Sample records for airborne in-situ observations

  1. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    NASA Astrophysics Data System (ADS)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  2. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  3. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  4. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  5. Generating Aerosol Data Products from Airborne in-situ Observations made during 2011 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Winstead, E. L.; Chen, G.; Beyersdorf, A. J.; Ziemba, L. D.

    2011-12-01

    In July 2011, the first of four DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) planned field campaigns was completed. The investigation is a broad collaboration between federal and state agencies and academic institutions with the primary goal of improving the interpretation of satellite observations of surface-level trace gas and aerosol parameters by making detailed correlative measurements from aircraft and ground-based instruments in urban regions plagued by air-quality issues. Phase I studied the air-quality of the lower troposphere in and around the Washington, D.C. and Baltimore areas along the I-95 corridor. In-situ airborne data is essential in providing a link between the broad swath satellite measurements and the measurements made by ground based sensors. This is accomplished by examining the relationship between column-integrated values obtained through in-situ sampling and surface measured values, as aircraft can fully characterize atmospheric chemical/aerosol constituents at a given time and location. To that end, the NASA P-3B was instrumented to record fast-response measurements of various gas-phase tracers and aerosol characteristics of pollution. A flight pattern was created and executed for each of the 14 research flights that had the P-3B performing a series of spiral ascents/descents over six ground sites to perform detailed vertical characterizations of the chemical and aerosol structure. The in-situ aerosol characterization was performed by the NASA Langley Aerosol Research Group Experiment (LARGE) using 15 instruments to measure aerosol microphysical, chemical and optical properties. In this presentation we discuss the process in which aerosol science data is generated, from the collection of more than 10 GB of data per 8 hour flight, to the initial QA/QC required to produce a preliminary data product within 24 hours of landing, through final data submission

  6. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  7. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  8. Combined MIPAS (airborne/satellite), CALIPSO and in situ study on large potential NAT particles observed in early Arctic winter stratosphere in December 2011

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes

    2015-04-01

    The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject

  9. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be

  10. A comparison of in situ and airborne radar observations of ocean wave directionality

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Peng, C. Y.

    1985-01-01

    The directional spectrum of a fully arisen, about 3 m sea as measured by an experimental airborne radar, the NASA K(u)-band radar ocean wave spectrometer (ROWS), is compared to reference pitch-roll buoy data and to the classical SWOP (stereo wave observations project) spectrum for fully developed conditions. The ROWS spectrum, inferred indirectly from backscattered power measurements at 5-km altitude, is shown to be in excellent agreement with the buoy spectrum. Specifically, excellent agreement is found between the two nondirectional height spectra, and mean wave directions and directional spreads as functions of frequency. A comparison of the ROWS and SWOP spectra shows the two spectra to be very similar, in detailed shape as well as in terms of the gross spreading characteristics. Both spectra are seen to exhibit bimodal structures which accord with the Phillips' (1958) resonance mechanism. This observation is thus seen to support Phillips' contention that the SWOP modes were indeed resonance modes, not statistical artifacts.

  11. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    NASA Astrophysics Data System (ADS)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  12. Evaluation of AirMSPI photopolarimetric retrievals of smoke properties with in-situ observations collected during the ImPACT-PM field campaign

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.

    2017-12-01

    We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation

  13. Airborne Sunphotometer, Airborne in-situ, Space-borne, and Ground-Based Measurements of Troposoheric Aerosol in Ace-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.; hide

    2000-01-01

    We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.

  14. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; hide

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  15. Airborne observations of methane in Comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Wells, W. C.

    1974-01-01

    The experiment is described for airborne observations of Comet Kohoutek using an infrared tilting-filter photometer. Preliminary analysis of the data established an upper limit to the Comet's fluorescence radiation in methane lines at 3.3 microns.

  16. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  17. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  18. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  19. In-situ observation of atmospheric particulates

    NASA Astrophysics Data System (ADS)

    Harrison, William Alan

    Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities globally. Typically these provide at best a few recording locations per city. However, large spatial variability occurs on the neighborhood scale. This study sets out to comprehensively characterize a full size distribution from 0.25 - 32 μm of airborne particulates on a fine spatial scale (meters). To fully characterize the impact of atmospheric particulates, global scale observations and data products are needed. Satellite products allow for this global coverage but require in situ validations. For the first part of this study data is gathered on a near daily basis over the month of May, 2014 in a 100 km2 area encompassing parts of Richardson, Texas, and Garland, Texas. Wind direction was determined to be the dominant factor in classifying the data. The highest mean PM2.5 concentration was 14.1 ± 5.7 μgm. -3 corresponding to periods when the wind was out of the south. The lowest PM2.5 concentrations were observed after several consecutive days of rainfall. The rainfall was found to not only “cleanse” the air, leaving a mean PM2.5 concentration as low as 3.0 ± 0.5 μgm. -3 , but to leave the region with a more uniform PM2.5 concentration. Variograms were used to determine an appropriate spatial scale for future sensor placement to provide measurements on a neighborhood scale and found that the spatial scales varied, depending on the synoptic weather pattern, from 0.8 km to 5.2 km, with a typical length scale of 1.7 km. This second part of this study used a zero emission remote-controlled aerial vehicle to look at the horizontal, vertical, and temporal variability of airborne particulates within the first 140 m of the atmosphere. Four flights where conducted on December 4, 2014 between 12:00 pm and 5:00 pm local time. The first three flights flew a pattern of

  20. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  1. In Situ Soil Moisture and Thaw Depth Measurements Coincident with Airborne SAR Data Collections, Barrow and Seward Peninsulas, Alaska, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wilson; Julian Dann; Robert Bolton

    The in-situ soil moisture and thaw depth measurements provided in this dataset were collected coincident with airborne overflights of L- and P-band SAR instruments at the NGEE Arctic study site near Barrow, on the North Slope, and at the three study sites on the Seward Peninsula, Alaska. Field measurements and flights were conducted during the summer of 2017 as a collaboration between the NASA ABoVE Project's Airborne SAR Campaign and the NGEE Arctic Project. ABoVE protocols for establishing field measurement plots were followed.

  2. Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Barnes, J. W.; McKay, C. P.; Lemke, L.; Beyer, R. A.; Radebaugh, J.; Adamkovics, M.; Atkinson, D. H.; Burr, D. M.; Colaprete, T.; Foch, R.; Le Mouélic, S.; Merrison, J.; Mitchell, J.; Rodriguez, S.; Schaller, E.

    2010-10-01

    Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance - is a small (120 kg), nuclear-powered Titan airplane in the Discovery/New Frontiers class based on the concept of Lemke (2008 IPPW). The scientific goals of the mission are designed around the unique flexibility offered by an airborne platform: to explore Titan's diversity of surface landforms, processes, and compositions, as well as to study and measure the atmospheric circulation, aerosols, and humidity. AVIATR would address and surpass many of the science goals of hot-air balloons in Titan flagship studies. The strawman instrument payload is narrowly focused on the stated scientific objectives. The optical remote sensing suite comprises three instruments - an off-nadir high-resolution 2-micron camera, a horizon-looking 5-micron imager, and a 1-6 micron pushbroom near-infrared spectrometer. The in situ instruments include atmospheric structure, a methane humidity sensor, and a raindrop detector. An airplane has operational advantages over a balloon. Its piloted nature allows a go-to capability to image locations of interest in real time, thereby allowing for directed exploration of many features of primary geologic interest: Titan's sand dunes, mountains, craters, channels, and lakes. Subsequent imaging can capture changes in these features during the primary mission. AVIATR can fly predesigned routes, building up large context mosaics of areas of interest before swooping down to low altitude to acquire high-resolution images at 30-cm spatial sampling, similar to that of HiRISE at Mars. The elevation flexibility of the airplane allows us to acquire atmospheric profiles as a function of altitude at any desired location. Although limited by the direct-to-Earth downlink bandwidth, the total scientific data return from AVIATR will be >40 times that returned from Huygens. To maximize the science per bit, novel data storage and downlink techniques will be employed, including lossy compression

  3. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  4. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.

    2013-12-01

    During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to

  5. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  6. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  7. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  8. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  9. The wildfire experiment (WIFE): observations with airborne remote sensors

    Treesearch

    L.F. Radke; T.L. Clark; J.L. Coen; C.A. Walther; R.N. Lockwood; P.J. Riggan; J.A. Brass; R.G. Higgins

    2000-01-01

    Airborne remote sensors have long been a cornerstone of wildland fire research, and recently three-dimensional fire behaviour models fully coupled to the atmosphere have begun to show a convincing level of verisimilitude. The WildFire Experiment (WiFE) attempted the marriage of airborne remote sensors, multi-sensor observations together with fire model development and...

  10. Husbandry Emissions at the Sub-Facility Scale by Fused Mobile Surface In Situ and Airborne Remote Sensing

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Hall, J. L.; Buckland, K. N.; Frash, J.; Leen, J. B.; Lundquist, T.; Vigil, S. A.

    2017-12-01

    Husbandry methane (CH4) and ammonia (NH3) are strong climate and air pollution drivers. Husbandry emission factors have significant uncertainty and can differ from lab estimates as real-world practices affect emissions including where and how husbandry activities occur, their spatial and temporal relationship to micro-climate (winds, temperature, insolation, rain, and lagoon levels, which vary diurnally and seasonally), and animal care. Research dairies provide a unique opportunity to combine insights on sub-facility scale emissions to identify best practices. Two approaches with significant promise for quantifying husbandry emissions are airborne remote sensing and mobile in situ trace gas with meteorological measurements. Both capture snapshot data to allow deconvolution of temporal and spatial variability, which challenges stationary measurements, while also capturing micro-scale processes, allowing connection of real-world practices to emissions. Mobile in situ concentration data on trace gases and meteorology were collected by AMOG (AutoMObile trace Gas) Surveyor on 10 days spanning 31 months at the California Polytechnic State University Research Dairy, San Luis Obispo, CA. AMOG Surveyor is a commuter vehicle modified for atmospheric science. CH4, NH3, H2O, COS, CO, CO2, H2S, O3, NO, NO2, SO2, NOX, solar spectra, temperature, and winds were measured. The airborne hyperspectral thermal infrared sensor, Mako, collected data on 28 Sept. 2015. Research dairies allow combining insights on sub-facility scale emissions to identify best practices holistically - i.e., considering multiple trace gases. In situ data were collected while transecting plumes, approximately orthogonal to winds. Emission strength and source location were estimated by Gaussian plume inversion, validated by airborne data. Good agreement was found on source strength and location at meter length-scales. Data revealed different activities produced unique emissions with distinct trace gas

  11. Twenty Five Years of Airborne Observations of Ozone-Depleting and Climate-Related Gases in the Upper Troposphere and Lower Stratosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Nance, J. D.; Hall, B. D.

    2016-12-01

    NOAA scientists started in situ airborne measurements of two strong ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA ER-2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for Atmospheric Trace Species (ACATS). We broaden our list of gases to include more ozone-depleting and other climate-related gases. An improved 4-channel gas chromatograph that included N2O, SF6, CFC-11, -12, -113, halon-1211, CCl4, CH3CCl3, CH4, CO, and H2 was added to the ER-2 aircraft in 1994. As CFC replacements took hold, we add a gas chromatograph-mass spectrometer system, PAN and other Trace Hydro-halocarbon Experiment (PANTHER), to examine shorter-lived gases mainly in the upper troposphere. These airborne measurements were to complement of ground-based flask and in situ measurements from the NOAA Halocarbon and other Trace Species Network. This talk will show results from a tropical study, Airborne Tropical Tropopause Experiment (ATTREX) on the NASA Global Hawk aircraft and preliminary results from the Atmospheric Tomography Mission (ATom) conducted in August 2016 on the NASA DC-8 aircraft. A detrended, gridded, latitudinal distribution of SF6 is shown in the figure below for the years of 1994 through 2014. Such a plot may be useful to atmospheric modelers trying to capture transport or calculate emissions.

  12. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Jonsson, Haflidi H.; Thompson, David R.; Kolyer, Richard W.; Iraci, Laura T.; Thorpe, Andrew K.; Horstjann, Markus; Eastwood, Michael; Leifer, Ira; Vigil, Samuel A.; Krings, Thomas; Borchardt, Jakob; Buchwitz, Michael; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2017-09-01

    Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4

  13. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  14. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns - Part 1: Observed variability

    NASA Astrophysics Data System (ADS)

    Xueref-Remy, I.; Messager, C.; Filippi, D.; Nedelec, P.; Ramonet, M.; Paris, J. D.; Ciais, P.

    2010-02-01

    Atmospheric airborne measurements of CO2 are very well-suited to estimate the time varying distribution of carbon sources and sinks at the regional scale. We present here an analysis of two cross-European airborne campaigns that have been carried out on 23-26 May 2001 (CAATER 1) and 2-3 October 2002 (CAATER 2) over Western Europe. The area covered during CAATER 1 (respectively CAATER 2) was comprised between longitude 4° W to 14° E and latitude 44° N to 52° N (respectively longitude 1° E to 17° E and latitude 46° N to 52° N). High precision in-situ CO2, CO and Radon 222 measurements have been recorded. Flasks samples have been collected during both campaigns to cross-validate the in-situ data. During CAATER 1 (respectively CAATER 2), the mean CO2 concentration was 370.1±4 ppm (respectively 371.7±5 ppm). A HYSPLIT backtrajectories analysis shows that during CAATER 1, dominant winds were blowing from the north-west. In the planetary boundary layer (PBL) airmasses got contaminated over Benelux and Western Germany by pollution from these high urbanized areas, reaching about 380 ppm. Air masses passing over rural areas are depleted in CO2 because of the photosynthesis activity of the land cover vegetation, as low as 355 ppm. During CAATER 2, the backtrajectory analysis shows that airmasses were distributed among the 4 sectors. Airmasses got enriched in CO2 and CO when passing above polluted spots in Germany but also in Poland, as these countries are known to hold part of the most polluting plants based on coal consumption, the so-called "dirty thirty" from WWF. Simultaneous measurements of in-situ CO2 and CO combined to backtrajectories helped us to discriminate the role of fossil fuel emissions from over CO2 sources. The ΔCO/ΔCO2 ratios (R2=0.33 to 0.88, slopes=2.42 to 10.37), calculated for polluted airmasses originating from different countries/regions, matched quite well national inventories, showing that the airborne measurements can help to identify

  15. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  16. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly

  17. CAROLS: a new airborne L-band radiometer for ocean surface and land observations.

    PubMed

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  18. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

    PubMed

    Leen, J Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S; Hubbe, John M; Kluzek, Celine D; Tomlinson, Jason M; Hubbell, Mike R

    2013-09-17

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  19. A Closure Study of Total Scattering Using Airborne In Situ Measurements from the Winter Phase of TCAP

    DOE PAGES

    Kassianov, Evgueni; Berg, Larry; Pekour, Mikhail; ...

    2018-06-12

    We examine the performance of our approach for calculating the total scattering coefficient of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our extended examination involves airborne in situ data collected by the U.S. Department of Energy’s (DOE) Gulf Stream 1 aircraft during winter over Cape Cod and the western North Atlantic Ocean as part of the Two-Column Aerosol Project (TCAP). The particle population represented by the winter dataset, in contrast with its summer counterpart, contains more hygroscopic particles and particles with an enhanced ability to absorb sunlight due to the larger fraction of black carbon. Moreover,more » the winter observations are characterized by more frequent clouds and a larger fraction of super-micron particles. We calculate model total scattering coefficient at ambient conditions using size spectra measured by optical particle counters (OPCs) and ambient complex refractive index (RI) estimated from measured chemical composition and relative humidity (RH). We demonstrate that reasonable agreement (~20% on average) between the observed and calculated scattering can be obtained under subsaturated ambient conditions (RH < 80%) by applying both screening for clouds and chemical composition data for the RI-based correction of the OPC-derived size spectra.« less

  20. A Closure Study of Total Scattering Using Airborne In Situ Measurements from the Winter Phase of TCAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni; Berg, Larry; Pekour, Mikhail

    We examine the performance of our approach for calculating the total scattering coefficient of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our extended examination involves airborne in situ data collected by the U.S. Department of Energy’s (DOE) Gulf Stream 1 aircraft during winter over Cape Cod and the western North Atlantic Ocean as part of the Two-Column Aerosol Project (TCAP). The particle population represented by the winter dataset, in contrast with its summer counterpart, contains more hygroscopic particles and particles with an enhanced ability to absorb sunlight due to the larger fraction of black carbon. Moreover,more » the winter observations are characterized by more frequent clouds and a larger fraction of super-micron particles. We calculate model total scattering coefficient at ambient conditions using size spectra measured by optical particle counters (OPCs) and ambient complex refractive index (RI) estimated from measured chemical composition and relative humidity (RH). We demonstrate that reasonable agreement (~20% on average) between the observed and calculated scattering can be obtained under subsaturated ambient conditions (RH < 80%) by applying both screening for clouds and chemical composition data for the RI-based correction of the OPC-derived size spectra.« less

  1. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  2. Observations with the GISMOS Airborne Radio Occultation System

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar; Haase, Jennifer; Garrison, James; Lulich, Tyler; Xie, Feiqin

    2010-05-01

    The spatial sample density of temperature and moisture profiles derived from the current spaceborne GPS radio occultation (RO) constellation is limited by the number of occultation satellites in operation. With the current RO satellite configuration, only one RO profile per day is typically available in a 160,000 square kilometer area in the mid-latitude and tropics and slightly more in high latitudes. The airborne RO technique, which has the GPS receiver onboard an airplane, offers flexibility and much denser sampling for targeted observation within 400 km of the aircraft, and provides comparable high vertical resolution to that of the spaceborne case. With an airborne system, targeted measurements can be planned in an optimal geometry to study the accuracy of RO measurements in the lower troposphere where strong vertical gradients in moisture might lead to disruption of signal tracking. These dense measurements can also be used to test assimilation techniques of refractivity and lower tropospheric moisture derived from RO data. In February 2008, the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS), developed at Purdue University, was successfully deployed on the NSF HIAPER aircraft for series of research flights in the Gulf of Mexico coastal region to validate the airborne observing system. During this campaign, occultation observations were collected in conjunction with supplemental radiosonde and dropsonde soundings. RO signals were recorded using side-looking GPS antennas and dual frequency GPS receivers. However, these conventional phase-locked-loop GPS receivers cannot always track the signal in the lower troposphere, where there are rapid phase accelerations caused by highly variable moisture structures. To extend the observations deeper into the atmosphere, the raw signal from occulting satellites is recorded at 10MHz sampling interval by a GPS recording system (GRS). Open-loop (OL) tracking, which replaces the traditional GPS

  3. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  4. A Reevaluation of Airborne HO(x) Observations from NASA Field Campaigns

    NASA Technical Reports Server (NTRS)

    Olson, Jennifer; Crawford, James H.; Chen, Gao; Brune, William H.; Faloona, Ian C.; Tan, David; Harder, Hartwig; Martinez, Monica

    2006-01-01

    In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.

  5. Atmospheric Transport Studies Using In-situ Airborne Gas Chromatograph Measurements: An Overview of the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) Contribution.

    NASA Astrophysics Data System (ADS)

    Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.

    2005-12-01

    Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species

  6. Airborne observations of the microphysical structure of two contrasting cirrus clouds

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.

    2016-11-01

    We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (<100 µm) present at all levels However, this small ice mode is not present in observations from a holographic probe. This raises the possibility that the small ice observed by optical array probes may at least be in part an instrument artifact due to the counting of out-of-focus large particles as small ice. The concentrations of ice crystals were a factor 10 higher in the actively growing cloud with the stronger updrafts, with a mean concentration of 261 L-1 compared to 29 L-1 in the decaying case. Particles larger than 700 µm were largely absent from the decaying cirrus case. A comparison with ice-nucleating particle parameterizations suggests that for the developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.

  7. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  8. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  9. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  10. Husbandry Emissions Estimation: Fusion of Mobile Surface and Airborne Remote Sensing and Mobile Surface In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Hall, J. L.; Melton, C.; Tratt, D. M.; Chang, C. S.; Buckland, K. N.; Frash, J.; Leen, J. B.; Van Damme, M.; Clarisse, L.

    2017-12-01

    Emissions of methane and ammonia from intensive animal husbandry are important drivers of climate and photochemical and aerosol pollution. Husbandry emission estimates are somewhat uncertain because of their dependence on practices, temperature, micro-climate, and other factors, leading to variations in emission factors up to an order-of-magnitude. Mobile in situ measurements are increasingly being applied to derive trace gas emissions by Gaussian plume inversion; however, inversion with incomplete information can lead to erroneous emissions and incorrect source location. Mobile in situ concentration and wind data and mobile remote sensing column data from the Chino Dairy Complex in the Los Angeles Basin were collected near simultaneously (within 1-10 s, depending on speed) while transecting plumes, approximately orthogonal to winds. This analysis included airborne remote sensing trace gas information. MISTIR collected vertical column FTIR data simultaneously with in situ concentration data acquired by the AMOG-Surveyor while both vehicles traveled in convoy. The column measurements are insensitive to the turbulence characterization needed in Gaussian plume inversion of concentration data and thus provide a flux reference for evaluating in situ data inversions. Four different approaches were used on inversions for a single dairy, and also for the aggregate dairy complex plume. Approaches were based on differing levels of "knowledge" used in the inversion from solely the in situ platform and a single gas to a combination of information from all platforms and multiple gases. Derived dairy complex fluxes differed significantly from those estimated by other studies of the Chino complex. Analysis of long term satellite data showed that this most likely results from seasonality effects, highlighting the pitfalls of applying annualized extensions of flux measurements to a single campaign instantiation.

  11. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  12. In Situ Observations of PSCs Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, Paul; Mahoney, M. J.; Gandrud, Bruce; Hipskind, K. Stephen (Technical Monitor)

    2000-01-01

    During SOLVE, the bulk of the in-situ observations of PSCs are of large scale extended structures associated with synoptic scale cooling. The nature of these structures is also determined by layers of high relative NOy that have been stretched into thin layers by advective processes. Some of the in situ observations, however, are clearly correlated with gravity wave signatures. The first goal of this work is to examine these cases and evaluate gravity wave parameters. In particular, we are interested in the intrinsic periods of the waves and their temperature amplitude, which are key ingredients in the nucleation process. Secondly, we will examine some rudimentary properties of the particle size distributions and composition, comparing these with in situ observations of the more extended PSC features. Finally, we will attempt to ascertain the mechanism which generates the gravity waves.

  13. Comparisons of Cloud Properties over the Southern Ocean between In situ Observations and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Wu, C.; Liu, X.

    2017-12-01

    Numerical weather models often struggle at representing clouds since small scale cloud processes must be parameterized. For example, models often utilize simple parameterizations for transitioning from liquid to ice, usually set as a function of temperature. However, supercooled liquid water (SLW) often persists at temperatures much lower than threshold values used in microphysics parameterizations. Previous observational studies of clouds over the Southern Ocean have found high frequencies of SLW (e.g., Morrison et al., 2011). Many of these studies have relied on satellite retrievals, which provide relatively low resolution observations and are often associated with large uncertainties due to assumptions of microphysical properties (e.g., particle size distributions). Recently, the NSF/NCAR O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) campaign took observations via the NSF/NCAR HIAPER research aircraft during January and February of 2016, providing in situ observations over the Southern Ocean (50°W to 92°W). We compare simulated results from the Weather Research and Forecasting (WRF) model with in situ observations from ORCAS. Differences between observations and simulations are evaluated via statistical analyses. Initial results from ORCAS reveal a high frequency of SLW at temperatures as low as -15°C, and the existence of SLW around -30°C. Recent studies have found that boundary layer clouds are underestimated by WRF in regions unaffected by cyclonic activity (Huang et al., 2014), suggesting a lack of low-level moisture due to local processes. To explore this, relative humidity distributions are examined and controlled by cloud microphysical characteristics (e.g., total water content) and relevant ambient properties (e.g., vertical velocity). A relatively low frequency of simulated SLW may in part explain the discrepancies in WRF, as cloud-top SLW results in stronger radiative cooling and turbulent motions conducive for long-lived cloud regimes

  14. AASE-2 In-Situ Tracer Correlations of Methane Nitrous Oxide and Ozone as Observed Aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walgea, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition II field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-II expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March a compared to January and February results.

  15. AASE-2 in-situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walega, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition 2 field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-2 expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March as compared to January and February results.

  16. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  17. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Podolske, James; Loewenstein, Max

    1993-01-01

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.

  18. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  19. The cloud radiation impact from optics simulation and airborne observation

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles

    2017-02-01

    The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.

  20. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  1. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  2. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  3. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  4. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  5. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  6. Airborne DIAL Ozone and Aerosol Trends Observed at High Latitudes Over North America from February to May 2000

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; Butler, Carolyn F.; Grant, William B.; DeYoung, Russell J.; Fenn, Marta A.; Brackett, Vince G.; Clayton, Marian B.; Brasseur, Lorraine

    2002-01-01

    Ozone (O3) and aerosol scattering ratio profiles were obtained from airborne lidar measurements on thirty-eight aircraft flights over seven aircraft deployments covering the latitudes of 40 deg.-85 deg.N between 4 February and 23 May 2000 as part of the TOPSE (Tropospheric Ozone Production about the Spring Equinox) field experiment. The remote and in situ O3 measurements were used together to produce a vertically-continuous O3 profile from near the surface to above the tropopause. Ozone, aerosol, and potential vorticity (PV) distributions were used together to identify the presence of pollution plumes and stratospheric intrusions. The number of observed pollution plumes was found to increase into the spring along with a significant increase in aerosol loading. Ozone was found to increase in the middle free troposphere (4-6 km) at high latitudes (60 deg.-85 deg. N) by an average of 4.3 ppbv/mo from about 55 ppbv in early February to over 72 ppbv in mid-May. The average aerosol scattering ratios in the same region increased at an average rate of 0.37/mo from about 0.35 to over 1.7. Ozone and aerosol scattering were highly correlated over entire field experiment. Based on the above results and the observed aircraft in-situ measurements, it was estimated that stratospherically-derived O3 accounted for less than 20% of the observed increase in mid tropospheric O3 at high latitudes. The primary cause of the observed O3 increase was found to be the photochemical production of O3 in pollution plumes.

  7. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2015-02-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  8. A new airborne laser-induced fluorescence instrument for in situ detection of Formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2014-08-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  9. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  10. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  11. Current Status and Future Plans of the NEON Airborne Observation Platform (AOP): Data Products, Observatory Requirements and Opportunities for the Community

    NASA Astrophysics Data System (ADS)

    Petroy, S. B.; Leisso, N.; Goulden, T.; Gulbransen, T.

    2016-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 81 sites across the US, including Alaska, Hawaii, and Puerto Rico. The Airborne Observation Platform (AOP) group within the NEON project operates a payload suite that includes a waveform LiDAR, imaging spectrometer (NIS) and high resolution RGB camera. Data from this sensor suite will be collected annually over each site and processed into a set of standard data products, generally following the processing levels used by NASA (Level 1 through Level 3). We will present a summary of the first operational flight campaign (2016), where AOP flew 42 of the 81 planned NEON sites, our operational plans for 2017, and how we will ramp up to full operations by 2018. We will also describe the final set of AOP data products to be delivered as part of NEON construction and those field (observational) data products collected concurrently on the ground, that may be used to support validation efforts of algorithms for deriving vegetation characteristics from airborne data (e.g. Plant foliar physical/chemical properties, Digital Hemispherical Photos, Plant Diversity, etc.). Opportunities for future enhancements to data products or algorithms will be facilitated via NEON's cyberinfrastructure, which is designed to support wrapping/integration of externally-developed code. And finally, we will present NEON's plans for the third AOP Sensor Suite as an assignable asset and the intent of NSF to provide research opportunities to the community for developing higher level AOP data products that were removed from the NEON project in 2015.

  12. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  13. Regional Scaling of Airborne Eddy Covariance Flux Observation

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  14. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Treesearch

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  15. CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Amediek, Axel; Bovensmann, Heinrich; Ehret, Gerhard; Gerbig, Christoph; Gerilowski, Konstantin; Pfeilsticker, Klaus; Roiger, Anke; Zöger, Martin

    2018-04-01

    TIn order to improve our current knowledge on the budgets of the two most important anthropogenic greenhouse gases, CO2 and CH4, an airborne mission on board the German research aircraft HALO in coordination with two smaller Cessna aircraft is going to be conducted in April/May 2017. The goal of CoMet is to combine a suite of the best currently available active (lidar) and passive remote sensors as well as in-situ instruments to provide regional-scale data of greenhouse gases which are urgently required.

