geosmin from benthic mats in HVR. The method developed provides a simple means to estimate the emission rates of odorants and possibly other algal metabolites from benthic cyanobacterial mats. PMID:20445867

  17. Airborne measurement of peroxy radicals in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Andrés Hernández, Maria Dolores; Horstjann, Markus; Kartal, Deniz; Krebsbach, Marc; Linke, Christian; Lichtenstern, Michael; Andrey, Javier; Burrows, John P.

    2013-04-01

    The importance of peroxy radicals in the tropospheric chemistry is well recognized in the scientific literature. Hydroxy- and organic peroxy radicals (HO2 and RO2, R being an organic chain) are key intermediates in the OH radical initiated oxidation of CO and SO2, of volatile organic compounds (VOC), in the ozonolysis of alkenes and photo-oxidation of carbonyl species. Peroxy radicals are responsible for the ozone production in the troposphere, the formation of peroxides and other oxidants. Although radical chemistry in the troposphere has been subject of intensive research in the past three decades, it is still very few known about the vertical distribution of peroxy radicals. Airborne observations are scarce in spite of their particular importance to improve the understanding of the tropospheric chemistry and the oxidising capacity of the atmosphere at different altitudes. In situ trace gas measurements were carried out in summer 2010 on board of the INTA (Instituto Nacional de Técnicas Aeroespaciales) C212 aircraft over Spain in the frame of the EUFAR project VERDRILLT (VERtical Distribution of Radicals In the Lower Layers of the Troposphere), and in cooperation with the DLR (Deutsches Zentrum für Luft- und Raumfahrt), the University of Wuppertal, the CEAM (Centro de Estudios Ambientales del Mediterráneo) and the UPV-EHU University in Bilbao. VERDRILLT aimed at getting a deeper understanding of the vertical distribution of peroxy radicals in the lower layers of the troposphere. Measurements were taken over urban areas and extensions of different vegetation under meteorological conditions favouring active photochemistry and convection from the ground into close atmospheric layers. Results and main findings will be presented and discussed.

  18. Huygens Probe In-Situ Measurements : An Update

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-04-01

    The global Titan perspective afforded by ongoing Cassini observations, and prospects for future in-situ exploration, have prompted a re-examination of Huygens data, yielding a number of recent new results. Gravity waves have been detected (Lorenz, Ferri and Young, Icarus, 2014) in the HASI descent temperature data, with ~2K amplitude. These waves are seen above about 60km, and analysis suggests they may therefore be controlled by interaction of upward-propagating waves with the zonal wind field. A curious cessation of detection of sound pulses by a Surface Science Package ultrasound instrument about 15 minutes after the probe landed appears to be best explained (Lorenz et al., Planetary and Space Science, 2014) by an accumulation of polyatomic vapors such as ethane, sweated out of the ground by the warm probe. Such gases have high acoustic attenuation, and were independently measured by the probe GCMS. The Huygens probe carried two radar altimeters. While their principal function was merely to trigger observation sequences at specific altitudes on the science instruments, the surface range history, and the Automatic Gain Control (AGC) housekeeping data, provide some useful information on Titan's surface (Lorenz et al., submitted). Small-scale topographic variations, and the surface radar reflectivity characteristics implied by the AGC variation with height, are discussed. A new integrated timeline product, which arranges second-by-second measurements from several Huygens sensors on a convenient, common tabulation, has been recently archived on the PDS Atmospheres node. Finally, a troubling discrepancy exists between radio occultation and infrared soundings from Cassini, and Huygens methane and temperature measurements in the lower stratosphere. The interdependence of these parameters will be discussed. In particular the possible role of the assumed probe mass history (depending on the unmeasured ablation from the heat shield) and the assumed zonal wind profile on

  19. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  20. Cooperative Mobile Sensing Systems for In Situ Measurements in Hazardous Environments

    NASA Astrophysics Data System (ADS)

    Argrow, B.

    2005-12-01

    Sondes are typically deployed from manned aircraft or taken to altitude by a balloon before they are dropped. There are obvious safety and physical limitations that dictate where and how sondes are deployed. These limitations have severely constrained sonde deployment into highly dynamic and dangerous environments. Additionally, conventional parachute dropsondes provide no means for active control. The "smartsonde" idea is to integrate miniature sonde packages into micro air vehicles (MAVs). These MAVs will be ferried into the hard to reach and hazardous environments to provide in situ measurements in regions that have been heretofore out of reach. Once deployed, the MAV will provide some means of control of the sonde, to enable it to remain aloft and to provide some measure of directional control. Preliminary smartsonde communications experiments have been completed. These experiments focused on characterizing the capabilities of the 802.11.4 wireless protocol. Range measurements with 60-mW, 2.4-GHz radios showed 100% throughput rate over 2.7 km during air to ground tests. The experiments also demonstrated the integration of an in-house distributed computing system that provides the interface between the sensors, UAV flight computers, and the telemetry system. The University of Colorado's Research and Engineering Center for Unmanned Vehicles (RECUV) is developing an engineering system that integrates small mobile sensor attributes into flexible mobile sensor infrastructures to be deployed for in situ sensing in hazardous environments. There are three focus applications: 1) Wildfire, to address sensing, communications, situational awareness, and safety needs to support fire-fighting operations and to increase capabilities for dynamic data acquisition for modeling and prediction; 2) Polar, where heterogeneous mixes of platforms and sensors will provide in-situ data acquisition from beneath the ocean surface into the troposphere; 3) Storm, to address the challenges

  1. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...

  2. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  3. Combining in situ and Remote Measurements with Models: Picking the Right Tools

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Hains, J. C.; Burrows, J. P.

    2004-05-01

    Visibility reduction, photochemical smog, and the global climate changes these pollutants engender involve complex interactions of emissions, atmospheric transformations, and transport. In situ measurements, numerical simulations, and remotely sensed data all have strengths and weaknesses, but picking the right combination of tools can avoid the limitations of any one method to advance the science and provide policy-relevant research on the causes and nature of air pollution. The Regional Atmospheric Measurement, Modeling, and Prediction Program (RAMMPP) seeks a balanced approach to air pollution studies in the Mid Atlantic. We employ surface and airborne measurements as input and tests for air quality models of the Baltimore/Washington area. Both ozone and summertime haze tend to form in blobs covering areas hundreds of km on a side and lasting several days. Point and aircraft measurements offer high accuracy, but cannot always characterize the spatial and temporal extent of these masses. To provide the big picture, we are exploring the use of satellite data including GOME and SCIAMACHY for SO2, TOMS for tropospheric O3, and MODIS for aerosol optical depth. Comparison with direct measurements can greatly improve retrievals of atmospheric composition. For example, GOME identified a persistent hot spot in SO2 over eastern North America where many large, coal-fired power plants are located. Aircraft measurements confirmed the presence of this hotspot, but indicated an average column content of 0.65 DU (m atm cm), while the satellite instrument, indicated only 0.14 DU. GOME uses, however, an initial guess for the altitudinal distribution of the SO2, and when the retrieval algorithm is corrected with the observed profile, the result is 0.42 DU. Further improving the retrieval with more representative background values yields a mean SO2 column content of 0.52 DU, within experimental uncertainty of the aircraft value. Ozone and aerosol retrievals can be similarly

  4. In Situ Trace Gas Measurements from the Unmanned Aerial System (UAS) Altair

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Moore, F. L.; Dutton, G. S.; Vasel, B.; Elkins, J. W.; Oltmans, S. J.; Summers, S.; Fahey, D. W.; Jennison, C. D.

    2006-12-01

    It is anticipated that Unmanned Aerial Systems (UASs) will soon become an integral part of the effort to monitor global atmospheric composition because they provide a unique combination of payload capacity, altitude range, and especially endurance. The NOAA UAS Demonstration Project in 2005 was designed to test the flight endurance of the Altair UAS (General Atomics Aeronautical Systems Inc.) and its suitability as an airborne platform for atmospheric measurements. Instrumentation included an ozone photometer (OZ), a 2- channel gas chromatograph (GC), an ocean color sensor, and a passive microwave vertical sounder. Altair was interactively controlled by a ground-based pilot via line-of-sight or satellite-based communications which also allowed instrument data and commands to be telemetered between the aircraft and ground. The NOAA project demonstrated that Altair was able to fly continuously for at least 18 hours and reach an altitude of 14 km with an internal payload >300 kg. The GC obtained ~2500 in situ measurements each of CFC-11, CFC-12, Halon-1211, N2O, and SF6 during 65 flight hours (10 flights) of Altair. These gases and ozone were measured at 250 m vertical resolution during two ~7 km deep spiral dive/climb maneuvers performed over the Pacific Ocean as part of the 18.4 long-endurance flight. During a different flight, GC and OZ sampled a tongue of stratospheric air that had intruded into the upper troposphere through a tropopause fold. In September 2006, GC and OZ were operated aboard Altair as part of the NASA/USDA-Forest Service Fire Mission. One GC channel (CFCs and Halon-1211) was changed to instead measure H2, CH4, and CO every 140 s, and the combined GC and OZ instrument package was expanded to include in situ measurements of water vapor (laser hygrometer) along with temperature and relative humidity (external probe). Data obtained during these two missions of the UAS Altair, including comparisons of relative humidity and water vapor measurements

  5. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  6. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    SciTech Connect

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  7. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    SciTech Connect

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  8. 15 years of upper tropospheric relative humidity in-situ measurements by the MOZAIC programme

    NASA Astrophysics Data System (ADS)

    Neis, Patrick; Smit, Herman G. J.; Alteköster, Lukas; Rohs, Susanne; Wahner, Andreas; Spichtinger, Peter; Petzold, Andreas

    2015-04-01

    Water vapour is a major parameter in weather prediction and climate research. However, the interaction between water vapour in the upper troposphere and lowermost stratosphere (UT/LS) and tropopause dynamics are not well understood. Furthermore, the knowledge about potential trends and feedback mechanisms of upper troposphere/lower stratosphere water vapour is low because of the large variability of observations and relatively short data records. A continuous measurement of upper tropospheric humidity (UTH) is still difficult because the abundance of UTH is highly variable on spatial and temporal scales, which cannot be resolved, neither by the global radiosondes network nor by satellites. Since 1994, UTH data with high spatial and temporal resolution are provided by the in-situ measurements aboard civil passenger aircraft from the MOZAIC/IAGOS-programme (www.iagos.org). The measurement system is based on a capacitive hygrometer with a simultaneous temperature measurement installed in a conventional Rosemount housing. In recent studies the MOZAIC Capacitive Hygrometer (MCH) and its improved successor IAGOS Capacitive Hygrometer (ICH) are compared against research-grade water vapour instruments during airborne field studies. The qualification of the Capacitive Hygrometer for the use in long-term observation programmes is successfully demonstrated and the continuation of high data quality is confirmed for the transition from MCH to ICH. After the reanalysis of the relative humidity data from 1994 to 2009, this extensive and unique data set is examined by criteria of continuity, homogeneity and quantity of data coverage, to identify global regions suitable for UTH climatology and trend analyses. For the identified target regions time series and climatologies of, e.g., relative humidity with respect to ice, temperature, and absolute humidity are investigated. First results of this study will be presented.

  9. Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-based Estimates of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Shuai, Yanmin; Wang, Zhuosen; Gao, Feng; Masek, Jeff; Schaaf, Crystal B.

    2012-01-01

    The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud

  10. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  11. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  12. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  13. Comparison between laboratory and airborne BRDF measurements for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  14. Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT

    NASA Astrophysics Data System (ADS)

    Hoor, P.; Gurk, C.; Brunner, D.; Hegglin, M. I.; Wernli, H.; Fischer, H.

    2004-08-01

    We present airborne in-situ trace gas measurements which were performed on eight campaigns between November 2001 and July 2003 during the SPURT-project (SPURenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region). The measurements on a quasi regular basis allowed an overview of the seasonal variations of the trace gas distribution in the tropopause region over Europe from 35°-75°N to investigate the influence of transport and mixing across the extratropical tropopause on the lowermost stratosphere.

    From the correlation of CO and O3 irreversible mixing of tropospheric air into the lowermost stratosphere is identified. The CO distribution indicates that transport and subsequent mixing of tropospheric air across the extratropical tropopause predominantly affects a layer, which closely follows the shape of the local tropopause. In addition, the seasonal cycle of CO2 illustrates the strong coupling of that layer to the extratropical troposphere. Both, horizontal gradients of CO on isentropes as well as the CO-O3-distribution in the lowermost stratosphere reveal that the influence of quasi-horizontal transport and subsequent mixing weakens with distance from the local tropopause. The mixing layer extends to about 25 K in potential temperature above the local tropopause exhibiting only a weak seasonality.

    However, at large distances from the tropopause a significant influence of tropospheric air is still evident. The relation between N2O and CO2 indicates that a significant contribution of air originating from the tropical tropopause contributes to the background air in the extratropical lowermost stratosphere.

  15. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  16. Validation of Large-Scale Geophysical Estimates Using In Situ Measurements with Representativeness Error

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Gruber, A.; Mccoll, K. A.; Alemohammad, S. H.; Entekhabi, D.

    2015-12-01

    Validating large-scale estimates of geophysical variables by comparing them to in situ measurements neglects the fact that these in situ measurements are not generally representative of the larger area. That is, in situ measurements contain some `representativeness error'. They also have their own sensor errors. The naïve approach of characterizing the errors of a remote sensing or modeling dataset by comparison to in situ measurements thus leads to error estimates that are spuriously inflated by the representativeness and other errors in the in situ measurements. Nevertheless, this naïve approach is still very common in the literature. In this work, we introduce an alternative estimator of the large-scale dataset error that explicitly takes into account the fact that the in situ measurements have some unknown error. The performance of the two estimators is then compared in the context of soil moisture datasets under different conditions for the true soil moisture climatology and dataset biases. The new estimator is shown to lead to a more accurate characterization of the dataset errors under the most common conditions. If a third dataset is available, the principles of the triple collocation method can be used to determine the errors of both the large-scale estimates and in situ measurements. However, triple collocation requires that the errors in all datasets are uncorrelated with each other and with the truth. We show that even when the assumptions of triple collocation are violated, a triple collocation-based validation approach may still be more accurate than a naïve comparison to in situ measurements that neglects representativeness errors.

  17. Downwelling Solar Irradiance as a Critical Parameter for In-Situ Measurements in the MERMAID Database

    NASA Astrophysics Data System (ADS)

    Barker, Kathryn; Huot, Jean-Paul; Moore, Gerald; Mazeran, Constant; Lerebourg, Christophe; Zagolski, Francis

    2010-12-01

    The MERIS MAtchup In-situ Database (MERMAID) provides an essential tool for MERIS calibration and validation activities of ESA's Medium Resolution Imaging Spectrometer (MERIS). MERMAID comprises in-situ ρw from several measurement approaches, from fixed buoys and towers to floating instrumentation rigs. Analysis of the provided measurement protocols and the matchup data (in-situ and MERIS) has identified that sensor tilt seriously affects measurements of surface irradiance, and has consequent impacts on the accuracy of water reflectance, ρw, and matchup results. Activities intrinsic to the third MERIS reprocessing, such as the development of the vicarious adjustment gains computation, depend intrinsically on the MERMAID matchups and as such it is essential to ensure the quality of in-situ irradiance data. Results indicated the need to include in MERMAID 'homogenised' versions of datasets (consistent with MERIS assumptions), and stressed the need to investigate further the potential for tilt correction of Es.

  18. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  19. Fast in-situ measurements of glyoxal (CHOCHO) and nitrous acid (HONO) in northern Chinese plane during CAREBEIJING - NCP2014

    NASA Astrophysics Data System (ADS)

    Min, K. E.; Dube, W. P.; Washenfelder, R. A.; Langford, A. O.; Brown, S. S.; Broch, S.; Fuchs, H.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Hu, M.; Huey, L. G.; Kubik, K.; Li, X.; Liu, X.; Lu, K.; Rohrer, F.; Shao, M.; Sjostedt, S. J.; Tan, Z.; Zhu, T.; Wahner, A.; Wang, B.; Wang, M.; Wang, Y.; Zeng, L.; Zhang, Y.

    2014-12-01

    The Northern China Plain has experienced visibility degradation and detrimental health impacts due to aerosol and photochemical pollution. To examine these air quality issues, CAREBEIJING-NCP2014 (Care Beijing - Northern China Plain 2014) was held in WangDu, Hebei province, China from 6 June to 15 July 2014. We deployed our newly developed instrument, ACES (Airborne Cavity Enhanced Spectrometer), for high time resolution in-situ measurement of glyoxal (CHOCHO), nitrous acid (HONO) and other trace gases (NO2, H2O) to investigate mechanisms of oxidation processes and secondary organic aerosol (SOA) formation. The in situ measurements of CHOCHO provide observational constraints on secondary organic aerosol formation and oxidation processes, since this molecule has been proposed to play a crucial role in forming aerosol due to its high water solubility, isomerization, and abundant production from the oxidation of many different volatile organic compounds (VOCs). A box model analysis incorporating secondary glyoxal sources from VOC oxidation and sinks to OH reaction, photolysis and heterogeneous uptake will be used to determine a budget and potential for SOA formation. This work was supported by the National Natural Science Foundation of China (21190052), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05010500) and the U.S. National Science Foundation Atmospheric (AGS-1405805).

  20. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  1. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  2. STATISTICAL MODEL OF LABORATORY DEATH RATE MEASUREMENTS FOR AIRBORNE BACTERIA

    EPA Science Inventory

    From 270 published laboratory airborne death rate measurements, two regression models relating the death rate constant for 15 bacterial species to aerosol age in the dark, Gram reaction, temperature, and an evaporation factor which is a function of RH and temperature were obtaine...

  3. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  4. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  5. First measurements of charge carrier density and mobility of in-situ enriched 28Si

    NASA Astrophysics Data System (ADS)

    Ramanayaka, A. N.; Dwyer, K. J.; Kim, Hyun-Soo; Stewart, M. D., Jr.; Pomeroy, J. M.

    Magnetotransport in top gated Hall bar devices is investigated to characterize the electrical properties of in-situ enriched 28Si. Isotopically enriched 28Si is an ideal candidate for quantum information processing devices as the elimination of unpaired nuclear spins improves the fidelity of the quantum information. Using mass filtered ion beam deposition we, in-situ, enrich and deposit epitaxial 28Si, achieving several orders of magnitude better enrichment compared to other techniques. In order to explore the electrical properties and optimize the growth conditions of in-situ enriched 28Si we perform magnetotransport measurements on top gated Hall bar devices at temperatures ranging from 300 K to cryogenic temperatures and at moderate magnetic fields. Here, we report on the charge carrier density and mobility extracted from such experiments, and will be compared among different growth conditions of in-situ enriched 28Si.