  16. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  17. Airborne Ethane Observations over the Barnett and Bakken Shale Formations: Quantification of Ethane Fluxes and Attribution of Methane Emissions

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.

    2014-12-01

    The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes

  18. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to

  19. In situ sensors for measurements in the global trosposphere

    NASA Technical Reports Server (NTRS)

    Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.

    1981-01-01

    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.

  20. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  1. Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology

    NASA Astrophysics Data System (ADS)

    Moller, D.; Pavelsky, T.; Arvesen, J. C.

    2015-12-01

    Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.

  2. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical and optical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS Aerosol Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), red (630 nm), far red (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (red). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional aerosol properties using the

  3. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  4. Turbulence and mountain wave conditions observed with an airborne 2-micron lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, Jack; Bogue, Rodney

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges (California, USA) by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 meters per second (m/s) at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 seconds in moderate turbulence.

  5. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  6. Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NSF HIPPO, EU INCA and NASA ATTREX campaigns

    NASA Astrophysics Data System (ADS)

    Diao, M.; Schumann, U.; Jensen, J. B.; Minikin, A.

    2015-12-01

    The radiative forcing of cirrus clouds is influenced by microphysical (e.g., ice crystal number concentration and size distribution) and macroscopic properties. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions. In this work, we use airborne in-situ observations to compare cirrus cloud properties between polluted and pristine regions. Our dataset includes: the NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011), the EU Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign (2000) and the NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (2014). The combined dataset include observations of both extratropical (HIPPO and INCA) and tropical (ATTREX) cirrus, over the Northern and Southern Hemispheres. We use the in-situ measured carbon monoxide (CO) mixing ratio as a pollution indicator, and compare ice microphysical properties (i.e., ice crystal number concentration (Nc) and number-weighted mean diameter (Dc)) between air masses with higher and lower CO. All analyses are restricted to T ≤ -40°C. By analyzing ice crystals (Fast-2DC, 87.5-1600 µm) in HIPPO, we found that Dc decreases with increasing CO concentration at multiple constant pressure levels. In addition, analysis of INCA data shows that Nc and extinction of small ice particles (FSSP 3-20 µm) increases with increasing CO. Particles < 87.5 µm in Fast-2DC data are not considered due to uncertainty in sample volume, and the FSSP measurements are subject to possible shattering. We further analyze the ice crystals (SPEC FCDP, 1-50 µm) in the tropical tropopause layer in ATTREX. At -70°C to -90°C, we found that the average Nc (Dc) increases (decreases) at higher CO. Overall, our results suggest that extratropical and tropical cirrus are likely to have more numerous small ice particles, when sampled in the more polluted background. Back

  7. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  8. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  9. In Situ Observations of Electric-Field Induced Nanoparticle Aggregation

    NASA Astrophysics Data System (ADS)

    Woehl, T. J.; Browning, N. D.; Ristenpart, W. D.

    2010-11-01

    Nanoparticles have been widely observed to aggregate laterally on electrodes in response to applied electric fields. The mechanism driving this behavior, however, is unclear. Several groups have interpreted the aggregation in terms of electrohydrodynamic or electroosmotic fluid motion, but little corroborating evidence has been presented. Notably, work to date has relied on post situ observations using electron microscopy. Here we present a fluorescence microscopy technique to track the dynamics of nanoparticle aggregation in situ. Fluorescent 20-nm polystyrene nanoparticles are observed to form optically visible aggregates in response to an applied AC field. Although single particle resolution is lost, the existence of aggregates on the electrode surface is marked by growing clusters of increasingly bright intensity. We present a systematic investigation of the effects of applied potential and frequency on the aggregation rate, and we interpret the behavior in terms of a mechanism based on electrically induced convective flow.

  10. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2016-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  11. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2017-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  12. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  13. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  14. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  15. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  16. Interactions between Coronal Mass Ejections Viewed in Coordinated Imaging and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stewart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2013-01-01

    The successive coronal mass ejections (CMEs) from 2010 July 30 - August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration and space weather forecasting.

  17. On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer.

    PubMed

    Ancellet, G; Ravetta, F

    2003-02-01

    Ozone vertical profiling with a lidar is well adapted to the spatial and temporal O3 variability analysis either in the free troposphere, when studying the respective impact of chemical production and dynamical processes, or in the planetary boundary layer (PBL) when characterizing the diurnal evolution of ozone plumes during pollution episodes. Comparisons with other measuring techniques (ozonesonde and aircraft in-situ measurements) demonstrate the lidar ability to characterize narrow layers (< 500 m) with a good accuracy (deltaO3 < 5-10 ppb). Application of airborne or ground-based operation of the CNRS airborne ozone lidar show its ability (i) to observe O3 layering above the PBL during two field experiments held to study air pollution in the Po Valley, Northern Italy, and the city of Marseille, Southern France, (ii) to improve airborne campaign planning (real time information on position of O3 layers) and analysis (three-dimensional perspective for layers detected by in-situ measurements) when chemical characterization of narrow O3 layers in the free troposphere is sought, (iii) to map O3 inhomogeneity down to an horizontal scale of 10-20 km within or above the polluted PBL by airborne measurements. For O3 pollution studies, understanding the origin and the life cycle of O3 layering is the first priority, and in this case the optimum use of the lidar remains the continuous operation of a ground-based instrument.

  18. Airborne lidar observations of long-range transport in the free troposphere

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Browell, E. V.; Mcdougal, D. S.; Orndorff, B. L.; Haagenson, P.

    1984-01-01

    Airborne lidar measurements of ozone and aerosols in the lower troposphere show the presence of pollutant layers above the mixed layer. Two case studies are analyzed to identify probable source regions and mechanisms for material injection into the free troposphere above local mixed layers. An elevated haze/oxidant layer observed over South Carolina on Aug. 2, 1980, was found to originate in cumulus convection over Georgia on Aug. 1, 1980. An extensive haze/oxidant layer observed over southeastern Virginia on July 31, 1981, is shown to have been in contact with the New England mixed layer on July 30, 1981. This transported air mass is estimated to contribute approximately 30 percent of the ozone maximum measured at the surface in the Norfolk, VA, area on July 31, 1981. Such elevated 'reservoir' layers are transported over long ranges and are not detected by sensors which are confined to the surface.

  19. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  20. Fault and anthropogenic processes in central California constrained by satellite and airborne InSAR and in-situ observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul

    2016-07-01

    The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region

  1. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  2. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  3. Microphysical properties of cirrus clouds between 75°N and 25°S derived from extensive airborne in-situ observations

    NASA Astrophysics Data System (ADS)

    Krämer, Martina

    2016-04-01

    Numerous airborne field campaigns were performed in the last decades to record cirrus clouds microphysical properties. Beside the understanding of the processes of cirrus formation and evolution, an additional motivation for those studies is to provide a database to evaluate the representation of cirrus clouds in global climate models. This is of importance for an improved certainty of climate predictions, which are affected by the poor understanding of the microphysical processes of ice clouds (IPCC, 2013). To this end, the observations should ideally cover the complete respective parameter range and not be influenced by instrumental artifacts. However, due to the difficulties in measuring cirrus properties on fast-flying, high-altitude aircraft, some issues with respect to the measurements %evolved have arisen. In particular, concerns about the relative humidity in and around cirrus clouds and the ice crystal number concentrations were under discussion. Too high ice supersaturations as well as ice number concentrations were often reported. These issues have made more challenging the goal of compiling a large database using data from a suite of different instruments that were used on different campaigns. In this study, we have have addressed these challenges and compiled a large data set of cirrus clouds, sampled during eighteen field campaigns between 75°N and 25°S, representing measurements fulfilling the above mentioned requirements. The most recent campaigns were performed in 2014; namely, the ATTREX campaign with the research aircraft Global Hawk and the ML-CIRRUS and ACRIDICON campaigns with HALO. % The observations include ice water content (IWC: 130 hours of observations), ice crystal numbers (N_ice: 83 hours), ice crystal mean mass size (Rice: 83 hours) and relative humidity (RH_ice) in- and outside of cirrus clouds (78 and 140 hours). % We will present the parameters as PDFs versus temperature and derive medians and core ranges (including the most

  4. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of

  5. The International SubMillimetre Airborne Radiometer (ISMAR) - First results from the STICCS and COSMIC campaigns

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Fox, Stuart; Brath, Manfred; Buehler, Stefan

    2016-04-01

    Multispectral millimeter- and submillimeter-wave observations bear the potential to measure properties of non-thin ice clouds like mass content and mean particle size. The next generation of European meteorological satellites, the MetOp-SG series, will carry the first satellite-borne submillimeter sounder, the Ice Cloud Imager (ICI). An airborne demonstrator, the International SubMillimetre Airborne Radiometer (ISMAR), is operated together with other remote sensing instruments and in-situ probes on the FAAM aircraft. Scientific measurements from two campaings in the North Atlantic region, STICCS and COSMIC, are available so far. Here we will introduce the ISMAR instrument, present the acquired measurements from the STICCS and COSMIC campaigns and show some first results. This will include estimation of instrument performance, first analysis of clear-sky and cloudy cases and discussion of selected features observed in the measurements (e.g. polarisation signatures).

  6. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  7. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  8. Management and Stewardship of Airborne Observational Data for the NSF/NCAR HIAPER (GV) and NSF/NCAR C-130 at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.

    2014-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies. The data collected are an important legacy of these field campaigns. A comprehensive metadata database and integrated cyber-infrastructure, along with a robust data workflow that begins during the field phase and extends to long-term archival (current aircraft data holdings go back to 1967), assures that: all data and associated software are safeguarded throughout the data handling process; community standards of practice for data stewardship and software version control are followed; simple and timely community access to collected data and associated software tools are provided; and the quality of the collected data is preserved, with the ultimate goal of supporting research and the reproducibility of published results. The components of this data system to be presented include: robust, searchable web access to data holdings; reliable, redundant data storage; web-based tools and scripts for efficient creation, maintenance and update of data holdings; access to supplemental data and documentation; storage of data in standardized data formats; comprehensive metadata collection; mature version control; human-discernable storage practices; and procedures to inform users of changes. In addition, lessons learned, shortcomings, and desired upgrades

  9. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... geolocated) files based on a user’s choice of time base. In addition, the TAD merge feature allows users to generate standard deviations ... NASA airborne missions. We are currently focused on in situ measurements and we would like to hear from you about the need for other ...

  10. CH4 emissions from European Major Population Centers: Results from aircraft-borne CH4 in-situ observations during EMeRGe-Europe campaign 2017

    NASA Astrophysics Data System (ADS)

    Roiger, A.; Klausner, T.; Schlager, H.; Ziereis, H.; Huntrieser, H.; Baumann, R.; Eirenschmalz, L.; Joeckel, P.; Mertens, M.; Fisher, R.; Bauguitte, S.; Young, S.; Andrés Hernández, M. D.

    2017-12-01

    Urban environments represent large and diffuse area sources of CH4 including emissions from pipeline leaks, industrial/sewage treatment plants, and landfills. However, there is little knowledge about the exact magnitude of these emissions and their contribution to total anthropogenic CH4. Especially in the context of an urbanizing world, a better understanding of the methane footprint of urban areas is crucial, both with respect to mitigation and projection of climate impacts. Aircraft-borne in-situ measurements are particularly useful to both quantify emissions from such area sources, as well as to study their impact on the regional distribution. However, airborne CH4 observations downstream of European cities are especially sparse.Here we report from aircraft-borne CH4 in-situ measurements as conducted during the HALO aircraft campaign EMeRGe (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales) in July 2017, which was led by the University of Bremen, Germany. During seven research flights, emissions from a variety of European (Mega)-cities were probed at different altitudes from 3km down to 500m, including measurements in the outflows of London, Rome, Po Valley, Ruhr and Benelux. We will present and compare the CH4 distribution measured downstream of the various studied urban hot-spots. With the help of other trace gas measurements (including e.g. CO2, CO, O3, SO2), observed methane enhancements will be attributed to the different potential source types. Finally, by the combination of in-situ measurements and regional model simulations using the EMAC-MECO(n) model, the contribution of emissions from urban centers to the regional methane budget over Europe will be discussed.

  11. In situ observations of Pc1 pearl pulsations by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Smith, C. W.; Lessard, M. R.; Engebretson, M. J.; Torbert, R. B.; Kletzing, C. A.

    2014-03-01

    We present in situ observations of Pc1 pearl pulsations using the Van Allen Probes. These waves are often observed using ground-based magnetometers, but are rarely observed by orbiting satellites. With the Van Allen Probes, we have seen at least 14 different pearl pulsation events during the first year of operations. These new in situ measurements allow us to identify the wave classification based on local magnetic field conditions. Additionally, by using two spacecraft, we are able to observe temporal changes in the region of observation. The waves appear to be generated at an overall central frequency, as often observed on the ground, and change polarization from left- to right-handedness as they propagate into a region where they are resonant with the crossover frequency (where R- and L-mode waves have the same phase velocity). By combining both in situ and ground-based data, we have found that the region satisfying electromagnetic ion cyclotron wave generation conditions is azimuthally large while radially narrow. The observation of a similar modulation period on the ground as in the magnetosphere contradicts the bouncing wave packet mechanism of generation.

  12. Biooptical variability in the Greenland Sea observed with the Multispectral Airborne Radiometer System (MARS)

    NASA Technical Reports Server (NTRS)

    Mueller, James L.; Trees, Charles C.

    1989-01-01

    A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.

  13. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  14. Airborne EM, Lithology and in-situ Data Used for Quantizing Groundwater Salinity in Zeeland (NL)

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; van Baaren, E.; Dabekaussen, W.; Delsman, J. R.; Karaoulis, M.; Gunnink, J.; Pauw, P.; Vermaas, T.

    2017-12-01

    In a setting of predominantly saline surface waters in Zeeland, the Netherlands, the only available shallow fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh water is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing the usable water properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labor-intensive, airborne electromagnetics, which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO conducted FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in 2014-17. An area of more than 2000 square km was surveyed using BGR's helicopter-borne geophysical system totaling to about 9,600 line-km. The HEM data, after inversion to 2.5 Million resistivity-depth models for each of the three 1D inversion procedures applied (Marquardt single site, smooth and sharp laterally constrained inversion), served as base-line information for further interpretation. A probabilistic Monte Carlo approach combines HEM resistivities, 3D lithology model data (GeoTOP), laboratory results (formation factor and surface conductivity) and local in-situ groundwater measurements for the translation of resistivity to Chloride concentration. The resulting 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  15. Data System for HS3 Airborne Field Campaign

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.

    2014-12-01

    Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration

  16. SMAP soil moisture drying more rapid than observed in situ following rainfall events

    USDA-ARS?s Scientific Manuscript database

    We examine soil drying rates by comparing observations from the NASA Soil Moisture Active Passive (SMAP) mission to surface soil moisture from in situ probes during drydown periods at SMAP validation sites. SMAP and in situ probes record different soil drying dynamics after rainfall. We modeled this...

  17. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  18. Quantitative comparison of airborne remote-sensed and in situ Rhodamine WT dye and temperature during RIVET & IB09

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.

    2012-12-01

    The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.

  19. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  20. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  1. Wave-induced boundary-layer separation: A case study comparing airborne observations and results from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Strauss, L.; Serafin, S.; Grubišić, V.

    2012-04-01

    light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.

  2. New Atmospheric Observations from the Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS)

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Xie, F.; Muradyan, P.; Garrison, J. L.; Lulich, T.; Voo, J.; Larson, K. M.

    2008-12-01

    The Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was deployed on the NCAR HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) aircraft to make atmospheric observations over the Gulf of Mexico coastal region in February 2008. The objective of the measurements was to test the performance of the system in comparisons with radiosonde profiles and dropsonde profiles that were also collected during the field campaign. The airborne GNSS radio occultation measures of GNSS signals from satellites that are setting or rising behind the Earth's limb relative to the receiver on board an aircraft. High-gain side-looking antennas and a 10MHz GPS Recording System that records the raw RF signal make this set of instrumentation unique, and especially adapted for open-loop tracking observations in the lower atmosphere. Measurements of the amount of refraction in the signal ray paths are inverted using an Abel transform procedure to retrieve a profile of refractivity, which depends on atmospheric pressure, temperature and relative humidity. The airborne geometry, in contrast to the space- borne satellite occultation geometry, is affected by a large drift in the tangent point location, that is the location of the closest point to the Earth surface, as the ray path descends in the atmosphere. Therefore plans for the validation campaign included releasing dropsondes in the plane of the line of sight of the satellite-receiver occultation geometry in order to study this effect. Careful timing and location of the flight path was used to coordinate occultation times with operational and supplementary radiosonde launches. A total of 6 days of balloon sounding data were collected with 20 dropsondes and 28 supplementary radiosonde profiles. A discussion of the technical performance of the system will be presented, which describes the signal characteristics and antenna performance. Preliminary results on the quality of retrieved

  3. Observation infrastructure for airborne hazards in the framework of the EUNADICS-AV project

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Pappalardo, Gelsomina; Stammes, Piet; Lihavainen, Heikki; Paatero, Jussi; Hirtl, Marcus; Schlager, Hans; Graf, Kaspar; Hedelt, Pascal; Theys, Nicolas; Coltelli, Mauro; Vargas, Arturo; Clarisse, Lieven; Nína Petersen, Guðrún; de Leeuw, Gerrit; Papagiannopoulos, Nikolaos; Apituley, Arnoud; Haefele, Alexander; Delcloo, Andy; Wotawa, Gerhard

    2017-04-01

    During the 2010 and 2011 Icelandic volcanic eruptions, the availability of integrated, validated data sets was identified as a major challenge in the effort to gain a rapid situation assessment. These environmental crisis situations may happen again, also from other types ofairborne hazards, like big fires. Currently, the issue is not so much that data and observations do not exist, it is rather the rapid accessibility, the cross-calibration of different sensors, the integration of new platforms and the harmonization of standards and protocols that needs further work and attention. A specific activity is planned within the H-2020 project EUNADICS -AV ("European Natural Disaster Coordination and Information System for Aviation") for addressing this critical issue. In order to achieve the rapid data accessibility, work will be carried out with full consideration of the main European Research Infrastructures, projects and national/international monitoring networks that are able to provide crucial information related to the dispersion of airborne hazards. The integrated data sets are based on satellite and ground-based remote sensing as well as in situ ground-based and aircraft observations. Networks of ground based remote sensing of atmospheric profiles are particularly important, since these will provide the needed height information that cannot be obtained unambiguously from the vast majority of space borne sensors. A new aspect not treated in any project and initiative so far is the integration of special crisis measurements, for example by aircraft or UAV systems. Particularly suited for the purposes of the project are satellite data from operational sensors aboard EUMETSAT and ESA satellites. Improved retrievals are investigated, and the new generation of Sentinel satellites currently being launched under the Copernicus umbrella and their added value are considered. Especially when the ground based and space borne observations are combined, the much needed

  4. Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory

    NASA Astrophysics Data System (ADS)

    Fautrelle, Y.; Wang, J.; Salloum-Abou-Jaoude, G.; Abou-Khalil, L.; Reinhart, G.; Li, X.; Ren, Z. M.; Nguyen-Thi, H.

    2018-02-01

    Solidification of liquid metals contains all the ingredients for the development of the thermo-electric (TE) effect, namely liquid-solid interface and temperature gradients. The combination of TE currents with a superimposed magnetic field gives rise to thermo-electromagnetic (TEM) volume forces acting on both liquid and solid. This results in the generation of fluid flows, which considerably modifies the morphology of the solidification front as well as that of the mushy zone. TEM forces also act on the solid and cause both fragmentation of dendrite branches and a movement of equiaxed grains in suspension. These phenomena have already been unveiled by post-mortem analysis of samples, but they can be analyzed in more detail by using x-ray in situ and real-time observations. Here, we present conclusive evidence of all the aforementioned effects thanks to in situ observations of Al-Cu alloy solidification under static magnetic field.

  5. Airborne Observations of Urban-Derived Water Vapor and Potential Impacts on Chemistry and Clouds

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Shepson, P. B.; Grundman, R. M., II; Stirm, B. H.; Ren, X.; Dickerson, R. R.; Fuentes, J. D.

    2015-12-01

    Atmospheric conditions typical of wintertime, such as lower boundary layer heights and reduced turbulent mixing, provide a unique environment for anthropogenic pollutants to accumulate and react. Wintertime enhancements in water vapor (H2O) have been observed in urban areas, and are thought to result from fossil fuel combustion and urban heat island-induced evaporation. The contribution of urban-derived water vapor to the atmosphere has the potential to locally influence atmospheric chemistry and weather for the urban area and surrounding region due to interactions between H2O and other chemical species, aerosols, and clouds. Airborne observations of urban-derived H2O, carbon dioxide (CO2), methane, nitrogen dioxide (NO2), ozone, and aerosols were conducted from Purdue University's Airborne Laboratory for Atmospheric Research (ALAR) and the University of Maryland's (UMD) Twin Cessna research aircraft during the winter of 2015. Measurements were conducted as part of the collaborative airborne campaign, Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER), which investigated seasonal trends in anthropogenic emissions and reactivity in the Northeastern United States. ALAR and the UMD aircraft participated in mass balance experiments around Washington D.C.-Baltimore to determine total city emission rates of H2O and other greenhouse gases. Average enhancements in H2O mixing ratio of 0.048%, and up to 0.13%, were observed downwind of the urban centers on ten research flights. In some cases, downwind H2O concentrations clearly track CO2 and NO2 enhancements, suggesting a strong combustion signal. Analysis of Purdue and UMD data collected during the WINTER campaign shows an average urban-derived H2O contribution of 5.3%, and as much as 13%, to the local boundary layer from ten research flights flown in February and March of 2015. In this paper, we discuss the potential chemical and physical implications of these results.

  6. SOFIA's Choice: Automating the Scheduling of Airborne Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Norvig, Peter (Technical Monitor)

    1999-01-01

    This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.

  7. Evidence for CO in Jupiter's atmosphere from airborne spectroscopic observations at 5 microns

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.

    1978-01-01

    High-altitude (12.4 km) spectra of Jupiter recorded at the Kuiper Airborne Observatory are analyzed for the presence of CO absorption lines. A line-by-line comparison of Jupiter's spectrum with that of carbon monoxide is presented, as well as a correlation analysis that includes the influence of other gases present in Jupiter's atmosphere (CH4, NH3, H2O, PH3, and GeH4). The resulting evidence points strongly to the presence of carbon monoxide in Jupiter's atmosphere, thus strengthening Beer's evidence for it. Possible explanations for the existence and observability of Jovian CO, including convection from hotter, deeper layers or decomposition of organic molecules, are explored. A recent suggestion that the Jovian CO is restricted to stratospheric levels is not supported by the observations.

  8. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    2015-07-07

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.

  9. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  10. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  11. Estimation of snow in extratropical cyclones from multiple frequency airborne radar observations. An Expectation-Maximization approach

    NASA Astrophysics Data System (ADS)

    Grecu, M.; Tian, L.; Heymsfield, G. M.

    2017-12-01

    A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar

  12. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  13. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; hide

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  14. Airborne Observations of Enhanced Marine Boundary Layer Carbon Monoxide over Remote Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Campos, T. L.; Stell, M. H.; Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Weinheimer, A. J.; Montzka, D.; Kaser, L.; Aquino, J.

    2014-12-01

    Recent airborne observations of tropical marine boundary layer carbon monoxide included several instances of elevated MBL CO with a notable absence of corresponding enhancements in ozone. Instances were observed during the recent CONTRAST exploration of tropical Pacific marine dynamics and composition. The lack of correlation between sampled carbon monoxide and ozone is consistent with an oceanic source of CO. Carbon monoxide vertical flux will be estimated for all CONTRAST boundary layer transects, with particular focus on these events. Complementary correlative observations of trace organics lend insight into processes defining this composition. The frequency of occurrence will be presented along with comparison to similar observations within other data sets, including TORERO (2012), and HIPPO (2009-2012).

  15. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  16. Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus

    NASA Astrophysics Data System (ADS)

    Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.

    2014-02-01

    Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.

  17. Remote and In Situ Observations of Surfzone and Inner-Shelf Tracer Dispersion

    NASA Astrophysics Data System (ADS)

    Hally-Rosendahl, K.; Feddersen, F.; Clark, D.; Guza, R. T.

    2014-12-01

    Surfzone and inner-shelf tracer dispersion was observed at the approximately alongshore-uniform Imperial Beach, California during the IB09 experiment. Rhodamine dye tracer, released continuously near the shoreline for several hours, was advected alongshore by breaking wave- and wind-driven currents, and ejected offshore from the surfzone to the inner-shelf by transient rips. Aerial multispectral imaging of inner-shelf dye concentration complemented in situ surfzone and inner-shelf measurements of dye, temperature, waves, and currents, providing tracer transport and dispersion observations spanning approximately 400 m cross-shore and 3 km alongshore. Combined in situ and aerial measurements approximately close a surfzone and inner-shelf dye budget. Mean alongshore dye dilution follows a power-law relationship, and both spatial and temporal dye variability decrease with distance from the release. Aerial images reveal coherent inner-shelf dye plume structures extending over 300 m offshore with alongshore length scales up to 400 m. Plume tracking among successive images yields inner-shelf alongshore advection rates consistent with in situ observations. Alongshore advection is faster within the surfzone than on the inner-shelf, and the leading alongshore edge of inner-shelf dye is due to local transient rip ejections from the surfzone. A combination of in situ and aerial surfzone and inner-shelf measurements are used to quantify cross- and alongshore dye tracer transports. This work is funded by NSF (including a Graduate Research Fellowship, Grant No. DGE1144086), ONR, and California Sea Grant. Figure: Aerial multispectral image of surface dye concentration (parts per billion, see colorbar) versus cross-shore coordinate x and alongshore coordinate y, approximately 5 hours after the start of a continuous dye release (green star). The mean shoreline is at x=0 m. Dark gray indicates the beach and a pier, and light gray indicates regions outside the imaged area. Black

  18. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Church, C.

    1976-01-01

    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  19. Spatio-Temporal Variability of Atmospheric CO2 as Observed from In-Situ Measurements over North America during NASA Field Campaigns (2004-2008)

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Vay, Stephanie A.; Woo, Jung-Hun; Choi, Kichul; Diskin, Glenn S.; Sachse, G. W.; Vadrevu, Krishna P.; Czech, E.

    2009-01-01

    Regional-scale measurements were made over the eastern United States (Intercontinental Chemical Transport Experiment - North America (INTEX-NA), summer 2004); Mexico (Megacity Initiative: Local and Global Research Observations (MILAGRO), March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); and the Canadian Arctic (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), spring and summer 2008). For these field campaigns, instrumentation for the in situ measurement of CO2 was integrated on the NASA DC-8 research aircraft providing high-resolution (1 second) data traceable to the WMO CO2 mole fraction scale. These observations provide unique and definitive data sets via their intermediate-scale coverage and frequent vertical profiles (0.1 - 12 km) for examining the variability CO2 exhibits above the Earth s surface. A bottom-up anthropogenic CO2 emissions inventory (1deg 1deg) and processing methodology has also been developed for North America in support of these airborne science missions. In this presentation, the spatio-temporal distributions of CO2 and CO column values derived from the campaign measurements will be examined in conjunction with the emissions inventory and transport histories to aid in the interpretation of the CO2 observations.

  20. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.

    PubMed

    Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.

  1. Airborne observations of newly formed boundary layer aerosol particles under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Altstädter, Barbara; Platis, Andreas; Jähn, Michael; Baars, Holger; Lückerath, Janine; Held, Andreas; Lampert, Astrid; Bange, Jens; Hermann, Markus; Wehner, Birgit

    2018-06-01

    This study describes the appearance of ultrafine boundary layer aerosol particles under classical non-favourable conditions at the research site of TROPOS (Leibniz Institute for Tropospheric Research). Airborne measurements of meteorological and aerosol properties of the atmospheric boundary layer (ABL) were repeatedly performed with the unmanned aerial system ALADINA (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) during three seasons between October 2013 and July 2015. More than 100 measurement flights were conducted on 23 different days with a total flight duration of 53 h. In 26 % of the cases, maxima of ultrafine particles were observed close to the inversion layer at altitudes between 400 and 600 m and the particles were rapidly mixed vertically and mainly transported downwards during short time intervals of cloud gaps. This study focuses on two measurement days affected by low-level stratocumulus clouds, but different wind directions (NE, SW) and minimal concentrations (< 4.6 µg m-3) of SO2, as a common indicator for precursor gases at ground. Taken from vertical profiles, the onset of clouds led to a non-linearity of humidity that resulted in an increased turbulence at the local-scale and caused fast nucleation e.g., but in relation to rapid dilution of surrounding air, seen in sporadic clusters of ground data, so that ultrafine particles disappeared in the verticality. The typical banana shape of new particle formation (NPF) and growth was not seen at ground and thus these days might not have been classified as NPF event days by pure surface studies.