  6. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  7. Analysis of CO2 convection mechanisms associated to surface heating, by combining remote sensing data and in situ measurements

    NASA Astrophysics Data System (ADS)

    Tello, Marivi; Curcoll, Roger; Font, Anna; Morgu, Josep Anton; Rod, Xavier

    Assessing the mechanisms involved in the variability of carbon fluxes is crucial for the under-standing of the changing earth dynamics. In that sense, the aim of this work is to analyze CO2 convection mechanisms at a regional scale in the boundary layer and the lower troposphere by means of cross correlation of land surface temperature data, radio-soundings, wind speeds and in situ measurements of CO2 atmospheric mixing ratios. Since data is easier to acquire, ground level horizontal CO2 fluxes have been widely studied. In the contrary, vertical ones are still subject to uncertainties, even if they are necessary to understand 3D CO2 variability in the atmosphere. In particular, this paper focuses on the relationship between surface heating, convection and CO2 concentrations at different heights and, more generally, on the energy transfer between the surface and the air. The monitored area corresponds to a region on the North Eastern Iberian Peninsula, mainly devoted to agricultural activities. Different types of land covers are observed. On the one hand, in situ data has been collected by several flights during 2007 along the parallel 42o N following the "Crown" aircraft sampling approach [1] that integrates CO2 data obtained through horizontal transects and vertical profiles. This particular configuration is especially well suited for the evaluation of both horizontal and vertical CO2 fluxes. On the other hand, the radiometric land surface temperatures are obtained from the MODIS instrument onboard the Terra and the Aqua satellites. Besides, a flight campaign with an airborne sensor along the same transect in the parallel 42o N has been proposed in the scope of the MIDAS-6 project recently submitted. This project plans to improve soil moisture and ocean salinity products of the SMOS sensor recently launched and to demonstrate its applications. This will allow the study of moisture patterns in the monitored area at two different scales: that of the data collected

  8. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  9. MEASUREMENT OF SOIL RESPIRATION IN SITU: CHAMBER TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chambers temporarily sealed to the soil surface are important and often the only means of measuring trace gas emissions to the atmosphere. However, such chamber measurements are not exempt from methodological problems. This review article identifies known sources of chamber-induced errors encounte...

  10. In situ CTE measurements and damage detection using optical metrology

    NASA Astrophysics Data System (ADS)

    Rajaram, Satish; Cuadra, Jefferson; Saralaya, Raghav; Bartoli, Ivan; Kontsos, Antonios

    2016-02-01

    This paper presents a methodology to make coefficient of thermal expansion measurements through the combined use of two non-contact and full field optical metrology methods including digital image correlation and infrared thermography. In this context, active Infrared Thermography techniques combined with contact and non-contact deformation measurement methods have already been reported to measure materials’ thermal expansion. In addition, such techniques have been reported to be capable to detect surface and subsurface defects from changes in homogenous heat diffusion due to damage. Based on this knowledge, it is hypothesized in this article that the material response induced by thermal loading and quantified by coefficient of thermal expansion measurements could be further used as an indicator of damage. To validate the hypothesis three measurements were performed. The first established the effectiveness of using deformation and thermal full field data for coefficient of thermal expansion measurements. The second intended to demonstrate the advantage of using such full field data in order to provide site-specific measurements of thermal expansion. Finally damage was a priori induced to a metallic specimen, and the measured variations of local CTE confirmed the potential of using the described approach as a means of damage quantification in materials and structures.

  11. MEASUREMENT OF SOIL RESPIRATION IN SITU: CHAMBER TECHNIQUES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber methods depend exclusively on headspace gas concentration measurements or determining the unused capacity of a known chemical trap, they provide only an indirect measure of the CO2 flux across the soil surface, which is in turn equal to the soil respiration rate only under steady-state condi...

  12. In situ measurement of ceramic vacuum chamber conductive coating quality

    SciTech Connect

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-08-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here.

  13. Casimir force and in situ surface potential measurements on nanomembranes.

    PubMed

    Garcia-Sanchez, Daniel; Fong, King Yan; Bhaskaran, Harish; Lamoreaux, Steve; Tang, Hong X

    2012-07-13

    We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with gold. A Kelvin probe method is used in situ to image the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-domain measurements of the nanomembrane motion allow for very high resolution measurements of the Casimir force gradient (down to a force gradient sensitivity of 3  μN/m). Using this technique, the Casimir force in the range of 100 nm to 2  μm is accurately measured. Experimental data thus obtained indicate that the device system in the measured range is best described with the Drude model. PMID:23030202

  14. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  15. In situ measurements of light extinction of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Metzig, Gunthard

    1991-01-01

    The extinction coefficient of ambient aerosol particles was measured using a multiple transverse cell (White Cell) with an effective path length of 100 m. Measurements were performed at seven fixed wavelengths in the visible region using a white light source and an interference filter set with 2 nm bandwidth and center wavelengths of 405.5, 450, 500, 550, 600, 650, and 692.5 nm. The total air flow in the system was 16.7 1/min; the volume of the chamber is close to 10 liters. It takes about one minute to fill the chamber with particles homogeneously, but it needs up to five minutes to get the chamber particle-free. Before measuring the aerosol, the transmission of the particle-free air is determined; then the aerosol passes through the chamber for a period of ten minutes; after this the transmission of particle-free ambient air is measured again for eight minutes. All times are subject to change. At present the measurements are done with a frequency of 1 Hz, but an increase of up to 30 Hz is possible. The lower detection limit of the used White Cell is 3.4 by 10(exp -06) per m. This is sufficient for measuring the extinction coefficient during most tropospheric and some stratospheric conditions. It will be necessary to increase the sensitivity by a factor of ten when measurements under the clearest stratospheric conditions take place.

  16. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  17. A model-based framework for the quality assessment of surface albedo in situ measurement protocols

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer; Gobron, Nadine; Widlowski, Jean-Luc; Mio, Corrado

    2016-09-01

    Satellite-based retrievals of land surface albedo are essential for climate and environmental modelling communities. To be of use, satellite-retrievals are required to comply to given accuracy requirements, mainly achieved through comparison with in situ measurements. Differences between in situ and satellite-based retrievals depend on their actual difference and their associated uncertainties. It is essential that these uncertainties can be computed to properly understand the differences between satellite-based and in situ measurements of albedo, however quantifying the individual contributions of uncertainty is difficult. This study introduces a model-based framework for assessing the quality of in situ albedo measurements. A 3D Monte Carlo Ray Tracing (MCRT) radiative transfer model is used to simulate field measurements of surface albedo, and is able to identify and quantify potential sources of error in the field measurement. Compliance with the World Meteorological Organisation (WMO) requirement for 3% accuracy is tested. 8 scenarios were investigated, covering a range of ecosystem types and canopy structures, seasons, illumination angles and tree heights. Results indicate that height of measurement above the canopy is the controlling factor in accuracy, with each canopy scenario reaching the WMO requirement at different heights. Increasing canopy heterogeneity and tree height noticeably reduces the accuracy, whereas changing seasonality from summer to winter in a deciduous forest increases accuracy. For canopies with a row structure, illumination angle can significantly impact accuracy as a result of shadowing effects. Tests were made on the potential use of multiple in situ measurements, indicating considerably increased accuracy if two or more in situ measurements can be made.

  18. Development of a Precise and in Situ Turbidity Measurement System

    NASA Astrophysics Data System (ADS)

    Ren, Kuanfang; Xu, Feng; Dorey, Jean-Marc; Cai, Xiaoshu

    2007-06-01

    The turbidimetry is a technique based on the transmittance spectra of the light passing through the media containing of small particles. It permits to measure the size distribution of particles for size in the range of sub-micrometer or micrometer. But the inversion problem is one of the most important obstacle for its applications. Based on the Non-negative Least Square method, we have developed stable and rapid algorithm and a measurement system permitting to the temporal acquisition (in ms) and to realize in-line measurement. To ensure its performance, the sensibility and the stability of the system have been examined in different stages: the light source, the spectrometer and the variation of the media concentration according to the optics configuration. By the measurements in the laboratory and that of the wet steam in a turbine we show that such system permits to measure very precisely the variation of the volume fraction of the particle or the wetness of wet steam.

  19. Airborne pulsed lidar measurements over Railroad Valley Nevada compared with GOSAT observations

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; Allan, G. R.; Riris, H.; Hasselbrack, W.; Abshire, J. B.

    2010-12-01

    We present a comparison of observations from an airborne pulsed lidar taken during a GOSAT satellite overpass. This was part of the Active Sensing of CO2 Emissions over nights Days and Seasons (ASCENDS) 2010 campaign onboard the NASA DC-8 aircraft. The NASA Goddard pulse lidar system steps a pulsed wavelength-tunable laser transmitter across the 1572.33 nm (6360 cm-1) CO2 line in thirty steps at a 330 Hz repetition rate. The laser beam is co-aligned with the receiver and directed toward nadir. The energy of the laser echoes is measured. The result is a scan of a single line at high spectral resolution. We focus on the 12 July flight over Railroad Valley Nevada which was simultaneous with a GOSAT satellite overpass. The Band 2 of the Fourier Transform Spectrometer onboard GOSAT samples from 5200 to 6400 cm-1 which includes the 6360 cm-1 line measured by our airborne lidar. While the GOSAT observations are spectrally coarser (0.2 cm-1) and sampled from space, we will compare: observed and forward modeled line shapes, retrieved CO2 column densities from both instruments and in-situ measurements where available.

  20. Measurement of resistivity changes induced by in-situ combustion

    SciTech Connect

    Wayland, J.R.; Lee, D.O.; Montoya, P.C.; Booker, S.R.; Tuthill, C.D.

    1982-07-01

    Use of electromagnetic techniques to map thermal fronts associated with enhanced oil recovery EOR processes depends upon knowledge of the changes in formation electrical resistivity resulting from the passage of the fire or steam front. The laboratory measurement of such resistivity changes required the development of a technique which survives high temperatures and a very corrosive environment while measuring over a frequency range of 5 Hz to 5000 Hz. The apparatus to make these measurements is described. Preliminary results from a laboratory test in the University of Calgary combustion tube are presented. It is found that there is a two-decade change in the resistivity as the fire front traverses through a region. Several separate zones within a fire front are identified. The frequency dependence of the resistivity changes suggests means of increasing sensitivity for deep oil pay-zone mappings.

  1. In situ performance curves measurements of large pumps

    NASA Astrophysics Data System (ADS)

    Anton, A.

    2010-08-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  2. In-Situ Measurements of Fabric Thickness Evolution During Draping

    SciTech Connect

    Ivanov, D. S.; Van Gestel, C.; Lomov, S. V.; Verpoest, I.

    2011-05-04

    The paper presents results of experimental program aimed at measuring fabric thickening while draping. The thickness evolution is important factor in resin infusion manufacturing where the resultant composite thickness is not controlled. The measurements are conducted by means of laser distance sensors adapted to the picture frame testing. Several carbon fabrics of very different architectures have been tested. Additionally, the pretension of the carbon fabric due to the gripping has been estimated by means of digital image correlation technique and an attempt to discuss the results obtained on different set-ups is made.

  3. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  4. Comparison of in-situ FISH measurements of water vapor in the UTLS with ECMWF (re)analysis data

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Spelten, N.; Konopka, P.; Müller, R.; Forbes, R. M.; Wernli, H.

    2014-06-01

    An evaluation of water vapor in the UTLS in the atmospheric ERA-Interim reanalysis data set is presented by using in-situ measurements from a large set of airborne measurement campaigns from 2001 to 2011 in the tropics, midlatitudes and polar regions. Water vapor measurements are derived from the Fast In-situ Stratospheric Hygrometer (FISH) and cover isentropic layers from 300-400 K (5-18 km). At the same time, the improvement of the ECMWF assimilation scheme representation of water vapor is addressed for time periods representing different cycles of the Integrated Forecast System (IFS). The ratio Δ(H2O) = H2OERA / H2OFISH is used as a simple measure for the difference between observations and the reanalyses. Overall, the reanalysis data reproduce around 87% of all FISH measurements within Δ(H2O) = 0.5-2, and 30% are within Δ(H2O) = 1.0 ± 0.1. Nevertheless, also strong over- and underestimations occur both in the troposphere and in the stratosphere. Δ(H2O) values indicate deviations of factors up to 10, with lower deviations in the stratosphere (Δ(H2O) = 0.5-4) than in the troposphere (Δ(H2O) = 0.5-10). In the tropical stratosphere the ratio is closer to 1 (Δ(H2O) = 0.5-2) than in the extratropical stratosphere where strong deviations occur (Δ(H2O) = 0.1-4). When considering operational analysis data, the agreement with FISH improves over the time, in particular when comparing water vapor fields for time periods before 2004 and after 2010. It appears that influences of tropical tropospheric and extratropical lower stratospheric processes on the water vapor distribution in the UTLS are particularly challenging, resulting in an overestimation of low and underestimation of high water vapor mixing ratios.

  5. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  6. Airborne tunable diode laser measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce; Drummond, James R.

    1999-09-01

    Accurate measurements of formaldehyde (CH 2O) in the atmosphere are essential to further our understanding of various atmospheric cycles involving hydrogen and carbon-containing species. Comparisons among independent measurements of this gas and between measurements and model calculations have raised numerous questions regarding the veracity of both endeavors. The present paper describes a long-term effort by our group to develop and employ tunable diode laser absorption spectroscopy (TDLAS) for highly accurate measurements of this gas on both ground-based and aircraft platforms. A highly sensitive and selective TDLAS system, which has successfully flown on three different aircraft campaigns, will be described. Many new hardware and software features, which have been implemented, now make it possible to detect ambient CH 2O concentrations as low as 55 parts-per-trillion employing a 20-s integration time. This paper will also discuss the many aspects associated with high accuracy and its verification, including a brief discussion of our aircraft sampling system and inlet surface effects.

  7. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  8. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  9. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    NASA Astrophysics Data System (ADS)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  10. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  11. Enzymatic method for measuring starch gelatinization in dry products in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An enzymatic method based on hydrolysis of starch by amyloglucosidase and measurement of D-glucose released by glucose oxidase-peroxidase was developed to measure both gelatinized starch and hydrolyzable starch in situ of dried starchy products. Efforts focused on the development of sample handling ...

  12. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    PubMed

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation. PMID:21218864

  13. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  14. In situ granular charge measurement by free-fall videography

    NASA Astrophysics Data System (ADS)

    Waitukaitis, S. R.; Jaeger, H. M.

    2013-02-01

    We present the design and performance characterization of a new experimental technique for measuring individual particle charges in large ensembles of macroscopic grains. The measurement principle is qualitatively similar to that used in determining the elementary charge by Millikan in that it follows individual particle trajectories. However, by taking advantage of new technology we are able to work with macroscopic grains and achieve several orders of magnitude better resolution in charge to mass ratios. By observing freely falling grains accelerated in a horizontal electric field with a co-falling, high-speed video camera, we dramatically increase particle tracking time and measurement precision. Keeping the granular medium under vacuum, we eliminate air drag, leaving the electrostatic force as the primary source of particle accelerations in the co-moving frame. Because the technique is based on direct imaging, we can distinguish between different particle types during the experiment, opening up the possibility of studying charge transfer processes between different particle species. For the ˜300 μm diameter grains reported here, we achieve an average acceleration resolution of ˜0.008 m/s2, a force resolution of ˜500 pN, and a median charge resolution ˜6× 104 elementary charges per grain (corresponding to surface charge densities ˜1 elementary charges per μm2). The primary source of error is indeterminacy in the grain mass, but with higher resolution cameras and better optics this can be further improved. The high degree of resolution and the ability to visually identify particles of different species or sizes with direct imaging make this a powerful new tool to characterize charging processes in granular media.

  15. First in-situ lattice strains measurements under load at VULCAN

    SciTech Connect

    An, Ke; Skorpenske, Harley David; Stoica, Alexandru Dan; Wang, Xun-Li; Cakmak, Ercan

    2011-01-01

    The engineering materials diffractometer, VULCAN, at the Spallation Neutron Source began commissioning on June 26, 2009. This instrument is designed for materials science and engineering studies. In situ lattice strain measurements of a model metallic material under monotonic tensile load have been performed on VULCAN. The tensile load was applied under two different strain rates, and neutron diffraction measurements were carried out in both high-intensity and high-resolution modes. These experiments demonstrated VULCAN's in situ study capability of deformation behaviors even during the early phases of commissioning.

  16. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    A rare opportunity presented itself in March 2011 when the Naval Research Laboratory (NRL) and NASA IceBridge teamed with scientists from the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to coordinate a multi-scale approach to mapping snow depth and sea ice thickness distribution in the Arctic. Ground-truth information for calibration/validation of airborne and CryoSat-2 satellite data were collected near a manned camp deployed in support of the US Navy's Ice Expedition 2011 (ICEX 2011). The ice camp was established at a location approximately 230 km north of Prudhoe Bay, Alaska, at the edge of the perennial ice zone. The suite of measurements was strategically organized around a 9-km-long survey line that covered a wide range of ice types, including refrozen leads, deformed and undeformed first year ice, and multiyear ice. A highly concentrated set of in situ measurements of snow depth and ice thickness were taken along the survey line. Once the survey line was in place, NASA IceBridge flew a dedicated mission along the survey line, collecting data with an instrument suite that included the Airborne Topographic Mapper (ATM), a high precision, airborne scanning laser altimeter; the Digital Mapping System (DMS), nadir-viewing digital camera; and the University of Kansas ultra-wideband Frequency Modulated Continuous Wave (FMCW) snow radar. NRL also flew a dedicated mission over the survey line with complementary airborne radar, laser and photogrammetric sensors (see Brozena et al., this session). These measurements were further leveraged by a series of CryoSat-2 under flights made in the region by the instrumented NRL and NASA planes, as well as US Navy submarine underpasses of the 9-km-long survey line to collect ice draft measurements. This comprehensive suite of data provides the full spectrum of sampling resolutions from satellite, to airborne, to ground-based, to submarine and will allow for a careful determination of

  17. Magnetic Susceptibility Measurements for in Situ Characterization of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Oder, R. R.

    1992-01-01

    Magnetic separation is a viable method for concentration of components of lunar soils and rocks for use as feedstocks for manufacture of metals, oxygen, and for recovery of volatiles such as He-3. Work with lunar materials indicates that immature soils are the best candidates for magnetic beneficiation. The magnetic susceptibility at which selected soil components such as anorthite, ilmenite, or metallic iron are separated is not affected by soil maturity, but the recovery of the concentrated components is. Increasing soil maturity lowers recovery. Mature soils contain significant amounts of glass-encased metallic iron. Magnetic susceptibility, which is sensitive to metallic iron content, can be used to measure soil maturity. The relationship between the ratio of magnetic susceptibility and iron oxide and the conventional maturity parameter, I(sub s)/FeO, ferromagnetic resonant intensity divided by iron oxide content is given. The magnetic susceptibilities were determined using apparatus designed for magnetic separation of the lunar soils.

  18. Quantitative Imaging and In Situ Concentration Measurements of Quantum Dot Nanomaterials in Variably Saturated Porous Media

    DOE PAGESBeta

    Uyuşur, Burcu; Snee, Preston T.; Li, Chunyan; Darnault, Christophe J. G.

    2016-01-01

    Knowledge of the fate and transport of nanoparticles in the subsurface environment is limited, as techniques to monitor and visualize the transport and distribution of nanoparticles in porous media and measure their in situ concentrations are lacking. To address these issues, we have developed a light transmission and fluorescence method to visualize and measure in situ concentrations of quantum dot (QD) nanoparticles in variably saturated environments. Calibration cells filled with sand as porous medium and various known water saturation levels and QD concentrations were prepared. By measuring the intensity of the light transmitted through porous media exposed to fluorescent lightmore » and by measuring the hue of the light emitted by the QDs under UV light exposure, we obtained simultaneously in situ measurements of water saturation and QD nanoparticle concentrations with high spatial and temporal resolutions. Water saturation was directly proportional to the light intensity. A linear relationship was observed between hue-intensity ratio values and QD concentrations for constant water saturation levels. The advantages and limitations of the light transmission and fluorescence method as well as its implications for visualizing and measuring in situ concentrations of QDs nanoparticles in the subsurface environment are discussed.« less

  19. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  20. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  1. Upper Mississippi embayment shallow seismic velocities measured in situ

    USGS Publications Warehouse

    Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.

    1997-01-01

    for shallow sediment obtained from reflection, refraction, crosshole and downhole techniques have been obtained for sites at the northern end of the embayment basin. The present borehole data, however, are measured from sites representative of large areas in the Mississippi embayment. Therefore, they fill a gap in information needed for modeling the response of the embayment to destructive seismic shaking.

  2. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements

    NASA Astrophysics Data System (ADS)

    Arab-Sedze, Melanie; Heggy, Essam; Bretard, Frederic; Berveiller, Daniel; Jacquemoud, Stephane

    2014-07-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS - PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measure- ments. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a'a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a'a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI (Leaf Area Index) produced using SPOT 5 imagery allows us to quantify the effect of vegeta- tion density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.

  3. Upscaling sparse, irregularly spaced in situ soil moisture measurements for calibration and validation of SMAP soil moisture products

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Clewley, D.; Moghaddam, M.; Akbar, R.; Silva, A. R. D.

    2015-12-01

    There is a large difference in the footprints over which remote sensing instruments, such as the Soil Moisture Active Passive (SMAP) mission, retrieve soil moisture and that of in situ networks. Therefore a method for upscaling in situ measurements is required before they can be used to validate remote sensing instruments. The upscaling problem is made more difficult when measurements are sparse and irregularly spaced within the footprint. To address these needs, we have developed a method for producing upscaled estimates of soil moisture based on a network of in situ soil moisture measurements and airborne P-band SAR data, and utilizing a Random Forests-based regression algorithm. Sites within the SoilSCAPE network, for which the technique was developed, typically contains sensors at ~30 locations, with each location sampled at multiple depths. Measurements are taken at 20 minute intervals and averaged over a selectable time interval, thereby supporting near-real time generation of soil moisture maps. The collected measurements are automatically uploaded to a central database from which they can be accessed for use in the regression algorithm. Our regression-based approach works well with irregularly-spaced sensors by incorporating a set of data layers that correlate well with soil moisture. The layers include thematic land cover, elevation, slope, aspect, flow accumulation, clay fraction, air temperature, precipitation, and P-Band HH, VV, and HV backscatter. Values from these data layers are extracted for each sensor location and applied to train the Random Forests algorithm. The decision trees generated are then applied to estimate soil moisture at a 100 m spacing throughout the network region, after which the evenly-spaced values are averaged to accord with the 3-, 9-, and 36-km SMAP measurement grids. The resulting set of near-real time soil moisture estimates suitable for SMAP calibration and validation is placed online for use by the SMAP Cal/Val team

  4. Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE 2

    NASA Technical Reports Server (NTRS)

    Woodbridge, E. L.; Elkins, J. W.; Fahey, D. W.; Heidt, L. E.; Solomon, S.; Baring, T. J.; Gilpin, T. M.; Pollack, W. H.; Schauffler, S. M.; Atlas, E. L.

    1995-01-01

    Aircraft sampling has provided extensive in situ and flask measurements of organic chlorine species in the lower stratosphere. The recent Airborne Arctic Stratospheric Expedition 2 (AASE 2) included two independent measurements of organic chlorine species using whole air sample and real-time techniques. From the whole air sample measurements we derive directly the burden of total organic chlorine (CCl(y)) in the lower stratosphere. From the more limited real-time measurements we estimate the CCl(y) burden using mixing ratios and growth rates of the principal CCl(y) species in the troposphere in conjunction with results from a two-dimensional photochemical model. Since stratospheric chlorine is tropospheric in origin and tropospheric mixing ratios are increasing, it is necessary to establish the average age of a stratospheric air parcel to assess its total chlorine (Cl(sub Total)) abundance. Total inorganic chlorine (Cl(y)) in the parcel is then estimated by the simple difference, Cl(y) = Cl(sub Total) - CCl(y). The consistency of the results from these two quite different techniques suggests that we can determine the CCl(y) and Cl(y) in the lower stratosphere with confidence. Such estimates of organic and inorganic chlorine are crucial in evaluating the photochemistry controlling chlorine partitioning and hence ozone loss processes in the lower stratosphere.

  5. Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE 2

    SciTech Connect

    Woodbridge, E.L.; Elkins, J.W.; Fahey, D.W.; Heidt, L.E.; Solomon, S.; Baring, T.J.; Gilpin, T.M.; Pollack, W.H.; Schauffler, S.M.; Atlas, E.L. ||

    1995-02-01

    Aircraft sampling has provided extensive in situ and flask measurements of organic chlorine species in the lower stratosphere. The recent Airborne Arctic Stratospheric Expedition 2 (AASE 2) included two independent measurements of organic chlorine species using whole air sample and real-time techniques. From the whole air sample measurements we derive directly the burden of total organic chlorine (CCl(y)) in the lower stratosphere. From the more limited real-time measurements we estimate the CCl(y) burden using mixing ratios and growth rates of the principal CCl(y) species in the troposphere in conjunction with results from a two-dimensional photochemical model. Since stratospheric chlorine is tropospheric in origin and tropospheric mixing ratios are increasing, it is necessary to establish the average age of a stratospheric air parcel to assess its total chlorine (Cl(sub Total)) abundance. Total inorganic chlorine (Cl(y)) in the parcel is then estimated by the simple difference, Cl(y) = Cl(sub Total) - CCl(y). The consistency of the results from these two quite different techniques suggests that we can determine the CCl(y) and Cl(y) in the lower stratosphere with confidence. Such estimates of organic and inorganic chlorine are crucial in evaluating the photochemistry controlling chlorine partitioning and hence ozone loss processes in the lower stratosphere.

  6. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  7. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  8. Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.

    1980-01-01

    Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.

  9. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.

    PubMed

    Eleftheriou, G; Tsabaris, C; Androulakaki, E G; Patiris, D L; Kokkoris, M; Kalfas, C A; Vlastou, R

    2013-12-01

    The in-situ underwater gamma-ray spectrometry method is validated by inter-comparison with laboratory method. Deployments of the spectrometer KATERINA on a submarine spring and laboratory measurements of water samples with HPGe detector were performed. Efficiency calibrations, Monte Carlo simulations and the Minimum Detectable Activity (MDA) estimations were realized. MDAs varied from 0.19 to 10.4 (lab) and 0.05 to 0.35 (in-situ) Bq/L, while activity concentrations differed from 7% (for radon progenies) up to 10% (for (40)K), between the two methods. PMID:24103707

  10. In-situ Measurements of Colloid Transport and Retention Using Synchroton X-ray Fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physics regarding the retention and mobilization of colloids in saturated and unsaturated conditions remains poorly understood, partially due to the inability to measure colloid concentrations in-situ. In this study, we attached Cd+2 ions to clay colloids, and used synchrotron x-rays to cause th...

  11. In situ measurement of dihedral angles at liquid grain boundary inclusions.

    PubMed

    Gabrisch, H; Dahmen, U; Johnson, E

    1998-08-15

    This work describes experimental aspects of the measurement of relative interfacial energies from the equilibrium dihedral angles of small liquid inclusions or precipitates at interfaces in solids using in situ transmission electron microscopy. We demonstrate how limitations such as faceting, free surfaces, and projection errors can be handled to minimize experimental errors. PMID:9779828

  12. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  13. In Situ g-PHA Measurements of the 285-3H Cooling Tower Components

    SciTech Connect

    Salaymeh, S.R.

    2001-05-23

    The Analytical Development Section of Savannah River Technology Center was requested by the Facility Disposition Division to conduct in-situ gamma-ray pulse height analysis measurements to provide input toward the decision to unconditionally release the 285-3H cooling tower.

  14. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  15. In situ measurements of Arctic atmospheric trace constituents from an aircraft

    NASA Technical Reports Server (NTRS)

    Reck, G. M.; Briehl, D.; Nyland, T. W.

    1977-01-01

    In situ measurements of the ambient concentrations of several atmospheric trace constituents were obtained using instruments installed on board the NASA Convair 990 aircraft at altitudes up to 12.5 kilometers over Alaska and the Arctic Ocean. Concentration data on ozone, carbon monoxide, water vapor, and particles larger than 0.5 micrometer in diameter were acquired.

  16. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    SciTech Connect

    Zinkle, S.J.; White, D.P.; Snead, L.L.

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  17. Phytos: a portable goniometer for in situ spectro-directional measurements of leaves

    NASA Astrophysics Data System (ADS)

    Lolli, Lapo; Pisani, Marco; Rajteri, Mauro; Widlowski, Jean-Luc; Bialek, Agnieszka; Greenwell, Claire; Fox, Nigel

    2014-12-01

    A new goniometer for in situ spectro-directional measurements of the reflection and transmission properties of individual leaves is presented. One diffuse and five directional illumination angles can be chosen. A multichannel spectrometer allows simultaneous detection of the scattered light at 80 viewing angles in the spectral range from 400 nm to 1000 nm.

  18. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  19. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  20. Measurement of airborne 218Po--a Bayesian approach.

    PubMed

    Groer, P G; Lo, Y

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called Bateman equations adapted to the sampling process. These equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne 218Po can be characterized as an "immigration-death process" in the widely adopted, biologically based jargon. The probability distribution for the number of 218Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency epsilon during a counting period T after the end of sampling, is also Poisson, with mean dependent on epsilon, t, T, the flowrate and N(o), the number of airborne 218Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes' Theorem we obtained the posterior density for N(o). This density characterizes the remaining uncertainty about the measured number of 218Po atoms per unit volume of air. PMID:8919080

  1. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  2. Airborne measurements of NO2 shipping emissions using imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas C.; Schönhardt, Anja; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Lindemann, Carsten; Wittrock, Folkard; Burrows, John P.

    2014-05-01

    NOx (NO and NO2) play a key role in tropospheric chemistry and affect human health and the environment. Shipping emissions contribute substantially to the global emissions of anthropogenic NOx. Due to globalization and increased trade volume, the relative importance emissions from ships gain even more importance. The Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP), developed at IUP Bremen, has been used to perform measurements of NO2 in the visible spectral range. The observations allow the determination of spatial distributions of column densities of NO2 below the aircraft. Airborne measurements were performed over Northern Germany and adjacent coastal waters during the NOSE (NO2 from Shipping Emissions) campaign in August 2013. The focus of the campaign activities was on shipping emissions, but NO2 over cities and power plants has been measured as well. The measurements have a spatial resolution below the order of 100 × 30 m2, and they reveal the large spatial variability of NO2 and the evolution of NO2 plumes behind point sources. Shipping lanes as well as plumes of individual ships are detected by the AirMAP instrument. In this study, first results from the NOSE campaign are presented for selected measurement areas.

  3. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign. PMID:21556111

  4. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    photochemical production of O3 present in the boundary layer over the HBL that coincided with an in situ destruction of CO, although the mechanism responsible for the destruction of CO was not identified. Results from the O3 budget analysis indicate the importance of in situ photochemical production and its possible dominance over surface deposition to the local O3 budget at the Schefferville site. Measurements of the in situ production of O3 indicated a direct relationship between the presence of biomass burning or large-scale pollution effects. Residuals from budget calculations for conserved quantities (heat, moisture, and CH4) were compared with their respective surface fluxes to provide a measure of the internal self-consistency of the flux measurements.

  5. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  6. In situ measurement of CuPt alloy ordering using strain anisotropy

    SciTech Connect

    France, Ryan M.; McMahon, William E.; Kang, Joongoo; Steiner, Myles A.; Geisz, John F.

    2014-02-07

    The optical and electrical properties of many III-V alloys change with the degree of CuPt atomic ordering, which is very sensitive to growth conditions. The bulk ordered alloy is elongated along the normal to the ordered planes, and is asymmetrically strained when coherent to a cubic substrate. Here, we demonstrate in situ measurement of the anisotropic strain due to ordering using two-dimensional wafer curvature. The measurement is sensitive to bulk anisotropies, and so is complementary to other in situ measurements that are sensitive to surface anisotropies. Using ab initio calculations, we determine a maximum strain anisotropy of 0.27% between [110] and [1{sup ¯}10] when perfectly ordered single-variant GaInP{sub 2} is coherent to a (001) cubic substrate. We relate the in situ measurement of strain anisotropy on various GaInP{sub 2} samples to ex situ measurements of the order parameter to validate the measurement and confirm the capability to predict material properties. The measurement monitors change in ordering during growth, useful for quickly determining the growth condition dependence of ordering or monitoring order-disorder transitions. More generally, this measurement technique could, in principle, be used to monitor phase changes in any epitaxial system for which the strain anisotropy of the two phases differs.

  7. Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements

    NASA Astrophysics Data System (ADS)

    Labonnote, Laurent C.; Brogniez, Gérard; Doutriaux-Boucher, Marie; Buriez, Jean-Claude; Gayet, Jean-François; Chepfer, Hélène

    2000-01-01

    An Inhhomogeneous Hexagonal Monocrystal (IHM) model is used to simulate light scattering by randomly oriented hexagonal ice crystals containing air bubbles. This model based on a combination of ray-tracing, Mie theory and Monte-Carlo techniques, allows to retrieve the scattering phase function. In-situ measurements of the light scattering diagram in natural cirrus clouds with an airborne nephelometer have been performed. The results given by the IHM model have been favorably adjusted with these measurements. This agreement provides an opportunity to use this model in order to analyze ADEOS-POLDER reflectance measurements over cirrus clouds. POLDER uses an original concept to measure, for a given scene, total and polarized reflectances under several viewing directions. A first analysis of cirrus cloud spherical albedoes for the 10th November 1996 shows a rather good agreement between measurements and calculations.

  8. Initial in Situ Measurements of Perennial Meltwater Storage in the Greenland Firn Aquifer

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Miege, Clement; Forster, Richard R.; Brucker, Ludovic

    2014-01-01

    A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics.

  9. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  10. Results from 1984 airborne Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1986-01-01

    Observations made with the revised Airborne Doppler Lidar System (ADLS) during research flights in the summer of 1984 are described. The functioning of the ADLS system is described. The research flights measured the flow around Mt. Shasta about 3 km above the surrounding terrain as well as the flow in the area of the Carquenez Strait in the Sacramento River Valley. The flight tracks are described and the resulting scan radial velocities are shown and discussed. The results demonstrate the success of the modifications made in order to correct major error sources present in the 1981 flights of the ADLS system.

  11. Measuring Level Alignment at the Metal–Molecule Interface by In Situ Electrochemical 13C NMR

    SciTech Connect

    Li, Ying; Zelakiewicz, Brian S.; Allison, Thomas C.; Tong, Yu ye J.

    2015-03-16

    A new technique to measure energy-level alignment at a metal–molecule interface between the Fermi level of the metal and the frontier orbitals of the molecule is proposed and experimentally demonstrated. The method, which combines the electrochemistry of organo-ligand-stabilized Au nanoparticles with 13C NMR spectroscopy (i.e. in situ electrochemical NMR), enables measuring both occupied and unoccupied states.

  12. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    SciTech Connect

    ThomasJr., C. E.; Granstedt, E. M.; Biewer, Theodore M; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Hillis, Donald Lee; Majeski, R.; Kaita, R.

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  13. Radon in soil gas--exhalation tests and in situ measurements.