  2. Airborne observations of greenhouse gases in the North Slope of Alaska during summer 2015

    NASA Astrophysics Data System (ADS)

    Biraud, S.; Torn, M. S.; Sweeney, C.; Springston, S. R.; Sedlacek, A. J., III

    2015-12-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols and cloud properties in North Slopes of Alaska (NSA) are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections. From June 1 through September 15, 2015, the Atmospheric radiation measurement (ARM) airborne facility (AAF) deployed a G1 research aircraft (ARM-ACME-V mission) to fly over the North Slope of Alaska, with occasional vertical profiling to measure trace gas concentrations, between Prudhoe Bay, Oliktok point, Barrow, Atqasuk, Ivotuk, and Toolik Lake. The aircraft payload includes a Picarro and a LGR analyzers for continuous measurements of CO2, CH4, H2O, and CO and N2O mixing ratios, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species including ethane). The aircraft payload also include measurements of aerosol properties (number size distribution, total number concentration, absorption, and scattering), cloud properties (droplet and ice size information), atmospheric thermodynamic state, and solar/infrared radiation. Preliminary results using CO2, CH4, CO, ethane, and soot spectroscopy observations are used to tease apart biogenic and thermogenic (biomass burning, and oil and gas production) contributions

  3. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  4. First results from the NASA WB-57 airborne observations of the Great American 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Tsang, Constantine; DeForest, Craig; Seaton, Daniel B.; Bryans, Paul; Tomczyk, Steven; Burkepile, Joan; Judge, Phil; DeLuca, Edward E.; Golub, Leon; Gallagher, Peter T.; Zhukov, Andrei; West, Matthew; Durda, Daniel D.; Steffl, Andrew J.

    2017-08-01

    Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations.Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near-IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more.We present the first results from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and near-IR (3-5 µm) cameras operating at high cadence (30 Hz) with ~3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft will fly along the eclipse path, separated by ~90 km, to observe a summed ~8 minutes of totality in both visible and

  5. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  6. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic.

    NASA Astrophysics Data System (ADS)

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.

    2015-12-01

    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  7. A Review of In Situ Observations of Crystallization and Growth in High Temperature Oxide Melts

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sohn, Il

    2018-05-01

    This review summarizes the significant results of high-temperature confocal laser scanning microscopy (CLSM) and single hot thermocouple technology (SHTT) and its application in observing the crystallization and growth in high-temperature oxide melts from iron- and steel-making slags to continuous casting mold fluxes. Using in situ observations of CLSM and SHTT images of high-temperature molten oxides with time, temperature, and composition, the crystallization behavior, including crystal morphology, crystallization temperature, initial nucleation and growth rate, could be obtained. The broad range of applications using in situ observations during crystallization have provided a wealth of opportunities in pyrometallurgy and is provided in this review.

  8. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  9. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qian; Kacher, Josh; Gammer, Christoph

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  10. Observational and Modeling-based Study of Corsica Thunderstorms: Preparation of the EXAEDRE Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Defer, E.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.; Caumont, O.; Labatut, L.; Nuret, M.; Blanchet, P.; Buguet, M.; Lalande, P.; Labrouche, G.; Pedeboy, S.; Lojou, J. Y.; Schwarzenboeck, A.; Delanoë, J.; Bourdon, A.; Guiraud, L.

    2017-12-01

    The 4-year EXAEDRE (EXploiting new Atmospheric Electricity Data for Research and the Environment; Oct 2016-Sept 2020) project is sponsored by the French Science Foundation ANR (Agence Nationale de la Recherche). This project is a French contribution to the HyMeX (HYdrological cycle in the Mediterranean EXperiment) program. The EXAEDRE activities rely on innovative multi-disciplinary and state of the art instrumentation and modeling tools to provide a comprehensive description of the electrical activity in thunderstorms. The EXAEDRE observational part is based on i) existing lightning records collected during HyMeX Special Observation Period (SOP1; Sept-Nov 2012), and permanent lightning observations provided by the research Lightning Mapping Array SAETTA and the operational Météorage lightning locating systems, ii) additional lightning observations mapped with a new VHF interferometer especially developed within the EXAEDRE project, and iii) a dedicated airborne campaign over Corsica. The modeling part of the EXAEDRE project exploits the electrification and lightning schemes developed in the cloud resolving model MesoNH and promotes an innovative technique of flash data assimilation in the french operational model AROME of Météo-France. An overview of the EXAEDRE project will be given with an emphasis on the instrumental, observational and modeling activities performed during the 1st year of the project. The preparation of the EXAEDRE airborne campaign scheduled for September 2018 over Corsica will then be discussed. Acknowledgements. The EXAEDRE project is sponsored by grant ANR-16-CE04-0005 with support from the MISTRALS/HyMeX meta program.

  11. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  12. New single-aircraft integrated atmospheric observation capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2011-12-01

    Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.

  13. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  14. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; hide

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  15. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  16. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  17. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  18. In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites

    PubMed Central

    2016-01-01

    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and

  19. Correlation of In Situ Measurements of Plasma Irregularities with Ground-Based Scintillation Observations

    DTIC Science & Technology

    2010-06-01

    extensive case study of the relationships between the observation of in situ irregularities, UHF scintillation observed by the Scin - tillation Decision...use these space-based measurements, however, the correlation between the structures and the resulting scin - tillation must be quantified. [10] As a

  20. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): Common Variable Naming Schema

    NASA Astrophysics Data System (ADS)

    Chen, G.; Early, A. B.; Peeters, M. C.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. One particular issue is a lack of consistent variable naming across field campaigns, which makes cross-mission data discovery difficult. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. As part of this effort, a common naming system was developed to provide a link between variables from different aircraft field studies. This system covers all current and past airborne in-situ measurements housed at the ASDC, as well as select NOAA missions. The TAD common variable naming system consists of 6 categories and 3 sub-levels. The top-level category is primarily defined by the physical characteristics of the measurement: e.g., aerosol, cloud, trace gases. The sub-levels were designed to organize the variables according to nature of measurement (e.g., aerosol microphysical and optical properties) or chemical structures (e.g., carbon compound). The development of the TAD common variable naming system was in consultation with staff from the Global Change Master Directory (GCMD) and referenced/expanded the existing Climate and Forecast (CF) variable naming conventions. The detailed structure of the TAD common variable naming convention and its application in TAD development will be presented.

  1. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  2. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    NASA Technical Reports Server (NTRS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  4. Quantifying Sources and Sinks of Reactive Gases in the Lower Atmosphere Using Airborne Flux Observations

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; hide

    2015-01-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  5. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taendl, J., E-mail: johannes.taendl@tugraz.atl; Nambu, S.; Orthacker, A.

    2015-10-15

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al{sub 3}(Sc,Zr)more » precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.« less

  6. First In-Situ Observations of Exospheric Response to CME Impact at Mercury

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinksi, J. M.; Tracy, P. J.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.

    2018-05-01

    We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. These results have implications for understanding exosphere generation and loss processes, as well space weathering of the planet's surface.

  7. Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA.

    PubMed

    Leifer, Ira; Melton, Christopher; Tratt, David M; Buckland, Kerry N; Clarisse, Lieven; Coheur, Pierre; Frash, Jason; Gupta, Manish; Johnson, Patrick D; Leen, J Brian; Van Damme, Martin; Whitburn, Simon; Yurganov, Leonid

    2017-02-01

    Methane (CH 4 ) and ammonia (NH 3 ) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH 3 allowing discrimination of husbandry from other CH 4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH 4 , carbon dioxide (CO 2 ) and NH 3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20 km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1 × 10 5  kg CH 4 , 2.2 × 10 5  kg NH 3 , and 2.3 × 10 7  kg CO 2 , suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42 Gg CH 4 and 8.4 Gg NH 3 implying ∼200k cows, ∼30% more than Peischl et al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH 3 occurs within the confines of the Los Angeles Basin on a four to six h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas

  8. Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Osterloh, Lukas; Stone, Robert; Lampert, Astrid; Ritter, Christoph; Stock, Maria; Tunved, Peter; Hennig, Tabea; Böckmann, Christine; Li, Shao-Meng; Eleftheriadis, Kostas; Maturilli, Marion; Orgis, Thomas; Herber, Andreas; Neuber, Roland; Dethloff, Klaus

    2012-06-01

    In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Ålesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 × 20 km around Ny-Ålesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474 m altitude peak at about 0.18 μm diameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the

  9. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment - special observation period (hymex-sop1)

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario

    2018-04-01

    Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.

  10. In situ statistical observations of EMIC waves by Arase satellite

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  11. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    PubMed

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  12. Transmission Electron Microscope In Situ Straining Technique to Directly Observe Defects and Interfaces During Deformation in Magnesium

    DOE PAGES

    Morrow, Benjamin M.; Cerreta, E. K.; McCabe, R. J.; ...

    2015-05-14

    In-situ straining was used to study deformation behavior of hexagonal close-packed (hcp) metals.Twinning and dislocation motion, both essential to plasticity in hcp materials, were observed.Typically, these processes are characterized post-mortem by examining remnant microstructural features after straining has occurred. By imposing deformation during imaging, direct observation of active deformation mechanisms is possible. This work focuses on straining of structural metals in a transmission electron microscope (TEM), and a recently developed technique that utilizes familiar procedures and equipment to increase ease of experiments. In-situ straining in a TEM presents several advantages over conventional post-mortem characterization, most notably time-resolution of deformation andmore » streamlined identification of active deformation mechanisms. Drawbacks to the technique and applicability to other studies are also addressed. In-situ straining is used to study twin boundary motion in hcp magnesium. A {101¯2} twin was observed during tensile and compressive loading. Twin-dislocation interactions are directly observed. Notably, dislocations are observed to remain mobile, even after multiple interactions with twin boundaries, a result which suggests that Basinki’s dislocation transformation mechanism by twinning is not present in hcp metals. The coupling of in-situ straining with traditional post-mortem characterization yields more detailed information about material behavior during deformation than either technique alone.« less

  13. Short-term Changes of Apparent Optical Properties in a Shallow Water Environment: Observations from Repeated Airborne Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, M.; English, D. C.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Toro-Farmer, G.; Herwitz, S. R.

    2016-02-01

    An atmospheric correction algorithm has been developed for AISA imagery over optically shallow waters in Sugarloaf Key of the Florida Keys. The AISA data were collected repeatedly during several days in May 2012, October 2012, and May 2013. A non-zero near-infrared (NIR) remote sensing reflectance (Rrs) was accounted for through iterations, based on the relationship of field-measured Rrs between the NIR and red wavelengths. Validation showed mean ratios of 0.94 to 1.002 between AISA-derived and field-measured Rrs in the blue to red wavelengths, with uncertainties generally < 0.002 sr-1. Such an approach led to observations of diurnal changes of AISA-derived Rrs from repeated measurements over waters with bottom types of seagrass meadow, sand, and patch reef, which were driven by tides and/or winds depending on the bottom types. Rrs generally increased with decreasing tidal height and increasing wind speed, with more changes observed over sandy bottom than over seagrass as explained by changes in water turbidity (light attenuation) and bottom contributions. Some of these changes are larger than two times of the Rrs uncertainties from the AISA retrievals, therefore representing statistically significant changes that can be well observed from airborne measurements. The case study suggests that repeated airborne measurements may be used to study short-term changes in shallow water environments, and such a capacity may be enhanced with future geostationary satellite missions specifically designed to observe coastal ecosystems.

  14. Airborne observations of cloud properties on HALO during NARVAL

    NASA Astrophysics Data System (ADS)

    Konow, Heike; Hansen, Akio; Ament, Felix

    2016-04-01

    The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations offer a more detailed insight due to lower altitude and high sampling rates. The research aircraft HALO (High Altitude Long Range Research Aircraft) is operated by the German Aerospace Center (DLR). With a ceiling of 15 km, and a range of 10,000 km and more than 10 hours it is able to reach remote regions and operate from higher altitudes than most other research aircraft. Thus, it provides the unique opportunity to exploit regions of the atmosphere that cannot be easily accessed otherwise. Measurements conducted on HALO provide more detailed insights than achievable from satellite data. Therefore, this measurement platform bridges the gap between previous airborne measurements and satellites. The payload used for this study consists of, amongst others, a suite of passive microwave radiometers, a cloud radar, and a water vapor DIAL. To investigate cloud and precipitation properties of convective maritime clouds, the NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) campaign was conducted in winter 2013/2014 out of Barbados and Keflavik (Iceland). This campaign was one of the first that took place on the HALO aircraft. During the experiment's two parts 15 research flights were conducted (8 flights during NARVAL-South out of Barbados to investigate trade-wind cumuli and 7 flights out of Keflavik with focus on mid-latitude cyclonic systems). Flight durations were between five and nine hours, amounting to roughly 118 flight hours overall. 121 dropsondes were deployed. In fall 2016 two additional aircraft campaigns with the same payload will take place: The

  15. Systematic observations of Volcán Turrialba, Costa Rica, with small unmanned aircraft and aerostats (UAVs): the Costa Rican Airborne Research and Technology Applications (CARTA) missions

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Abtahi, A.; Alan, A., Jr.; Alegria, O.; Azofeifa, S.; Berthold, R.; Corrales, E.; Fuerstenau, S.; Gerardi, J.; Herlth, D.; Hickman, G.; Hunter, G.; Linick, J.; Madrigal, Y.; Makel, D.; Miles, T.; Realmuto, V. J.; Storms, B.; Vogel, A.; Kolyer, R.; Weber, K.

    2014-12-01

    For several years, the University of Costa Rica, NASA Centers (e.g., JPL, ARC, GSFC/WFF, GRC) & NASA contractors-partners have made regular in situ measurements of aerosols & gases at Turrialba Volcano in Costa Rica, with aerostats (e.g., tethered balloons & kites), & free-flying fixed wing UAVs (e.g., Dragon Eye, Vector Wing 100, DELTA 150), at altitudes up to 12.5Kft ASL within 5km of the summit. Onboard instruments included gas detectors (e.g., SO2, CO2), visible & thermal IR cameras, air samplers, temperature pressure & humidity sensors, particle counters, & a nephelometer. Deployments are timed to support bimonthly overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite (26 deployments to date). In situ observations of dilute plume SO2 concentrations (~1-20ppmv), plume dimensions, and associated temperature, pressure, & humidity profiles, validate detailed radiative transfer-based SO2 retrievals, as well as archive-wide ASTER band-ratio SO2 algorithms. Our recent UAV-based CO2 observations confirm high concentrations (e.g., ~3000ppmv max at summit jet), with 1000-1500ppmv flank values, and essentially global background CO2 levels (400ppmv) over distal surroundings. Transient Turrialba He detections (up to 20ppmv) were obtained with a small (~10kg) airborne mass spectrometer on a light aircraft—a UAV version (~3kg) will deploy there soon on the UCR DELTA 500. Thus, these platforms, though small (most payloads <500gm), can perform valuable systematic measurements of potential eruption hazards, as well as of volcano processes. Because they are economical, flexible, and effective, such platforms promise unprecedented capabilities for researchers and responders throughout Central and South America, undertaking volcanic data acquisitions uniquely suited to such small aircraft in close proximity to known hazards, or that were previously only available using full-sized manned aircraft. This work was

  16. Recent Advancements in Atmospheric Measurements Made from NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Schill, S.; Bennett, J.; Edmond, K.; Finch, P.; Rainer, S.; Schaller, E. L.; Stith, E.; Van Gilst, D.; Webster, A.; Yang, M. Y.

    2017-12-01

    Techniques for making atmospheric measurements are as wide-ranging as the atmosphere is complex. From in situ measurements made by land, sea, or air, to remote sensing data collected by satellites orbiting the Earth, atmospheric measurements have been paramount in advancing the combined understanding of our planet. To date, many of these advancements have been enabled by NASA Airborne Science platforms, which provide unique opportunities to make these measurements in remote regions, and to compare them with an ever-increasing archive of remote satellite data. Here, we discuss recent advances and current capabilities of the National Suborbital Research Center (NSRC) which provides comprehensive instrumentation and data system support on a variety of NASA airborne research platforms. Application of these methods to a number of diverse science missions, as well as upcoming project opportunities, will also be discussed.

  17. Assessment of chlorophyll-a concentration in the Gulf of Riga using hyperspectral airborne and simulated Sentinel-3 OLCI data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Brauns, Agris; Filipovs, Jevgenijs; Taskovs, Juris; Fedorovicha, Dagnija; Paavel, Birgot; Ligi, Martin; Kutser, Tiit

    2016-08-01

    Remote sensing has proved to be an accurate and reliable tool in clear water environments like oceans or the Mediterranean Sea. However, the current algorithms and methods usually fail on optically complex waters like coastal and inland waters. The whole Baltic Sea can be considered as optically complex coastal waters. Remote assessment of water quality parameters (eg., chlorophyll-a concentration) is of interest for monitoring of marine environment, but hasn't been used as a routine approach in Latvia. In this study, two simultaneous hyperspectral airborne data and in situ measurement campaigns were performed in the Gulf of Riga near the River Daugava mouth in summer 2015 to simulate Sentinel-3 data and test existing algorithms for retrieval of Level 2 Water products. Comparison of historical data showed poor overall correlation between in situ measurements and MERIS chlorophyll-a data products. Better correlation between spectral chl-a data products and in situ water sampling measurements was achieved during simultaneous airborne and field campaign resulting in R2 up to 0.94 for field spectral data, R2 of 0.78 for airborne data. Test of all two band ratio combinations showed that R2 could be improved from 0.63 to 0.94 for hyperspectral airborne data choosing 712 and 728 nm bands instead of 709 and 666 nm, and R2 could be improved from 0.61 to 0.83 for simulated Sentinel-3 OLCI data choosing Oa10 and Oa8 bands instead of Oa11 and Oa8. Repeated campaigns are planned during spring and summer blooms 2016 in the Gulf of Riga to get larger data set for validation and evaluate repeatability. The main challenges remain to acquire as good data as possible within rapidly changing environment and often cloudy weather conditions.

  18. Dynamical conditions of ice supersaturation and ice nucleation in convective systems: A comparative analysis between in situ aircraft observations and WRF simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Josh P.

    2017-03-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) > 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures ≤ -40°C. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by 3-4 orders of magnitude at higher updraft speeds (>1 m s-1) than those at the lower updraft speeds when ice water content (IWC) > 0.01 g m-3, while observations show smaller differences up to 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (≤0.01 g m-3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS >20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g., ≥25%).

  19. Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus

    NASA Astrophysics Data System (ADS)

    Lux, Oliver; Lemmerz, Christian; Weiler, Fabian; Marksteiner, Uwe; Witschas, Benjamin; Rahm, Stephan; Schäfler, Andreas; Reitebuch, Oliver

    2018-06-01

    In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). The direct-detection Doppler wind lidar system is composed of a frequency-stabilized Nd:YAG laser operating at 355 nm, a Cassegrain telescope and a dual-channel receiver. The latter incorporates a Fizeau interferometer and two sequential Fabry-Pérot interferometers to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. The benefit of the complementary design is demonstrated by airborne observations of strong wind shear related to the jet stream over the North Atlantic on 27 September and 4 October 2016, yielding high data coverage in diverse atmospheric conditions. The paper also highlights the relevance of accurate ground detection for the Rayleigh and Mie response calibration and wind retrieval. Using a detection scheme developed for the NAWDEX campaign, the obtained ground return signals are exploited for the correction of systematic wind errors. Validation of the instrument performance and retrieval algorithms was conducted by comparison with DLR's coherent wind lidar which was operated in parallel, showing a systematic error of the A2D LOS winds of less than 0.5 m s-1 and random errors from 1.5 (Mie) to 2.7 m s-1 (Rayleigh).

  20. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Technical Reports Server (NTRS)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  1. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Glenn; Hanisco, T. F.; Atkinson, H. L.

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurementmore » of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.« less

  2. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  3. Investigation of Greenhouse Gas Emissions by Surface, Airborne, and Satellite on Local to Continental-Scale

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Egland, E. T.; Gerilowski, K.; Vigil, S. A.; Buchwitz, M.; Krings, T.; Bovensmann, H.; Krautwurst, S.; Burrows, J. P.

    2013-12-01

    In situ meteorological observations, including 10-m winds (U), in conjunction with greenhouse gas (GHG - methane, carbon dioxide, water vapor) measurements by continuous wave Cavity Enhanced Absorption Spectroscopy (CEAS) were conducted onboard two specialized platforms: MACLab (Mobile Atmospheric Composition Laboratory in a RV) and AMOG Surveyor (AutoMObile Greenhouse gas) - a converted commuter automobile. AMOG Surveyor data were collected for numerous southern California sources including megacity, geology, fossil fuel industrial, animal husbandry, and landfill operations. MACLab investigated similar sources along with wetlands on a transcontinental scale from California to Florida to Nebraska covering more than 15,000 km. Custom software allowing real-time, multi-parameter data visualization (GHGs, water vapor, temperature, U, etc.) improved plume characterization and was applied to large urban area and regional-scale sources. The capabilities demonstrated permit calculation of source emission strength, as well as enable documenting microclimate variability. GHG transect data were compared with airborne HyperSpectral Imaging data to understand temporal and spatial variability and to ground-truth emission strength derived from airborne imagery. These data also were used to validate satellite GHG products from SCIAMACHY (2003-2005) and GOSAT (2009-2013) that are currently being analyzed to identify significant decadal-scale changes in North American GHG emission patterns resulting from changes in anthropogenic and natural sources. These studies lay the foundation for the joint ESA/NASA COMEX campaign that will map GHG plumes by remote sensing and in situ measurements for a range of strong sources to derive emission strength through inverse plume modeling. COMEX is in support of the future GHG monitoring satellites, such as CarbonSat and HyspIRI. GHG transect data were compared with airborne HyperSpectral Imaging data to understand temporal and spatial variability

  4. In situ x-ray diffraction observation of multiple texture turnovers in sputtered Cr films

    NASA Astrophysics Data System (ADS)

    Zhao, Z. B.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C.

    2004-11-01

    A series of Cr films were deposited onto native oxides of (100) Si substrates via a confocal deposition geometry in a magnetron sputter chamber. The film growth chamber was incorporated with an in situ x-ray diffraction system, which allowed the collection of x-ray diffraction data on the growing film in a quasi real time fashion without interruption of film deposition. The in situ x-ray diffraction, coupled with other ex situ characterization techniques, was used to study structural evolutions of the Cr films deposited at various Ar pressures. It was observed that the evolution of the crystallographic structures of Cr films was very sensitive to both deposition conditions and film thickness. With the confocal deposition geometry, the Cr films developed various types of out-of-plane textures. In addition to the (110) and (100) types of textures commonly reported for vapor deposited Cr films, the (111) and (112) types of textures were also observed. The film deposited at low Ar pressure (2 mTorr) developed strong (111) type texture. With the increase in either Ar pressure or film thickness, the Cr films tended to develop (112) and (100) types of texture. At high Ar pressures (>10 mTorr), several changes in texture type with increasing film thickness were observed. The sequence can be described as (110)-->(112)-->(100). The strong tendency for these films to ultimately assume the (100) type of texture could be related to significant rises in substrate temperatures during the late stages of film growth with high Ar pressures. The observation of the multiple texture type changes suggests that the evolution of Cr films is controlled by complex growth kinetics. The competitive growth of grains with different orientations can be altered not only by controllable deposition parameters such as Ar pressure, but also by the variations of in situ film attributes (e.g., residual stress and substrate temperature) occurring concurrently with film growth.

  5. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  6. Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.

    2017-12-01

    Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.

  7. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  8. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  9. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  10. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  11. Storm-wave-induced seabed deformation: Results from in situ observation in the Yellow River subaqueous delta

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Wang, Z. Mr; Liu, X.; Shan, H.

    2017-12-01

    Submarine landslides move large volumes of sediment and are often hazardous to offshore installations. Current research into submarine landslides mainly relies on marine surveying techniques. In contrast, in situ observations of the submarine landslide process, specifically seabed deformation, are sparse, and therefore restrict our understanding of submarine landslide mechanisms and the establishment of a disaster warning scheme. The submarine landslide monitoring (SLM) system, which has been designed to partly overcome these pitfalls, can monitor storm-wave-induced submarine landslides in situ and over a long time period. The SLM system comprises two parts: (1) a hydrodynamic monitoring tripod for recording hydrodynamic data and (2) a shape accel array for recording seabed deformation at different depths. This study recorded the development of the SLM system and the results of in situ observation in the Yellow River Delta, China, during the boreal winter of 2014-2015. The results show an abrupt small-scale storm-wave-induced seabed shear deformation; the shear interface is in at least 1.5-m depth and the displacement of sediments at 1.23-m depth is more than 13 mm. The performance of the SLM system confirms the feasibility and stability of this approach. Further, the in situ observations, as well as the laboratory tests, helped reveal the profound mechanism of storm-wave-induced seabed deformation.

  12. Remote and In Situ Observations of an Unusual Earth-Directed Coronal Mass Ejection from Multiple Viewpoints

    NASA Technical Reports Server (NTRS)

    Nieves-Chinchilla, T.; Colaninno, R.; Vourlidas, A.; Szabo, A.; Lepping, R. P.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2012-01-01

    During June 16-21, 2010, an Earth-directed Coronal Mass Ejection (CME) event was observed by instruments onboard STEREO, SOHO, MESSENGER and Wind. This event was the first direct detection of a rotating CME in the middle and outer corona. Here, we carry out a comprehensive analysis of the evolution of the CME in the interplanetary medium comparing in-situ and remote observations, with analytical models and three-dimensional reconstructions. In particular, we investigate the parallel and perpendicular cross section expansion of the CME from the corona through the heliosphere up to 1 AU. We use height-time measurements and the Gradual Cylindrical Shell (GCS) technique to model the imaging observations, remove the projection effects, and derive the 3-dimensional extent of the event. Then, we compare the results with in-situ analytical Magnetic Cloud (MC) models, and with geometrical predictions from past works. We nd that the parallel (along the propagation plane) cross section expansion agrees well with the in-situ model and with the Bothmer & Schwenn [1998] empirical relationship based on in-situ observations between 0.3 and 1 AU. Our results effectively extend this empirical relationship to about 5 solar radii. The expansion of the perpendicular diameter agrees very well with the in-situ results at MESSENGER ( 0:5 AU) but not at 1 AU. We also find a slightly different, from Bothmer & Schwenn [1998], empirical relationship for the perpendicular expansion. More importantly, we find no evidence that the CME undergoes a significant latitudinal over-expansion as it is commonly assumed

  13. In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell

    NASA Astrophysics Data System (ADS)

    Walte, N.; Keppler, H.

    2005-12-01

    A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.

  14. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  15. Detecting Patterns of Changing Carbon Uptake in Alaska Using Sustained In Situ and Remote Sensing CO2 Observations

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Miller, C. E.; Commane, R.; Wofsy, S. C.; Koven, C.; Lawrence, D. M.; Lindaas, J.; Chang, R. Y. W.; Sweeney, C.

    2015-12-01

    The future trajectory of Arctic ecosystems as a carbon sink or source is of global importance due to vast quantities of carbon in permafrost soils. Over the last few years, a sustained set of airborne (NOAA-PFA, NOAA-ACG, and CARVE) and satellite (OCO-2 and GOSAT) atmospheric CO2 mole fraction measurements have provided unprecedented space and time scale sampling density across Alaska, making it possible to study the Arctic carbon cycle in more detail than ever before. Here, we use a synthesis of airborne and satellite CO2 over the 2009-2013 period with simulated concentrations from CLM4.5 and GEOS-Chem to examine the extent to which regional-scale carbon cycle changes in Alaska can be distinguished from interannual variability and long-range transport. We show that observational strategies focused on sustained profile measurements spanning continental interiors provide key insights into magnitude, duration, and variability of Summer sink activity, but that cold season sources are currently poorly resolved due to lack of sustained spatial sampling. Consequently, although future CO2 budgets dominated by enhanced cold season emission sources under climate warming and permafrost thaw scenarios are likely to produce substantial changes to near-surface CO2 gradients and seasonal cycle amplitude, they are unlikely to be detected by current observational strategies. We conclude that airborne and ground-based networks that provide more spatial coverage in year round profiles will help compensate for systematic sampling gaps in NIR passive satellite systems and provide essential constraints for Arctic carbon cycle changes.