    PubMed

    Lindmark, A; Rosen, B

    1985-10-01

    Radon in soil can move into buildings resulting in high radon daughter concentrations. The foundation of a dwelling should be adapted to the radon "risk" which is determined by the radon concentration and the air permeability of the soil. Different measuring procedures are discussed in this paper, both in situ measurements of radon content and laboratory tests on radon exhalation from different types of soils at different water contents. PMID:4081740

  14. Application of a CZT detector to in situ environmental radioactivity measurement in the Fukushima area.

    PubMed

    Kowatari, M; Kubota, T; Shibahara, Y; Fujii, T; Fukutani, S; Takamiya, K; Mizuno, S; Yamana, H

    2015-11-01

    Instead of conventional Ge semiconductor detectors and NaI(Tl) scintillation spectrometers, an application of a CdZnTe semiconductor (CZT) whose crystal has the dimension of 1 cm cubic to the in situ environmental radioactivity measurement was attempted in deeply affected areas in Fukushima region. Results of deposition density on soil for (134)Cs/(137)Cs obtained seemed consistent, comparing obtained results with those measured by the Japanese government. PMID:25953790

  15. HOLOGondel: A novel in-situ cloud measurement platform on a cable car with a digital holographic imager

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Henneberger, Jan; Kanji, Zamin; Lohmann, Ulrike

    2015-04-01

    Cloud particle properties observed in-situ are commonly conducted from airborne or ground-based measurements. When compared to airborne measurements, the advantages of ground-based measurements are a higher spatial resolution and much less costly to perform. However, ground-based observations allow only single-point measurements within a cloud. To overcome this disadvantage, a novel measurement platform with a digital holographic imager has been developed to allow in-situ cloud observations on the roof of a cable car cabin. With a traveling velocity of a cable car of a few m/s, such a measurement platform yields a spatial resolution comparable to those of ground-based measurements. In addition, it is possible to obtain vertical profiles of the microphysical properties within the cloud, because of the vertical distance covered by the cable car of approximately 800m. The major technical challenges for such a measurement platform are the lack of an external power supply and the additional weight constrain on a cable car cabin. To allow continuous operation for eight hours with a battery and to stay within the weight limit of 25kg at the same time, a compact design with carefully chosen material and components with a low power consumption was necessary. The new measurement platform HOLOGondel is equipped with a HOLographic Imager for Microscopic Objects (HOLIMO 3G). Digital in-line holography offers the advantages of measuring simultaneously an ensemble of cloud particles within a well-defined detection volume over a large range of particle size. The image captured, a hologram, yields information about the three-dimensional position, size and a shadow-graph of each particle within the detection volume. The HOLIMO 3G instrument is equipped with a 30MP camera and a 1.8 times magnifying, both-sided telecentric lens system. At a frame rate of six pictures per second a sample volume rate of about 100 cm3s-1 at a maximum resolution of 7 µm is achieved. This configuration

  16. In situ fiber-optic oxygen consumption measurements from a working mouse heart.

    PubMed

    Zhao, Y; Richman, A; Storey, C; Radford, N B; Pantano, P

    1999-09-01

    Luminescence-based imaging-fiber oxygen sensors (IFOSs) were utilized for the in situ measurement of oxygen consumption from intact perfused mouse hearts. IFOSs were fabricated using a technically expedient, photoinitiated polymerization reaction whereby an oxygen-sensitive polymer matrix was immobilized in a precise location on an imaging fiber's distal face. The oxygen-sensing layer used in this work comprised a transition metal complex, Ru(Ph2phen)3(2+), entrapped in a gaspermeable photopolymerizable siloxane membrane (PS802). The transduction mechanism was based upon the oxygen collisional quenching of the ruthenium complex luminescence; detection was performed utilizing an epi-fluorescence microscope/charge coupled device imaging system. IFOS measurements from working mouse hearts were validated through concurrent, blind, ex situ blood gas analyzer (BGA) measurements. The BGA and IFOS methodologies were utilized successfully to measure oxygen concentrations in aortic and pulmonary artery perfusates from the working mouse heart before and after isoproterenol administration. Coupled with coronary-flow measurements, these data were used to calculate myocardial oxygen consumption. Regression analysis of measurements of myocardial oxygen consumption showed that there was a strong correlation between the values generated by the BGA sampling and those obtained via in situ IFOS methods. To our knowledge, this research represents the first report of in situ fiber-optic sensor monitoring of oxygen content from the intact, beating mouse heart. PMID:10489534

  17. Airborne UV and visible spectrometer for DOAS and radiometric measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Giovanelli, Giorgio; Bonafe, U.; Bortoli, Daniele; Kostadinov, Ivan; Ravegnani, Fabrizio

    1999-10-01

    A UV/Vis spectrometer (named GASCOD) for Differentiated Optical Absorption Spectroscopy (DOAS) has been developed at ISAO Institute and deployed for ground based measurements of stratospheric trace gases for several years at mid-latitudes and the Antarctic region. An airborne version, called GASCOD/A has been installed on board a M55-Geophysica airplane, a stratospheric research platform, capable of flying at an altitude of up to 20 Km. After a test campaign in Italy, the GASCOD/A performed successfully during the Airborne Polar Experiment in the winter 95/96. More recently, the instrument was upgraded to achieve higher sensitivity and reliability. Two additional radiometric channels were added. The input optics can turn in order to collect solar radiation from five different channels: one for detection of the zenith scattered radiation through the roof window (for DOAS measurement), two for direct and diffused radiation through two lateral windows and two for radiometric measurements through two 2(pi) optical heads mounted on the upper and bottom part of the aircraft and linked to the instrument by means of optical guides. The radiometric channels give us the possibility of calculating the photodissociation rate coefficients (J-values) of photochemical reactions involving ozone and nitrogen dioxides. The mechanical and optical layout of the instrument are presented and discussed, as well as laboratory tests and preliminary results obtained during flights onboard the M55- Geophysica.

  18. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  19. Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements

    SciTech Connect

    Kurzeja, R.

    2001-07-26

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacific Ocean site but were 1-2 percent different over the mid-latitude lake.

  20. In-Situ Measurement of Metal Drop Temperature in GMA Short-Circuiting Welding

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshinori; Onda, Masahiko; Nagaki, Hayato; Ohji, Takayoshi

    Temperatures of metal drop in GMA short-circuiting welding process were in-situ measured using newly developed instrument designed on the basis of two-color pyrometry, which consisted of optical lenses, interference filters for two colors and two sets of high sensitive CCD cameras with fast shutter. In order to avoid radiation from arc plasma, temperature measurement was carried out immediately after molten drop at electrode wire tip was contacted with weld pool and arc was extinguished. Welding current in arcing period was adjusted from 50 A to 250 A using experimental power source in Ar + 20%CO2 mixture gas shielded GMA welding with mild steel wire of 1.2 mm in diameter. It is shown through in-situ measurement that average temperature of metal drop ranges from 2200 K to 2700 K, depending on level and period of arc current governing electrode wire melting.

  1. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  2. In Situ Field Measurement of Leaf Water Potential Using Thermocouple Psychrometers 1

    PubMed Central

    Savage, Michael J.; Wiebe, Herman H.; Cass, Alfred

    1983-01-01

    Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential. PMID:16663267

  3. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; Plermkamon, Vichian; Raghavendra, Cauligi; Mandl, Daniel

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  4. Comparison of MTI satellite-derived surface water temperatures and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Kurzeja, Robert J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Garrett, Alfred J.

    2002-01-01

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1% of the calculated values at the Pacific Ocean site but were 1-2% different over the mid-latitude lake.

  5. In situ creep measurements on micropillar samples during heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Özerinç, Sezer; Averback, Robert S.; King, William P.

    2014-08-01

    We report on the development of an in situ micropillar compression apparatus capable of measuring creep under heavy ion beam irradiation. The apparatus has a force resolution of 1 μN and a displacement resolution of 1 nm. The experimental setup consists of a nanopositioner, a laser displacement sensor, and a microfabricated doubly clamped silicon-beam transducer. The system was tested by measuring the creep rate of amorphous Cu56Ti38Ag6 micropillars as a function of applied stress during room temperature irradiation with 2.1 MeV Ne+. Measured values of the irradiation induced fluidity are in the range 0.5-3 dpa-1 GPa-1, and in good agreement with values obtained by stress relaxation experiments on other metallic glasses, and with predictions of molecular dynamics simulations. The in situ apparatus provides a practical approach for accelerated evaluation of irradiation induced creep in promising nuclear materials.

  6. A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments.

    PubMed

    Hanselman, Travis A; Graetz, Donald A; Obreza, Thomas A

    2004-01-01

    In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments. PMID:15224949

  7. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  8. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    NASA Astrophysics Data System (ADS)

    Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M.

    2015-03-01

    The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the ocean color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities to those observed at the Gloria site. Results from the comparison of normalized water-leaving radiance LWN indicate biases of a few percent between satellite-derived and in situ data at the center wavelengths relevant for the determination of chlorophyll a concentrations (443-547 nm, or equivalent). Remarkable is the consistency between the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center wavelengths, confirming difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  9. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    NASA Astrophysics Data System (ADS)

    Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M.

    2014-12-01

    The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS), is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443-547 nm, or equivalent). Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  10. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  11. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  12. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    NASA Astrophysics Data System (ADS)

    Hartung, W. H.; Asner, D. M.; Conway, J. V.; Dennett, C. A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T. P.; Omanovic, V.; Palmer, M. A.; Strohman, C. R.

    2015-05-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.

  13. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  14. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  15. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  16. Fuel retention measurements in Alcator C-Mod using accelerator-based in situ materials surveillance

    NASA Astrophysics Data System (ADS)

    Hartwig, Zachary S.; Barnard, Harold S.; Sorbom, Brandon N.; Lanza, Richard C.; Lipschultz, Bruce; Stahle, Peter W.; Whyte, Dennis G.

    2015-08-01

    This paper presents the first in situ time- and space-resolved measurements of deuterium (D) fuel retention in plasma-facing component (PFC) surfaces using Accelerator-based In-situ Materials Surveillance (AIMS) on the Alcator C-Mod tokamak. AIMS is a novel in situ materials diagnostic technique based on the spectroscopic analysis of nuclear reaction products induced in PFC surfaces using an ∼MeV beam of deuterons from a compact linear accelerator in between plasma shots. AIMS measurements of D retention on inner wall PFCs were acquired during diverted and limited plasma operations and during wall conditioning experiments. Intershot measurements demonstrate the local erosion and codeposition of boron films on PFC surfaces with a constant D / B ratio. This is consistent with previous results suggesting that D codeposition with boron is insufficient to account for the net retention observed in Alcator C-Mod. Changes in deuterium concentration during boronization, electron cyclotron and glow cleanings were also measured.

  17. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    PubMed

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species. PMID:24635697

  18. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    NASA Technical Reports Server (NTRS)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; Migliavacca, Mirco; Moors, Eddy; Richardson, Andrew D.; Seufert, Guenther; Schaaf, Crystal B.

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  19. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  20. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  1. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  2. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  3. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Kohl, C. P.; Nishiizumi, K.

    1992-01-01

    An isolation method relying totally on chemical steps was developed to separate large quantities (10-200 g) of clean mono-minerallic quartz samples from a variety of terrestrial rocks and soils for the purpose of measuring Be-10 (t1/2 = 1.5 Myr) and Al-26 (t1/2 = 0.705 Myr) produced by cosmic rays in situ in the quartz phase. The procedure consists of grinding the sample, heating it in HCl, and treating it with a series of leaches using a dilute HF/HNO3 mixture in a heated ultrasonic tank. The purified quartz was also used for the measurements of in situ cosmic-ray-produced Ne-21 and C-14 (t1/2 = 5730 yr). The method is applicable to any problem requiring purified quartz on a large scale.

  4. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Cruz, D.; Hitchcock, A. P.; Tyliszczak, T.; Rousseau, M.-E.; Pézolet, M.

    2007-03-01

    A novel miniature rotation device used in conjunction with a scanning transmission x-ray microscope is described. It provides convenient in situ sample rotation to enable measurements of linear dichroism at high spatial resolution. The design, fabrication, and mechanical characterization are presented. This device has been used to generate quantitative maps of the spatial distribution of the orientation of proteins in several different spider and silkworm silks. Specifically, quantitative maps of the dichroic signal at the C 1s→π*amide transition in longitudinal sections of the silk fibers give information about the spatial orientation, degree of alignment, and spatial distribution of protein peptide bonds. A new approach for analyzing the dichroic signal to extract orientation distributions, in addition to magnitudes of aligned components, is presented and illustrated with results from Nephila clavipes dragline spider silk measured using the in situ rotation device.

  5. INSTRUMENTATION AND COMPUTER BASED DATA ACQUISTION FOR IN-SITU ROCK PROPERTY MEASUREMENTS

    SciTech Connect

    Binnall, Eugene P.

    1980-02-01

    This paper discusses instrumentation and computer based data acquisition for in-situ rock property measurements as applied to an experiment conducted at Stripa, Sweden in cooperation with the U. S. Department of Energy and the Swedish government. Electrical heaters were installed in an underground granite mass to simulate thermal loading by canisters of high-level nuclear waste. Extensometers, borehole deformation gages, vibrating wire stress meters, and thermocouples were used to monitor the thermomechanical response of the granite. A computer based data acquisition system recorded data, performed on-line computations and provided graphic output. A summary description is given of the experiment areas, heater systems, data acquisition hardware, and four types of instruments used for the in-situ rock property measurements.

  6. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  7. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Trepte, Charles R.; Winstead, Edward L.; Anderson, Bruce E.

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  8. Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA

    NASA Astrophysics Data System (ADS)

    Omar, Ali; Liu, Zhaoyan; Vaughan, Mark; Thornhill, Kenneth; Kittaka, Chieko; Ismail, Syed; Hu, Yongxiang; Chen, Gao; Powell, Kathleen; Winker, David; Trepte, Charles; Winstead, Edward; Anderson, Bruce

    2010-12-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during August to September 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a two-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 ± 1.4 and 51.8 ± 3.6 sr at 532 and 1064 nm, respectively. Second, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 ± 3.5 and 50.0 ± 4 sr at 532 and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly sea-salt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (± uncertainty) of 39.4 (±5.9) and 56.5 (±16.5) sr at 532 and 1064 nm, respectively, corresponding to percentage uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms

  9. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  10. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Numata, K.; Riris, H.; Li, S.; Wu, S.; Kawa, S. R.; Abshire, J. B.; Dawsey, M.; Ramanathan, A.

    2011-12-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 um and 1.65 um. We have demonstrated detection of methane at 3.3 μm and 1650 nm in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 um.

  11. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, Melvin D.

    1994-01-01

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

  12. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, M.D.

    1994-01-11

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

  13. In situ measured current structures of the eddy field in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Ternon, J. F.; Roberts, M. J.; Morris, T.; Hancke, L.; Backeberg, B.

    2014-02-01

    Circulation and the related biological production have been studied during five cruises conducted in the Mozambique Channel (MZC) between 2005 and 2010. The circulation in the MZC is known to be highly turbulent, favouring enhanced primary production as a result of mesoscale eddy dynamics, and connectivity throughout the Channel due to the variable currents associated with migrating eddies. This paper presents the results of in situ measurements that characterize the horizontal and vertical currents in the surface and subsurface layers (0-500 m). The in situ data were analysed together with the geostrophic eddy field observed from satellite altimeter measurements. Different circulation regimes were investigated, including the "classical" anticyclonic eddy generated at the Channel narrows (16°S), the enhancement of southward migrating eddies by merging with structures (both cyclonic and anticyclonic) formed in the east of the Channel, and the presence of a fully developed cyclonic eddy at the Channel narrows. Comparison between in situ measurements (S-ADCP and velocities derived from surface drifters) and the geostrophic current derived from sea surface height measurements indicated that the latter can provide a reliable, quantitative description of eddy driven circulation in the MZC, with the exception that these currents are weaker by as much 30%. It is also suggested from in situ observation (drifters) that the departure from geostrophy of the surface circulation might be linked to strong wind conditions. Finally, our observations highlight that a-geostrophic currents need to be considered in future research to facilitate a more comprehensive description of the circulation in this area.

  14. Development of novel sol-gel indicators (SGI`s) for in-situ environmental measurements

    SciTech Connect

    Livingston, R.R.; Wicks, G.G.; Baylor, L.C.; Whitaker, M.J.

    1993-10-01

    Organic indicator molecules have been incorporated in a porous sol- gel matrix coated on the end of a fiber-optic lens assembly to create sensors for in situ environmental measurements. Probes have been made that are sensitive to pH and uranyl concentration. The use of fiber optics allows the probe to be lowered into a well or bore hole, while support equipment such as a spectrophotometer and computer may be situated hundreds of meters away.

  15. Experimental Development of a Novel Stress Sensor for in situ Stress Measurement

    SciTech Connect

    Polsky, Yarom; Lance, Michael J; Mattus, Catherine H; Daniels, Ryan J

    2016-01-01

    This paper will describe ongoing work to adapt a previously demonstrated method for measuring stress in ceramics to develop a borehole deployed in situ stress sensor. The method involves the use of a cementitious material which exhibits a strong piezo-spectroscopic stress response as a downhole stress gage. A description of the conceptual approach will be provided along with preliminary analysis and proof-of-concept laboratory results.

  16. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  17. In-Situ Greenhouse Gas Measurement Comparisons in Railroad Valley, NV to Identify Local Point Sources and Quantify their Influences on Observed Background Concentrations

    NASA Astrophysics Data System (ADS)

    Schiro, K. A.; Yates, E. L.; Sheffner, E. J.; Iraci, L. T.; Bebout, B.; Berthold, R. W.; Bruegge, C. J.; Bui, T.; DeMarines, J.; Detweiler, A. M.; Fladeland, M. M.; Kelley, C. A.; Koyler, R.; Loewenstein, M.; McKay, C.; Tadic, J.

    2011-12-01

    In the summer of 2011, researchers from NASA Ames Research Center joined a multi-institute team on a playa in Railroad Valley, Nevada to acquire ground-based and airborne observations supporting measurements from the Greenhouse Gases Observing Satellite (GOSAT). In-situ measurements of carbon dioxide (CO2) and methane (CH4) with 10 Hz temporal resolution were made using a Picarro Greenhouse Gas (GHG) Analyzer at both a ground site (Picarro G2311-f) and onboard the NASA SIERRA (Sensor Integrated Environmental Remote Research Aircraft) Unmanned Aircraft System (UAS) (Picarro G2301-f). These measurements have been compared in detail with one another, and the ground-based Picarro shows outstanding agreement with the SIERRA Picarro. This validates the ability of both instruments to measure local and regional emissions within the mixed layer. Potential GHG emission sites were identified by overflights with the SIERRA UAS and confirmed by coincident ground observations. These data comparisons, when factoring in the effects of the ground and airborne meteorological conditions, allow us to identify point sources of CO2 and CH4 within the area. Soil gas samples and sediment analysis were also conducted to help distinguish emission sources. Railroad Valley, NV is an ideal site for measuring and modeling emissions on local scales because of its remote location; resulting in clean ambient air that acts as a steady control for data retrieval and dispersion modeling. Most importantly, quantifying emissions from nearby sources allows us to achieve a greater understanding of the nature of the measurements being made across the playa. Further analysis will employ mathematical dispersion models to explore the local emissions detected with the in-situ measurements.

  18. Ionospheric scintillations and in-situ measurements at an auroral location in the European sector

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Basu, Sunanda; MacKenzie, Eileen; Weimer, Dan

    1988-03-01

    The orbiting HiLat satellite launched by the Defense Nuclear Agency in 1983 offered an opportunity for studying the ionospheric scintillation parameters in relation to the in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot minimum period. The results of such a morphological study performed by the Air Force Geophysics Laboratory based on their observations at the auroral oval station of Tromso, Norway are discussed. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. The geometrical enhancement of scintillations observed during the alignment of the propagation path with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The steepening of phase spectral slope in this region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal variation of total electron content (TEC) determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to in-situ density measurements at 830 km. The results are also utilized to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot minimum period. Special effort is made to illustrate that the joint study of scintillation/TEC and in-situ parameters provides an insight into the nature of magnetospheric coupling with the high latitude ionosphere.

  19. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides

    SciTech Connect

    Kohl, C.P.; Nishiizumi, K. )

    1992-09-01

    Measurement of cosmogenic nuclides produced in situ in terrestrial samples shows great potential as a tool for quantifying continental erosion rates, determining exposure ages of rocks, dating various geologic events, and elucidating past climates. An isolation method relying totally on chemical steps was developed to separate large quantities (10-200 g) of clean mono-minerallic quartz samples from a variety of terrestrial rocks and soils for the purpose of measuring [sup 10]Be (t[sub 1/2] = 1.5 Myr) and [sup 26]Al (t[sub 1/2] = 0.705 Myr) produced by cosmic rays in situ in the quartz phase. The procedure consists of grinding the sample, heating it in HCl, and treating it with a series of leaches using a dilute HF/HNO[sub 3] mixture in a heated ultrasonic tank. The purified quartz was also used for the measurements of in-situ-cosmic-ray-produced [sup 21]Ne and [sup 14]C (t[sub 1/2] = 5,730 yr). The method is applicable to any problem requiring purified quartz on a large scale.

  20. Ionospheric scintillations and in-situ measurements at an auroral location in the European sector

    SciTech Connect

    Basu, S.; Basu, S.; MacKenzie, E.; Weimer, D.

    1987-05-01

    The orbiting HiLat satellite offered a unique opportunity for studying the ionospheric scintillation parameters in relation to the in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot minimum period. This paper discusses the results of such a morphological study based on observations at the auroral-oval station of Tromso, Norway. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. The geometrical enhancement of scintillations observed during the alignment of the propagation path with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The steepening of phase spectral slope in this region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal variational of total electron content (TEC) determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to the in-situ density measurements at 830 km. The results are also utilized to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot minimum period. Special effort is made to illustrate that the joint study of scintillation/TEC and in-situ parameters provides an insight into the nature of magnetospheric coupling with the high-latitude ionosphere.

  1. Challenging In-Situ Strain Measurement In Pneumatic Bulging Of AA5083

    NASA Astrophysics Data System (ADS)

    Liewald, M.; Kappes, J.

    2011-05-01

    Superplastic forming of sheet metal aluminum alloys exhibits numerous technical and economical advantages for manufacturing of complex part geometries in niche type production. For virtual engineering tasks prior manufacturing of superplastic forming equipment such as forming dies, numerical sheet metal forming simulations and material parameters are crucial. In such context the selected testing procedure should be as similar as possible to the subsequent forming technique. For that reason the pneumatic bulge test represents an appropriate testing procedure for the most common superplastic forming process—the blow forming process. In-situ strain measurement of pneumatic bulging AA5083 at 500° C results in high requirements in terms of the grid applied on the blank surface due to process temperature and large strain values. These large strain values result into pole heights up to 70 mm of the bulge test specimens using an initial blank thickness of 1.5 mm and a circular die opening of 100 mm. This paper describes the influence of different grid types and finally proposes adequate grid types for in-situ strain measurement for pneumatic bulging of AA5083. Furthermore the capabilities of in-situ measurement of strains during pneumatic bulging of AA5083 are highlighted.

  2. In situ stratospheric measurements of HNO3 and HCl near 30 km using the balloon-borne laser in situ sensor tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    May, R. D.; Webster, C. R.

    1989-01-01

    In situ stratospheric measurements of the concentrations of the reservoir species HNO3 and HCl made during two flights of the high-resolution (0.0005/cm) balloon-borne laser in situ sensor instrument from Palestine, Texas, are reported. A measured HNO3 volume mixing ratio of 4.3 parts per billion by volume (ppbv) at 31 km altitude is about 1 ppbv larger than previously reported measurements at 32 deg N. An HCl mixing ratio of 1.6 ppbv at 29 km is in agreement with values obtained from earlier remote sensing techniques within the experimental uncertainties. Upper limits at 31 km of 0.4 ppbv for H2O2 and 0.2 ppbv for HOCl are also derived from analyses of spectra recorded near 1252/cm.

  3. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  4. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  5. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  6. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  7. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  8. Measurement technique for in situ characterizing aberrations of projection optics in lithographic tools

    SciTech Connect

    Wang Fan; Wang Xiangzhao; Ma Mingying

    2006-08-20

    As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools.Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner.

  9. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    SciTech Connect

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C{sub 1} and C{sub 2} Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained.

  10. Seabed radioactivity based on in situ measurements and Monte Carlo simulations.

    PubMed

    Androulakaki, E G; Tsabaris, C; Eleftheriou, G; Kokkoris, M; Patiris, D L; Vlastou, R

    2015-07-01

    Activity concentration measurements were carried out on the seabed, by implementing the underwater detection system KATERINA. The efficiency calibration was performed in the energy range 350-2600 keV, using in situ and laboratory measurements. The efficiency results were reproduced and extended in a broadened range of energies from 150 to 2600 keV, by Monte Carlo simulations, using the MCNP5 code. The concentrations of (40)K, (214)Bi and (208)Tl were determined utilizing the present approach. The results were validated by laboratory measurements. PMID:25846455

  11. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    SciTech Connect

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  12. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  13. Enhanced magnetic moment of ultrathin Co films measured by in situ electrodeposition in a SQUID

    NASA Astrophysics Data System (ADS)

    Topolovec, Stefan; Krenn, Heinz; Würschum, Roland

    2016-01-01

    A special electrochemical cell enabling in situ electrodeposition in a SQUID magnetometer is applied to study the magnetic moment of ultrathin Co films during growth on an Au(111) substrate. The in situ electrodeposition approach allows a total elimination of the magnetic background signal of the substrate, thus the magnetic moment which arises exclusively from the deposited Co film could be measured with monolayer sensitivity. The average thickness of the deposited Co films dav as determined from the transferred charge can be adjusted easily by varying the parameters of the electrodeposition. Hence, the magnetic moment of Co thin films could be determined in absolute terms as a function of the film thickness dav. For the first few atomic layers an enhancement of the magnetic moment per Co atom compared to the bulk could be observed, which increases steadily with lowering dav, reaching up to 40%.

  14. Visible and near-infrared imaging spectrometer (VNIS) for in-situ lunar surface measurements

    NASA Astrophysics Data System (ADS)

    He, Zhiping; Xu, Rui; Li, Chunlai; Lv, Gang; Yuan, Liyin; Wang, Binyong; Shu, Rong; Wang, Jianyu

    2015-10-01

    The Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard China's Chang'E 3 lunar rover is capable of simultaneously in situ acquiring full reflectance spectra for objects on the lunar surface and performing calibrations. VNIS uses non-collinear acousto-optic tunable filters and consists of a VIS/NIR imaging spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 μm), and a calibration unit with dust-proofing functionality. To been underwent a full program of pre-flight ground tests, calibrations, and environmental simulation tests, VNIS entered into orbit around the Moon on 6 December 2013 and landed on 14 December 2013 following Change'E 3. The first operations of VNIS were conducted on 23 December 2013, and include several explorations and calibrations to obtain several spectral images and spectral reflectance curves of the lunar soil in the Imbrium region. These measurements include the first in situ spectral imaging detections on the lunar surface. This paper describes the VNIS characteristics, lab calibration, in situ measurements and calibration on lunar surface.

  15. In Situ Thermal Characterization of Cooling/Crystallising Lavas During Rheology Measurement.

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Giordano, D.; Cimarelli, C.; Dingwell, D. B.

    2015-12-01

    Transport properties of silicate melts at super-liquidus temperatures are reasonably well understood. Migration and transport of silicate melts in the earth's crust and at its surface generally occur at sub-liquidus temperature regimes where they are subject to non-isothermal and non-equilibrium crystallization. To date, rheological data at sub-liquidus temperatures are scarce. In such dynamic situations heat capacities, latent heats of phase changes, viscous heating, thermal advection and thermal inertia of the apparatus are all potential factors in determining the thermal regime. Yet thermal characterisation of non- equilibrium conditions are absent, hampered by the inconvenience of recording in situ sample temperature during dynamic rheological measurements. Here we present a new experimental setup for in situ sample temperature monitoring in high temperature rheometry. We overcome the limitation of hardwired thermocouples during sample deformation by employing wireless data transmitters directly mounted onto the rotating spindle, immersed in the sample. This adaptation enables in situ, real-time, observations of the thermal regime of crystallising, deforming lava samples under the transient and non-equilibrium crystallization conditions expected in lava flows in nature. We present the apparatus calibration procedure, assess the experimental uncertainty in viscosity measurements and discuss experimental data investigating the dynamic, rheologic and thermal evolution of lavas in both temperature step and continuous cooling experiments.

  16. In situ measurements of organic matter dynamics during a storm event in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Saraceno, J.; Downing, B. D.; Bachand, P. A.; Bergamaschi, B. A.

    2008-12-01

    Dissolved organic matter (DOM) from the breakdown of plant and animal material is a significant concern for drinking water quality in California due to the potential formation of carcinogenic disinfection byproducts during treatment. Winter storms are important forcing events on the California landscape, but the extent to which they impart rapid changes in DOM and other biogeochemical variables is poorly understood. In situ optical measurements are useful as they can be made autonomously at high temporal resolution, aiding in the quantification of rapid changes in the DOM pool. We collected in situ and discrete samples during a storm event period (Feb 22-March 3, 2008) at the mouth of the 415 km2 agricultural Willow Slough watershed. The watershed is characterized by steep grasslands in the headwaters and agriculture (largely in alfalfa, rice, tomato, grasses and orchard) in the valley. The in situ optical measurements included turbidity, chromophoric DOM fluorescence (cDOM), and nitrate (NO3-) concentrations, along with a suite of ancillary parameters. Discharge and turbidity were strongly correlated at peak flow and increased by over two orders of magnitude, while the peak cDOM lagged the peak in turbidity by ten hours. The cDOM values increased by nearly 4 fold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2=0.97), providing a highly resolved proxy for DOC throughout the flow event. Specific UV absorbance (an indicator of DOM aromaticity) doubled at the DOC peak, while decreases in both the spectral slope (a proxy for DOM molecular weight) and δ13C-DOM during the same period support terrestrially- derived DOM contributions at peak flows. The lag to peak cDOM behind peak discharge presumably reflects the draining of watershed soils and delayed surface runoff of natural and agricultural landscapes. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during

  17. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  18. MISR BRF measurements for various surface types: Intercomparison with coincident airborne and ground measurements.

    NASA Astrophysics Data System (ADS)

    Abdou, W. A.; Helmlinger, M.; Jovanovic, V. M.; Martonchik, J. V.; Diner, D. J.; Gatebe, C. K.; King, M. D.

    2005-05-01

    The BRF retrieved by the multiangle Imaging spectroRadimeter (MISR) are compared with those coincidently measured from aircraft, by the Cloud Absorption Radiometer (CAR) and MISR airborne simulator (AirMISR), and on the ground, by the Portable Apparatus for Rabid Acquisition of Bidirectional Observations of Land and Atmosphere (PARABOLA III). The intercomparisons are made for five types of surfaces: bright desert, salt pans, dark grassland, forests and dismal swamps. The results show that MISR BRF values are within +/- 10% in agreement with the corresponding airborne and ground measurements, independent of the surface type. This study is part of an effort to validate MISR surface products.

  19. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  20. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    NASA Astrophysics Data System (ADS)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  1. Quantifying precision of in situ length and weight measurements of fish

    USGS Publications Warehouse

    Gutreuter, S.; Krzoska, D.J.

    1994-01-01

    We estimated and compared errors in field-made (in situ) measurements of lengths and weights of fish. We made three measurements of length and weight on each of 33 common carp Cyprinus carpio, and on each of a total of 34 bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus. Maximum total lengths of all fish were measured to the nearest 1 mm on a conventional measuring board. The bluegills and black crappies (85–282 mm maximum total length) were weighed to the nearest 1 g on a 1,000-g spring-loaded scale. The common carp (415–600 mm maximum total length) were weighed to the nearest 0.05 kg on a 20-kg spring-loaded scale. We present a statistical model for comparison of coefficients of variation of length (Cl ) and weight (Cw ). Expected Cl was near zero and constant across mean length, indicating that length can be measured with good precision in the field. Expected Cw decreased with increasing mean length, and was larger than expected Cl by 5.8 to over 100 times for the bluegills and black crappies, and by 3 to over 20 times for the common carp. Unrecognized in situ weighing errors bias the apparent content of unique information in weight, which is the information not explained by either length or measurement error. We recommend procedures to circumvent effects of weighing errors, including elimination of unnecessary weighing from routine monitoring programs. In situ weighing must be conducted with greater care than is common if the content of unique and nontrivial information in weight is to be correctly identified.

  2. Accuracy of wind measurements using an airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1986-01-01

    Simulated wind fields and lidar data are used to evaluate two sources of airborne wind measurement error. The system is sensitive to ground speed and track angle errors, with accuracy required of the angle to within 0.2 degrees and of the speed to within 1 knot, if the recovered wind field is to be within five percent of the correct direction and 10 percent of the correct speed. It is found that errors in recovered wind speed and direction are dependent on wind direction relative to the flight path. Recovery of accurate wind fields from nonsimultaneous sampling errors requires that the lidar data be displaced to account for advection so that the intersections are defined by air parcels rather than fixed points in space.

  3. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  4. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  5. Airborne microwave measurements at 89 and 157 GHz

    NASA Astrophysics Data System (ADS)

    Jones, David C.; English, Stephen J.; Saunders, Roger W.; Prigent, Catherine; Guillou, C.; Chedin, Alain; Claud, C.

    1993-08-01

    In support of the AMSU-B program, the UK Meteorological Office (UKMO) in collaboration with Laboratoire de Meteorologie Dynamique (LMD) have developed the Microwave Airborne Scanning Radiometer System (MARSS) which operates at 89 and 157 GHz, near the 'window' channels of AMSU-B. This total power radiometer is flown on board the C-130 aircraft of the UKMO which is well- equipped with sensors measuring thermodynamical and cloud microphysical parameters up to a height of 9 km. The instrument has a scanning cycle time of approximately 3 seconds, during which time the radiometer takes 9 upward and 9 downward views as well as two views of internal calibration targets. It has been found that the Liebe MPM model gives more consistent agreement with the observed brightness temperatures than other published transmission models.

  6. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  7. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-05-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear Co2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  8. Validation of Land Surface Temperature products in arid climate regions with permanent in-situ measurements

    NASA Astrophysics Data System (ADS)

    Goettsche, F.; Olesen, F.; Trigo, I.; Hulley, G. C.

    2013-12-01

    Land Surface Temperature (LST) is operationally obtained from several space-borne sensors, e.g. from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) by the Land Surface Analysis - Satellite Application Facility (LSA-SAF) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-Terra by the MODIS Land Team. The relative accuracy of LST products can be assessed by cross-validating different products. Alternatively, the so-called 'radiance based validation' can be used to compare satellite-retrieved LST with results from radiative transfer models: however, this requires precise a priori knowledge of land surface emissivity (LSE) and atmospheric conditions. Ultimately, in-situ measurements (';ground truth') are needed for validating satellite LST&E products. Therefore, the LST product derived by LSA-SAF is validated with independent in-situ measurements (';temperature based validation') at permanent validation stations located in different climate regions on the SEVIRI disk. In-situ validation is largely complicated by the spatial scale mismatch between satellite sensors and ground based sensors, i.e. areas observed by ground radiometers usually cover about 10 m2, whereas satellite measurements in the thermal infrared typically cover between 1 km2 and 100 km2. Furthermore, an accurate characterization of the surface is critical for all validation approaches, but particularly over arid regions, as shown by in-situ measurements revealing that LSE products can be wrong by more than 3% [1]. The permanent stations near Gobabeb (Namibia; hyper-arid desert climate) and Dahra (Senegal; hot-arid steppe-prairie climate) are two of KIT's four dedicated LST validation stations. Gobabeb station is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The gravel plains are highly homogeneous in space and time, which makes them ideal for

  9. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Bekins, B.A.; Eganhouse, R.P.; Warren, E.; Essaid, H.I.

    2010-01-01

    Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene ≥ toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.

  10. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  11. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Mod

    SciTech Connect

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-15

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot ({approx}10 min) time scale with {approx}1 {mu}m depth and {approx}1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic - nuclear scattering of MeV ions - to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  12. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  13. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  14. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  15. Addressing Global Questions With in situ Measurements: Defining Accuracy Using Both Advances in Data Reduction Algorithms and Developments in Laser Systems

    NASA Astrophysics Data System (ADS)

    Engel, G. S.; Anderson, J. G.

    2003-12-01

    Data reduction and data analysis algorithms can introduce statistically significant systematic bias and loss of precision in results of both satellite and airborne in situ measurement results. Because data from many instruments must be used to create a global mapping, reducing these hidden systematic errors in in situ instrumentation is crucial to validating satellite data and to integrating in situ results into global climate models. Biases in the in situ measurements must be eliminated before the result can be considered accurate. Additionally, inter-comparison among in situ instrumentation requires careful review of all collection, reduction and analysis algorithms to eliminate differences in temporal and spatial offsets as well as extrapolation to the appropriate timescales to compare instruments. Typically, the in situ community does not archive raw data nor publish retrieval and reduction algorithms in such a way that they can be verified and reviewed; however the global nature of current atmospheric questions requires this change. In flight inter-comparisons between results obtained from related instruments are necessary but not sufficient to resolve differences in measurements and in uncertainties; details of analysis techniques must also be compared to ensure the agreement or disagreement between instruments is well-understood. Simply observing agreement or disagreement is not sufficient. Having documented, traceable paths to compare laboratory calibrations and analysis to flight data will lead to improvements in instrumentation and retrieval algorithms, thereby improving the credibility of atmospheric data. We will show raw data from Cavity-Enhanced Absorption Spectrometers using Integrated Cavity Output Spectroscopy (ICOS) and Cavity Ringdown Spectroscopy (CRDS) and demonstrate statistically significant improvement in second generation fitting and retrieval algorithms. Improved lineshape models and singular value decomposition of the baseline have

  16. Can in situ measurements be used to estimate the age of shallow cumulus clouds?

    NASA Astrophysics Data System (ADS)

    Witte, M.; Chuang, P. Y.