  16. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  17. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, M. J.; Bosh, A. S.; Levine, S. E.

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it

  18. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    1997-01-01

    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  19. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  20. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, Ira; Melton, Christopher; Frash, Jason

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  1. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE PAGES

    Leifer, Ira; Melton, Christopher; Frash, Jason; ...

    2016-09-22

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  2. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    NASA Astrophysics Data System (ADS)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  3. Long-Term Variability of Airborne Asian Dust Observed from TOMS

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Hsu, N. C.; Seftor, C. J.; Holben, B. N.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Recent studies suggest that airborne Asian dust may not only play an important role in the regional radiation budget, but also influence the air quality over North America through long-range transport. In this paper, we use satellite data to investigate the long-term variability of airborne Asian dust as well as the daily variation of the dust aerosol distribution. By combining the Total Ozone Mapping Spectrometer (TOMS) aerosol index with National Centers for Environmental Prediction (NCEP) wind data, our analysis shows a strong correlation between the generation of dust storms in the region and the passage of springtime weather fronts. This is consistent with earlier studies performed by other researchers. According to both the Nimbus-7 and Earth-Probe TOMS data the Takla Makan desert, the Gobi desert, and the and region of Inner Mongolia are major sources of the eastward-flowing airborne Asian dust. Heavily populated areas in eastern China (e.g., Beijing) are often on the primary path of the dust storms originating in these desert regions. The increasing desertification north of the Beijing region has served to exacerbate problems stemming from these storms. The time series derived from 20 years of TOMS aerosol index data shows the first significant satellite evidence of the atmospheric effect of increasing desertification, indicating that the amount of dust blown eastward has increased strongly during the past few years including the year 2000.

  4. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  5. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  6. Harmonising and semantically linking key variables from in-situ observing networks of an Integrated Atlantic Ocean Observing System, AtlantOS

    NASA Astrophysics Data System (ADS)

    Darroch, Louise; Buck, Justin

    2017-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements at regional, national and international scales. The EU Horizon 2020 AtlantOS project aims to deliver an advanced framework for the development of an Integrated Atlantic Ocean Observing System that strengthens the Global Ocean Observing System (GOOS) and contributes to the aims of the Galway Statement on Atlantic Ocean Cooperation. One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to a wider community, including the international ocean science community and other stakeholders in this field. To help achieve this goal, the British Oceanographic Data Centre (BODC) produced a parameter matrix to harmonise data exchange, data flow and data integration for the key variables acquired by multiple in-situ AtlantOS observing networks such as ARGO, Seafloor Mapping and OceanSITES. Our solution used semantic linking of controlled vocabularies and metadata for parameters that were "mappable" to existing EU and international standard vocabularies. An AtlantOS Essential Variables list of terms (aggregated level) based on Global Climate Observing System (GCOS) Essential Climate Variables (ECV), GOOS Essential Ocean Variables (EOV) and other key network variables was defined and published on the Natural Environment Research Council (NERC) Vocabulary Server (version 2.0) as collection A05 (http://vocab.nerc.ac.uk/collection/A05/current/). This new vocabulary was semantically linked to standardised metadata for observed properties and units that had been validated by the AtlantOS community: SeaDataNet parameters (P01), Climate and Forecast (CF) Standard Names (P07) and SeaDataNet units (P06). Observed properties were mapped to biological entities from the internationally assured AphiaID from the WOrld Register of Marine Species (WoRMS), http

  7. Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.

    2016-01-01

    The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h

  8. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  9. Bioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam

    PubMed Central

    Sturdivant, S. Kersey; Díaz, Robert J.; Cutter, George R.

    2012-01-01

    Bioturbation, the displacement and mixing of sediment particles by fauna or flora, facilitates life supporting processes by increasing the quality of marine sediments. In the marine environment bioturbation is primarily mediated by infaunal organisms, which are susceptible to perturbations in their surrounding environment due to their sedentary life history traits. Of particular concern is hypoxia, dissolved oxygen (DO) concentrations ≤2.8 mg l−1, a prevalent and persistent problem that affects both pelagic and benthic fauna. A benthic observing system (Wormcam) consisting of a buoy, telemetering electronics, sediment profile camera, and water quality datasonde was developed and deployed in the Rappahannock River, VA, USA, in an area known to experience seasonal hypoxia from early spring to late fall. Wormcam transmitted a time series of in situ images and water quality data, to a website via wireless internet modem, for 5 months spanning normoxic and hypoxic periods. Hypoxia was found to significantly reduce bioturbation through reductions in burrow lengths, burrow production, and burrowing depth. Although infaunal activity was greatly reduced during hypoxic and near anoxic conditions, some individuals remained active. Low concentrations of DO in the water column limited bioturbation by infaunal burrowers and likely reduced redox cycling between aerobic and anaerobic states. This study emphasizes the importance of in situ observations for understanding how components of an ecosystem respond to hypoxia. PMID:22493701

  10. Airborne UV DIAL Measurements of Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  11. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    PubMed

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  12. Extremely Nonthermal Monoenergetic Precipitation in the Auroral Acceleration Region: In Situ Observations

    NASA Astrophysics Data System (ADS)

    Hatch, S.; Chaston, C. C.; Labelle, J. W.

    2017-12-01

    We report in situ measurements through the auroral acceleration region that reveal extremely nonthermal monoenergetic electron distributions. These auroral primaries are indicative of source populations in the plasma sheet well described as kappa distributions with κ ≲ 2. We show from observations and modeling how this large deviation from Maxwellian form may modify the acceleration potential required to drive current closure through the auroral ionosphere.

  13. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  14. Factors contributing to airborne particle dispersal in the operating room.

    PubMed

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01). The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  15. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  16. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  17. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  18. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  19. Space-Wise approach for airborne gravity data modelling

    NASA Astrophysics Data System (ADS)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2017-05-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  20. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    NASA Technical Reports Server (NTRS)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  1. Spatial Variations in CO2 Mixing Ratios Over a Heterogenous Landscape - Linking Airborne Measurements With Remote Sensing Derived Biophysical Parameters

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Vadrevu, K. P.; Vay, S. A.; Woo, J.

    2006-12-01

    North American terrestrial ecosystems are major sources and sinks of carbon. Precise measurement of atmospheric CO2 concentrations plays an important role in the development and testing of carbon cycle models quantifying the influence of terrestrial CO2 exchange on the North American carbon budget. During the summer 2004 Intercontinental Chemical Transport Experiment North America (INTEX-NA) campaign, regional scale in-situ measurements of atmospheric CO2 were made from the NASA DC-8 affording the opportunity to explore how land surface heterogeneity relates to the airborne observations utilizing remote-sensing data products and GIS-based methods. These 1 Hz data reveal the seasonal biospheric uptake of CO2 over portions of the U.S. continent, especially east of 90°W below 2 km, compared to higher mixing ratios over water as well as within the upper troposphere where well-mixed, aged air masses were sampled. In this study, we use several remote sensing derived biophysical parameters from the LANDSAT, NOAA AVHRR, and MODIS sensors to specify spatiotemporal patterns of land use cover and vegetation characteristics for linking the airborne measurements of CO2 data with terrestrial sources of carbon. Also, CO2 flux footprint outputs from a 3-D Lagrangian atmospheric model have been integrated with satellite remote sensing data to infer CO2 variations across heterogeneous landscapes. In examining the landscape mosaic utilizing these available tools, preliminary results suggest that the lowest CO2 mixing ratios observed during INTEX-NA were over agricultural fields in Illinois dominated by corn then secondarily soybean crops. Low CO2 concentrations are attributable to sampling during the peak growing season over such C4 plants as corn having a higher photosynthetic rate via the C4-dicarboxylic acid pathway of carbon fixation compared to C3 plants such as soybeans. In addition to LANDSAT derived land cover data, results from comparisons of the airborne CO2 observations

  2. In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.

    2017-12-01

    We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

  3. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    aircraft in its fleet for airborne atmospheric measurements, including dropsonde, and in situ sampling and remote sensing of clouds, chemistry and aerosols. Therefore, the addition of a precipitation radar to the NSF/NCAR C-130 platform will produce transformational change in its mission. This new design can be cloned for C-130s operated by a number of agencies, including NOAA and the Air Force hurricane reconnaissance fleet. This paper presents a possible configuration of a novel, airborne phased array radar (APAR) to be installed on the NSF/NCAR C-130 aircraft with improved spatial resolution and polarimetric capability to meet or exceed that of ELDORA. The preliminary design, an update of the APAR project, and a future plan will be presented. References: Bell, M. M. , M. T. Montgomery, 2008: Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Monthly Weather Review, Vol. 136, Issue 6, pp. 2023-2046. Hildebrand, P. H., W.-C. Lee, C. A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, and A. LeCornec, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Metoro. Soc., 77, 213-232 Howard B. Bluestein, Roger M. Wakimoto, 2003: Mobile Radar Observations of Severe Convective Storms re Convective Storms. Meteorological Monographs, Vol. 30, Issue 52, pp. 105-105. Montgomery, M. T., M. M. Bell, S. D. Aberson, M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. of the American Meteorl. Soc., Vol. 87, Issue 10, pp. 1335-1347.

  4. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  5. Calibration and Data Efforts of the National Ecological Observatory Network (NEON) Airborne Observation Platform during its Engineering Development Phase

    NASA Astrophysics Data System (ADS)

    Adler, J.; Goulden, T.; Kampe, T. U.; Leisso, N.; Musinsky, J.

    2014-12-01

    The National Ecological Observatory Network (NEON) has collected airborne photographic, lidar, and imaging spectrometer data in 5 of 20 unique ecological climate regions (domains) within the United States. As part of its mission to detect and forecast ecological change at continental scales over multiple decades, NEON Airborne Observation Platform (AOP) will aerially survey the entire network of 60 core and re-locatable terrestrial sites annually, each of which are a minimum of 10km-by-10km in extent. The current effort encompasses three years of AOP engineering test flights; in 2017 NEON will transition to full operational status in all 20 domains. To date the total airborne data collected spans 34 Terabytes, and three of the five sampled domain's L1 data are publically available upon request. The large volume of current data, and the expected data collection over the remaining 15 domains, is challenging NEON's data distribution plans, backup capability, and data discovery processes. To provide the public with the highest quality data, calibration and validation efforts of the camera, lidar, and spectrometer L0 data are implemented to produce L1 datasets. Where available, the collected airborne measurements are validated against ground reference points and surfaces and adjusted for instrumentation and atmospheric effects. The imaging spectrometer data is spectrally and radiometrically corrected using NIST-traceable procedures. This presentation highlights three years of flight operation experiences including:1) Lessons learned on payload re-configuration, data extraction, data distribution, permitting requirements, flight planning, and operational procedures2) Lidar validation through control data comparisons collected at the Boulder Municipal Airport (KBDU), the site of NEON's new hangar facility3) Spectrometer calibration efforts, to include both the laboratory and ground observations

  6. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  7. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  8. A mini backscatter lidar for airborne measurements in the framework of DACCIWA

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Flamant, Cyrille; Shang, Xiaoxia; Denjean, Cyrielle; Meynadier, Rémi; Perrin, Thierry; Laurens, Marc

    2017-04-01

    During the international campaign of the European program Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA), investigating the relationship between weather, climate and air pollution in southern West Africa, a mini backscatter lidar was embedded on the French research aircraft (ATR42) of the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE). This implementation was made possible thanks to the support of the Centre National d'Etude Spatial (CNES), with the aim of assessing the relative relevance of airborne or spaceborne (e.g. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, CALIPSO) remote sensing instruments. The lidar complemented the various in-situ observations carried out on the plane, by identifying the aerosol layers in the atmospheric column below the aircraft, and bringing strong constraints for the validation of other measurements. The field campaign took place from 27 to 16 July 2016 from Lomé, Togo. The aircraft conducted flights between 1 km and 5 km above the mean sea level (amsl), allowing the coupling of in situ and remote sensing data to assess the properties of the aerosol layers. Aerosol plumes of different origins were identified using the coupling between the lidar cross-polarized channels, satellite observations and a set of back trajectories analyses. During several flights, depolarizing aerosol layers from the northeast were observed between 2.5 and 4 km amsl, which highlight the significant contribution of dust-like particles to the aerosol load in the coastal region. Conversely, air masses originating from the east-southeast were loaded with a mixing of biomass burning and pollution aerosols. The former originated from Central Africa and the latter from human activities in and around large cities (Lomé). The flight sampling strategy and related lidar investigations will be presented and discussed.

  9. Constraints on Southern Ocean CO2 Fluxes and Seasonality from Atmospheric Vertical Gradients Observed on Multiple Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.

    2017-12-01

    The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.

  10. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran

    PubMed Central

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Background: Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. Materials and Methods: A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. Results: The average level of bacteria ranged from 99 to 1079 CFU/m3. The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m3) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m3). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Conclusion: Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections. PMID:27656612

  11. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  12. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  13. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    NASA Astrophysics Data System (ADS)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  14. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  15. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements.

    PubMed

    Strauss, Lukas; Serafin, Stefano; Haimov, Samuel; Grubišić, Vanda

    2015-10-01

    Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The structure of turbulence and its intensity across the mountain range are described using the variance of vertical velocity σw2 and the cube root of the energy dissipation rate ɛ 1/3 (EDR). For a quantitative analysis of turbulence from the cloud radar, the uncertainties in the Doppler wind retrieval have to be taken into account, such as the variance of hydrometeor fall speed and the contamination of vertical Doppler velocity by the horizontal wind. A thorough analysis of the uncertainties shows that 25% accuracy or better can be achieved in regions of moderate to severe turbulence in the lee of the mountains, while only qualitative estimates of turbulence intensity can be obtained outside the most turbulent regions. Two NASA06 events exhibiting large-amplitude mountain waves, mid-tropospheric wave breaking, and rotor circulations are examined. Moderate turbulence is found in a wave-breaking region with σw2 and EDR reaching 4.8 m 2 s -2 and 0.25 m 2/3 s -1 , respectively. Severe turbulence is measured within the rotor circulations with σw2 and EDR respectively in the ranges of 7.8-16.4 m 2 s -2 and 0.50-0.77 m 2/3 s -1 . A unique result of this study is the quantitative estimation of the intensity of turbulence and its spatial distribution in the interior of atmospheric rotors, provided by the radar-derived turbulence fields.

  16. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  17. Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010

    NASA Astrophysics Data System (ADS)

    Bukowiecki, N.; Zieger, P.; Weingartner, E.; Jurányi, Z.; Gysel, M.; Neininger, B.; Schneider, B.; Hueglin, C.; Ulrich, A.; Wichser, A.; Henne, S.; Brunner, D.; Kaegi, R.; Schwikowski, M.; Tobler, L.; Wienhold, F. G.; Engel, I.; Buchmann, B.; Peter, T.; Baltensperger, U.

    2011-10-01

    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17-19 April 2010 and 16-19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm-3 and 70 μgm-3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm-3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200-520) μgm-3 on 18 May 2010 over the northwestern Swiss plateau. The presented

  18. Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010

    NASA Astrophysics Data System (ADS)

    Bukowiecki, N.; Zieger, P.; Weingartner, E.; Jurányi, Z.; Gysel, M.; Neininger, B.; Schneider, B.; Hueglin, C.; Ulrich, A.; Wichser, A.; Henne, S.; Brunner, D.; Kaegi, R.; Schwikowski, M.; Tobler, L.; Wienhold, F. G.; Engel, I.; Buchmann, B.; Peter, T.; Baltensperger, U.

    2011-04-01

    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17-19 April 2010 and 16-19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μg m-3 and 70 μg m-3 (for 10-min mean values) during the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μg m-3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200-520) μg m-3 on 18 May 2010 over the northwestern Swiss plateau. The

  19. Do In Situ Observations Contain Signatures of Intermittent Fast Solar Wind Acceleration?

    NASA Astrophysics Data System (ADS)

    Matteini, L.; Horbury, T. S.; Stansby, D.

    2017-12-01

    Disentangling local plasma properties and Solar origin structures in in situ data is a crucial aspect for the understanding of solar wind acceleration and evolution. This is particularly challenging at 1 AU and beyond, where structures of various origin have had time to interact and merge, smoothing out their main characteristics. Observations of more pristine plasma closer to the Sun are therefore needed. In preparation of the forthcoming Solar Orbiter and Parker Solar Probe missions, Helios observations as close as to 0.3 AU - although old, not yet fully exploited - can be used to test our expectations and make new predictions. Recent observations (Matteini et al. 2014, 2015) have outlined the presence of intense (up to 1000km/s) and short-living velocity peaks that ubiquitously characterize the typical profile of the fast solar wind at 0.3 AU, suggesting that these features could be remnants of processes occurring in the Solar atmosphere and a signature of intermittent solar wind acceleration from coronal holes. We discuss results about statistics of these events, characterizing their physical properties and trying to link them with typical Solar temporal and spatial scales. Finally we also discuss how these velocity peaks will likely affect the future in situ exploration of the inner heliosphere by Solar Orbiter and the Parker Solar Probe.

  20. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  1. Improving magnetosphere in situ observations using solar sails

    NASA Astrophysics Data System (ADS)

    Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor

    2018-01-01

    Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.

  2. Dynamical Conditions of Ice Supersaturation and Ice Nucleation in Convective Systems: A Comparative Analysis Between in Situ Aircraft Observations and WRF Simulations

    NASA Technical Reports Server (NTRS)

    D’Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; hide

    2017-01-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).

  3. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.

    2011-01-01

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.

  4. Weather Radars and Lidar for Observing the Atmosphere

    NASA Astrophysics Data System (ADS)

    (Vivek) Vivekanandan, J.

    2010-05-01

    The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.

  5. Observation of wind field over heterogeneous terrain by the French-German airborne Doppler lidar WIND

    NASA Astrophysics Data System (ADS)

    Dabas, A.; Werner, C.; Delville, P.; Reitebuch, O.; Drobinski, P.; Cousin, F.

    2003-04-01

    In summer 2001, the French-German airborne Doppler lidar WIND participated to field campaign ESCOMPTE. ESCOMPTE was carried out in the region of Marseille along the Mediterranean coast of France. It was dedicated to the observation of heavy pollution events in this industrialized, densely populated region of nearly 4 million inhabitants. The aim was to gather a data base as comprehensive as possible on several pollution events and use them to check the ability of several regional forecast models to predict such events. The specific mission devoted to WIND was the characterization at mesoscale of the wind field and the topography of the planetary boundary layer. Both are complex around Marseille due the heterogeneity of the surface with a transition sea/land to the south, the fore-Alps to the North, the Rhône valley to the North-West etc... Seven, 3-hr flights were carried out and gave excellent results. In 2002, first comparisons were made with mesoscale models. They will be shown during the presentation. They are good examples of the usefulness of airborne Doppler lidar for validating and improving atmospheric model simulations.

  6. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  7. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  8. Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan.

    PubMed

    Lee, Jae Young; Park, Eun Ha; Lee, Sunghee; Ko, GwangPyo; Honda, Yasushi; Hashizume, Masahiro; Deng, Furong; Yi, Seung-Muk; Kim, Ho

    2017-07-17

    The global diversity of airborne bacteria has not yet been studied, despite its importance in human health and climate change. Here, we focused on the diversity of airborne bacteria and their correlations with meteorological/environmental conditions in China, South Korea, and Japan. Beijing (China) had more diverse airborne bacteria, followed by Seoul (South Korea) and Nagasaki (Japan), and seasonal variations were observed. Beijing and Seoul had more diverse airborne bacteria during the winter, whereas Nagasaki showed greater diversity during the summer. According to principal component analysis and Bray-Curtis similarity, higher similarity was observed between Beijing and Seoul than between Seoul and Nagasaki during all seasons except summer. Among meteorological/environmental variables, temperature and humidity were highly correlated with the diversity of airborne bacteria on the measurement day, whereas wind speeds and the frequency of northwest winds were highly correlated for 2-3-day moving averages. Thus, proximity and resuspension could enhance bacterial diversity in East Asian cities.

  9. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation

  10. Validation of CALIPSO Lidar Observations Using Data From the NASA Langley Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris; Hair, Johnathan; Liu, Zhaoyan; Ferrare, Rich; Harper, David; Cook, Anthony; Vaughan, Mark; Trepte, Chip; Winker, David

    2006-01-01

    This poster focuses on preliminary comparisons of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with data acquired by the NASA Langley Airborne High Spectral Resolution Lidar (HSRL). A series of 20 aircraft validation flights was conducted from 14 June through 27 September 2006, under both day and night lighting conditions and a variety of aerosol and cloud conditions. This poster presents comparisons of CALIOP measurements of attenuated backscatter at 532 and 1064 nm and depolarization at 532 nm with near coincident measurements from the Airborne HSRL as a preliminary assessment of CALIOP calibration accuracy. Note that the CALIOP data presented here are the pre-release version. These data have known artifacts in calibration which have been corrected in the December 8 CALIPSO data release which was not available at the time the comparisons were conducted for this poster. The HSRL data are also preliminary. No artifacts are known to exist; however, refinements in calibration and algorithms are likely to be implemented before validation comparisons are made final.

  11. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    EPA Science Inventory

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios arc not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have ...

  12. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  14. AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. A Titan airplane mission concept

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Ádámkovics, Máté; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2012-03-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments—2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector—AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel `gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so

  15. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; hide

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  16. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  17. CME Plasma Dynamics Using In-situ and Remote-sensing Observations

    NASA Astrophysics Data System (ADS)

    Kocher, Manan; Lepri, Susan; Landi, Enrico

    2017-04-01

    The thermal and kinetic energy of Coronal Mass Ejections [CMEs] can be best reconstructed if the plasma density, temperature and dynamics of each of their components are known. During periods of quadrature, we use a combination of in-situ measurements from ACE/SWICS and remote sensing observations from SDO/AIA and STEREO/EUVI to present several case studies of geo-effective halo-CMEs. We carry out density diagnostics and Differential Emission Measure [DEM] profile calculations to reconstruct a 3D picture of the CME plasma for the selected cases in the low solar corona. We then discuss these results in the context of models of CME initiation and release.

  18. High-resolution in situ observations of electron precipitation-causing EMIC waves

    DOE PAGES

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; ...

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

  19. Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.

    2018-01-01

    An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.

  20. In-situ TEM observation of nano-void formation in UO2 under irradiation

    NASA Astrophysics Data System (ADS)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  1. In-situ tomographic observation of tissue surface during laser ablation

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Konoshita, Ryuh; Ohmi, Masato; Kunizawa, Naomi; Miyachi, Mayumi

    2001-07-01

    In laser ablation of tissues, tomography of the tissue surface is necessary for measurement of the crater depth and observation of damage of the surrounding tissue. We demonstrate here OCT images of craters made by UV laser ablation of different tissues. The maximum depth of a crater is found among several OCT images, and then the ablation rate is determined. The conventional OCT of the spatial resolution of 15 μm was used in our experiment, but OCT of the resolution of the order of 1 μm is required because the ablation rate is usually a few microns per pulse. Such a high-resolution OCT is also demonstrated in this paper, where the light source is a halogen lamp. Combination of laser ablation and OCT will lead to in situ tomographic observation of tissue surface during laser ablation, which should allow us to develop new laser surgeries.

  2. Airborne surveys in the Arctic and Antarctic for geophysics, sea-ice thickness, and CryoSat validation

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Hvidegaard, S.; Skourup, H.

    2010-12-01

    Airborne laser and radar measurements over the Greenland ice sheet, Svalbard, and adjacent parts of the Arctic Ocean have been carried out by DTU-Space in a number of recent Danish/Greenlandic and European project campaigns, with the purpose to monitor ice sheet and sea-ice changes, support of Greenland societal needs (oil exploration and hydropower), and support of CryoSat pre-launch calibration and validation campaigns. The Arctic campaigns have been done using a Twin-Otter aircraft, carrying laser scanners and various radars. Since 2009 a new program of long-range gravity and magnetic surveys have been initiated using a Basler DC3 aircraft for large-scale surveys in the Arctic Ocean and Antarctica, with the 2010 cooperative Danish-Argentinean-Chilean-US ICEGRAV survey of the Antarctic Peninsula additionally including a UTIG 60 MHz ice-penetrating radar. In the paper we outline the recent and upcoming airborne survey activities, outline the usefulness of the airborne data for satellite validation (CryoSat and GOCE), and give examples of measurements and comparisons to satellite and in-situ data.

  3. In situ observation of shear-driven amorphization in silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Zhong, Li; Fan, Feifei

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less

  4. Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.

    1989-01-01

    In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.

  5. Airborne Remote sensing of the OH tropospheric column with an Integrated Path Differential LIDAR.

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Liang, Q.; Nicely, J. M.; Brune, W. H.; Miller, D. O.; Thames, A. B.

    2017-12-01

    The Hydroxyl radical, OH, is central to the photochemistry that controls tropospheric oxidation including the removal of atmospheric methane. Measurements of this important species are thus critical to testing our understanding and for constraining model results. Until now, tropospheric measurements have been limited to airborne or ground-based in situ instruments best suited to test photochemical box models. However, because of the growing recognition of the importance of the global methane abundance, we have a growing need to better quantify OH at the regional to global scales that are best sampled with airborne or space-based remote sensing instruments. To address this need, we have developed an instrument concept and have begun work on a laser transmitter for an airborne integrated path differential absorption LIDAR for the detection of OH. We will describe the instrument and present the expected performance characteristics. As a demonstration, we will use measurements from the recent ATOM-1 NASA airborne campaign to show measured OH columns can be used to constrain regional and global models.

  6. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    Airborne heat, moisture, O3, CO, and CH4 flux measurements were obtained over the Hudson Bay lowlands (HBL) and northern boreal forest regions of Canada during July - August 1990. The airborne flux measurements were an integral part of the NASA/Arctic Boundary Layer Expedition (ABLE) 3B field experiment executed in collaboration with the Canadian Northern Wetlands Study (NOWES). Airborne CH4 flux measurements were taken over a large portion of the HBL. The surface level flux of CH4 was obtained from downward extrapolations of multiple-level CH4 flux measurements. Methane source strengths ranged from -1 to 31 mg m(exp -2)/d, with the higher values occurring in relatively small, isolated areas. Similar measurements of the CH4 source strength in the boreal forest region of Schefferville, Quebec, ranged from 6 to 27 mg m(exp -2)/d and exhibited a diurnal dependence. The CH4 source strengths found during the ABLE 3B expedition were much lower than the seasonally averaged source strength of 51 mg m(exp -2)/d found for the Yukon-Kuskokwim delta region of Alaska during the previous ABLE 3A study. Large positive CO fluxes (0.31 to 0.53 parts per billion by volume (ppbv) m/s) were observed over the inland, forested regions of the HBL study area, although the mechanism for the generation of these fluxes was not identified. Repetitive measurements along the same ground track at various times of day near the Schefferville site also suggested a diurnal dependence for CO emissions. Measurements of surface resistance to the uptake of O3 (1.91 to 0.80 s/cm) for the HBL areas investigated were comparable to those observed near the Schefferville site (3.40 to 1.10 s/cm). Surface resistance values for the ABLE 3B study area were somewhat less than those observed over the Yukon-Kuskokwim delta during the previous ABLE 3A study. The budgets for heat, moisture, O3, CO, and CH4 were evaluated. The residuals from these budget studies indicated, for the cases selected, a moderate net

  7. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  8. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    PubMed

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  9. The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.; hide

    2017-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.

  10. The Inherent Uncertainty of In-Situ Observations and its Implications for Modeling Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.

    2012-12-01

    In-situ observations are essential to a broad range of applications including the development, calibration, and validation of both the numerical and remote sensing-based models. For example, observational data is requisite in order to evaluate the skill of these models both to represent the complex biogeophysical processes regulating evapotranspiration (ET) and to predict the magnitude of the moisture flux. As such, by propagating into these subsequent activities, any uncertainty or errors associated with the observational data have the potential to adversely impact the accuracy and utility of these models. It is, therefore, critical that the factors driving measurement uncertainty are fully understood so that the steps can be taken to account for its effects and mitigate its impact on subsequent analyses. Field measurements of ET can be collected using a variety of techniques including eddy covariance (EC), lysimetry (LY), and scintillometry (SC). Each of these methods is underpinned by a unique set of theoretical considerations and practical constraints; and, as a result, each method is susceptible to differing types of systematic and random error. Since the uncertainty associated with the field measurements is predicated on how well numerous factors - for example, environmental conditions - adhere to those prescribed by the underlying assumptions, the quality of in-situ observations collected via the differing methods can vary significantly both over time and from site-to-site. Using data from both site studies and large field campaigns, such as IHOP_2002 and BEAREX08, the sources of uncertainty in field observations will be discussed. The impact of measurement uncertainty on model validation will also be illustrated.

  11. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  12. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  13. Observations of Solar Energetic Protons: A Comparison Between Model, Balloon, and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Halford, A.; Millan, R. M.; Hudson, M. K.; McGregor, S. L.; Kress, B. T.

    2014-12-01

    The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) was designed to observe X-rays from precipitating electrons in the Earth's atmosphere. During the second campaign in January 2014 Solar Energetic Proton (SEP) events were detected in the BARREL payloads as they produced atmospheric x-rays, γ-rays, and directly injected protons observed by the scintillator on the BARREL payloads. A total of 6 payloads were up during the event beginning 7 January with an X-class flare at 1832 UT, spread across a wide range of L and MLT. Payload 2I was on open field lines for the entire event while 2T (2W) crossed from open (closed) to closed (open) field lines over the course of the three day event. Payloads 2K and 2L were moving from the inner magnetosphere (L ~ 4) to higher field lines (L>6) while 2X stayed within the inner magnetosphere (L<6) for the entire event. Throughout this time, there were multiple conjunctions with the Van Allen Probes and good agreement with when (UT) and where (L-values) the energetic protons were observed, both in situ and at the balloons. In this poster we consider the transport of the protons from the sun and through the magnetosphere and eventual precipitation observed by the BARREL balloons.

  14. Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Fahey, D. W.; Gilligan, J. M.; Dutton, G. S.; Baring, T. J.; Volk, C. M.; Dunn, R. E.; Myers, R. C.; Montzka, S. A.; Wamsley, P. R.; Hayden, A. H.; Butler, J. H.; Thompson, T. M.; Swanson, T. H.; Dlugokencky, E. J.; Novelli, P. C.; Hurst, D. F.; Lobert, J. M.; Ciciora, S. J.; McLaughlin, R. J.; Thompson, T. L.; Winkler, R. H.; Fraser, P. J.; Steele, L. P.; Lucarelli, M. P.

    A new instrument, the Airborne Chromatograph for Atmospheric Trace Species IV (ACATS-IV), for measuring long-lived species in the upper troposphere and lower stratosphere is described. Using an advanced approach to gas chromatography and electron capture detection, the instrument can detect low levels of CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2F-CClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), nitrous oxide (N2O), sulfur hexafluoride (SF6), Halon-1211 (CBrClF2), hydrogen (H2), and methane (CH4) acquired in ambient samples every 180 or 360 s. The instrument operates fully-automated onboard the NASA ER-2 high-altitude aircraft on flights lasting up to 8 hours or more in duration. Recent measurements include 24 successful flights covering a broad latitude range (70°S-61°N) during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in 1994.

  15. In Situ Optical Creep Observation of Joint-Scale Tin-Silver-Copper Solder Shear Samples

    NASA Astrophysics Data System (ADS)

    Herkommer, Dominik; Reid, Michael; Punch, Jeff

    2009-10-01

    In this paper the creep behavior of lead-free 96.5Sn-3.0Ag-0.5Cu solder is evaluated. A series of creep tests at different stress/temperature and strain rate/temperature pairs has been conducted. The tests were observed in situ with a high-magnification camera system. Optical observation results are presented from selected tests, showing the occurrence of surface effects such as shear bands, voiding, and rumpling. From these observations the main deformation mechanisms were derived and compiled in terms of their dependence on the test conditions.

  16. PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicka, M.; Möstl, C.; Amerstorfer, T.

    2016-12-20

    Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, B{sub z}. Predicting the strength and duration of B{sub z} inside a CME with sufficient accuracy is currently impossible, forming the so-called B{sub z} problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, B{sub z}, and resulting disturbance storm time ( Dst ) index on Earth based only on magnetic field data, measured in situ in the inner heliosphere (<1 au). On 2012 June 12–16, three approximately Earthward-directed and interactingmore » CMEs were observed by the Solar Terrestrial Relations Observatory imagers and Venus Express (VEX) in situ at 0.72 au, 6° away from the Sun–Earth line. The CME kinematics are calculated using the drag-based and WSA–Enlil models, constrained by the arrival time at VEX , resulting in the CME arrival time and speed on Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind . Our investigation shows promising results for the Dst forecast (predicted: −96 and −114 nT (from 2 Dst models); observed: −71 nT), for the arrival speed (predicted: 531 ± 23 km s{sup −1}; observed: 488 ± 30 km s{sup −1}), and for the timing (6 ± 1 hr after the actual arrival time). The prediction lead time is 21 hr. The method may be applied to vector magnetic field data from a spacecraft at an artificial Lagrange point between the Sun and Earth or to data taken by any spacecraft temporarily crossing the Sun–Earth line.« less

  17. Spatiotemporal Variability of Drought in Pakistan through High-Resolution Daily Gridded In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Bashir, F.; Zeng, X.; Gupta, H. V.; Hazenberg, P.

    2017-12-01

    Drought as an extreme event may have far reaching socio-economic impacts on agriculture based economies like Pakistan. Effective assessment of drought requires high resolution spatiotemporally continuous hydrometeorological information. For this purpose, new in-situ daily observations based gridded analyses of precipitation, maximum, minimum and mean temperature and diurnal temperature range are developed, that covers whole Pakistan on 0.01º latitude-longitude for a 54-year period (1960-2013). The number of participating meteorological observatories used in these gridded analyses is 2 to 6 times greater than any other similar product available. This data set is used to identify extreme wet and dry periods and their spatial patterns across Pakistan using Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI). Periodicity of extreme events is estimated at seasonal to decadal scales. Spatiotemporal signatures of drought incidence indicating its extent and longevity in different areas may help water resource managers and policy makers to mitigate the severity of the drought and its impact on food security through suitable adaptive techniques. Moreover, this high resolution gridded in-situ observations of precipitation and temperature is used to evaluate other coarser-resolution gridded products.

  18. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  19. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  20. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  1. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  2. Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaotang; He, Yang; Mao, Scott X.

    Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to themore » nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.« less

  3. Subsetting Tools for Enabling Easy Access to International Airborne Chemistry Data

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Chen, G.; Quam, B. M.; Beach, A. L., III; Silverman, M. L.; Early, A. B.

    2017-12-01

    In response to the Research Opportunities in Earth and Space Science (ROSES) 2015 release announcement for Advancing Collaborative Connections for Earth System Science (ACCESS), researchers at NASA Langley Research Center (LaRC) proposed to extend the capabilities of the existing Toolsets for Airborne Data (TAD) to include subsetting functionality to allow for easier access to international airborne field campaign data. Airborne field studies are commonly used to gain a detailed understanding of atmospheric processes for scientific research on international climate change and air quality issues. To accommodate the rigorous process for manipulating airborne field study chemistry data, and to lessen barriers for researchers, TAD was created with the ability to geolocate data from various sources measured on different time scales from a single flight. The analysis of airborne chemistry data typically requires data subsetting, which can be challenging and resource-intensive for end users. In an effort to streamline this process, new data subsetting features and updates to the current database model will be added to the TAD toolset. These will include two subsetters: temporal and spatial, and vertical profile. The temporal and spatial subsetter will allow users to both focus on data from a specific location and/or time period. The vertical profile subsetter will retrieve data collected during an individual aircraft ascent or descent spiral. These new web-based tools will allow for automation of the typically labor-intensive manual data subsetting process, which will provide users with data tailored to their specific research interests. The system has been designed to allow for new in-situ airborne missions to be added as they become available, with only minor pre-processing required. The development of these enhancements will be discussed in this presentation.

  4. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation.

    PubMed

    Silva, Carlos Alberto; Klauberg, Carine; Hudak, Andrew T; Vierling, Lee A; Liesenberg, Veraldo; Bernett, Luiz G; Scheraiber, Clewerson F; Schoeninger, Emerson R

    2018-01-01

    Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.

  5. Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Ryder, Claire; Estellés, Victor; Segura, Sara; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Tsekeri, Alexandra; Smith, Helen; Ulanowski, Zbigniew; O'Sullivan, Debbie; Brooke, Jennifer; Pradhan, Yaswant; Buxmann, Joelle

    2018-04-01

    In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.

  6. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  7. Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sohn, S.; Schroers, J.; Cha, J. J.

    2017-11-01

    Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.

  8. Dust mass concentrations from the UK volcanic ash lidar network compared with in-situ aircraft measurements

    NASA Astrophysics Data System (ADS)

    Osborne, Martin; Marenco, Franco; Adam, Mariana; Buxmann, Joelle; Haywood, Jim

    2018-04-01

    The Met Office has recently established a series of 10 lidar / sun-photometer installations across the UK, consolidating their ash / aerosol remote sensing capabilities [1]. In addition to this network, the Met Office have acquired the Civil Contingency Aircraft (MOCCA) which allows airborne in-situ measurements of ash / aerosol scattering and size-distributions. Two case studies are presented in which mass concentrations of Saharan dust are obtained remotely using lidar returns, and are then compared with those obtained in-situ. A thorough analysis of the mass concentration uncertainty will be provided at the conference.

  9. Quantifying spatial and temporal variability in atmospheric ammonia with in situ and space-based observations--article

    EPA Science Inventory

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a...

  10. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  11. IBEX: The Evolving Global View and Synergies with In Situ Voyager Observations

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2015-12-01

    The Interstellar Boundary Explorer (IBEX) has now returned nearly seven years of observations, which comprise 14 full sets of energy resolved all-sky maps and provide the global view of our Sun's interaction with very local part of the galaxy. With such a long baseline of observations, we are able to examine time variations in the outer heliosphere as it responds to both 11-year solar cycle variations and longer term secular evolution of the three dimensional solar wind. Now that we have collected over half a solar cycle of observations, IBEX is beginning to show us how the heliosphere - our home in the galaxy - varies in time as well as space. In this talk we present the most recent observations and review some other recent discoveries from IBEX. We also examine the synergy between the global view provided by IBEX and the in situ observations form the Voyager 1 and 2 spacecraft. Finally, we discuss the incredible improvement in interstellar observations - and our understanding of the local interstellar medium - that the Interstellar Mapping and Acceleration Probe (IMAP) will provide.

  12. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  13. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  14. First in-situ observations of exospheric response to CME impact at Mercury

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinski, J. M.; Tracy, P.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.

    2017-12-01

    We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. We analyzed both plasma and magnetic field measurements from the Mercury Surface Space Environment, Geochemistry and Mapping (MESSENGER) spacecraft over a 60-hour period as a coronal mass ejection (CME) passed by the planet. We identified the shock, magnetic cloud and cavity regions of the moderate intensity CME while MESSENGER was in the solar wind. Inside the magnetosphere just after the CME shock passage, we observed a very active dayside magnetosphere, as evident from the high flux plasma parcels passing through the dayside and a broad northern magnetospheric cusp with exceptionally high planetary ion content. All of these signatures indicate substantial reconnection at the dayside magnetopause, making conditions that were excellent for solar wind access to Mercury's surface. The CME appeared to have been particularly enriched in He2+, causing the observed density of solar wind He2+ in the cusp to rise above 0.1 cm-3 and putting it in the top 1% of the over 3200 cusps analyzed. As the low-density CME cavity passed over the planet on the next orbit, the magnetosphere appeared much quieter, with smoother magnetic fields and a smaller, less intense northern cusp but with greatly enhanced He+ content. The elevated He+ observed density continued to increase on subsequent cusp crossings, peaking at 0.1 cm-3 36 hours after CME impact, the highest observed throughout the entire MESSENGER mission. We suggest that the enhancement in He+ indicates an increase to the neutral He exosphere density from the He-enriched CME, a phenomenon observed at the moon, possibly acting as follows: Increased access to the surface from CME-enhanced reconnection, combined with high He2+ flux, enhanced surface implantation. Neutral He atoms were then liberated at an increased rate by surface processes supplying the exosphere, causing a gradual increase in He exosphere density. This

  15. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  16. Studying emissions of CO2 in the Baltimore/Washington area using airborne measurements: source attribution, flux quantification, and model comparison

    NASA Astrophysics Data System (ADS)

    Ahn, D.; Hansford, J. R.; Salawitch, R. J.; Ren, X.; Cohen, M.; Karion, A.; Whetstone, J. R.; Salmon, O. E.; Shepson, P. B.; Gurney, K. R.; Osterman, G. B.; Dickerson, R. R.

    2017-12-01

    We study emissions of CO2 in the Baltimore-Washington area using airborne in-situ measurements, obtained during the February 2015 Fluxes of Greenhouse Gases in Maryland (FLAGG-MD) campaign. In this study, we attributed enhanced signals of CO2 to several power plants and two urban areas (Baltimore City and Washington, DC), using the NOAA HYSPLIT air parcel trajectory model as well as the analysis of chemical ratios to quantify the source/receptor relationship. Then, the fluxes of attributed CO2 are estimated using a mass balance approach. The uncertainty in the aircraft-based mass balance approach is estimated by conducting a detailed sensitivity analysis of CO2 fluxes, considering factors such as the background mixing ratio of CO2, wind direction and speed, PBL heights, the horizontal boundary, and vertical interpolation methods. Estimated fluxes of CO2 with estimated uncertainty ranges are then compared to output from various emissions data and models, such as CEMS, CarbonTracker, FFDAS, and ODIAC. Finally, column CO2 data over the Baltimore-Washington region observed by the OCO-2 satellite instrument are statistically compared to aircraft in-situ observations, to assess how well OCO-2 is able to quantify geographic and synoptic-scale variability.

  17. In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Brown, I. G.; Seprom, C.; Vilaithong, T.

    2007-04-01

    A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1-2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work.

  18. In-situ observation of impurity diffusion boundary layer in silicon Czochralski growth

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Eguchi, Minoru; Watanabe, Hisao; Hibiya, Taketoshi

    1990-01-01

    In-situ observation of the impurity diffusion boundary layer during single crystal growth of indium-doped silicon was carried out by X-ray radiography. The difference in the transmitted X-ray image compared with molten silicon just beneath the crystal-melt interface was attributed to the concentration of indium impurities having a larger absorption coefficient. The intensity profile of the transmitted X-ray can be reproduced by a transmittance calculation that considers the meniscus shape and impurity distribution. The impurity distribution profile near the crystal-melt interface was estimated using the Burton-Prim-Slichter (BPS) equation. The observed impurity diffusion boundary layer thickness was about 0.5 mm. It was found that the boundary layer thickness was not constant in the radial direction, which cannot be explained by the BPS theory, since it is based on a one-dimensional calculation.

  19. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  20. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  1. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  2. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  3. In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO{sub 2} bilayered matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T. C.-J., E-mail: terry.yang@unsw.edu.au; Wu, L.; Lin, Z.

    2014-08-04

    Solid-state nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix was observed at temperatures as low as 450 °C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600 °C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals inmore » a SiO{sub 2} bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO{sub 2} bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO{sub 2}. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.« less

  4. Evaluation of surface layer flux parameterizations using in-situ observations

    NASA Astrophysics Data System (ADS)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  5. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  6. Exploring the difference in xerogels and organogels through in situ observation

    PubMed Central

    Li, Zhiming; Wang, Haitao; Li, Min; Ozaki, Yukihiro; Wei, Jue

    2018-01-01

    Solvent–gelator interactions play a key role in mediating organogel formation and ultimately determine the physico-chemical properties of the organogels and xerogels. The ethanol organogels of 1,4-bis[(3,4,5-trihexyloxy phenyl)hydrazide]phenylene (TC6) were investigated in situ by FT-IR, Raman and fluorescence spectra, and XRD, and it was confirmed that the intermolecular interaction and aggregation structure of TC6 ethanol organogels were quite different from those of xerogels. Simultaneously, unprecedented phase transition from organogel to suspension upon heating was observed in ethanol organogel, and the suspension phase exhibited lytropic liquid crystalline behaviour with a rectangular columnar structure. This study may open the possibility to design new gelators with a new dimension of versatility. PMID:29410792

  7. In situ observation of the formation of hollow zinc oxide shells

    DOE PAGES

    Tringe, J. W.; Levie, H. W.; El-Dasher, B. S.; ...

    2011-06-14

    Single crystal zinc particles, 1–2 μm1–2 μm in diameter, were observed in situ with transmission electron microscopy during sublimation. The rate of sublimation is strongly dependent on the presence of a surface oxide layer. Near 375°, minimally oxidized Zn surfaces sublime in tens of seconds, consistent with a model in which the particle behaves similarly to an isolated microscale effusion cell. By contrast, zinc particles fully enclosed by oxide sublime less than one-tenth as quickly. Here these results provide new insight into the synthesis mechanisms of hollow ZnO microspheres and related structures formed from metallic zinc at elevated temperatures.

  8. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  9. An Inversion Analysis of Recent Variability in CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.

    2016-12-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks and their location and year-to-year variability are not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations. We also use measurement-based ocean flux estimates and fixed fossil CO2 emissions. Our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM transport model with MERRA meteorology. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble each other and those from other studies. For example, a GOSAT-only inversion suggests a shift in the global sink from the tropics/south to the north relative to the prior and to an in-situ-only inversion. The posterior fluxes of the GOSAT inversion are better

  10. Reconciling aerosol light extinction measurements from spaceborne lidar observations and in-situ measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Tesche, M.; Rastak, N.; Charlson, R. J.; Glantz, P.; Zieger, P.; Hansson, H.-C.

    2014-03-01

    In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in-situ measurements at Zeppelin station (78.92° N, 11.85° E, 475 m a.s.l.) at Ny-Ålesund, Svalbard, that are recalculated to ambient relative humidity, and simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in-situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of the Zeppelin station as well as in the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Trustworthy reconciliation of these data cannot be achieved with the closest approach method that is often used in matching CALIOP observations to those taken at ground sites due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25° E; 75 to 82° N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range from 1 to 100 Mm-1 were found for successful matches with an agreement of a factor of 1.85 (median value for a range from 0.38 to 17.9) between the findings of in-situ and spaceborne

  11. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  12. In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage

    NASA Astrophysics Data System (ADS)

    Hyo Park, Jung; Min Choi, Kyung; Joon Jeon, Hyung; Jung Choi, Yoon; Ku Kang, Jeung

    2015-07-01

    Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic frameworks (pmg-MOFs) and their self-sequestering storage mechanism, not observed for pristine MOFs. Direct observation of hierarchical pores inside the pmg-MOF was evident by in-situ growth X-ray measurements while self-sequestering storage mechanism was revealed by in-situ gas sorption X-ray analysis and molecular dynamics simulations. The results show that meso/macropores are created at the early stage of crystal growth and then enclosed by micropore crystalline shells, where hierarchical pores are networking under self-sequestering mechanism to give enhanced gas storage. This pmg-MOF gives higher CO2 (39%) and CH4 (14%) storage capacity than pristine MOF at room temperature, in addition to fast kinetics with robust capacity retention during gas sorption cycles, thus giving the clue to control dynamic behaviors of gas adsorption.

  13. In-Situ Observation of Horizontal Centrifugal Casting using a High-Speed Camera

    NASA Astrophysics Data System (ADS)

    Esaka, Hisao; Kawai, Kohsuke; Kaneko, Hiroshi; Shinozuka, Kei

    2012-07-01

    In order to understand the solidification process of horizontal centrifugal casting, experimental equipment for in-situ observation using transparent organic substance has been constructed. Succinonitrile-1 mass% water alloy was filled in the round glass cell and the glass cell was completely sealed. To observe the movement of equiaxed grains more clearly and to understand the effect of movement of free surface, a high-speed camera has been installed on the equipment. The most advantageous point of this equipment is that the camera rotates with mold, so that one can observe the same location of the glass cell. Because the recording rate could be increased up to 250 frames per second, the quality of movie was dramatically modified and this made easier and more precise to pursue the certain equiaxed grain. The amplitude of oscillation of equiaxed grain ( = At) decreased as the solidification proceeded.

  14. Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.

    2011-11-01

    Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOxratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOxoxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.

  15. Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; de Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.

    2012-02-01

    Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOx ratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOx oxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.

  16. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  17. Intercontinental air pollution transport from North America to Europe: Experimental evidence from airborne measurements and surface observations

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Heland, J.; Schlager, H.; Forster, C.; Stohl, A.; Aufmhoff, H.; Arnold, F.; Scheel, H. E.; Campana, M.; Gilge, S.; Eixmann, R.; Cooper, O.

    2005-01-01

    During the airborne CONTRACE field experiment carried out in November 2001 a number of polluted layers of North American (NA) origin were observed in the free troposphere over Europe. For the first time, forecasts from a Lagrangian particle dispersion model were used to predict the NA pollution events and to direct a research aircraft very precisely into these polluted layers above Europe. Two of the NA pollution events are investigated here: one in detail (case 19 November) and a second more briefly (case 22 November). An exceptional result was that the first pollution plume could be traced with the model and trace gas measurements (airborne and surface) for a period of one week, from the source region over the eastern United States to its decay over the Alps. On 14-15 November a warm conveyor belt lifted the leading edge of the pollution plume over the eastern United States to the mid troposphere where it remained during the transport over the Atlantic. On 19 November the plume was intersected with the research aircraft over Scandinavia at an altitude between 2 and 4 km. Elevated CO (170), O3 (53), NOy (1.1), acetone (5.0), and SO2 (2.6) mixing ratios (nmol mol-1) were measured. A positive O3-CO correlation was observed in the plume. The observations indicate that the enhanced levels of ozone were already produced near the source region over the eastern United States and not during the transit. In the next days one branch of the plume then turned to the south and descended to ground level over the Alpine region. Elevated O3 (54 nmol mol-1) and CO (168 nmol mol-1) were observed at the mountain site Zugspitze (southern Germany) during two days. At the Arosa Alpine site in Switzerland the highest daily ozone means of November 2001 were observed during this event.

  18. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005-2014.

    PubMed

    Paraschiv, Spiru; Constantin, Daniel-Eduard; Paraschiv, Simona-Lizica; Voiculescu, Mirela

    2017-11-20

    In this work we present the evolution of tropospheric nitrogen dioxide (NO₂) content over several important European cities during 2005-2014 using space observations and ground-based in-situ measurements. The NO₂ content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO₂ volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO₂ tropospheric column data can be used to assess the evolution of NO₂ over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO₂ negative trend for all of locations presented in this study.

  19. Airborne lidar and radiometric observations of PBL- and low clouds

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Valentin, R.; Pelon, J.

    1992-01-01

    Boundary layer- and low altitude clouds over open ocean and continent areas have been studied during several field campaigns since mid-1990 using the French airborne backscatter lidar LEANDRE in conjunction with on-board IR and visible radiometers. LEANDRE is an automatic system, and a modification of the instrumental parameters, when airborne, is computer controlled through an operator keyboard. The vertical range squared lidar signals and instrument status are displayed in real time on two dedicated monitors. The lidar is used either down- or up-looking while the aircraft is flying above or below clouds. A switching of the viewing configuration takes about a minute. The lidar measurements provide a high resolution description of cloud morphology and holes in cloud layers. The flights were conducted during various meteorological conditions on single or multilayer stratocumulus and cumulus decks. Analysis on a single shot basis of cloud top (or bottom) altitude and a plot of the corresponding histogram allows one to determine a probability density function (PDF). The preliminary results show the PDFs for cloud top are not Gaussian and symmetric about the mean value. The skewness varies with atmospheric conditions. An example of results recorded over the Atlantic ocean near Biarritz is displayed, showing: (1) the range squared lidar signals as a function of time (here 100 s corresponds to about 8 km, 60 shots are averaged on horizontal); the Planetary Boundary Layer (PBL) - up to 600 m - is observed at the beginning of the leg as well as on surface returns, giving an indication of the porosity; (2) the cloud top altitude variation between 2.4 to 2.8 km during the 150 to 320 s section; and (3) the corresponding PDF. Similar results are obtained on stratocumulus over land. Single shot measurements can be used also to determine an optical porosity at a small scale as well as a fractional cloudiness at a larger scale. A comparison of cloud top altitude retrieved from

  20. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  1. In-situ observations of Eyjafjallajökull ash particles by hot-air balloon

    NASA Astrophysics Data System (ADS)

    Petäjä, T.; Laakso, L.; Grönholm, T.; Launiainen, S.; Evele-Peltoniemi, I.; Virkkula, A.; Leskinen, A.; Backman, J.; Manninen, H. E.; Sipilä, M.; Haapanala, S.; Hämeri, K.; Vanhala, E.; Tuomi, T.; Paatero, J.; Aurela, M.; Hakola, H.; Makkonen, U.; Hellén, H.; Hillamo, R.; Vira, J.; Prank, M.; Sofiev, M.; Siitari-Kauppi, M.; Laaksonen, A.; lehtinen, K. E. J.; Kulmala, M.; Viisanen, Y.; Kerminen, V.-M.

    2012-03-01

    The volcanic ash cloud from Eyjafjallajökull volcanic eruption seriously distracted aviation in Europe. Due to the flight ban, there were only few in-situ measurements of the properties and dispersion of the ash cloud. In this study we show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption. The modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted. Some of this discrepancy can be attributed to the uncertainty in the initial emission height and strength. The observed maximum mass concentration varied between 12 and 18 μg m -3 assuming a density of 2 g m -3, whereas the gravimetric analysis of the integrated column showed a maximum of 45 μg m -3 during the first two descents through the ash plume. Ion chromatography data indicated that a large fraction of the mass was insoluble to water, which is in qualitative agreement with single particle X-ray analysis. A majority of the super-micron particles contained Si, Al, Fe, K, Na, Ca, Ti, S, Zn and Cr, which are indicative for basalt-type rock material. The number concentration profiles indicated that there was secondary production of particles possibly from volcano-emitted sulfur dioxide oxidized to sulfuric acid during the transport.

  2. Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.

    In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less

  3. Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements

    DOE PAGES

    Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.; ...

    2018-02-02

    In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less

  4. Design and instrumentation of an airborne far infrared radiometer for in-situ measurements of ice clouds

    NASA Astrophysics Data System (ADS)

    Proulx, Christian; Ngo Phong, Linh; Lamontagne, Frédéric; Wang, Min; Fisette, Bruno; Martin, Louis; Châteauneuf, François

    2016-09-01

    We report on the design and instrumentation of an aircraft-certified far infrared radiometer (FIRR) and the resulting instrument characteristics. FIRR was designed to perform unattended airborne measurements of ice clouds in the arctic in support of a microsatellite payload study. It provides radiometrically calibrated data in nine spectral channels in the range of 8-50 μm with the use of a rotating wheel of bandpass filters and reference blackbodies. Measurements in this spectral range are enabled with the use of a far infrared detector based on microbolometers of 104-μm pitch. The microbolometers have a new design because of the large structure and are coated with gold black to maintain uniform responsivity over the working spectral range. The vacuum sealed detector package is placed at the focal plane of a reflective telescope based on a Schwarschild configuration with two on-axis spherical mirrors. The telescope field-of-view is of 6° and illuminates an area of 2.1-mm diameter at the focal plane. In operation, FIRR was used as a nonimaging radiometer and exhibited a noise equivalent radiance in the range of 10-20 mW/m2-sr. The dynamic range and the detector vacuum integrity of FIRR were found to be suited for the conditions of the airborne experiments.

  5. In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation

    DTIC Science & Technology

    2011-03-02

    frompyrolization of iron(II) phthalocyanine , producing vertically aligned CNTs with a nominal outer diameter of 50 nm.11,12 The array was indented using a 40 40 μm...www.acsami.org In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation Matthew R. Maschmann,†,‡Qiuhong Zhang,†,§ Robert Wheeler...multiple length scales. Their behavior is expected to rely heavily on the properties of individual constituent CNTs , interactions and load distribution

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. Comparison of Carbon Dioxide Airborne Measurement over Land and Ocean using 2-μm Double-Pulse Integrated Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Refaat, T. F.; Singh, U. N.; Petros, M.; Yu, J.; Remus, R.; Ismail, S.

    2017-12-01

    An airborne Integrated Path Differential Absorption (IPDA) lidar has been developed and validated at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument consists of a tunable, high-energy 2-μm double pulse laser transmitter and 0.4 m telescope receiver coupled to an InGaAs pin detection system. The instrument was validated for carbon dioxide (CO2) measurements from ground and airborne platforms, using a movable lidar trailer and the NASA B-200 aircraft. Airborne validation was conducted over the ocean by comparing the IPDA CO2 optical depth measurement to optical depth model derived using NOAA airborne CO2 air-sampling. Another airborne validation was conducted over land vegetation by comparing the IPDA measurement to a model derived using on-board in-situ measurements using an absolute, non-dispersive infrared gas analyzer (LiCor 840A). IPDA range measurements were also compared to rangefinder and Global Positioning System (GPS) records during ground and airborne validation, respectively. Range measurements from the ground indicated a 0.93 m IPDA range measurement uncertainty, which is limited by the transmitted laser pulse and detection system properties. This uncertainty increased to 2.80 and 7.40 m over ocean and land, due to fluctuations in ocean surface and ground elevations, respectively. IPDA CO2 differential optical depth measurements agree with both models. Consistent CO2 optical depth biases were well correlated with the digitizer full scale input range settings. CO2 optical depth measurements over ocean from 3.1 and 6.1 km altitudes indicated 0.95% and 0.83% uncertainty, respectively, using 10 second (100 shots) averaging. Using the same averaging 0.40% uncertainty was observed over land, from 3.4 km altitude, due to higher surface reflectivity, which increases the return signal power and enhances the signal-to-noise ratio. However, less uncertainty is observed at higher altitudes due to reduced signal shot

  8. Gridded sunshine duration climate data record for Germany based on combined satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Walawender, Jakub; Kothe, Steffen; Trentmann, Jörg; Pfeifroth, Uwe; Cremer, Roswitha

    2017-04-01

    The purpose of this study is to create a 1 km2 gridded daily sunshine duration data record for Germany covering the period from 1983 to 2015 (33 years) based on satellite estimates of direct normalised surface solar radiation and in situ sunshine duration observations using a geostatistical approach. The CM SAF SARAH direct normalized irradiance (DNI) satellite climate data record and in situ observations of sunshine duration from 121 weather stations operated by DWD are used as input datasets. The selected period of 33 years is associated with the availability of satellite data. The number of ground stations is limited to 121 as there are only time series with less than 10% of missing observations over the selected period included to keep the long-term consistency of the output sunshine duration data record. In the first step, DNI data record is used to derive sunshine hours by applying WMO threshold of 120 W/m2 (SDU = DNI ≥ 120 W/m2) and weighting of sunny slots to correct the sunshine length between two instantaneous image data due to cloud movement. In the second step, linear regression between SDU and in situ sunshine duration is calculated to adjust the satellite product to the ground observations and the output regression coefficients are applied to create a regression grid. In the last step regression residuals are interpolated with ordinary kriging and added to the regression grid. A comprehensive accuracy assessment of the gridded sunshine duration data record is performed by calculating prediction errors (cross-validation routine). "R" is used for data processing. A short analysis of the spatial distribution and temporal variability of sunshine duration over Germany based on the created dataset will be presented. The gridded sunshine duration data are useful for applications in various climate-related studies, agriculture and solar energy potential calculations.

  9. Predicting the aquatic stage sustainability of a restored backwater channel combining in-situ and airborne remotely sensed bathymetric models.

    NASA Astrophysics Data System (ADS)

    Jérôme, Lejot; Jérémie, Riquier; Hervé, Piégay

    2014-05-01

    As other large river floodplain worldwide, the floodplain of the Rhône has been deeply altered by human activities and infrastructures over the last centuries both in term of structure and functioning. An ambitious restoration plan of selected by-passed reaches has been implemented since 1999, in order to improve their ecological conditions. One of the main action aimed to increase the aquatic areas in floodplain channels (i.e. secondary channels, backwaters, …). In practice, fine and/or coarse alluvium were dredged, either locally or over the entire cut-off channel length. Sometimes the upstream or downstream alluvial plugs were also removed to reconnect the restored feature to the main channel. Such operation aims to restore forms and associated habitats of biotic communities, which are no more created or maintained by the river itself. In this context, assessing the sustainability of such restoration actions is a major issue. In this study, we focus on 1 of the 24 floodplain channels which have been restored along the Rhône River since 1999, the Malourdie channel (Chautagne reach, France). A monitoring of the geomorphologic evolution of the channel has been conducted during a decade to assess the aquatic stage sustainability of this former fully isolated channel, which has been restored as a backwater in 2004. Two main types of measures were performed: (a) water depth and fine sediment thickness were surveyed with an auger every 10 m along the channel centerline in average every year and a half allowing to establish an exponential decay model of terrestrialization rates through time; (b) three airborne campaigns (2006, 2007, 2012) by Ultra Aerial Vehicle (UAV) provided images from which bathymetry were inferred in combination with observed field measures. Coupling field and airborne models allows us to simulate different states of terrestrialization at the scale of the whole restore feature (e.g. 2020/2030/2050). Raw results indicate that terrestrialization

  10. Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-based Estimates of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Shuai, Yanmin; Wang, Zhuosen; Gao, Feng; Masek, Jeff; Schaaf, Crystal B.

    2012-01-01

    The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud

  11. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  12. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  13. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    PubMed Central

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  14. Comparison with CLPX II airborne data using DMRT model

    USGS Publications Warehouse

    Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.

    2009-01-01

    In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings.

    PubMed

    Luongo, J C; Fennelly, K P; Keen, J A; Zhai, Z J; Jones, B W; Miller, S L

    2016-10-01

    Infectious disease outbreaks and epidemics such as those due to SARS, influenza, measles, tuberculosis, and Middle East respiratory syndrome coronavirus have raised concern about the airborne transmission of pathogens in indoor environments. Significant gaps in knowledge still exist regarding the role of mechanical ventilation in airborne pathogen transmission. This review, prepared by a multidisciplinary group of researchers, focuses on summarizing the strengths and limitations of epidemiologic studies that specifically addressed the association of at least one heating, ventilating and/or air-conditioning (HVAC) system-related parameter with airborne disease transmission in buildings. The purpose of this literature review was to assess the quality and quantity of available data and to identify research needs. This review suggests that there is a need for well-designed observational and intervention studies in buildings with better HVAC system characterization and measurements of both airborne exposures and disease outcomes. Studies should also be designed so that they may be used in future quantitative meta-analyses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Morgan, W. T.; Darbyshire, E.; Flynn, M. J.; Williams, P. I.; Oram, D. E.; Artaxo, P.; Brito, J.; Lee, J. D.; Coe, H.

    2014-10-01

    Isoprene is a potentially highly significant but currently poorly quantified source of secondary organic aerosols (SOA). This is especially important in the tropics, where large rainforests act as significant sources of isoprene. Methylfuran, produced through thermal decomposition during analysis, has recently been suggested as a marker for isoprene SOA formation through the isoprene epoxydiol (IEPOX) route, which mostly occurs under low NOx conditions. This is manifested as a peak at m/z=82 in Aerodyne Aerosol Mass Spectrometer (AMS) data. Here we present a study of this marker measured during five flights over the Amazon rainforest on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft during the South American Biomass Burning Analysis (SAMBBA) campaign. Cases where this marker is and is not present are contrasted and linked to the presence of acidic seed particles, lower NOx concentrations and higher humidities. There are also data to suggest a role of organic nitrogen in the particulate composition. Furthermore, an inspection of the vertical trends of the marker indicates that concentrations are highest at the top of the boundary layer (possibly due to semivolatile repartitioning) and that upwards through the free troposphere, the mass spectral profile evolves towards that of low volatility oxygenated aerosol. These observations offer insights into the behaviour of IEPOX-derived SOA formation above the Amazon rainforest and the suitability of methylfuran as a marker for this process.

  18. Observations of Cross-Surf-zone / Inner-shelf Dye Exchange from Aerial Hyperspectral and in Situ Data.

    NASA Astrophysics Data System (ADS)

    Grimes, D. J.; Giddings, S. N.; Kumar, N.; Pawlak, G. R.; Feddersen, F.

    2016-12-01

    Understanding the cross-shelf exchange of nearshore sourced tracers across the surfzone and onto the stratified inner-shelf is critical to be able to predict the evolution of pollution events, HAB, and larval transport, which will enable policy and mitigation efforts. The CSIDE (Cross Surfzone / Inner-shelf Dye Exchange) experiment (Sept & Oct 2015) provides observations to quantify dye tracer exchange across the surfzone/inner-shelf region with 3 dye release experiments. Shoreline released dye and temperature is tracked for 48 hrs and 20 km using aerial hyperspectral and IR imagery, in situ near-shoreline fluorometers, moored wire-walkers, AUV, and boat based towed observations. Here, we focus on the 3rd release, where dye was pumped into the mouth of the Tijuana River / Estuary during an ebb tide with low river discharge. The dye field was transported alongshore in a large coherent patch extending 1 km from shore. The plume persisted overnight with weak dilution and its center of mass was observed to move 3+ km north over 18 hrs. Aerial hyperspectral and in situ observations are analyzed to examine the horizontal and vertical dye distribution. In particular, we will explore the extent to which the stratified inner-shelf is a "material barrier," whether an observed surfzone dye and temperature correlation is maintained on the stratified inner-shelf, at what time- and length-scales, and the processes influencing this relationship.

  19. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak

    2017-02-01

    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  20. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  1. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  2. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  3. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  4. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  5. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  6. Use of reflectance spectra of native plant species for interpreting airborne multispectral scanner data in the East Tintic Mountains, Utah.

    USGS Publications Warehouse

    Milton, N.M.

    1983-01-01

    Analysis of in situ reflectance spectra of native vegetation was used to interpret airborne MSS data. Representative spectra from three plant species in the E Tintic Mountains, Utah, were used to interpret the color components on a color ratio composite image made from MSS data in the visible and near-infrared regions. A map of plant communities was made from the color ratio composite image and field checked. -from Author

  7. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  8. In situ alkali-silica reaction observed by x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques availablemore » for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.« less

  9. In situ observation of shear-driven amorphization in silicon crystals.

    PubMed

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  10. Combined in-situ and ground-based observations of quasi-periodic radar echoes

    NASA Astrophysics Data System (ADS)

    Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.

    A series of combined rocket/radar investigation of the electrodynamics and neutralplasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rockets consisted of main and sub-payloads and were launched while strong quasiperiodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ionization gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neutral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measurements revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasiperiodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E density layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with

  11. In situ observation of melting and crystallization of Si on porous Si3N4 substrate that repels Si melt

    NASA Astrophysics Data System (ADS)

    Itoh, Hironori; Okamura, Hideyuki; Asanoma, Susumu; Ikemura, Kouhei; Nakayama, Masaharu; Komatsu, Ryuichi

    2014-09-01

    High temperature in situ observation of melting and crystallization of spherical Si droplets on a substrate with a porous surface was carried out for the first time using an original in situ observation apparatus. The contact angle between the Si melt and the substrate was measured to be 160°, with the Si melt forming spherical droplets on the substrate. During crystallization, a ring-like pattern was observed on the surface of the spherical Si melt droplets due to crystal growth at low levels of supercooling. The solidified spherical Si crystals consisted of single or twin grains. This demonstrates that high-quality spherical Si crystals can be prepared easily and stably by using a Si melt-repelling substrate.

  12. Combining Remote and In Situ Observations with MHD models to Understand the Formation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Antiochos, S. K.; Lepri, S. T.; Vourlidas, A.; Linker, J.

    2017-12-01

    Connecting the structure and variability in the solar corona to the Heliosphere and solar wind is one of the main goals of Heliophysics and space weather research. The instrumentation and viewpoints of the Parker Solar Probe and Solar Orbiter missions will provide an unprecedented opportunity to combine remote sensing with in situ data to determine how the corona drives the Heliosphere, especially as it relates to the origin of the slow solar wind. We present analysis of STEREO coronagraph and heliospheric imager observations and of in situ ACE and Wind measurements that reveal an important connection between the dynamics of the corona and of the solar wind. We show observations of quasi-periodic release of plasma into the slow solar wind occurring throughout the corona - including regions away from the helmet streamer and heliospheric current sheet - and demonstrate that these observations place severe constraints on the origin of the slow solar wind. We build a comprehensive picture of the dynamic evolution by combining remote imaging data, in situ composition and magnetic connectivity information, and MHD models of the solar wind. Our results have critical implications for the magnetic topology involved in slow solar wind formation and magnetic reconnection dynamics. Crucially, this analysis pushes the limits of current instrument resolution and sensitivity, showing the enormous potential science to be accomplished with the Parker Solar Probe and Solar Orbiter missions.

  13. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  14. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  15. ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II

    2017-12-01

    E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then

  16. Global Airborne Observations of Nitrogen Oxides and Ozone from the Atmospheric Tomography Mission

    NASA Astrophysics Data System (ADS)

    Thompson, C. R.; Peischl, J.; Ryerson, T. B.

    2016-12-01

    The Atmospheric Tomography (ATom) Mission is an ambitious airborne field campaign that will conduct measurements of an extensive suite of trace gases and aerosols from the NASA DC-8 platform over three years and four seasons. Flights will travel nearly pole-to-pole, traversing both the Pacific and Atlantic Oceans, while profiling continuously from 0.2 to 12 km altitude to provide nearly global-scale observations of greenhouse gases and reactive species. Measurements from ATom will provide an unprecedented test for current global chemistry-climate models (CCMs) and will inform further improvements to these models. In particular, reactive species, such as ozone, are difficult to represent accurately in CCMs. We will present global observations of reactive nitrogen compounds (NO, NO2, NOy) and ozone from the first deployment of the ATom Mission in August of 2016. Flights will intercept a wide variety of air masses with different pollution signatures, including aged biomass burning emissions from Siberian wildfires and anthropogenic outflow from the Asian mainland, which will contrast the relatively clean background atmosphere encountered in the high latitudes of the Northern and Southern Hemispheres. We will compare the composition of the NOy budgets across these variety of air masses and impacts on ozone.

  17. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  18. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  19. Calculated in situ rock density from gravity observations, UA-1 (Cannikin) emplacement hole, Amchitka Island, Alaska

    USGS Publications Warehouse

    Healey, D.L.

    1971-01-01

    Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.

  20. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill

    USGS Publications Warehouse

    Leifer, Ira; Lehr, William J.; Simecek-Beatty, Debra; Bradley, Eliza; Clark, Roger N.; Dennison, Philip E.; Hu, Yongxiang; Matheson, Scott; Jones, Cathleen E; Holt, Benjamin; Reif, Molly; Roberts, Dar A.; Svejkovsky, Jan; Swayze, Gregg A.; Wozencraft, Jennifer M.

    2012-01-01

    The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required accurate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a spill response's mainstay, few trained observers and confounding factors including weather, oil emulsification, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by extensive airborne and spaceborne passive and active remote sensing.Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup and were derived quantitatively for thick (> 0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick. A multispectral expert system used a neural network approach to provide Rapid Response thickness class maps.Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions; however, SAR generally cannot discriminate thick (> 100 μm) oil slicks from thin sheens (to 0.1 μm). The UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional surface coverage, and emulsification.In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for confirmation.Airborne hyperspectral, thermal infrared data have nighttime and

  1. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  2. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  3. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  4. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley.

    PubMed

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-06-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant-pathogen co-evolution in wild systems.

  5. Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US

    DOE PAGES

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; ...

    2014-10-10

    Here, we present measurements acquired by the world's first airborne 3 backscatter (β) + 2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50–60 sr at 355 nm and 60–70more » sr at 532 nm. Extinction-related Ångström exponents were on average 1.2–1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 μm, which is in agreement with the large Angstrom exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft.« less

  6. Overview of the Airborne Tropical TRopopause EX

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jensen, Eric J.; Pfister, Leonhard

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATIREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two f light series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of supersaturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  7. Progress toward improving regional atmospheric inversions using airborne measurements: Results from ACT-America

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Baier, B.; Baker, D.; Barkley, Z.; Bell, E.; Bowman, K. W.; Browell, E. V.; Campbell, J.; Chen, H. W.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Fan, T. F.; Feng, S.; Fried, A.; Gaudet, B. J.; Jacobson, A. R.; Keller, K.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; McGregor, D.; Michalak, A.; Obland, M. D.; O'Dell, C.; Pal, S.; Parazoo, N.; Pauly, R.; Randazzo, N. A.; Samaddar, A.; Schuh, A. E.; Sweeney, C.; Wesloh, D.; Williams, C. A.; Zhang, F.; Zhou, Y.

    2017-12-01

    -evaluation of OCO-2 and airborne lidar XCO2 observations against in situ measurements is defining the regional precision and accuracy of these observations. These findings are moving us toward improved regional GHG inverse flux estimates via better understanding of prior fluxes, atmospheric transport, and satellite CO2 observations.

  8. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  9. High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Popp, C.; Brunner, D.; Damm, A.; Van Roozendael, M.; Fayt, C.; Buchmann, B.

    2012-09-01

    We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm-2). The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

  10. High resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Popp, C.; Brunner, D.; Damm, A.; Van Roozendael, M.; Fayt, C.; Buchmann, B.

    2012-03-01

    We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm-2). The two-dimensional maps of NO2 VCD reveal a very plausible spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day (development of the boundary layer and increased wind speed in the afternoon) as well as to photochemical loss of NO2. The remotely sensed NO2 VCD are also highly correlated with ground-based in-situ measurements from local and national air quality networks (R=0.73). Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modeling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

  11. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014

    PubMed Central

    Voiculescu, Mirela

    2017-01-01

    In this work we present the evolution of tropospheric nitrogen dioxide (NO2) content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study. PMID:29156623

  12. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  13. Airborne Polarized Lidar Detection of Scattering Layers in the Ocean

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne

    2001-08-01

    A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.

  14. Seasonal and diurnal variability in airborne mold from an indoor residential environment in northern New York.

    PubMed

    LeBouf, Ryan; Yesse, Liesel; Rossner, Alan

    2008-05-01

    It is well known that characterization of airborne bioaerosols in indoor environments is a challenge because of inherent irregularity in concentrations, which are influenced by many environmental factors. The primary aim of this study was to quantify the day-to-day variability of airborne fungal levels in a single residential environment over multiple seasons. Indoor air quality practitioners must recognize the inherent variability in airborne bio-aerosol measurements during data analysis of mold investigations. Changes in airborne fungi due to varying season and day is important to recognize when considering health impacts of these contaminants and when establishing effective controls. Using an Andersen N6 impactor, indoor and outdoor bioaerosol samples were collected on malt extract agar plates for 18 weekdays and 19 weekdays in winter and summer, respectively. Interday and intraday variability for the bioaerosols were determined for each sampler. Average fungal concentrations were 26 times higher during the summer months. Day-to-day fungal samples showed a relatively high inconsistency suggesting airborne fungal levels are very episodic and are influenced by several environmental factors. Summer bio-aerosol variability ranged from 7 to 36% and winter variability from 24 to 212%; these should be incorporated into results of indoor mold investigations. The second objective was to observe the relationship between biological and nonbiological particulate matter (PM). No correlation was observed between biological and nonbiological PM. Six side-by-side particulate samplers collected coarse PM (PM10) and fine PM (PM2.5) levels in both seasons. PM2.5 particulate concentrations were found to be statistically higher during summer months. Interday variability observed during this study suggests that indoor air quality practitioners must adjust their exposure assessment strategies to reflect the temporal variability in bioaerosol concentrations.

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. Airborne Astronomy Symposium. A symposium commemorating the tenth anniversary of operations of the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr. (Editor); Erickson, E. F. (Editor)

    1984-01-01

    Airborne infrared astronomy is discussed with respect to observations of the solar system, stars, star formation, and the interstellar medium. Far infrared characteristics of the Milky Way, its center, and other galaxies are considered. The instrumentation associated with IR astronomy is addressed.

  17. Multi-perspective observations of NO2 over the Denver area ...

    EPA Pesticide Factsheets

    The final deployment in the DISCOVER-AQ1 series of air quality field campaigns focused on the Northern Front Range of Colorado including the Denver Metropolitan Area in July-August 2014. The overarching goal of these campaigns was to improve the interpretation of satellite observations to diagnose near-surface air quality conditions. This called for observations to be combined from multiple perspectives that included ground-based as well as airborne in situ and remote sensing measurements. These observations were collected to demonstrate how future geostationary satellites could provide information of direct benefit to agencies responsible for monitoring and regulating air quality. This article focuses specifically on measurements of nitrogen dioxide (NO2), which are critical to understanding the photochemical production of ozone (O3). Published in the August issue of EM: AIR AND WASTE MANAGEMENT ASSOCIATIONS MAGAZINE FOR ENVIRONMENTAL MANAGERS

  18. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  19. Retrieving Mesoscale Vertical Velocities along the Antarctic Circumpolar Current from a Combination of Satellite and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, B.; Iudicone, D.; Cotroneo, Y.; Zambianchi, E.; Rio, M. H.

    2016-02-01

    In the framework of the Italian National Program on Antarctic Research (PNRA), an analysis of the mesoscale dynamics along the Antarctic Circumpolar Current has been carried out starting from a combination of satellite and in situ observations. More specifically, state-of-the-art statistical techniques have been used to combine remotely-sensed sea surface temperature, salinity and absolute dynamical topography with in situ Argo data, providing mesoscale-resolving 3D tracers and geostrophic velocity fields. The 3D reconstruction has been validated with independent data collected during PNRA surveys. These data are then used to diagnose the vertical exchanges in the Southern Ocean through a generalized version of the Omega equation. Intense vertical motion (O(100 m/day)) is found along the ACC, upstream/downstream of its meanders, and within mesoscale eddies, where multipolar vertical velocity patterns are generally observed.

  20. Evolution of the 2011 Mississippi River Peak Flood Plume from Coincident Satellite and Airborne L-band Radiometer Surface Salinity Observations.

    NASA Astrophysics Data System (ADS)

    Burrage, D. M.; Wesson, J. C.; Hwang, P. A.; Wang, D. W.; Wijesekera, H. W.

    2016-02-01

    Airborne mapping of Sea Surface Salinity (SSS) with L-band radiometers has been practiced for 20 yrs., while global satellite observations began with the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Satellite launch in 2009. Airborne data with high ( 1km) resolution, but limited coverage, complement the lower resolution ( 35 km at nadir) but global coverage and 3-5 day revisit of SMOS. The record June, 2011 Mississippi R. peak flood, with flows exceeding 42,500 m^3/s, required diversions into Lake Pontchartrain and the Atchafalaya R. to avoid flooding New Orleans and Baton Rouge. The resulting merged outflows formed a single freshwater plume that spanned the Mississippi, Louisiana and Texas `Gulf Coast', and reached up to 300 km across the shelf. SSS was mapped by the NRL airborne Salinity Temperature and Roughness Remote Scanner (STARRS) and SMOS radiometers during a two week (2-13 June 2011) campaign immediately following the flood crest. STARRS obtained oblique across-shelf transects spanning the Northern Gulf of Mexico, under-flying SMOS, and shorter zig-zag coastal transects. SSS samples from a ship near the shelf edge agreed well with STARRS and SMOS after applying standard geophysical correction models and roughness corrections from an SSA/SPM E-M model and an advanced wave spectrum. The minimum SMOS footprint size (35 km at nadir), produced a coastal data gap filled by STARRS transects that reached the coast. The 200 km overlap between the two sensors along coincident ground tracks agreed closely near the frontal boundary, with salinity contrasts of 7-15 psu over a 10 km span at the plume edge evident in both data sets. Successive SMOS Level 2 (L2) SSS data swaths obtained at 2-5 day intervals showed the evolution of the plume in three well-separated seaward extensions located near the Mississippi Delta, and well east and west of the Delta. The dispersal of the plume was also detected by SMOS following the airborne campaign.

  1. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  2. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley

    PubMed Central

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-01-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant–pathogen co-evolution in wild systems. PMID:25568056

  3. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    NASA Astrophysics Data System (ADS)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  4. Modeling of coronal mass ejections with the STEREO heliospheric imagers verified with in situ observations by the Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Möstl, Christian; Isavnin, Alexey; Kilpua, Emilia; Bothmer, Volker; Mrotzek, Nicolas; Boakes, Peter; Rodriguez, Luciano; Krupar, Vratislav; Eastwood, Jonathan; Davies, Jackie; Harrison, Richard; Barnes, David; Winslow, Reka; Helcats Team

    2017-04-01

    We present the first study to verify modeling of CMEs as observed by the heliospheric imagers on the two STEREO spacecraft with a large scale dataset of in situ plasma and magnetic field observations from the Heliophysics System Observatory, including MESSENGER, VEX, Wind, and the in situ measurements on the two STEREO spacecraft. To this end, we have established a new interplanetary CME catalog (ICMECAT) for these spacecraft by gathering and updating individual ICME lists. In addition, we have re-calculated the in situ parameters in a consistent way, resulting in 668 events observed between 2007-2015. We then calculated the efficacy of the STEREO/HI instruments for predicting (in hindsight) with the SSEF30 model the arrival time and speed of CMEs as well as hit/miss ratios. We also show how ICMECAT gives decent statistics concerning CME impacts on all of the terrestrial planets, including Mars. The results show some major implications for future heliospheric imagers which may be used for space weather forecasting. Our effort should also serve as a baseline for the upcoming new era in heliospheric science with Solar Orbiter, Solar Probe Plus, BepiColombo returning partly comparable observations in the next decade. The presented work has received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement No. 606692 [HELCATS].

  5. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  6. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    NASA Technical Reports Server (NTRS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  7. Source attribution using FLEXPART and carbon monoxide emission inventories for the IAGOS In-situ Observation database

    NASA Astrophysics Data System (ADS)

    Fontaine, Alain; Sauvage, Bastien; Pétetin, Hervé; Auby, Antoine; Boulanger, Damien; Thouret, Valerie

    2016-04-01

    Since 1994, the IAGOS program (In-Service Aircraft for a Global Observing System http://www.iagos.org) and its predecessor MOZAIC has produced in-situ measurements of the atmospheric composition during more than 46000 commercial aircraft flights. In order to help analyzing these observations and further understanding the processes driving their evolution, we developed a modelling tool SOFT-IO quantifying their source/receptor link. We improved the methodology used by Stohl et al. (2003), based on the FLEXPART plume dispersion model, to simulate the contributions of anthropogenic and biomass burning emissions from the ECCAD database (http://eccad.aeris-data.fr) to the measured carbon monoxide mixing ratio along each IAGOS flight. Thanks to automated processes, contributions are simulated for the last 20 days before observation, separating individual contributions from the different source regions. The main goal is to supply add-value products to the IAGOS database showing pollutants geographical origin and emission type. Using this information, it may be possible to link trends in the atmospheric composition to changes in the transport pathways and to the evolution of emissions. This tool could be used for statistical validation as well as for inter-comparisons of emission inventories using large amounts of data, as Lagrangian models are able to bring the global scale emissions down to a smaller scale, where they can be directly compared to the in-situ observations from the IAGOS database.

  8. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goalsmore » of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.« less

  9. Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.

    1988-01-01

    The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.

  10. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  11. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  12. Observing and characterizing avalanche activity in the Khumbu Himal, Nepal, using Pleiades and airborne HDR imagery

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg

    2017-04-01

    In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.

  13. ASPIRE - Airborne Spectro-Polarization InfraRed Experiment

    NASA Astrophysics Data System (ADS)

    DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.

    2017-12-01

    Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.

  14. Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. C.

    2004-12-01

    The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing

  15. Toolsets for Airborne Data (TAD): Enhanced Airborne Data Merging Functionality through Spatial and Temporal Subsetting

    NASA Astrophysics Data System (ADS)

    Early, A. B.; Chen, G.; Beach, A. L., III; Northup, E. A.

    2016-12-01

    NASA has conducted airborne tropospheric chemistry studies for over three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in Hampton Virginia originally developed the Toolsets for Airborne Data (TAD) web application in September 2013 to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. The analysis of airborne data typically requires data subsetting, which can be challenging and resource intensive for end users. In an effort to streamline this process, the TAD toolset enhancements will include new data subsetting features and updates to the current database model. These will include two subsetters: temporal and spatial, and vertical profile. The temporal and spatial subsetter will allow users to both focus on data from a specific location and/or time period. The vertical profile subsetter will retrieve data collected during an individual aircraft ascent or descent spiral. This effort will allow for the automation of the typically labor-intensive manual data subsetting process, which will provide users with data tailored to their specific research interests. The development of these enhancements will be discussed in this presentation.

  16. In-Situ Observations of a Subglacial Outflow Plume in a Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Mankoff, K. D.; Straneo, F.; Singh, H.; Das, S. B.