    2010-12-01

    Cumulus clouds exhibit a life cycle that consists of: a) the growth phase (increasing size, most notably in the vertical direction); b) mature phase (growth no longer occurs; any precipitation that develops is strongest during this period); and c) dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support). Radar can track clouds over time and give some sense of the age of each cloud, but most aircraft measurements are without a temporal context. If it is possible, determining the cloud age (even if it is approximate, i.e. determining the phase in its life cycle) based solely on in situ measurements could provide important context information. The existence of such a measure would be a useful tool for interpreting past and future in situ cloud measurements. We use LES model simulations of trade wind cumulus cloud fields from one case during the Barbados Oceanographic and Meteorological Experiment (BOMEX) to test several potential cumulus cloud “clocks.” One key metric is the in-cloud buoyancy perturbation from the clear air mean as a function of time, as measured by virtual potential temperature. In general, the mean buoyancy of a cloud initially increases from zero with time, peaks, and decreases to become negatively buoyant during the latter third of its life cycle, with the amplitude of buoyancy dependent on cloud size. In some cases (more commonly for larger clouds), multiple pulses of buoyancy occur, which complicate any potential cumulus clock (as also reported by Heus et al., 2009). Since the buoyancy perturbation is not single-valued over the life of a given cloud, nor is the magnitude of the perturbation sufficient to differentiate between a mature small cloud or a growing larger cloud, other parameters must be used in addition to cloud buoyancy to construct a useful in situ cloud clock.

  17. In situ gas analysis for high pressure applications using property measurements

    NASA Astrophysics Data System (ADS)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  18. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    USGS Publications Warehouse

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m?2 yr?1—4—40 times previously published yields—representing a potential loading to the estuary of 80 g yr?1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  19. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    NASA Astrophysics Data System (ADS)

    Verstricht, J.; Areias, L.; Bastiaens, W.; Li, X. L.

    2010-06-01

    Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure), or it can be an indirect technique, deriving the stress from related quantities such as strain (changes) in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter). Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  20. In situ method for real time measurement of dielectric film thickness in plasmas

    SciTech Connect

    Jang, Sung-Ho; Kim, Gun-Ho; Chung, Chin-Wook

    2010-01-15

    An in situ thickness measurement method of dielectric films (dual frequency method) was developed, and the thicknesses were measured in an inductively coupled plasma. This method uses a small ac bias voltage with two frequencies for thickness measurement. The dielectric thickness is obtained from measuring the amplitudes of the two frequency ac currents through a sensor, as well as using an equivalent circuit model describing impedance of the dielectric film and the plasma sheath. In the experiment, the thicknesses of Al{sub 2}O{sub 3} film could be accurately measured in real time. To check the measurement reliability, the dual frequency method was compared with reflection spectrophotometry as a technique for optical thickness diagnostics. It was found that the dual frequency method agrees closely with reflection spectrophotometry at various rf powers and pressures. In addition, this method is very simple and can be installed anywhere in plasma reactors, in contrast with optical methods; therefore, it is expected to be applied to in situ surface diagnostics for various processing plasmas.

  1. Mathematical Modeling and In-Situ Measurements of Soil CO2/O2 Flux Dynamics

    NASA Astrophysics Data System (ADS)

    Turcu, V. E.; Or, D.

    2002-12-01

    Gaseous exchange between soil and atmosphere consist primarily of CO2 and O2 fluxes induced by concentration gradients resulting from respiration within the soil profile. Despite their crucial role in the biosphere, dynamics of CO2/O2 concentrations in soil and surface fluxes are rarely measured continuously. A new gradient-based method for continuous monitoring of soil CO2/O2 concentrations was tested in the laboratory and in the field and compared to closed-chamber measurements. In situ measurements were made in different plant communities within a semi-arid ecosystem. A one-dimensional vertical model for soil CO2/O2 fluxes that considers bio-geo-chemical and environmental factors within the basic governing equations for gaseous transport in porous media was developed. Comparisons between model simulations and continuous in-situ measurements of CO2 and O2 concentrations (and fluxes) were in reasonable agreement. Simultaneous measurements of soil CO2 and O2 concentrations provide insights on soil respiration characteristics such as the respiratory quotient (CO2/O2) that ranged from 0.7 to 1.2 and tended to remain remarkably stable under particular experimental conditions. Conversion of measured concentration gradients into surface fluxes was critically dependent on proper estimation of water content profile that affects soil diffusion coefficients. Continuous monitoring in the soil is particularly important following rainfall events where spatial (vertical) and temporal patterns of gaseous fluxes are complex and are unobservable by common surface chamber methods.

  2. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  3. In-situ land surface emissivity retrieved from FTIR spectroscopic measurements at Gobabeb, Namibia

    NASA Astrophysics Data System (ADS)

    Goettsche, Frank; Olesen, Folke; Bork-Unkelbach, Annika

    2015-04-01

    Gobabeb, Namibia (hyper-arid climate) is one of KIT's four dedicated LST validation stations. The network provides validation data to EUMETSAT's Land Surface Analysis - Satellite Application Facility (LSA-SAF). Gobabeb station measures upwelling and down-welling thermal infrared (TIR) radiance for LST determination as well as broadband SW & LW up- and downwelling radiance over the vast and flat gravel plains of the Namib Desert, i.e. the measurements are representative for an area of several 100 km2. All data are provided at one minute temporal resolution. The gravel plains are mainly covered by coarse gravel, sand, and desiccated grass and are highly homogeneous in space and time: this allows validating a broad range of satellite-derived products with a limited number of representative radiance measurements. However, over arid regions the relatively high uncertainty in land surface emissivity (LSE) limits the accuracy with which land surface temperature (LST) can be retrieved. As LSE uncertainty affects LST obtained from satellite measurements and in-situ radiance measurements alike, the determination and validation of LST requires accurate knowledge of emissivity for the areas observed by the ground radiometers and the satellite sensor. During previous campaigns in-situ emissivities of dominant surface cover types at Gobabeb were obtained with a variant of the so-called 'emissivity box method', which presents a well-established and straight-forward way to determine in-situ emissivity. However, the method is limited in that it retrieves channel-effective emissivities specific to the field radiometer. For validating satellite LST&E products these still need to be matched to the response function of the satellite sensor: this is usually achieved via an empirical regression relationship and introduces additional uncertainty. In contrast, emissivity spectra allow obtaining accurate channel-effective LSE of arbitrary sensors. However, due to the weight and other

  4. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    dibromostyrene. To further demonstrate the utility of in- situ spectral imaging, we have shown that small diameter (350 μm) image guides can be used for in-situ measurements of analyte transport in thin membranes. This has been applied to the measurement of H2O diffusion in Nafion™ membranes using the luminescent compound, [Ru(phen)2dppz] 2+, which is a H2O indicator.

  5. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  6. In situ glyoxal measurements in rural settings: loss processes, biogenic contribution and model - measurement comparison

    NASA Astrophysics Data System (ADS)

    Huisman, A. J.; Gilman, J. B.; McKay, M.; Lafranchi, B.; Crounse, J. D.; Mielke, L. H.; Mao, J.; Bouvier-Brown, N. C.; Matross, D.; Keutsch, F. N.

    2009-04-01

    One crucial system to the chemical and radiative processes in the atmosphere is the oxidation of volatile organic compounds (VOCs). Oxidation processes of VOCs by nitrogen and hydrogen oxides are central to both smog and secondary organic aerosol (SOA) formation, both of which are implicated in human health and climate change. Glyoxal, the smallest dialdehyde, is linked to the oxidation of both anthropogenic and biogenic VOCs and forms SOA (Fu et al. JGR 113, D15303, 2008). Glyoxal has very few primary sources and is a higher generation oxidation product of biogenic VOCs; measurements of glyoxal thus provide insights unavailable via analysis of traditional oxygenated VOCs, such as formaldehyde, methyl vinyl ketone or methacrolein. Although there is a growing dataset of glyoxal mixing ratios for urban sites, there have been few studies using direct and fast measurement of glyoxal in rural areas, which contribute the majority of global glyoxal (Fu et al.). We present the first such measurements for two rural areas and a detailed analysis of the chemistry controlling the local glyoxal concentrations. We have recently developed a laser-induced phosphorescence (LIP) instrument for high sensitivity (precision 2 pptv/min), fast, highly specific in situ measurement of glyoxal. The instrument participated in the BEARPEX 2007 (Huisman et al. Anal. Chem. 80, 5884, 2008) and PROPHET 2008 field campaigns. BEARPEX occurred at a site with high MBO and terpene emissions which was influenced by upwind isoprene emissions as well as the urban plume from Sacramento. The PROPHET 2008 field campaign was dominated by isoprene chemistry with only sporadic influence from anthropogenic emissions. The glyoxal mixing ratios observed during BEAPREX 2007 were significantly higher (up to 250 pptv) than during PROPHET 2008 (up to 80 pptv). We will present an overview of differences and similarities between the two measurement campaigns with respect to the atmospheric chemistry controlling glyoxal

  7. Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Hoshizaki, T.; Miller, J. R.

    1988-01-01

    Visible IR Intelligent Spectrometer (VIRIS) reflectance data have been found to have similar features that are related to air-pollution-induced forest decline and visible damage in both the red spruce of Vermont and the Norway spruce of Baden-Wuerttemberg; the similarity suggests a common source of damage. Spectra of both species include a 5-nm blueshifting of the red-edge inflection point, while pigment data for both species indicate a loss of total chlorophylls. The blue shift of the chlorophyll absorption maximum, as well as the increased red radiance and decreased near-IR radiance of the damaged spruce, may be used to delineate and map damage areas.

  8. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    SciTech Connect

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goals of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.

  9. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  10. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  11. Feasibility of an in situ measurement device for bubble size and distribution.

    PubMed

    Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-09-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles. PMID:17566786

  12. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  13. High frequency, high resolution in situ measurement of Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Hu, I. H.; Hemond, H.

    2013-12-01

    Dissolved Organic Carbon (DOC) is an important part of the carbon cycle in aquatic ecosystems and plays a fundamental role in numerous biogeochemical processes. Fast and accurate quantification of its concentration is necessary for several applications. For instance, determination of benthic fluxes of DOC via the eddy correlation (EC) method requires a sensor capable of precisely measuring DOC concentrations at a small point location, at a speed of several Hz. Such a sensor would enable the development of EC as a minimally invasive, in situ alternative to existing methods of DOC flux estimation, which currently include benthic chambers and sediment core incubations. A proof of concept instrument has been created capable of detecting naturally occurring levels of DOC at high speed via fluorescence measurements. Designed with the EC application in mind, the system utilizes optical fibers to transmit excitation and emission light, enabling in situ measurements at high spatial resolution. Emitted fluorescence light is passed through a tunable monochromator before reaching a photomultiplier tube; light level, and therefore solute concentration, is determined by photon counting. Preliminary results indicated that 100 Hz measurements of a 10 ppm humic acid solution were precise within 5%. The use of a tunable monochromator not only allows flexibility in detection wavelength, but also enables scans of the emission spectrum. The instrument thus is a dual-function device capable of both characterizing the chemistry of the water (e.g. characterizing the DOC present, or identifying additional compounds), and measuring fluorescence at selected wavelengths for EC and other applications.

  14. Feasibility of an in situ measurement device for bubble size and distribution

    PubMed Central

    Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-01-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam™, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles. PMID:17566786

  15. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  16. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  17. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  18. Return glider radiosonde for in situ upper-air research measurements

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2016-06-01

    Upper-air balloon soundings for weather predictions have been made since the beginning of the 20th century. New radiosonde instruments for in situ humidity-, radiation- and gas-profile measurements in the troposphere and the lower stratosphere, were introduced in recent years for atmospheric research and climate monitoring, but such instruments are often expensive and it is desired they be reused on multiple flights. Recovering instruments that freely descend with parachutes is time consuming, sometimes difficult and even dangerous. Here, we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons similar to traditional radiosondes to a preset altitude, at which time a release mechanism cuts the tether string, and a built-in autopilot flies the glider autonomously back to the launch site or a desired preprogrammed location. Once the RGR reaches the landing coordinates it circles down and releases a parachute 100 m above ground for landing. The motivation for this project was to measure radiation profiles throughout the atmosphere with the same instrument multiple times and with a rapid turn-around time. The paper describes technical aspects of the return glider radiosonde and the built-in radiation instruments and shows test flights up to 24 km altitude that are analyzed in terms of flight performance and maximal distances covered. Several successive flights measuring radiation profiles demonstrate the reliability and the operational readiness of the RGR, allowing new ways for atmospheric in situ research and monitoring with payloads up to several kg depending on the specific size of the glider.

  19. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  20. In situ stress measurement of fiber reinforced composite in low temperature state by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Nishida, Masayuki; Jing, Tian; Muslih, M. Refai; Doi, Taisei; Matsue, Tatsuya; Hanabusa, Takao

    2015-03-01

    The tungsten fiber reinforced titanium composite (W/Ti) was produced by the spot welding method. The internal stress alteration of the W/Ti composite was measured by the neutron diffractometer, DN1, which had been installed at beam port #6 in National Nuclear Energy Agency Indonesia. The two-dimensional detector and cryostat system were mounted on the DN1 diffractometer, and the residual stress alterations were measured by the in situ neutron stress measurement technique under the cooling cycles from 300 K to 10 K. Residual stresses in tungsten fiber were investigated at several temperatures. In the longitudinal fiber direction, the thermal residual stresses of tungsten fiber became a large compressive state and represented the maximum value is about -950 MPa. The calculated results of the simple elastic model agreed with the experimental results of the in situ thermal stress measurement qualitatively. It is assumed that the stresses in the fiber longitudinal direction are the dominant stresses in the W/Ti composite.

  1. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth.

    PubMed

    Colin, J J; Diot, Y; Guerin, Ph; Lamongie, B; Berneau, F; Michel, A; Jaouen, C; Abadias, G

    2016-02-01

    An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements. PMID:26931861

  2. Comparison of Lidar and In-Situ Measurements of Stratospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Northam, G. B.; Rosen, J. M.; Pepin, T. J.; Hofmann, D. H.; McCormick, M. P.

    1973-01-01

    This paper will present the results of a comparative study conducted in Laramie, Wyoming, during the summer and fall of 1972, as part of the Department of Transportation's Climatic Impact Assessment Program (ClAP). The study included independent, and nearly simultaneous, measurements of stratospheric aerosols using a LIDAR system and a balloon-borne in-situ particle counter. The LIDAR provides a remote measurement of volume backscatter (aerosols and molecules) in a narrow wavelength region centered at the ruby wavelength (6943R); whereas the balloon-borne in-situ counter measures aerosol concentration by counting aerosols greater than approx. 0.30 microns in diameter as they are pumped through a chamber and scatter white light forward into photo-detectors. The comparison of measurements that will be discussed using the two techniques involves formulating the LIDAR data so that it is compatible with the counter data. The formulation includes separation of the scattering due to aerosols from the total and displaying this in terms of aerosol scattering function. Aerosol scattering function is proportional to aerosol concentration if the aerosol parameters, such as size distribution and composition, are constant with altitude. In separating the aerosol scattering from the total, the need for real atmospheric number density over the Standard Atmosphere is also discussed.

  3. In situ methods for measuring thermal properties and heat flux on planetary bodies

    PubMed Central

    Kömle, Norbert I.; Hütter, Erika S.; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-01-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements. PMID:21760643

  4. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth

    NASA Astrophysics Data System (ADS)

    Colin, J. J.; Diot, Y.; Guerin, Ph.; Lamongie, B.; Berneau, F.; Michel, A.; Jaouen, C.; Abadias, G.

    2016-02-01

    An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements.

  5. In situ strain and temperature measurement and modelling during arc welding

    DOE PAGESBeta

    Chen, Jian; Yu, Xinghua; Miller, Roger G.; Feng, Zhili

    2014-12-26

    In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less

  6. Infrasound-array-element frequency response: in-situ measurement and modeling

    NASA Astrophysics Data System (ADS)

    Gabrielson, T.

    2011-12-01

    Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command

  7. In situ strain and temperature measurement and modelling during arc welding

    SciTech Connect

    Chen, Jian; Yu, Xinghua; Miller, Roger G.; Feng, Zhili

    2014-12-26

    In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well as a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.

  8. Development of a Flight Instrument for in situ Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Anderson, J. G.

    2015-12-01

    Methane emissions data for natural gas and oil fields have high uncertainty. Better quantifying these emissions is crucial to establish an accurate methane budget for the United States. One obstacle is that these emissions often occur in areas near livestock facilities where biogenic methane abounds. Measuring ethane, which has no biogenic source, along with methane can tease these sources apart. However, ethane is typically measured by taking whole-air samples. This tactic has lower spatial resolution than making in situ measurements and requires the measurer to anticipate the location of emission plumes. This leaves unexpected plumes uncharacterized. Using Re-injection Mirror Integrated Cavity Output Spectroscopy (RIM-ICOS), we can measure both methane and ethane in flight, allowing us to establish more accurate fugitive emissions data that can more readily distinguish between different sources of this greenhouse gas.

  9. In situ measurements of OH and HO{sub 2} in the upper troposphere and stratosphere

    SciTech Connect

    Wennberg, P.O.; Hanisco, T.F.; Cohen, R.C.

    1995-10-01

    Recent aircraft and balloon borne measurements of OH and HO{sub 2} are reviewed. The authors demonstrate the ability of the laser-induced fluorescence technique to provide accurate, high signal to noise ratio measurements of OH throughout the upper troposphere and stratosphere. HO{sub 2} is measured as OH after gas phase chemical titration with nitric oxide. The addition of the HO{sub x} measurement capability to the suite of instruments aboard the NASA ER-2 aircraft has provided a wealth of new information about the processes that determine the concentration of ozone in the lower stratosphere. These simultaneous, in situ measurements provide a unique test of present understanding of the mechanisms that control the odd-hydrogen chemistry of the lower atmosphere. 17 refs., 8 figs., 1 tab.

  10. CO2 variability from in situ and vertical column measurements in Mexico City

    NASA Astrophysics Data System (ADS)

    Baylon, J. L.; Grutter, M.; Stremme, W.; Bezanilla, A.; Plaza, E.

    2014-12-01

    UNAM started a program to measure, among many other atmospheric parameters, greenhouse gas concentrations at six stations in the Mexican territory as part of the "Red Universitaria de Observatorios Atmosfericos", RUOA (www.ruoa.unam.mx). In this work we present recent time series of CO2 measured at the station located in the university campus in Mexico City, and compare them to total vertical columns of this gas measured at the same location. In situ measurements are continuously carried out with a cavity ring-down spectrometer (Picarro Inc., G2401) since July 2014 and the columns are retrieved from solar absorption measurements taken with a Fourier transform infrared spectrometer (Bruker, Vertex 80) when conditions allow. The retrieval method is described and results of the comparison of both techniques and a detailed analysis of the variability of this important greenhouse gas is presented. Simultaneous surface and column CO2 data are useful to constrain models and estimate emissions.

  11. In-situ measurements of nighttime radical species (NO3 and N2O5) from Seoul N Tower in Korea during MAPS 2015

    NASA Astrophysics Data System (ADS)

    Min, K. E.

    2015-12-01

    The importance of nitrate radical (NO3) chemistry has been emphasized in the nocturnal atmosphere which influences on the air quality in following day. This chemistry could gather its importance even more in urban setting or in downwind area of large urban emission sources. In support of these issue, efforts in investigating the nighttime chemical mechanisms has been made during MAPS 2015 (Megacity Air Pollution Study 2015) at Seoul in Korea from May 18th to June 12th of 2015. By deploying NOAA's state-of-the-art instrument, ARNOLD (Airborne Ring-down Nitrogen Oxide Laser Detector), high time resolution in-situ measurement of nitrate (NO3), dinitrogen pentoxide (N2O5) as well as other related trace gases species (e.g. NO, NO2, NOy, and O3) were made on the Seoul N Tower (inlet height: 362m ASL). The in-situ measurements of NO3 radical will provide good observational constraints on night time oxidation processes. The NO3 and N2O5 equilibrium and reactivity will be analyzed by comparison of their lifetimes to those calculated from VOC (Volatile Organic Compounds) measurements and kinetic calculations. Implications for nitrogen oxides species will be discussed.

  12. In situ Measurement of Self-Heating in Intrinsic Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Sandberg, M.; Zogaj, I.

    2005-02-01

    Using advanced sample engineering we performed simultaneous measurements of interlayer tunneling characteristics and in situ monitoring of temperature in Bi2Sr2CaCu2O{8+δ} (Bi-2212) mesas. Together with a systematic study of size dependence of interlayer tunneling, this allowed unambiguous discrimination between artifacts of self-heating and gaps in the electronic spectra of Bi-2212. Such a confident spectroscopic information, which is not affected by self-heating or surface deterioration, was obtained for the first time for a high-Tc superconductor. We also derived general expressions and formulated main principles of self-heating valid for a large variety of materials.

  13. In-situ hydrogen concentration measurements in multilayers using neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Rehm, Ch.; Klose, F.; Nagengast, D.; Maletta, H.; Weidinger, A.

    1997-02-01

    We show that neutron reflectivity is very useful for in situ hydrogen concentration measurements in thin films, as will be demonstrated for Fe/Nb multilayers. The samples consisting of [ 26 Å Fe /X Å Nb ] ∗n with X = 15 Å-40 Å were charged with hydrogen from the gas phase at different pressures at 473 K. The hydrogen concentration in the Nb layers (no hydrogen is dissolved in Fe) can be determined from the change in the scattering contrast between Nb and Fe and the expansion of the Nb lattice due to the uptake of hydrogen. Both features are clearly visible in the reflectivity diagrams.

  14. In-situ measurement of processing properties during fabrication in a production tool

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Haverty, P.; Hoff, M.; Loos, A. C.

    1988-01-01

    Progress is reported on the use of frequency-dependent electromagnetic measurements (FDEMs) as a single, convenient technique for continuous in situ monitoring of polyester cure during fabrication in a laboratory and manufacturing environment. Preliminary FDEM sensor and modeling work using the Loss-Springer model in order to develop an intelligent closed-loop, sensor-controlled cure process is described. FDEMs using impedance bridges in the Hz to MHz region is found to be ideal for automatically monitoring polyester processing properties continuously throughout the cure cycle.

  15. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  16. F4TCNQ-Induced Exciton Quenching Studied by Using in-situ Photoluminescence Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lu, Min; Wu, Bo; Hou, Xiao-Yuan

    2012-09-01

    The role of F4TCNQ as an exciton quenching material in thin organic light-emitting films is investigated by means of in situ photoluminescence measurements. C60 was used as another quenching material in the experiment for comparison, with Alq3 as a common organic light-emitting material. The effect of the growth sequence of the materials on quenching was also examined. It is found that the radius of Förster energy transfer between F4TCNQ and Alq3 is close to 0 nm and Dexter energy transfer dominates in the quenching process.

  17. Polarimetric fiber grating biosensor for in-situ high-sensitive intracellular density measurement

    NASA Astrophysics Data System (ADS)

    Guo, Tuan; Liu, Fu; Liu, Yu; Chen, Nan-Kuang; Guan, Bai-Ou; Albert, Jacques

    2014-05-01

    High sensitivity biological sample measurements have been achieved by using a 12o tilted fiber Bragg grating (TFBG). Human acute leukemia cells with different intracellular densities and refractive index (RI) ranging from 1.3342 to 1.3344 were clearly discriminated in-situ by using the differential transmission spectrum between two orthogonal polarizations for the last guided mode resonance before "cut-off", with an amplitude variation sensitivity of 1.8×104 dB/RIU and a limit of detection of 2×10-5 RIU. The technique is inherently temperature-insensitive.

  18. Small-scale spatial variations of gaseous air pollutants - A comparison of path-integrated and in situ measurement methods

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Schäfer, Klaus; Xin, Jinyuan; Qin, Min; Suppan, Peter; Wang, Yuesi

    2014-08-01

    Traffic emissions are a very important factor in Beijing's urban air quality. To investigate small-scale spatial variations in air pollutants, a campaign was carried out from April 2009 through March 2011 in Beijing. DOAS (differential optical absorption spectroscopy) systems and in situ instruments were used. Atmospheric NO, NO2, O3 and SO2 mixing ratios were monitored. Meanwhile, HCHO mixing ratios were measured by two different DOAS systems. Diurnal variations of these mixing ratios were analysed. Differences between the path-integrated and in situ measurements were investigated based on the results from the campaign. The influences of different weather situations, dilution conditions and light-path locations were investigated as well. The results show that the differences between path-integrated and in situ mixing ratios were affected by combinations of emission source strengths, weather conditions, chemical transformations and local convection. Path-integrated measurements satisfy the requirements of traffic emission investigations better than in situ measurements.

  19. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  20. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  1. Autonomous, In-situ Instrumentation for Continuous Measurement of Dissolved Copper and Zinc in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Chase, Z.; Holm, C. E.; Groshong, H.; Yannasch, H.; Johnson, K.

    2008-12-01

    Quantifying trace metal concentrations in aquatic systems is complicated, costly, and prone to contamination artifacts. Consequently, very little is known about high-frequency temporal variability (hours-to-days) in metal concentrations. Such data can be used to assess the origin, fate and impact of toxic trace metals such as copper and zinc. We have developed autonomous, in-situ instrumentation to measure dissolved copper and zinc concentrations, suitable for deployment on time scales from weeks to a month. Both instruments use the commercially available in-situ nitrate analyzer (YSI 9600) as the base platform. Micro solenoid pumps take in sample and dispense reagent, standard, and blank solutions. Filtration (0.45 μm) and acidification (pH ~1.7) permit a measurement of total dissolved metal. The copper instrument features a custom-made photomultiplier (PMT) based detector and flow-cell. Copper is detected through chemiluminescence of 1-10- phenanthroline. The zinc instrument features a custom-made PMT and LED-based fluorometric detector and flow-cell. Zinc is detected using the fluorescent probe Fluo-Zin3. Averaged over all in-situ estuarine deployments, the copper instrument has a detection limit of 0.8 nM ±0.3 nM, a sample precision of 11% (n=612), and an accuracy of 17% (compared to discrete samples n=27). The instrument is capable of functioning autonomously for 25 days when sampling every hour and calibrating every six hours. Based on bench tests, the zinc instrument has a detection limit of ~2 nM and a sample precision better than 2%. The hardware and analytical approach can be easily modified to detect additional metals by chemiluminescence (e.g. Co, Fe, Mn) and fluorescence (e.g. Al, Cd).

  2. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    NASA Astrophysics Data System (ADS)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  3. Image correlation method for measuring flow and diameter changes in contracting mesenteric microlymphatics in situ

    NASA Astrophysics Data System (ADS)

    Dixon, J. Brandon; Cote, Gerard; Gashev, Anatoly; Greiner, Steven; Moore, James; Zawieja, David

    2006-02-01

    Collecting microlymphatics play a vital role in promoting lymph flow from the initial lymphatics in the interstitial spaces to the large transport lymph ducts. In most tissues, the primary mechanism for producing this flow is the spontaneous contractions of the lymphatic wall. Individual units, known as lymphangion, are separated by valves that help prevent backflow when the vessel contracts, thus promoting flow through the lymphatic network. Lymphatic contractile activity is inhibited by flow in isolated lymphatics, however there are virtually no in situ measurements of lymph flow in these vessels. One of the difficulties associated with obtaining such measurements is the time consuming methods of manual particle tracking used previously by our group. Using an in situ preparation with mesenteric microlymphatics (~ 100 μm in diameter) and a high speed imaging system (500 fps), we have developed an image correlation method to measure lymphatic flow with a standard error of prediction of 0.3 mm/sec when compared with manual particle tracking.

  4. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  5. Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements

    NASA Astrophysics Data System (ADS)

    Felicetti, Leonard; Santoni, Fabio

    2014-08-01

    The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.

  6. Optical closure in marine waters from in situ inherent optical property measurements.

    PubMed

    Lefering, Ina; Bengil, Fethi; Trees, Charles; Röttgers, Rüdiger; Bowers, David; Nimmo-Smith, Alex; Schwarz, Jill; McKee, David

    2016-06-27

    Optical closure using radiative transfer simulations can be used to determine the consistency of in situ measurements of inherent optical properties (IOPs) and radiometry. Three scattering corrections are applied to in situ absorption and attenuation profile data for a range of coastal and oceanic waters, but are found to have only very limited impact on subsequent closure attempts for these stations. Best-fit regressions on log-transformed measured and modelled downwards irradiance, Ed, and upwards radiance, Lu, profiles have median slopes between 0.92 - 1.24, revealing a tendency to underestimate Ed and Lu with depth. This is only partly explained by non-inclusion of fluorescence emission from CDOM and chlorophyll in the simulations. There are several stations where multiple volume scattering function related data processing steps perform poorly which suggests the potential existence of unresolved features in the modelling of the angular distribution of scattered photons. General optical closure therefore remains problematic, even though there are many cases in the data set where the match between measured and modelled radiometric data is within 25% RMS%E. These results are significant for applications that rely on optical closure e.g. assimilating ocean colour data into coupled physical-ecosystem models. PMID:27410565

  7. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGESBeta

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; et al

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  8. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  9. In situ stratospheric ozone measurements by long path UV absorption - Developments and interpretation

    NASA Technical Reports Server (NTRS)

    Weinstock, E. M.; Schiller, C. M.; Anderson, J. G.

    1986-01-01

    A high-sensitivity, in situ UV absorption ozone sensor has been developed for use in the stratosphere. The instrument couples 254-nm radiation from a low-pressure mercury discharge lamp into a 40-pass White cell to attain a high-sensitivity ozone absorption measurement. Preflight/postflight laboratory tests utilizing an ozone source coupled to a laboratory UV ozone photometer in a fast-flow system as well as in-flight diagnostics verify the successful operation of the instrument. Evidence is presented to verify that in situ UV absorption ozone photometers can measure stratospheric ozone with better than 3 percent precision and 5 percent accuracy, provided proper attention is given to both the thermal field surrounding the gondola and the ambient pressure measurements. Ozone data are compared with modeled profiles in the 28- to 40-km region. An assessment of the disagreement between observations and modeled profiles is given along with suggestions for future experiments designed to constrain photochemical models.

  10. In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification

    NASA Astrophysics Data System (ADS)

    Shafii, M. Behshad; Lum, Chee L.; Koochesfahani, Manoochehr M.

    2010-04-01

    We present in situ whole-field measurements of the temperature field using laser-induced fluorescence in a study of bottom-chilled uni-directional solidification of aqueous ammonium chloride. We utilize a two-color, two-dye, ratiometric approach to address the significant spatial and temporal variations of laser sheet intensity field due to refractive index variations caused by the evolving concentration and temperature fields. In our work we take advantage of two temperature sensitive fluorescent dyes with opposite temperature sensitivities in order to increase the overall sensitivity and temperature resolution of the measurements. The resulting temperature sensitivity (about 4% K-1) is more than a factor of two higher than the original work of Sakakibara and Adrian (Exp Fluids 26:7-15, 1999) with a sensitivity 1.7% K-1. In situ measurements of the temperature field during solidification are presented, along with temperature characteristics of some of the complex flow features, such as plumes and fingers.

  11. In-situ optical measurement of separation angles between bifacial lines in large scale space

    NASA Astrophysics Data System (ADS)

    Zhang, H. W.; Zhang, G. X.; Qiu, Z. R.; Hu, W. C.; Liu, M.

    2010-08-01

    An optical method is proposed for in-situ measurement of angles of space elements separated at a distance of several or several tens of meters. When it is necessary to measure large objects or geometrical elements within a large scale space, it is not always possible to bring these workpieces to conventional coordinate measuring machines (CMMs) which are widely used in industries. Mobile measuring systems provide ideal solutions for these applications. The basic idea of the presented research work is to set up the multiple common optical references through which the dimensional inspections of separation angles of bifacial lines in a large scale space can be fulfilled. The angles between the projection light and each element can be captured through a machine vision system, and thereafter the angles between those corresponding elements can be determined using the geometrical principles. The method and the calibration approach have been validated on our designed work station.

  12. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments.

    PubMed

    Turgut, Altan; Yamamoto, Tokuo

    2008-09-01

    The existence of acoustic velocity dispersion and frequency dependence of attenuation in marine sediments is investigated using in situ measurements from a wideband acoustic probe system during the Shallow Water 2006 experiment. Direct-path pulse propagation measurements show evidence of velocity dispersion within the 10-80 kHz frequency band at two silty-sand sites on the New Jersey Shelf. The measured attenuation in dB/m shows linear frequency dependency within the 10-80 kHz frequency band. The measured velocity dispersion and attenuation curves are in good agreement with those predicted by an extended Biot theory [Yamamoto and Turgut, J. Acoust. Soc. Am. 83, 1744-1751 (1988)] for sediments with a distribution of pore sizes. PMID:19045553

  13. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  14. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  15. In situ calibrated defocusing PTV for wall-bounded measurement volumes

    NASA Astrophysics Data System (ADS)

    Fuchs, T.; Hain, R.; Kähler, C. J.

    2016-08-01

    In many situations, 3D velocity measurements in thin (∼1 mm) but wide (∼100  ×  100 mm2) flow channels is an important task. To resolve the in-plane and out-of-plane velocity gradients properly, a precise calibration is required, since 3D measurement approaches rely strongly on the accuracy of the calibration procedure. It is likely that calibration targets do not fit domains with small depths, due to their size. Furthermore, in fields where such measurements are of interest, the accessibility of the measurement volume is often limited or even impossible. To overcome these drawbacks, this paper introduces an in situ calibrated defocusing particle tracking velocimetry approach for wall-bounded measurement domains with depths in the low millimeter range. The calibration function for the particle depth location is directly derived from the particle image geometries and their displacements between two frames. Employing only a single camera, this defocusing approach is capable of measuring the air flow between two parallel glass plates at a distance of 1 mm with an average uncertainty of 2.43% for each track, relative to the maximum velocity. A tomographic particle tracking velocimetry measurement, serving as a benchmark for the single camera technique, reaches an average uncertainty of 1.59%. Altogether, with its straightforward set-up and without requiring a calibration target, this in situ calibrated defocusing approach opens new areas of application for optical flow velocimetry. In particular, for measurement domains with small optical windows and a lack of accessibility.

  16. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy.

    PubMed

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  17. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level.

  18. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    PubMed Central

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  19. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  20. Detecting tropical forest biomass dynamics from repeated airborne Lidar measurements

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Chave, J.; Dalling, J.; Bohlman, S.; Fricker, G. A.; Robinson, C.; Neumann, M.

    2013-02-01

    Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne Lidar measurements acquired about 10 yr apart over Barro Colorado Island (BCI), Panama from high and medium resolution airborne sensors. The estimation is calibrated with the forest inventory data over 50 ha that was surveyed every 5 yr during the study period. We estimated the aboveground forest biomass and its uncertainty for each time period at different spatial scales (0.04, 0.25, 1.0 ha) and developed a linear regression model between four Lidar height metrics and the aboveground biomass. The uncertainty associated with estimating biomass changes from both ground and Lidar data was quantified by propagating measurement and prediction errors across spatial scales. Errors associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Biomass changes derived from Lidar and ground estimates were largely (36 out 50 plots) in the same direction at the spatial scale of 1 ha. Lidar estimation of biomass was accurate at the 1 ha scale (R2 = 0.7 and RMSEmean = 28.6 Mg ha-1). However, to predict biomass changes, errors became comparable to ground estimates only at about 10-ha or more. Our results indicate that the 50-ha BCI plot lost a~significant amount of biomass (-0.8 ± 2.2 Mg ha-1 yr-1) over the past decade (2000-2010). Over the entire island and during the same period, mean AGB change is -0.4 ± 3.7 Mg ha-1 yr-1. Old growth forests lost biomass (-0.7 ± 3.5 Mg ha-1 yr-1), whereas the secondary forests gained biomass (+0.4 ± 3.4 Mg ha-1 yr-1). Our analysis demonstrates that repeated Lidar surveys, even with two different sensors, is able to estimate biomass changes in old

  1. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  2. In situ combustion measurements of CO with diode-laser absorption near 2.3 microm.