    2014-12-01

    We present oceanographic observations collected in and immediately outside of a buoyant, fresh, sediment-laden subglacial outflow plume rising up the marine-terminating front of Sarqardleq Glacier, Greenland (68.9 N, 50.4 W). Subglacial outflow plumes, associated with the discharge at depth of upstream glacial surface melt, entrain the relatively warm fjord waters and are correlated with enhanced submarine melt and increased calving. Few in-situ observations exist due to the challenges of making measurements at the calving front of glaciers. Our data were collected using a small boat, a helicopter, and a JetYak (a remote-controlled jet-ski-powered kayak). Temperature and salinity profiles in, around, and far from the plume are used to described its oceanographic properties, spatial extent, and temporal variability. This plume rises vertically up the ice front expanding laterally and away from the ice, over-shoots its stable isopycnal and reaches the surface. Its surface expression is identified by colder, saltier, sediment-laden water flowing at ~5 m/s away from the ice face. Within ~300 m from the ice it submerges as it seeks buoyant stability.

  17. Using Radial Basis Functions in Airborne Gravimetry for Local Geoid Improvement

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2017-04-01

    Radial basis functions (RBF, Schmidt et al 2007, Klees and Wittwer 2007, Klees et al 2008) have been extensively used in satellite geodetic applications (Eicker 2008, Wittwer 2009, Naeimi 2013, among others). However, to date, to the author's knowledge, their roles in processing and modeling airborne gravity data have not been fully advocated or extensively investigated in detail, though compared with satellite missions, the airborne data is more suitable for this kind of localized basis functions especially considering the following facts: (1) Unlike the satellite missions that can provide global or near global data coverage, airborne gravity data is usually geographically limited. (2) It is also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques (Li 2007) have to be applied to overcome the low signal-to-noise ratio problem that is present in airborne gravimetric systems. This is mainly due to the mechanical and mathematical limitations in computing the accelerations (both the kinematic and dynamic accelerations, Jekeli 2000). (3) It is much easier to formulate the RBF observation equations from an airborne gravimetric system (either a scalar one (Forsberg and Olesen 2010) or a vector one (Kwon and Jekeli 2001)) than from any satellite mission, especially compared with Gravity Recovery and Climate Experiment satellites (GRACE, Tapley et al. 2004) where many accurate background environmental models have to be used in order to separate out the gravity related functionals. As a result, in this study, a set of band-limited RBF is developed to model and downward continue the airborne gravity data for local geoid improvement. First, the algorithm is tested with synthesized data from global coefficient models such as EIGEN6c4 (Försteet al. 2014), during which the RBF not only successfully recovers a harmonic field but also presents filtering properties due to its particular design in the frequency domain. Then, the

  18. Combined In-situ and Ground-based Observations of Quasi-periodic Radar Echoes

    NASA Astrophysics Data System (ADS)

    Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.

    A series of combined rocket/radar investigation of the electrodynamics and neutral- plasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rock- ets consisted of main and sub-payloads and were launched while strong quasi- periodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ioniza- tion gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neu- tral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measure- ments revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasi- periodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E den- sity layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near

  19. Active optical CO2 sensing for Ground-based, Airborne, and from Space platform

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Inoue, M.; Morino, I.; Uchino, O.; Sawa, Y.; Matsueda, H.

    2011-12-01

    measurements were made over grasslands from 0.5-7 km altitude. There results were compared with airborne flask sampling data and confirmed same trends along height. In February 2010 and February 2011 we made a total of 6 flights and also measured the vertical Wq over the urban area. A high correlation coefficient of 0.99 was obtained between Wq observed by LAS and that calculated by airborne in-situ measurement. More details about measurements and analysis will be presented in the meeting.

  20. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  1. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations

    NASA Astrophysics Data System (ADS)

    MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.

    2016-10-01

    Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.

  2. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  3. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  4. Airborne pollen survey in Bangkok, Thailand: A 35-year update.

    PubMed

    Songnuan, Wisuwat; Bunnag, Chaweewan; Soontrapa, Kitipong; Pacharn, Punchama; Wangthan, Unchalee; Siriwattanakul, Umaporn; Malainual, Nat

    2015-09-01

    Pollen allergy is a growing global health issue. While airborne pollen counts are reported daily in several countries, such information is lacking in Thailand. This study aimed to survey airborne pollens at five sites in Bangkok, comparing data with the previous study performed 35 years ago in 1980. Sample collection was done using the ROTOROD® sampler by exposing the rods for one hour each day twice a week from May 2012-April 2013. Overall, we found that the average pollen count was relatively high throughout the year, at an average of 242 grains/m3. The highest peak was found in September (700 grains/m3). Interestingly, we found that the pollen count was noticeably lower in 2012-2013 when compared to the 1980 study. We also observed the approximate shift of pollen peaks about one to two months earlier in the 2012-2013 study. However, the major groups of airborne pollens did not change significantly. Grass, sedge, amaranthus pollens and fern spores still dominated. The unidentified pollen group was the only group with a higher pollen count when compared to the previous study.

  5. Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions.

    PubMed

    Tadić, Jovan M; Michalak, Anna M; Iraci, Laura; Ilić, Velibor; Biraud, Sébastien C; Feldman, Daniel R; Bui, Thaopaul; Johnson, Matthew S; Loewenstein, Max; Jeong, Seongeun; Fischer, Marc L; Yates, Emma L; Ryoo, Ju-Mee

    2017-09-05

    In this study, we explore observational, experimental, methodological, and practical aspects of the flux quantification of greenhouse gases from local point sources by using in situ airborne observations, and suggest a series of conceptual changes to improve flux estimates. We address the major sources of uncertainty reported in previous studies by modifying (1) the shape of the typical flight path, (2) the modeling of covariance and anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight profile offers considerable advantages compared to traditional profiles collected as curtains, although this new approach brings with it the need for a more comprehensive subsequent analysis. The proposed flight pattern design does not require prior knowledge of wind direction and allows for the derivation of an ad hoc empirical correction factor to partially alleviate errors resulting from interpolation and measurement inaccuracies. The modified approach is applied to a use-case for quantifying CH 4 emission from an oil field south of San Ardo, CA, and compared to a bottom-up CH 4 emission estimate.

  6. Modelling airborne gravity data by means of adapted Space-Wise approach

    NASA Astrophysics Data System (ADS)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  7. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  8. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (Hy

  9. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  10. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  11. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  12. Overview of the Airborne Tropical TRopopause EXperiment (ATTREX)

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2015-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two flight series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of super-saturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  13. [Association between airborne pollen distribution and allergic diseases in Beijing urban area].

    PubMed

    Wang, X Y; Tian, Z M; Ning, H Y; Wang, X Y

    2017-05-20

    Objective: The aim of this study is to investigate the impact of airborne pollen in urban Beijing area on the consultation rate of allergic diseases. Method: A modified pollen sampler was used to monitor the distribution of main airborne pollen during Jan 1st 2015 to Dec 31 2015.The consultation rate of allergic rhinitis and asthma was obtained meanwhile among allergy, ENT and pneumology department. Relationship between pollen and consultation rate was analyzed by Pearson index. Result: ①Through the whole year of 2015 the total quantity of pollens amounted to 76164 grains. Two pollen peaks were observed which happened in spring (March 29.7%, April 34.8%) and autumn (August 9.9%, September 10.5%). The main airborne pollens in spring were cypress, sycamore, and poplar, while in autumn were artemisia, Chenopodiaceae, and Humulus. ②The peak consultation season of allergic rhinitis was presented in March to April and August to September with a positive correlation between allergy and ENT department ( r =0.625, P <0.05). Consultation peak of asthma was observed in allergy department but not pneumology department. ③Allergic rhinitis and asthma consultation rate was higher in autumn than spring while the pollen distribution was the opposite. No correlation was found between consultation rate and pollen distribution P >0.05. Conclusion: The airborne pollen distribution was in accordance with consultation rate in allergy department. The pollen count in spring was higher than autumn in Beijing urban area with a consultation peak in autumn inversely. This indicates a higher sensitization ability of autumn pollen compared with spring pollen. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  14. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  15. Connecting white light to in situ observations of 22 coronal mass ejections from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Moestl, C.; Amla, K.; Farrugia, C. J.; Hall, J. R.; Liewer, P. C.; De Jong, E.; Colaninno, R. C.; Vourlidas, A.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V.; Davies, J.; Lugaz, N.; Liu, Y. D.; McEnulty, T.; Luhmann, J. G.; Galvin, A. B.

    2013-12-01

    We study the feasibility of using a Heliospheric Imager (HI) instrument, such as STEREO/HI, for unambiguously connecting remote images to in situ observations of coronal mass ejection (CMEs). Our goal is to develop and test methods to predict CME parameters from heliospheric images, but our dataset can actually be used to benchmark any ICME propagation model. The results are of interest concerning future missions such as Solar Orbiter, or a dedicated space weather mission at the Sun-Earth L5 point (e.g. EASCO mission concept). We compare the predictions for speed and arrival time for 22 CME events (between 2008-2012), each observed remotely by one STEREO spacecraft, to the interplanetary coronal mass ejection (ICME) speed and arrival time observed at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). We use forward modeling for STEREO-COR2, and geometrical models for STEREO-HII, assuming different CME front shapes (Fixed-Phi, Harmonic Mean, Self-similar expansion), and fit them to the CME time-elongation functions with the SolarSoft SATPLOT tool, assuming constant CME speed and direction. The arrival times derived from imaging match the in situ ones +/- 8 hours, and speeds are consistent within +/-300 km/s, including CME apex/flank effects. We find no preference in the predictive capability for any of the 3 geometries used on the full dataset, consisting of front- and backsided, slow and fast CMEs (up to 2700 km/s). We search for new empirical relations between the predicted and observed speeds and arrival times, enhancing the HI predictive capabilities. Additionally, for very fast and back-sided CMEs, strong differences between the results of the HI models arise, consistent with theoretical expectations by Lugaz and Kintner (2013, Solar Physics). This work has received funding from the European Commission FP7 Project COMESEP (263252).

  16. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project.

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine

    2015-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  17. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    DOE PAGES

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; ...

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently undermore » review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.« less

  18. In situ nanoscale observations of gypsum dissolution by digital holographic microscopy.

    PubMed

    Feng, Pan; Brand, Alexander S; Chen, Lei; Bullard, Jeffrey W

    2017-06-01

    Recent topography measurements of gypsum dissolution have not reported the absolute dissolution rates, but instead focus on the rates of formation and growth of etch pits. In this study, the in situ absolute retreat rates of gypsum (010) cleavage surfaces at etch pits, at cleavage steps, and at apparently defect-free portions of the surface are measured in flowing water by reflection digital holographic microscopy. Observations made on randomly sampled fields of view on seven different cleavage surfaces reveal a range of local dissolution rates, the local rate being determined by the topographical features at which material is removed. Four characteristic types of topographical activity are observed: 1) smooth regions, free of etch pits or other noticeable defects, where dissolution rates are relatively low; 2) shallow, wide etch pits bounded by faceted walls which grow gradually at rates somewhat greater than in smooth regions; 3) narrow, deep etch pits which form and grow throughout the observation period at rates that exceed those at the shallow etch pits; and 4) relatively few, submicrometer cleavage steps which move in a wave-like manner and yield local dissolution fluxes that are about five times greater than at etch pits. Molar dissolution rates at all topographical features except submicrometer steps can be aggregated into a continuous, mildly bimodal distribution with a mean of 3.0 µmolm -2 s -1 and a standard deviation of 0.7 µmolm -2 s -1 .

  19. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  20. Airborne Nanostructured Particles and Occupational Health

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  1. Specific findings on ice crystal microphysical properties from in-situ observation

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2017-04-01

    This study focuses on microphysical properties of ice particles populating high ice water content areas in Mesoscale Convective Systems (MCS). These clouds have been extensively sampled during the High Altitude Ice Crystal - High Ice Water Content international projects (HAIC-HIWC, Dezitter et al. 2013, Strapp et al. 2015) with the objective of characterizing ice particle properties such as size distribution, radar reflectivity and ice water content. The in-situ data collected during these campaigns at different temperature levels and in different type of MCS (oceanic, continental) make the HAIC-HIWC data set a unique opportunity to study ice particle microphysical properties. Recently, a new approach to retrieve ice particle mass from in-situ measurements has been developed: a forward model that relates ice particles' mass to Particle Size Distribution (PSD) and Ice Water Content (IWC) is formulated as a linear system of equations and the retrieval process consists in solving the inverse problem with numerical optimization tools (Coutris et al. 2016). In this study, this new method is applied to HAIC-HIWC data set and main outcomes are discussed. First, the method is compared to a classical power-law based method using data from one single flight performed in Darwin area on February, 7th 2014. The observed differences in retrieved quantities such as ice particle mass, ice water content or median mass diameter, highlight the potential benefit of abandoning the power law simplistic assumption. The method is then applied to data measured at different cloud temperatures ranging from -40°C to -10°C during several flights of both Darwin 2014 and Cayenne 2015 campaigns. Specific findings about ice microphysical properties such as variations of effective density with particle size and the influence of cloud temperature on particle effective density are presented.

  2. Precipitation characteristics in tropical Africa using satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.

    2017-12-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  3. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2018-05-01

    The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [<2.5 μm], PM 10 [<10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P < 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and

  4. High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations

    NASA Technical Reports Server (NTRS)

    Burchill, J. K.; Clemmons, J. H.; Knudsen, D. J.; Larsen, M.; Nicolls, M. J.; Pfaff, R. F.; Rowland, D.; Sangalli, L.

    2012-01-01

    We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling.

  5. Three-dimensional feature extraction and geometric mappings for improved parameter estimation in forested terrain using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Lee, Heezin

    Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the

  6. Numerical simulations of tropical cyclones with assimilation of satellite, radar and in-situ observations: lessons learned from recent field programs and real-time experimental forecasts

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, L.

    2010-12-01

    The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.

  7. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  8. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  9. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio

  10. Unintended and in situ amorphisation of pharmaceuticals.

    PubMed

    Priemel, P A; Grohganz, H; Rades, T

    2016-05-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Airborne Observations and Satellite Validation: INTEX-A Experience and INTEX-B Plans

    NASA Technical Reports Server (NTRS)

    Crawford, James H.; Singh, Hanwant B.; Brune, William H.; Jacob, Daniel J.

    2005-01-01

    Intercontinental Chemical Transport Experiment (INTEX; http://cloudl.arc.nasa.gov) is an ongoing two-phase integrated atmospheric field experiment being performed over North America (NA). Its first phase (INTEX-A) was performed in the summer of 2004 and the second phase (INTEX-B) is planned for the early spring of 2006. The main goal of INTEX-NA is to understand the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and to assess their impact on air quality and climate. Central to achieving this goal is the need to relate space-based observations with those from airborne and surface platforms. During INTEX-A, NASA s DC-8 was joined by some dozen other aircraft from a large number of European and North American partners to focus on the outflow of pollution from NA to the Atlantic. Several instances of Asian pollution over NA were also encountered. INTEX-A flight planning extensively relied on satellite observations and in turn Satellite validation (Terra, Aqua, and Envisat) was given high priority. Over 20 validation profiles were successfully carried out. DC-8 sampling of smoke from Alaskan fires and formaldehyde over forested regions, and simultaneous satellite observations of these provided excellent opportunities for the interplay of these platforms. The planning for INTEX-5 is currently underway, and a vast majority of "standard" and "research" products to be retrieved from Aura instruments will be measured during INTEX-B throughout the troposphere. INTEX-B will focus on the inflow of pollution from Asia to North America and validation of satellite observations with emphasis on Aura. Several national and international partners are expected to coordinate activities with INTEX-B, and we expect its scope to expand in the coming months. An important new development involves partnership with an NSF-sponsored campaign called MIRAGE (Megacity Impacts on Regional and Global Environments- Mexico City Pollution Outflow Field

  12. Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent.

    PubMed

    Lang, M; Vain, A; Bunce, R G H; Jongman, R H G; Raet, J; Sepp, K; Kuusemets, V; Kikas, T; Liba, N

    2015-03-01

    Habitat surveillance and subsequent monitoring at a national level is usually carried out by recording data from in situ sample sites located according to predefined strata. This paper describes the application of remote sensing to the extension of such field data recorded in 1-km squares to adjacent squares, in order to increase sample number without further field visits. Habitats were mapped in eight central squares in northeast Estonia in 2010 using a standardized recording procedure. Around one of the squares, a special study site was established which consisted of the central square and eight surrounding squares. A Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image was used for correlation with in situ data. An airborne light detection and ranging (lidar) vegetation height map was also included in the classification. A series of tests were carried out by including the lidar data and contrasting analytical techniques, which are described in detail in the paper. Training accuracy in the central square varied from 75 to 100 %. In the extrapolation procedure to the surrounding squares, accuracy varied from 53.1 to 63.1 %, which improved by 10 % with the inclusion of lidar data. The reasons for this relatively low classification accuracy were mainly inherent variability in the spectral signatures of habitats but also differences between the dates of imagery acquisition and field sampling. Improvements could therefore be made by better synchronization of the field survey and image acquisition as well as by dividing general habitat categories (GHCs) into units which are more likely to have similar spectral signatures. However, the increase in the number of sample kilometre squares compensates for the loss of accuracy in the measurements of individual squares. The methodology can be applied in other studies as the procedures used are readily available.

  13. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  14. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  15. NOAA activities in support of in situ validation observations for satellite ocean color products and related ocean science research

    NASA Astrophysics Data System (ADS)

    Lance, V. P.; DiGiacomo, P. M.; Ondrusek, M.; Stengel, E.; Soracco, M.; Wang, M.

    2016-02-01

    The NOAA/STAR ocean color program is focused on "end-to-end" production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, "fit for purpose" ocean color products that support users and applications in all NOAA line offices, as well as external (both applied and research) users. The first NOAA/OMAO (Office of Marine and Aviation Operations) sponsored research cruise dedicated to VIIRS SNPP validation was completed aboard the NOAA Ship Nancy Foster in November 2014. The goals and objectives of the 2014 cruise are highlighted in the recently published NOAA/NESDIS Technical Report. A second dedicated validation cruise is planned for December 2015 and will have been completed by the time of this meeting. The goals and objectives of the 2015 cruise will be discussed in the presentation. Participants and observations made will be reported. The NOAA Ocean Color Calibration/Validation (Cal/Val) team also works collaboratively with others programs. A recent collaboration with the NOAA Ocean Acidification program on the East Coast Ocean Acidification (ECOA) cruise during June-July 2015, where biogeochemical and optical measurements were made together, allows for the leveraging of in situ observations for satellite validation and for their use in the development of future ocean acidification satellite products. Datasets from these cruises will be formally archived at NOAA and Digital Object Identifier (DOI) numbers will be assigned. In addition, the NOAA Coast/OceanWatch Program is working to establish a searchable database. The beta version will begin with cruise data and additional in situ calibration/validation related data collected by the NOAA Ocean Color Cal/Val team members. A more comprehensive searchable NOAA database, with contributions from other NOAA ocean observation platforms and cruise collaborations is envisioned. Progress on these activities will be reported.

  16. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  17. In situ TEM observation of preferential amorphization in single crystal Si nanowire

    NASA Astrophysics Data System (ADS)

    Su, Jiangbin; Zhu, Xianfang

    2018-06-01

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  18. In situ TEM observation of preferential amorphization in single crystal Si nanowire.

    PubMed

    Su, Jiangbin; Zhu, Xianfang

    2018-06-08

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  19. Mesures spectroscopiques de constituants et de polluants atmosphériques par techniques in situ et à distance, au sol ou embarquéesSpectroscopic measurements of atmospheric constituents and pollutants by in situ and remote techniques from the ground and in flight

    NASA Astrophysics Data System (ADS)

    Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao

    2001-09-01

    Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.

  20. Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.

  1. Smoke Over Haze: Comparative Analysis of Satellite, Surface Radiometer and Airborne In-Situ Measurements of Aerosol Optical Properties and Radiative Forcing Over the Eastern US

    NASA Astrophysics Data System (ADS)

    vant-Hull, B.; Li, Z.; Taubman, B.; Marufu, L.; Levy, R.; Chang, F.; Doddridge, B.; Dickerson, R.

    2004-12-01

    In July 2002 Canadian forest fires produced a major smoke episode that blanketed the U.S. East Coast. Properties of the smoke aerosol were measured in-situ from aircraft, complementing operational AERONET and MODIS remote sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in-situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2% to 16% lower than those directly measured by AERONET. The use of in-situ derived optical properties resulted in optical depths 22% to 43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in-situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and TOA. Comparisons to surface (SurfRad and ISIS) and to satellite (CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET derived optical properties produced better fits to optical depth measurements, while in-situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.

  2. Data-driven fault mechanics: Inferring fault hydro-mechanical properties from in situ observations of injection-induced aseismic slip

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Viesca, R. C.

    2017-12-01

    In the absence of in situ field-scale observations of quantities such as fault slip, shear stress and pore pressure, observational constraints on models of fault slip have mostly been limited to laboratory and/or remote observations. Recent controlled fluid-injection experiments on well-instrumented faults fill this gap by simultaneously monitoring fault slip and pore pressure evolution in situ [Gugleilmi et al., 2015]. Such experiments can reveal interesting fault behavior, e.g., Gugleilmi et al. report fluid-activated aseismic slip followed only subsequently by the onset of micro-seismicity. We show that the Gugleilmi et al. dataset can be used to constrain the hydro-mechanical model parameters of a fluid-activated expanding shear rupture within a Bayesian framework. We assume that (1) pore-pressure diffuses radially outward (from the injection well) within a permeable pathway along the fault bounded by a narrow damage zone about the principal slip surface; (2) pore-pressure increase ativates slip on a pre-stressed planar fault due to reduction in frictional strength (expressed as a constant friction coefficient times the effective normal stress). Owing to efficient, parallel, numerical solutions to the axisymmetric fluid-diffusion and crack problems (under the imposed history of injection), we are able to jointly fit the observed history of pore-pressure and slip using an adaptive Monte Carlo technique. Our hydrological model provides an excellent fit to the pore-pressure data without requiring any statistically significant permeability enhancement due to the onset of slip. Further, for realistic elastic properties of the fault, the crack model fits both the onset of slip and its early time evolution reasonably well. However, our model requires unrealistic fault properties to fit the marked acceleration of slip observed later in the experiment (coinciding with the triggering of microseismicity). Therefore, besides producing meaningful and internally consistent

  3. In situ correlative measurements for the ultraviolet differential absorption lidar and the high spectral resolution lidar air quality remote sensors: 1980 PEPE/NEROS program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.

    1981-01-01

    In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.

  4. Fast in-situ measurements of glyoxal (CHOCHO) and nitrous acid (HONO) in northern Chinese plane during CAREBEIJING - NCP2014

    NASA Astrophysics Data System (ADS)

    Min, K. E.; Dube, W. P.; Washenfelder, R. A.; Langford, A. O.; Brown, S. S.; Broch, S.; Fuchs, H.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Hu, M.; Huey, L. G.; Kubik, K.; Li, X.; Liu, X.; Lu, K.; Rohrer, F.; Shao, M.; Sjostedt, S. J.; Tan, Z.; Zhu, T.; Wahner, A.; Wang, B.; Wang, M.; Wang, Y.; Zeng, L.; Zhang, Y.

    2014-12-01

    The Northern China Plain has experienced visibility degradation and detrimental health impacts due to aerosol and photochemical pollution. To examine these air quality issues, CAREBEIJING-NCP2014 (Care Beijing - Northern China Plain 2014) was held in WangDu, Hebei province, China from 6 June to 15 July 2014. We deployed our newly developed instrument, ACES (Airborne Cavity Enhanced Spectrometer), for high time resolution in-situ measurement of glyoxal (CHOCHO), nitrous acid (HONO) and other trace gases (NO2, H2O) to investigate mechanisms of oxidation processes and secondary organic aerosol (SOA) formation. The in situ measurements of CHOCHO provide observational constraints on secondary organic aerosol formation and oxidation processes, since this molecule has been proposed to play a crucial role in forming aerosol due to its high water solubility, isomerization, and abundant production from the oxidation of many different volatile organic compounds (VOCs). A box model analysis incorporating secondary glyoxal sources from VOC oxidation and sinks to OH reaction, photolysis and heterogeneous uptake will be used to determine a budget and potential for SOA formation. This work was supported by the National Natural Science Foundation of China (21190052), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05010500) and the U.S. National Science Foundation Atmospheric (AGS-1405805).

  5. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  6. Assessment of airborne bacteria in selected occupational environments in Quezon City, Philippines.

    PubMed

    Rendon, Rhoshela Vi C; Garcia, Bea Clarise B; Vital, Pierangeli G

    2017-05-04

    Exposure to bioaerosols has been associated with health deterioration among workers in several occupational environments. This highlights the need to study the microbiological quality of air of workplaces as no such study has been conducted yet in the Philippines. To detect and characterize the culturable mesophilic airborne bacteria in selected occupational environments we used passive sedimentation technique. It was observed that the number of colony-forming units was highest in junk shop, followed by the light railway transit station and last the office. By contrast, the bacterial composition was similar in all sites: Gram-positive cocci > Gram-positive bacilli > Gram-negative bacteria. Staphylococcus aureus and Bacillus spp. were also detected in all sites. These findings suggest that the presence of airborne bacteria may be a potential health hazard in urban occupational environments in the Philippines.

  7. Examining global extreme sea level variations on the coast from in-situ and remote observations

    NASA Astrophysics Data System (ADS)

    Menendez, Melisa; Benkler, Anna S.

    2017-04-01

    The estimation of extreme water level values on the coast is a requirement for a wide range of engineering and coastal management applications. In addition, climate variations of extreme sea levels on the coastal area result from a complex interacting of oceanic, atmospheric and terrestrial processes across a wide range of spatial and temporal scales. In this study, variations of extreme sea level return values are investigated from two available sources of information: in-situ tide-gauge records and satellite altimetry data. Long time series of sea level from tide-gauge records are the most valuable observations since they directly measure water level in a specific coastal location. They have however a number of sources of in-homogeneities that may affect the climate description of extremes when this data source is used. Among others, the presence of gaps, historical time in-homogeneities and jumps in the mean sea level signal are factors that can provide uncertainty in the characterization of the extreme sea level behaviour. Moreover, long records from tide-gauges are sparse and there are many coastal areas worldwide without in-situ available information. On the other hand, with the accumulating altimeter records of several satellite missions from the 1990s, approaching 25 recorded years at the time of writing, it is becoming possible the analysis of extreme sea level events from this data source. Aside the well-known issue of altimeter measurements very close to the coast (mainly due to corruption by land, wet troposphere path delay errors and local tide effects on the coastal area), there are other aspects that have to be considered when sea surface height values estimated from satellite are going to be used in a statistical extreme model, such as the use of a multi-mission product to get long observed periods and the selection of the maxima sample, since altimeter observations do not provide values uniform in time and space. Here, we have compared the extreme

  8. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  9. Characterizing the Asian Tropopause Aerosol Layer using in situ balloon measurements: the BATAL campaigns of 2014-2017

    NASA Astrophysics Data System (ADS)

    Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.

    2017-12-01

    We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.

  10. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  11. Airborne Sea-Surface Topography in an Absolute Reference Frame

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Childers, V. A.; Jacobs, G.; Blaha, J.

    2003-12-01

    Highly dynamic coastal ocean processes occur at temporal and spatial scales that cannot be captured by the present generation of satellite altimeters. Space-borne gravity missions such as GRACE also provide time-varying gravity and a geoidal msl reference surface at resolution that is too coarse for many coastal applications. The Naval Research Laboratory and the Naval Oceanographic Office have been testing the application of airborne measurement techniques, gravity and altimetry, to determine sea-surface height and height anomaly at the short scales required for littoral regions. We have developed a precise local gravimetric geoid over a test region in the northern Gulf of Mexico from historical gravity data and recent airborne gravity surveys. The local geoid provides a msl reference surface with a resolution of about 10-15 km and provides a means to connect airborne, satellite and tide-gage observations in an absolute (WGS-84) framework. A series of altimetry reflights over the region with time scales of 1 day to 1 year reveal a highly dynamic environment with coherent and rapidly varying sea-surface height anomalies. AXBT data collected at the same time show apparent correlation with wave-like temperature anomalies propagating up the continental slope of the Desoto Canyon. We present animations of the temporal evolution of the surface topography and water column temperature structure down to the 800 m depth of the AXBT sensors.

  12. Nitrous Oxide (N2O) Emissions from California based on 2010 CalNex Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Miller, S.; Kort, E. A.; Santoni, G. W.; Daube, B.; Commane, R.; Angevine, W. M.; Ryerson, T. B.; Trainer, M.; Andrews, A. E.; Nehrkorn, T.; Tian, H.; Wofsy, S. C.

    2012-12-01

    Nitrous oxide (N2O) is an important gas for climate and for stratospheric chemistry, with an atmospheric lifetime exceeding 100 years. Global concentrations have increased steadily since the 18th century, apparently due to human-associated emissions, principally from application of nitrogen fertilizers. However, quantitative studies of agricultural emissions at large spatial scales are lacking, inhibited by the difficulty of measuring small enhancements of atmospheric concentrations. Here we derive regional emission rates for N2O in the Central Valley of California, based on analysis of in-situ airborne atmospheric observations collected using a quantum cascade laser spectrometer. The data were obtained on board the NOAA P-3 research aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) program in May and June, 2010. We coupled WRF (Weather Research and Forecasting) model to STILT (Stochastic Time-Inverted Lagrangian Transport) to link our in-situ observations to surface emissions, and then used a variety of statistical methods to identify source areas and to extract optimized emission rates from the inversion. Our results support the view that fertilizer application is the largest source of N2O in the Central Valley. But the spatial distribution of derived surface emissions, based on California land use and activity maps, was very different than indicated in the leading emissions inventory (EDGAR 4.0), and our estimated total emission flux of N2O for California during the study period was 3 - 4 times larger than EDGAR and other inventories.

  13. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  14. A High-Precision, Fast-Response Airborne CO2 Analyzer for In Situ Sampling From the Surface to the Middle Stratosphere

    NASA Technical Reports Server (NTRS)

    Daube, B. C., Jr.; Boering, K. A.; Andrews, Arlyn E.; Wofsy, S. C.

    2001-01-01

    Two in situ CO2 analyzers have been developed for deployment on the NASA ER-2 aircraft and on stratospheric balloons. The ER-2 instrument has had more than 150 flights during 21 deployments from 1992 to 2000, resulting in a dataset with nearly pole-to-pole coverage that includes data from all seasons in both hemispheres except austral summer. In-flight calibrations show that the typical long-term (i.e. flight-to-flight) precision of the instruments is better than plus or minus 0.1 ppmv. The flight standards are traceable to standards held by the Scripps Institute of Oceanography and the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory. The balloon instrument has had 8 balloon flights since September 1996, providing the first in situ observations of CO2 above approx. 21 km. In addition, the balloon instrument has been flown onboard a Cessna Citation II aircraft for sampling between the surface and 10 km. In this paper, the instrumentation and calibration procedures for both instruments are described in detail. An intercomparison of the two instruments during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) project showed that, on average, the instruments agreed to within 0.05 ppmv.

  15. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  16. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    PubMed

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  17. A note on sea level variability at Clipperton Island from GEOSAT and in-situ observations

    NASA Astrophysics Data System (ADS)

    Maul, George A.; Hansen, Donald V.; Bravo, Nicolas J.

    During the 1986-1989 Exact Repeat Mission (ERM) of GEOSAT, in-situ observations of sea level at Clipperton Island (10°N/109°W) and satellite-tracked free-drifting drogued buoys in the eastern tropical Pacific Ocean are concurrently available. A map of the standard deviations of GEOSAT sea surface heights (2.9 years) shows a variance maximum along ˜12°N from Central America, past Clipperton to ˜160°W. Sea floor pressure gauge observations from a shallow (10m depth) site on Clipperton Island and an ERM crossover point in deep water nearby show a correlation of r = 0.76 with a residual of ±6.7 cm RMS. Approximately 17% of the difference (GEOSAT minus sea level) is characterized by a 4 cm amplitude 0° phase annual harmonic, which is probably caused by unaccounted-for tropospheric water vapor affecting the altimeter and/or ERM orbit error removal. Wintertime anticyclonic mesoscale eddies advecting past Clipperton Island each year have GEOSAT sea surface height and in-situ sea level signals of more than 30 cm, some of which are documented by the satellite-tracked drifters. Meridional profiles of the annual harmonic of zonal geostrophic current from GEOSAT and from the drifters both show synchronous maxima in the North Equatorial Countercurrent and the North Equatorial Current. Other Clipperton sea level maxima seen during late spring of each year may involve anticyclonic vortices formed along Central America the previous winter.

  18. Tests of halogen photochemistry using in situ measurements of ClO and BrO in the lower polar stratosphere

    NASA Astrophysics Data System (ADS)

    Avallone, Linnea M.; Toohey, Darin W.

    2001-05-01

    In situ observations of the halogen oxides ClO and BrO made from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) I and II missions are used to test current understanding of photochemical parameters. Measurements of ClO obtained during AASE I in the dark perturbed polar vortex are analyzed with respect to temperature to derive the equilibrium expression for the ClO/Cl2O2 system. Assuming photochemical steady state and complete activation of chlorine (ClO + 2Cl2O2 = Cly), observations of ClO made during AASE II are used to derive the photolysis rate of Cl2O2. The photolysis rate derived from atmospheric observations is compared to J values calculated with a photochemical model and various values for the absorption cross section of Cl2O2. The photolysis rate calculated with the cross section of Huder and DeMore [1995] is shown to be systematically too small, while those of Burkholder et al. [1990] and Cox and Hayman [1988] are too large to be consistent with atmospheric observations. Observations of BrO made during AASE II indicate that our understanding of the inorganic bromine budget in the polar regions is incomplete. A possible role for the adduct BrOOCl is investigated.

  19. Note: A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform.

    PubMed

    Airey, M W; Harrison, R G; Nicoll, K A; Williams, P D; Marlton, G J

    2017-08-01

    A lightweight and low power oscillating microbalance for in situ sampling of atmospheric ice and volcanic ash is described for airborne platforms. Using a freely exposed collecting wire fixed at only one end to a piezo transducer, the instrument collects airborne materials. Accumulated mass is determined from the change in natural frequency of the wire. The piezo transducer is used in a dual mode to both drive and detect the oscillation. Three independent frequency measurement techniques are implemented with an on-board microcontroller: a frequency sweep, a Fourier spectral method, and a phase-locked loop. These showed agreement to ±0.3 Hz for a 0.5 mm diameter collecting wire of 120 mm long, flown to 19 km altitude on a weather balloon. The instrument is well suited to disposable use with meteorological radiosondes, to provide high resolution vertical profiles of mass concentration.

  20. Airborne soil organic particles generated by precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.

    Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less

  1. Airborne Arctic Stratospheric Expedition II: An overview

    NASA Astrophysics Data System (ADS)

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  2. Concentration and trend of 9,10-phenanthrenequinone in airborne particulates collected in Nagasaki city, Japan.

    PubMed

    Kishikawa, Naoya; Nakao, Maiko; Ohba, Yoshihito; Nakashima, Kenichiro; Kuroda, Naotaka

    2006-07-01

    9,10-Phenanthrenequinone (PQ), one of the components of atmospheric pollutants, has potent harmful effects on human health. PQ in airborne particulates collected in Nagasaki city was determined by HPLC with fluorescence derivatization. PQ extracted from airborne particulates using methanol was derivatized with benzaldehyde in the presence of ammonium acetate to give a fluorescent compound. The average concentration (mean+/-SD, n=52) of PQ found in airborne particulates collected from July 1997 to June 1998 was 0.287+/-0.128 ng m-3. Concentrations of PQ in winter were higher than those in summer. In a weekly variation study, PQ concentrations were higher during weekdays and lower at weekend. The levels of PQ were obviously correlated with those of phenanthrene (PH) that is considered as a parent compound of PQ. This observation suggested that PQ was emitted into the atmosphere from the same source as PH, or PQ was converted from PH in the atmosphere.

  3. Combining soundscape analysis with in situ observations and oceanographic data for future ecosystem evaluation techniques.

    NASA Astrophysics Data System (ADS)

    Freeman, S. E.; Freeman, L. A.

    2016-02-01

    Coral reef ecosystems face many anthropogenic threats. There are urgent requirements for improved monitoring and management. Conventional assessment methods using SCUBA are costly and prone to bias and under-sampling. Here, three approaches to understanding coral reef ecology are combined to aid the goal of enhanced passive monitoring in the future: statistical analysis of oceanographic habitats, remote cameras for nocturnal surveys of benthic fauna, and soundscape analysis in the context of oceanographic setting and ecological metrics collected in-situ. Hawaiian reefs from Kure Atoll to the island of Hawaii, an area spanning two oceanographic habitats, are assessed. Multivariate analysis of acoustic, remote camera, and in-situ observational data showed significant differences in more than 20 percent of ecological and acoustic variables when grouped by oceanic regime, suggesting that large-scale oceanography substantially influences local ecological states and associated soundscapes. Acoustic variables further delineated sites by island, suggesting local conditions influence the soundscape to a greater degree. While the number of invertebrates (with an emphasis on crustaceans and echinoderms) imaged using remote cameras correlated with a number of acoustic metrics, an increasingly higher correlation between invertebrate density and spectral level was observed as acoustic bands increased in frequency from 2 to 20 kHz. In turn, correlation was also observed between the number of predatory fish and sound levels above 2 kHz, suggesting a connection between the number of invertebrates, sound levels at higher frequencies, and the presence of their predators. Comparisons between sound recordings and diversity indices calculated from observational and remote camera data indicate that greater diversity in fishes and benthic invertebrates is associated with a larger change in sound levels between day and night. Interdisciplinary analyses provide a novel view to underwater

  4. Data Quality Assessment of In Situ and Altimeter Observations Through Two-Way Intercomparison Methods

    NASA Astrophysics Data System (ADS)

    Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles

    2013-09-01

    This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.

  5. GEO Carbon and GHG Initiative Task 3: Optimizing in-situ measurements of essential carbon cycle variables across observational networks

    NASA Astrophysics Data System (ADS)

    Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.

    2017-12-01

    The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.

  6. Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations

    NASA Astrophysics Data System (ADS)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2016-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  7. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  8. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  9. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGES

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  10. Overview of NASA's Observations for Global Air Quality

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2015-12-01

    Observations of pollutants are central to the study of air quality. Much focus has been placed on local-scale observations that can help specific geographic areas document their air quality issues, plan abatement strategies, and understand potential impacts. In addition, long-range atmospheric transport of pollutants can cause downwind regions to not meet attainment standards. Satellite observations have shed significant light on air quality from local to regional to global scales, especially for pollutants such as ozone, aerosols, carbon monoxide, sulfur dioxide, and nitrogen dioxide. These observations have made use of multiple techniques and in some cases multiple satellite sensors. The satellite observations are complemented by surface observations, as well as atmospheric (in situ) observations typically made as part of focused airborne field campaigns. The synergy between satellite observations and field campaigns has been an important theme for recent and upcoming activities and plans. In this talk, a review of NASA's investments in observations relevant to global air quality will be presented, with examples given for a range of pollutants and measurement approaches covering the last twenty-five years. These investments have helped build national and international collaborations such that the global satellite community is now preparing to deploy a constellation of satellites that together will provide fundamental advances in global observations for air quality.

  11. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  12. Laser induced fluorescence emission (L.I.F.E.): in situ and remote detection of life in Antarctic and Alaskan ice

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Michael C.; Sattler, Birgit

    2009-08-01

    Once thought to be a barren desert devoid of life, it now appears that Earth's cryosphere is an ice ecosystem harbouring a rich community of metabolically active microorganisms inhabiting ice, snow, water, and lithic environments. The ability to rapidly survey this ecosystem during in situ and orbital missions is of considerable interest for monitoring Earth's carbon budget and for efficiently searching for life on Mars or any exoplanet with an analogous cryosphere. Laser induced fluorescence emission (L.I.F.E.) imaging and spectroscopy using excitation in ultraviolet (UV) wavelengths have been proposed as non-destructive astrobiological survey tools to search for amino acids, nucleic acids, microbial life, and polycyclic aromatic hydrocarbons (PAHs) deep in the Mars regolith. However, the technique is easily adapted to search for larger, more complex biomolecular targets using longer wavelength sources. Of particular interest is the ability for excitation at blue, green, and red wavelengths to produce visible and near infrared fluorescence of photosynthetic pigments in cyanobacteria-dominated microbial communities populating the ice of alpine, Arctic, and Antarctic lakes, glaciers, ice sheets, and even the supercooled water-ice droplets of clouds. During the Tawani 2008 International Antarctic Expedition we tested the in situ use of the technique as part of a field campaign in the Dry Valleys of Schirmacher Oasis and Lake Untersee, Queen Maud Land, Antarctica. In the spring of 2009, we performed airborne remote sensing tests of the technology in Alaska. In this paper we review our in situ laser detection experiments and present for the first time preliminary results on our efforts to detect cryosphere L.I.F.E. from an airborne platform.

  13. Analysis of in situ measurements of cirrus anvil outflow dynamics

    NASA Astrophysics Data System (ADS)

    Lederman, J. I.; Whiteway, J. A.

    2012-12-01

    The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.

  14. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  15. In Situ Verification of the NASA D3R's Hydrometeor Classification and Rainfall Products during the OLYMPEx Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chandra, C. V.

    2017-12-01

    As a ground validation (GV) radar for the Global Precipitation Measurement (GPM) satellite mission, the NASA dual-frequency, dual-polarization, Doppler radar (D3R) was deployed just north of Pacific Beach, WA between November 8th, 2015 and January 15th, 2016, as part of the Olympic Mountains Experiment (OLYMPEx). The D3R's observations were coordinated with a diverse array of instruments including the NASA NPOL S-band radar, Autonomous Parsivel Unit (APU) disdrometers, rain gauges, and airborne probe. The Ku- and Ka-band D3R is analogous to the GPM core satellite dual-frequency precipitation radar (DPR), but can provide more detailed insight into the precipitation microphysics through the ground-based dual-frequency dual-polarization observations. Previous studies have revealed that the dual polarization radar can be used to identify different hydrometeor types and their size and shape information. However, most of the previous studies are devoted to S-, C-, and/or X-band frequencies since they are standard operating frequency in many countries. This paper presents a region-based hydrometeor classification methodology applied for the NASA D3R measurements collected during OLYMPEx. This paper also details the differential phase based attenuation correction methodology and rainfall algorithm developed for the D3R. The D3R's hydrometeor classification and rainfall products are evaluated using other remote sensors and in situ measurements. In particular, the derived hydrometeor types are cross compared with collocated S-band products and images collected by the airborne probe. The rainfall performance are assessed using rain gauge and disdrometer observations. Results show that the NASA D3R has great potential for monitoring precipitation microphysics and rainfall estimation, especially light rainfall that is hard to be observed by traditional ground or space based sensors.

  16. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  17. Implementing an integrated in-situ coaching, observational audit, and story-telling intervention to support safe surgery.

    PubMed

    Carthey, Jane; McCormack, Katie; Coombes, Julie; Gilbert, Douglas; Farrar, Daniel

    2016-12-01

    This article describes an intervention that combined in-situ coaching, observational audits and story-telling to educate theatre teams at University College London Hospitals about the Five steps to safer surgery (NPSA 2010). Our philosophy was to educate theatre teams about 'what goes right' (good catches, exemplary leadership etc) as well as 'what could be improved'. Results showed improvements on 'behavioural reliability' metrics, a 68% increase in near miss reporting and a reduction in surgical harm incidents. Copyright the Association for Perioperative Practice.

  18. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  19. Association of Airborne Microorganisms in the Operating Room With Implant Infections: A Randomized Controlled Trial.

    PubMed

    Darouiche, Rabih O; Green, David M; Harrington, Melvyn A; Ehni, Bruce L; Kougias, Panagiotis; Bechara, Carlos F; O'Connor, Daniel P

    2017-01-01

    OBJECTIVE To evaluate the association of airborne colony-forming units (CFU) at incision sites during implantation of prostheses with the incidence of either incisional or prosthesis-related surgical site infections. DESIGN Randomized, controlled trial. SETTING Primary, public institution. PATIENTS Three hundred patients undergoing total hip arthroplasty, instrumented spinal procedures, or vascular bypass graft implantation. METHODS Patients were randomly assigned in a 1:1 ratio to either the intervention group or the control group. A novel device (Air Barrier System), previously shown to reduce airborne CFU at incision sites, was utilized in the intervention group. Procedures assigned to the control group were performed without the device, under routine operating room atmospheric conditions. Patients were followed up for 12 months to determine whether airborne CFU levels at the incision sites predicted the incidence of incisional or prosthesis-related infection. RESULTS Data were available for 294 patients, 148 in the intervention group and 146 in the control group. CFU density at the incision site was significantly lower in the intervention group than in the control group (P<.001). The density of airborne CFU at the incision site during the procedures was significantly related to the incidence of implant infection (P=.021). Airborne CFU densities were 4 times greater in procedures with implant infection versus no implant infection. All 4 of the observed prosthesis infections occurred in the control group. CONCLUSION Reduction of airborne CFU specifically at the incision site during operations may be an effective strategy to reduce prosthesis-related infections. clinicaltrials.gov Identifier: NCT01610271 Infect Control Hosp Epidemiol 2016;1-8.

  20. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolich, George; Shadel, Craig; Chapman, Jenny

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.« less

  1. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  2. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  3. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  4. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  5. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  6. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  8. AirSWOT: A New Airborne Instrument for Hydrology

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Behar, A.; Carswell, J.; Chu, V.; Farquharson, G.; Gleason, C. J.; Hensley, S.; Minear, J. T.; Moller, D.; Pavelsky, T.; Perkovic-Martin, D.; Pitcher, L. H.; Sanchez-Barmetty, M.; Smith, L. C.; Wu, X.

    2013-12-01

    The proposed NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) Mission would provide the first global inventory of storage change in fresh water bodies and river discharge. The SWOT mission would produce elevation maps and imagery of all surface water bodies using Ka-band SAR interferometry. From these data, estimates of surface water extent, stage and slope could be derived, and, in theory, from their temporal variability, river bathymetry and Manning's roughness coefficient can also be estimated, enabling estimates of river discharge. Although significant modeling work and some empirical measurements have been used to validate the feasibility of turning SWOT observables into hydrologic measurements of storage change and discharge, no data have been collected using SWOT-like measurements. To overcome this limitation, a new airborne interferometric system, called AirSWOT, has been developed by Remote Sensing Solutions and integrated, tested, and deployed on the NASA Dryden King Air B200 by the Jet Propulsion Laboratory. As part of the validation of AirSWOT, four data collections were devoted to hydrology targets. The first hydrology target consisted of a large reach of the Sacramento River north of Sacramento, CA. The reach was imaged on consecutive days, coincident with a 1,000 cubic-feet/second release from a dam. Ground data were obtained from HOBO water level loggers and gauges deployed by the USGS. An innovative GPS drifter capable of providing centimeter-level elevation measurements and river slopes was developed by UCLA/JPL and deployed along a significant fraction of the reach. The second target was the Sacramento-San Joaquin Delta region, imaged at low and high tides during the same day. For both targets, APL-UW deployed an airborne instrument suite consisting of an along-track interferometer to measure water surface velocities, a thermal infrared camera to validate measurements of river width, and an experimental lidar system. Finally, a team from

  9. Methane emissions from Alaska in 2012 from CARVE airborne observations

    PubMed Central

    Chang, Rachel Y.-W.; Miller, Charles E.; Dinardo, Steven J.; Karion, Anna; Sweeney, Colm; Daube, Bruce C.; Henderson, John M.; Mountain, Marikate E.; Eluszkiewicz, Janusz; Miller, John B.; Bruhwiler, Lori M. P.; Wofsy, Steven C.

    2014-01-01

    We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m−2⋅d−1 averaged over all of Alaska, corresponding to fluxes from wetlands of 56−13+22 mg CH4⋅m−2⋅d−1 if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared. PMID:25385648

  10. Methane emissions from Alaska in 2012 from CARVE airborne observations.

    PubMed

    Chang, Rachel Y-W; Miller, Charles E; Dinardo, Steven J; Karion, Anna; Sweeney, Colm; Daube, Bruce C; Henderson, John M; Mountain, Marikate E; Eluszkiewicz, Janusz; Miller, John B; Bruhwiler, Lori M P; Wofsy, Steven C

    2014-11-25

    We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m(-2)⋅d(-1) averaged over all of Alaska, corresponding to fluxes from wetlands of 56(-13)(+22) mg CH4⋅m(-2)⋅d(-1) if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared.

  11. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  12. In Situ Observations of Harmonic Alfvén Waves and Associated Heavy Ion Heating

    NASA Astrophysics Data System (ADS)

    Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2018-06-01

    Resonant ion heating by high-frequency Alfvén waves has long been believed to be the primary dissipation mechanism for solar coronal heating, and these high-frequency Alfvén waves are considered to be generated via cascade from low-frequency Alfvén waves. In this study, we report an unusual harmonic Alfvén event from in situ observations by the Van Allen Probes in the magnetosphere, having an environment similar to that in the solar corona. The harmonic Alfvén waves, which propagate almost along the wave vector of the fundamental waves, are considered to be generated due to the interaction between quasi-parallel Alfvén waves and plasma density fluctuations with almost identical frequency. These high-frequency harmonic Alfvén waves can then cyclotron resonantly heat the heavy ions. Our observations provide an important insight into solar corona heating by Alfvén waves.

  13. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  14. Recent improvements in hydrometeor sampling using airborne holography

    NASA Astrophysics Data System (ADS)

    Stith, J. L.; Bansemer, A.; Glienke, S.; Shaw, R. A.; Aquino, J.; Fugal, J. P.

    2017-12-01

    Airborne digital holography provides a new technique to study the sizes, shapes and locations of hydrometeors. Airborne holographic cameras are able to capture more optical information than traditional airborne hydrometeor instruments, which allows for more detailed information, such as the location and shape of individual hydrometeors over a relatively wide range of sizes. These cameras can be housed in an anti-shattering probe arm configuration, which minimizes the effects of probe tip shattering. Holographic imagery, with its three dimensional view of hydrometeor spacing, is also well suited to detecting shattering events when present. A major problem with digital holographic techniques has been the amount of machine time and human analysis involved in analyzing holographic data. Here, we present some recent examples showing how holographic analysis can improve our measurements of liquid and ice particles and we describe a format we have developed for routine archiving of Holographic data, so that processed results can be utilized more routinely by a wider group of investigators. We present a side-by-side comparison of the imagery obtained from holographic reconstruction of ice particles from a holographic camera (HOLODEC) with imagery from a 3VCPI instrument, which utilizes a tube-based sampling geometry. Both instruments were carried on the NSF/NCAR GV aircraft. In a second application of holographic imaging, we compare measurements of cloud droplets from a Cloud Droplet Probe (CDP) with simultaneous measurements from HOLODEC. In some cloud regions the CDP data exhibits a bimodal size distribution, while the more local data from HOLODEC suggests that two mono-modal size distributions are present in the cloud and that the bimodality observed in the CDP is due to the averaging length. Thus, the holographic techniques have the potential to improve our understanding of the warm rain process in future airborne field campaigns. The development of this instrument has

  15. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  16. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  17. In situ observation of containerless protein crystallization by magnetically levitating crystal growth

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanimoto, Yoshifumi; Udagawa, Chikako; Morimoto, Shotaro; Hagiwara, Masayuki

    2016-03-01

    We report on the results of the crystal growth of hen-egg lysozyme by magnetically levitating crystals in a small amount of buffer solution. The concentrations of lysozyme and the precipitating agent (gadolinium chloride) were 6.53 wt % and 0.362 mol/kg, respectively. Gadolinium chloride, which induces the magneto-Archimedes effect, was utilized to levitate the crystals with Bz · (dBz/dz) = 22.46 T2/m, where Bz is the vertical (z) component of the magnetic flux density vector. Although the collected crystals were small, we succeeded in maintaining the levitation of the crystals into a specific place in the liquid phase from the beginning of nucleation. In situ observation revealed that a state of pseudo-weightlessness was generated in the vicinity of the magnet bore edge, and small crystals were concentrated inside the domain moving along an hourglass-shaped surface. We found by numerical computations that the formation of the hourglass-shaped domain is attributable to the radial component of the magnetic force.

  18. Fabrication and In Situ Testing of Scalable Nitrate-Selective Electrodes for Distributed Observations

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Rat'ko, A.; Dietrich, H.; Park, Y.; Wijsboom, Y. H.; Bendikov, M.

    2008-12-01

    Inorganic nitrogen (nitrate (NO3-) and ammonium (NH+)) from chemical fertilizer and livestock waste is a major source of pollution in groundwater, surface water and the air. While some sources of these chemicals, such as waste lagoons, are well-defined, their application as fertilizer has the potential to create distributed or non-point source pollution problems. Scalable nitrate sensors (small and inexpensive) would enable us to better assess non-point source pollution processes in agronomic soils, groundwater and rivers subject to non-point source inputs. This work describes the fabrication and testing of inexpensive PVC-membrane- based ion selective electrodes (ISEs) for monitoring nitrate levels in soil water environments. ISE-based sensors have the advantages of being easy to fabricate and use, but suffer several shortcomings, including limited sensitivity, poor precision, and calibration drift. However, modern materials have begun to yield more robust ISE types in laboratory settings. This work emphasizes the in situ behavior of commercial and fabricated sensors in soils subject to irrigation with dairy manure water. Results are presented in the context of deployment techniques (in situ versus soil lysimeters), temperature compensation, and uncertainty analysis. Observed temporal responses of the nitrate sensors exhibited diurnal cycling with elevated nitrate levels at night and depressed levels during the day. Conventional samples collected via lysimeters validated this response. It is concluded that while modern ISEs are not yet ready for long-term, unattended deployment, short-term installations (on the order of 2 to 4 days) are viable and may provide valuable insights into nitrogen dynamics in complex soil systems.

  19. The First Four Year's of Orthoimages from NEON's Airborne Observation Platform

    NASA Astrophysics Data System (ADS)

    Adler, J.; Gallery, W. O.

    2016-12-01

    The National Ecological Observatory Network (NEON), funded by the National Science Foundation (NSF), has been collecting orthorectified images in conjunction with lidar and spectrometer data for the past four years. The NEON project breaks up the United States into 20 regional areas from Puerto Rico to the North Slope of Alaska, with each region (Domain) typically having three specific sites of interest. Each site spans between 100km2 - 720km2 in area. Currently there are over 125,000 orthorectified images online from 6 Domains for the public and scientific community to freely download. These images are expected to assist researchers in many areas including vegetation cover, dominant vegetation type, and environmental change detection. In 2016 the NEON Airborne Observation Platform (AOP) group has collected digital imagery at 8.5 cm resolution over approximately 30 sites, for a total of 60,000 orthoimages. This presentation details the current status of the surveys conducted to date, and describes the scientific details of how NEON publishes Level 1 and Level 3 products. In particular, the onboard lidar system's contribution to the orthorectification process is outlined, in addition to the routines utilized for correcting white balance and exposure. Additionally, key flight parameters needed to produce NEON's complementary data of multi-sensor (camera/lidar/spectrometer) instruments are discussed. Problems with validating the orthoimages with the coarser resolution lidar system are addressed, to include the utilization of ground-truth locations. Lastly, methods to access NEON's publically available 10cm resolution orthoimages (in both individual image format, and in 1km by 1km tiles) are presented. A brief overview of the 2017 field season's nine new sites completes the presentation.

  20. A Quantitative Approach for Collocating NEON's Sensor-Based Ecological Measurements and in-situ Field Sampling and Observations

    NASA Astrophysics Data System (ADS)

    Zulueta, R. C.; Metzger, S.; Ayres, E.; Luo, H.; Meier, C. L.; Barnett, D.; Sanclements, M.; Elmendorf, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale research platform currently in development to assess the causes of ecological change and biological responses to change across a projected 30-year timeframe. A suite of standardized sensor-based measurements (i.e., Terrestrial Instrument System (TIS) measurements) and in-situ field sampling and observations (i.e., Terrestrial Observation System (TOS) activities) will be conducted across 20 ecoclimatic domains in the U.S. where NEON is establishing 60 terrestrial research sites. NEON's TIS measurements and TOS activities are designed to observe the temporal and spatial dynamics of key drivers and ecological processes and responses to change within each of the 60 terrestrial research sites. The TIS measurements are non-destructive and designed to provide in-situ, continuous, and areally integrated observations of the surrounding ecosystem and environment, while TOS sampling and observation activities are designed to encompass a hierarchy of measurable biological states and processes including diversity, abundance, phenology, demography, infectious disease prevalence, ecohydrology, and biogeochemistry. To establish valid relationships between these drivers and site-specific responses, two contradicting requirements must be fulfilled: (i) both types of observations shall be representative of the same ecosystem, and (ii) they shall not significantly influence one another. Here we outline the theoretical background and algorithmic process for determining areas of mutual representativeness and exclusion around NEON's TIS measurements and develop a procedure which quantitatively optimizes this trade-off through: (i) quantifying the source area distributions of TIS measurements, (ii) determining the ratio of user-defined impact threshold to effective impact area for different TOS activities, and (iii) determining the range of feasible distances between TIS locations and TOS activities. This approach