    PubMed

    Wang, J; Maiorov, M; Baer, D S; Garbuzov, D Z; Connolly, J C; Hanson, R K

    2000-10-20

    In situ measurements of CO concentration were recorded with tunable diode-laser absorption spectroscopy techniques in both the exhaust and the immediate post-flame regions of an atmospheric-pressure flat-flame burner operating on ethylene air. Two room-temperature cw single-mode InGaAsSb/AlGaAsSb diode lasers operating near 2.3 microm were tuned over individual transitions in the CO first overtone band (v' = 2 <-- v" = 0) to record high-resolution absorption line shapes in the exhaust duct [79 cm above the burner, approximately 470 K; R(15) transition at 4311.96 cm(-1)] and the immediate postflame zone [1.5 cm above the burner, 1820-1975 K; R(30) transition at 4343.81 cm(-1)]. The CO concentration was determined from the measured absorption and the gas temperature, which was monitored with type-S thermocouples. For measurements in the exhaust duct, the noise-equivalent absorbance was approximately 3 x 10(-5) (50-kHz detection bandwidth, 50-sweep average, 0.1-s total measurement time), which corresponds to a CO detection limit of 1.5 ppm m at 470 K. Wavelength modulation spectroscopy techniques were used to improve the detection limit in the exhaust to approximately 0.1 ppm m (approximately 500-Hz detection bandwidth, 20-sweep average, 0.4-s total measurement time). For measurements in the immediate postflame zone, the measured CO concentrations in the fuel-rich flames were in good agreement with chemical equilibrium predictions. These experiments demonstrate the utility of diode-laser absorption sensors operating near 2.3 microm for in situ combustion emission monitoring and combustion diagnostics. PMID:18354555

  3. Using continuous in-situ measurements to adaptively trigger urban storm water samples

    NASA Astrophysics Data System (ADS)

    Wong, B. P.; Kerkez, B.

    2015-12-01

    Until cost-effective in-situ sensors are available for biological parameters, nutrients and metals, automated samplers will continue to be the primary source of reliable water quality measurements. Given limited samples bottles, however, autosamplers often obscure insights on nutrient sources and biogeochemical processes which would otherwise be captured using a continuous sampling approach. To that end, we evaluate the efficacy a novel method to measure first-flush nutrient dynamics in flashy, urban watersheds. Our approach reduces the number of samples required to capture water quality dynamics by leveraging an internet-connected sensor node, which is equipped with a suite of continuous in-situ sensors and an automated sampler. To capture both the initial baseflow as well as storm concentrations, a cloud-hosted adaptive algorithm analyzes the high-resolution sensor data along with local weather forecasts to optimize a sampling schedule. The method was tested in a highly developed urban catchment in Ann Arbor, Michigan and collected samples of nitrate, phosphorus, and suspended solids throughout several storm events. Results indicate that the watershed does not exhibit first flush dynamics, a behavior that would have been obscured when using a non-adaptive sampling approach.

  4. In situ measurements of water crossover through the membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, T. S.

    We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.

  5. Quantitative Electrochemical Measurements using in situ ec-S/TEM Devices

    SciTech Connect

    Unocic, Raymond R; Sacci, Robert L; Brown, Gilbert M; Veith, Gabriel M; Dudney, Nancy J; More, Karren Leslie; Gardiner, Daniel; Walden II, Franklin S; Damiano, John; Nackashi, David P.

    2014-01-01

    Insight into dynamic electrochemical processes can be obtained with in situ ec-S/TEM, which utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry, choronoamperometry and electrochemical impedance spectroscopy were performed using a standard one electron transfer redox couple using a [Fe(CN)6]3-/4- based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with cyclic voltammetry and chronoamperometic measurements of analyte diffusion coefficients and was found to agree with well-accepted values that are on the order of 10-5 cm2 s-1. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers and microfluidic conditions are accounted for.

  6. Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1

    PubMed Central

    Shackel, Kenneth A.

    1984-01-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701

  7. In-situ measurement of ammonium and nitrate in the activated sludge process.

    PubMed

    Rieger, L; Siegrist, H; Winkler, S; Saracevic, E; Votava, R; Nadler, J

    2002-01-01

    A new in-situ probe is presented for the continuous measurement of ammonium and nitrate in wastewater. It requires no sample preparation and is installed directly in the process liquid. This new low-cost probe significantly reduces investment and operating costs and requires minimum maintenance. The paper describes the sensor principle and test results from three different probe locations: the primary clarifier effluent, the activated sludge tank and the nitrifying biofilter influent. Reference measurements were carried out by means of conventional analyzers with ultrafiltration, an in-situ UV spectrometer for the nitrate and laboratory analysis of spot and 2h-composite samples. The aim of the study was to investigate the operational reliability and accuracy of the new probe and the expenditure required for its maintenance and calibration. The tests showed that the new probe performed very well overall and required minimum maintenance. Some problems were observed during the biofilter plant test. They are assumed to be related to substantial changes in the wastewater composition. PMID:11936681

  8. In-situ stress measurements in the earth's crust in the eastern United States

    SciTech Connect

    Rundle, T.A.; Singh, M.M.; Baker, C.H.

    1987-04-01

    The US Nuclear Regulatory Commission requires that the design basis for vibratory ground motion should be determined through correlation of seismicity with tectonic structures or provinces (10CFR100, Appendix A). Such criteria are difficult to apply in the eastern United States, which experiences persistent low level seismicity, with occasional moderate to large earthquakes. This report presents the results of in-situ stress measurements conducted towards reducing this uncertainty at three (3) seismically active sites in the region, namely, near Moodus, Connecticut, around the Ramapo fault zone in New York and New Jersey, and in central Virginia. As far as possible, at each location one bore hole was drilled close to the ''apparent'' epicenter of the seismic activity and one outside the ''known'' seismic zone, so that the data obtained could be compared. The results obtained were very consistent both as to magnitude and direction. No attempt was made to correlate the in-situ stress measurements with the tectonic setting or seismic activity, since this was beyond the scope of this project. Extensive appendices report experimental data. 35 refs.

  9. In situ current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics

    SciTech Connect

    Shuttle, Christopher G.; Treat, Neil D.; Fan, Jian; Varotto, Alessandro; Hawker, Craig J.; Wudl, Fred; Chabinyc, Michael L.

    2011-10-31

    The evaluation of the power conversion efficiency (PCE) of new materials for organic bulk heterojunction (BHJ) photovoltaics is difficult due to the large number of processing parameters possible. An efficient procedure to determine the optimum conditions for thermal treatment of polymer-based bulk heterojunction photovoltaic devices using in situ current-voltage measurements is presented. The performance of a new fullerene derivative, 1,9-dihydro-64,65-dihexyloxy-1,9-(methano[1,2] benzomethano)fullerene[60], in BHJ photovolatics with poly(3-hexylthiophene) (P3HT) was evaluated using this methodology. The device characteristics of BHJs obtained from the in situ method were found to be in good agreement with those from BHJs annealed using a conventional process. This fullerene has similar performance to 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methano fullerene in BHJs with P3HT after thermal annealing. For devices with thickness of 70 nm, the short circuit current was 6.24 mA/cm² with a fill factor of 0.53 and open circuit voltage of 0.65 V. The changes in the current-voltage measurements during thermal annealing suggest that the ordering process in P3HT dominates the improvement in power conversion efficiency.

  10. First ever in-situ density measurements in Venus' polar upper atmosphere by combined drag and torque measurements

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Mueller, Michael; Mueller-Wodarg, Ingo

    Information on the atmospheric density in the altitude range 150-200 km in the atmosphere of Venus is difficult to gather remotely. The Pioneer Venus Orbiter Neutral Mass Spectrometer measured gas densities in the equatorial upper atmosphere in-situ, but no such measurements have ever been made in the polar regions of Venus. The Venus Express spacecraft on its orbit approaches the planet in the northern polar region, but is not equipped with a mass spectrometer instrument for in-situ gas density measurements. By reducing the pericentre altitude the total mass density can however be measured in situ by monitoring the orbital decay caused by the drag on the spacecraft by the atmosphere via direct tracking of the Doppler signal on the telecommunication link. Such measurements have been performed with Venus Express several times during the last year as part of the Venus Express Atmospheric Drag Experiment (VExADE). The results indicate a large variability within only a few days and have led to questions if these variations are real or within the uncertainty of the measurements. A completely different and independent measurement is given by monitoring the torque asserted by the atmosphere on the spacecraft. This is done by monitoring the momentum accumulated in the reaction wheels during the pericentre pass and at the same time considering all other perturbing forces. This requires the spacecraft to fly in an asymmetric attitude with respect to the centre of gravity, centre of drag and the velocity vector. This technique has proven very sensitive, in particular if the asymmetry is large, and offers a further method of measuring atmospheric densities in-situ that previously had not been explored with the Venus Express spacecraft. Similar measurements have been done in the past by Magellan at Venus and by Cassini at Titan. First torque measurements carried out during last years' low pericentre passes have confirmed the density measurements by the VExADE drag measurements

  11. Inferring immobile and in-situ water saturation from laboratory and field measurements

    SciTech Connect

    Belen, Rodolfo P., Jr.

    2000-06-01

    Analysis of experimental data and numerical simulation results of dynamic boiling experiments revealed that there is an apparent correlation between the immobile water saturation and the shape of the steam saturation profile. An elbow in the steam saturation profile indicates the sudden drop in steam saturation that marks the transition from steam to two-phase conditions inside the core during boiling. The immobile water saturation can be inferred from this elbow in the steam saturation profile. Based on experimental results obtained by Satik (1997), the inferred immobile water saturation of Berea sandstone was found to be about 0.25, which is consistent with results of relative permeability experiments reported by Mahiya (1999). However, this technique may not be useful in inferring the immobile water saturation of less permeable geothermal rocks because the elbow in the steam saturation profile is less prominent. Models of vapor and liquid-dominated geothermal reservoirs that were developed based on Darcy's law and material and energy conservation equations proved to be useful in inferring the in-situ and immobile water saturations from field measurements of cumulative mass production, discharge enthalpy, and downhole temperature. Knowing rock and fluid properties, and the difference between the stable initial, T{sub o}, and dry-out, T{sub d}, downhole temperatures, the in-situ and immobile water saturations of vapor-dominated reservoirs can be estimated. On the other hand, the in-situ and immobile water saturations, and the change in mobile water content of liquid-dominated reservoirs can be inferred from the cumulative mass production, {Delta}m, and enthalpy, h{prime}, data. Comparison with two-phase, radial flow, numerical simulation results confirmed the validity and usefulness of these models.

  12. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  13. In-situ gamma-PHA measurements to support unconditional release of 235-F chiller units

    SciTech Connect

    Salaymeh, S.R.

    2000-02-17

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facility Decommission Division (FDD) to conduct in-situ gamma-ray pulse height analysis measurements to support the unconditional release of 235-F chiller units. The chiller units were used to cool process water in the 235-F facility. The measurements' main goal is to confirm that there is no process-related contaminants present on the chillers. For each of the two F-area clean water chillers, the authors have acquired ten gamma-ray pulse height analysis spectra. This report will discuss the purpose of the measurements, the experimental setup, data acquisition, calculations and results, and a conclusion of the study.

  14. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  15. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy.

    PubMed

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-01

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10(-8) and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses. PMID:24387479

  16. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy

    SciTech Connect

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-15

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10{sup −8} and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

  17. Development of a Cone Penetrometer for Measuring Spectral Characteristics of Soils in Situ

    NASA Technical Reports Server (NTRS)

    Lee, Landris T., Jr.; Malone, Philip G.

    1993-01-01

    A patent was recently granted to the U.S. Army for an adaptation of a soil cone penetrometer that can be used to measure the spectral characteristics (fluorescence or reflectance) of soils adjacent to the penetrometer rod. The system can use a variety of light sources and spectral analytical equipment. A laser induced fluorescence measuring system has proven to be of immediate use in mapping the distribution of oil contaminated soil at waste disposal and oil storage areas. The fiber optic adaptation coupled with a cone penetrometer permits optical characteristics of the in-situ soil to be measured rapidly, safely, and inexpensively. The fiber optic cone penetrometer can be used to gather spectral data to a depth of approximately 25 to 30 m even in dense sands or stiff clays and can investigate 300 m of soil per day. Typical detection limits for oil contamination in sand is on the order of several hundred parts per million.

  18. In situ measurements of the sub-surface gamma dose from Chernobyl fallout.

    PubMed

    Timms, D N; Smith, J T; Coe, E; Kudelsky, A V; Yankov, A I

    2005-06-01

    Methods of estimating external radiation exposure of soil-dwelling organisms are currently of much research and regulatory interest. In this paper, we report the first in situ measurements of the sub-surface gamma dose rate for 137Cs contaminated land that quantify variation in dose rate with depth. Two contrasting sites have been investigated. The first site comprised a mineral type soil with a low percentage of organic matter and the second site chosen was in a peat-bog. The different soil compositions afford different 137Cs mobility and this results in variations in the measured gamma dose-rate with soil depth. For each site the paper reports the measured dose rates, the 137Cs activity depth profile, the 137Cs inventory and a description of the soil-characteristics. It is suggested that these data can be used to produce estimates of the sub-surface gamma dose rate in other sites of 137Cs contamination. PMID:15799871

  19. Development of an in situ thermal conductivity measurement system for exploration of the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Chirila, Marian Andrei; Christoph, Benjamin; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-06-01

    In this study, we attempted to develop an in situ thermal conductivity measurement system that can be used for subsurface thermal exploration. A new thermal probe was developed for mapping both the spatial and temporal variability of thermal conductivity, via direct push methods in the unconsolidated shallow subsurface. A robust, hollow cylindrical probe was constructed and its performance was tested by carrying out thermal conductivity measurements on materials with known properties. The thermal conductivity of the investigated materials can be worked out by measuring the active power consumption (in alternating current system) and temperature of the probe over fixed time intervals. A calibration method was used to eliminate any undesired thermal effects regarding the size of the probe, based on mobile thermal analyzer thermal conductivity values. Using the hollow cylindrical probe, the thermal conductivity results obtained had an error of less than 2.5% for solid samples (such as Teflon, Agar Jelly and Nylatron).

  20. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    NASA Astrophysics Data System (ADS)

    Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  1. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability.

    PubMed

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Yishu; Jaramillo, R; Banerjee, A; Ren, Y; Rosenbaum, T F

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal. PMID:26429451

  2. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  3. In situ measurements of KZ and ɛ compared to numerical models in the Gulf of Lion.

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Doglioli, Andrea; Dekeyser, Ivan; Jullion, Loic; Malengros, Deny; Petrenko, Anne

    2015-04-01

    Vertical diffusivity and turbulent kinetic energy dissipation rate play an essential role in the parametrization of physical and biogeochemical models. Coastal environment is particularly important because expected to contribute in a substantial way to the balance of kinetic energy in the ocean. In situ measurements have a crucial importance in driving the models. We present a multi-annual dataset performed with SCAMP (Self Contained Autonomous Profiler) field measurements of KZ and ɛ in a variety of meteorological and oceanic conditions in the Gulf of Lion (Mediterranean Sea). The results are compared with respect to similar measurements in coastal waters described in literature. Moreover, a comparison to numerical circulation models is proposed in order to show the dependency of the depth of the mixing layer on the wind forcing.

  4. In Situ Stress Measurements in the NPR Hole, Volume I - Results and Interpretations

    SciTech Connect

    Moos, D.

    2001-10-15

    This report presents the results of an investigation of the magnitudes and orientations of the in situ stresses in basement rocks beneath the Savannah River Site (SRS). Stress magnitudes were measured using the hydraulic fracturing technique. Stress orientations were obtained from the orientation of stress-induced wellbore breakouts and hydraulically-induced fractures. The measurements reported here were carried out in the New Production Reactor (NPR) hole, drilled to a total depth of 4000 feet near the center of the Savannah River Site, at roughly the location of the proposed NPR. The results obtained in this study are compared to previous stress measurements made using the same techniques in a series of shallower holes on the SRS, and discussed in the context of the regional stress field and potential seismic hazard.

  5. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability

    SciTech Connect

    Palmer, A; Silevitch, D M; Feng, Yejun; Wang, Y; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.

    2015-09-01

    We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

  6. Quantifying Stratospheric Ozone in the Upper Troposphere Using in situ Measurements of HCl

    SciTech Connect

    Atherton, C S; Bergmann, D J; Marcy, T P; Fahey, D W; Gao, R S; Popp, P J; Richard, E C; Thompson, T L; Rosenlof, K H; Ray, E A; Salawitch, R J; Ridley, B A; . Weinheimer, A J; Loewenstein, M; Weinstock, E M; Mahoney, M J

    2004-03-08

    A chemical ionization mass spectrometry (CIMS) technique has been developed for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) are often near or below the 0.005-ppbv detection limit of the measurements, indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels as a result of stratosphere-to-troposphere transport events. A method for diagnosing the amount of stratospheric ozone in these UT parcels was developed using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.

  7. Cloud shortwave radiative effect and cloud properties estimated from airborne measurements of transmitted and reflected light

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel E.; Redemann, Jens; Segal-Rosenheimer, Michal; Kacenelenbogen, Meloë; Shinozuka, Yohei; Flynn, Connor; Russell, Philip; Schmid, Beat; Schmidt, K. Sebastian; Pilewskie, Peter; Song, Shi

    2015-04-01

    from aircraft by using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. The 4STAR instrument was deployed on an airborne platform during SEAC4RS and TCAP. During SEAC4RS, the Solar Spectral Flux Radiometer (SSFR) was also deployed alongside 4STAR. The cloud optical thickness and effective radius from the retrieval based on transmitted shortwave radiation are compared to cloud properties obtained from above the cloud by using reflected shortwave radiation measured with SSFR, with the enhanced MODIS Airborne Simulator (eMAS), with the Research Scanning Polarimeter (RSP), and from in situ cloud probes. For TCAP, we compare cloud properties retrieved using 4STAR and the Moderate Resolution Imaging Spectroradiometer (MODIS).

  8. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability<