Science.gov

Sample records for airborne ionospheric observatory

  1. Global Ionosphere Radio Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  2. TRIO (Triplet Ionospheric Observatory) Mission

    NASA Astrophysics Data System (ADS)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  3. The Livingston Island Geomagnetic and Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Altadill, David; Marsal, Santiago; Blanch, Estefania; Miquel Torta, J.; Quintana-Seguí, Pere; Germán Solé, J.; Cid, Òscar; José Curto, Juan; Ibáñez, Miguel; Segarra, Antoni; Lluís Pijoan, Joan; Juan, Juan Miguel

    2014-05-01

    The Ebre Observatory Institute manages a geophysical observatory installed at the Spanish Antarctic Station (SAS) Juan Carlos I. It was set up in 1995 and it has been updated yearly by our team throughout several projects carried out since then. Nowadays, it hosts a magnetic station providing 1-second data of the 3 components (X, Y, Z) and the total force (F) during the entire year, and an ionospheric station providing vertical and oblique data during austral summer. This observatory has provided long data series of high scientific value from this remote region of the Earth. They have been used to improve the knowledge of the climate and weather behavior of the geomagnetic field and ionosphere in the area, and to model and expand the capacity of data transmission. This contribution aims to present a brief review of the instruments installed at SAS, the research results obtained from their data, and the developing activities under the current project. Finally, future perspectives are outlined with regard to adapting our geophysical observatory to the evolving needs of observatory practice.

  4. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  5. SOFIA: The Next Generation Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.

    1995-10-01

    The United States and German Space Agencies (NASA and DARA) are collaborating in plans for SOFIA — The Stratospheric Observatory for Infrared Astronomy. It is a 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 45,000 feet. It will permit routine measurement of infrared radiation absorbed by the atmosphere at lower altitudes, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 20 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace. SOFIA will complement the capabilities of other future space missions, and will enable scientists to make observations which would otherwise be made from space.

  6. History of the Juliusruh ionospheric observatory on Rügen

    NASA Astrophysics Data System (ADS)

    Weiß, J.

    2016-02-01

    The history of the Juliusruh ionospheric observatory on Rügen is closely connected to the history of ground-based ionospheric sounding. After a short introduction to the ionospheric research and the sounding technique, the founding of the Juliusruh station in 1954 and its development until today are described. The different methods of ground-based sounding - as far as they apply to Juliusruh - are briefly discussed. The condition of life and work in a small team on the island of Rügen, remote from the respective parent institute, is also the subject of this article, whose author headed Juliusruh Station from 1965 to 2004.

  7. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  8. LISN: A distributed observatory to image and study ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Sheehan, R.; Valladares, C. E.

    2013-05-01

    During nighttime the low-latitude ionosphere commonly develops plasma irregularities and density structures able to disrupt radio wave signals. This interference produces an adverse impact on satellite communication and navigation signals. For example, EM signals originated from satellites can suffer fading as deep as 20 dB even at UHF frequencies. In addition, civil aviation is increasingly dependent upon Global Navigation Satellite Systems and disruption of the navigation capability from ionospheric irregularities poses a clear threat to passengers and crews. To monitor and specify the conditions of the ionosphere over South America, the Low-latitude Ionospheric Sensor Network (LISN) was established as a permanent array of scientific instruments that operate continuously and transmit their observables to a central server in a real-time basis. Presently, the LISN observatory includes 3 different types of instruments: (1) 47 GPS receivers, (2) 5 flux-gate magnetometers and (3) 2 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes. In addition to providing a nowcast of the disturbed state of the ionosphere over South America, LISN permits detailed studies of the initiation and development of plasma irregularities. By using data assimilation and tomography techniques, LISN provides continuous estimates of several important geophysical parameters that are indispensable to a program aimed at forecasting the plasma electrodynamics and the formation of density structures in the low-latitude ionosphere.

  9. NASA’s Sense of Snow: the Airborne Snow Observatory

    NASA Video Gallery

    Water is a critical resource in the western U.S. NASA’s Airborne Snow Observatory is giving California water agencies the first complete measurements of the water available in the Sierra snowpack ...

  10. Ionospheric threats to the integrity of airborne GPS users

    NASA Astrophysics Data System (ADS)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  11. SOFIA's Choice: Scheduling Observations for an Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif; Koga, Dennis (Technical Monitor)

    2002-01-01

    We describe the problem of scheduling observations for an airborne observatory. The problem is more complex than traditional scheduling problems in that it incorporates complex constraints relating the feasibility of an astronomical observation to the position and time of a mobile observatory, as well as traditional temporal constraints and optimization criteria. We describe the problem, its proposed solution and the empirical validation of that solution.

  12. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  13. ASTROPLANE - A European airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cosmovici, C. B.

    The history, goals, and design concepts of Astroplane, a proposed European airborne IR and submillimeter observatory, are discussed. The various proposals advanced since 1979 are summarized, and the need for an airborne observatory to complement ground and satellite observations and to offer European astronomers observing opportunities like those provided by the NASA KAO in the U.S. is stressed. The effects of the atmosphere on IR transmission, some typical NASA airborne results, and the observability of different atomic species (from ground, air, or satellite) are documented in tables. The importance of airborne IR observations of Halley's comet during its 1986 perihelion is shown. The Astroplane design proposed by DFVLR is described: a circular 120-cm Cassegrain telescope carried to an altitude of about 13 km by a modified Challenger CL-601 aircraft. It is found in an overall cost comparison that the DFVLR Astroplane, with a life of 20 years and 600 observing hours per year, would cost only one seventh as much per observing hour as either balloon or satellite (IRAS) observatories.

  14. Studies of Strong Langmuir Turbulence at the HAARP Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Bacon, M. E.; Gerres, J. M.; Watkins, B. J.; Bristow, W. A.; Oyama, S. I.; Heinselman, C. J.

    2008-11-01

    High power HF transmitters have induced a number of plasma instabilities in the interaction region of overdense ionospheric plasma. We report results from a series of such experiments using over one gigawatt of HF power (ERP) in comprehensive studies of strong Langmuir turbulence (SLT) and particle acceleration at the HAARP Observatory, Gakona, Alaska. Among the effects observed and studied are: SLT spectra including the outshifted plasma line or free-mode, appearance of a short timescale ponderomotive overshoot effect, collapse, cascade and co-existing spectra, control of artificial field-aligned irregularities (AFAI), the aspect angle dependence of the plasma line, and suprathermal electrons. We explore the observed magnetic-zenith effect of enhanced turbulence backscatter with the HF pump wave directed up the field line. We have discovered a second region of strong interaction displaced southward of the primary HF interaction region. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  15. A 100-micron polarimeter for the Kuiper Airborne Observatory

    SciTech Connect

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.

    1989-02-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.

  16. A 100-micron polarimeter for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Novak, G.; Gonatas, D. P.; Hildebrand, R. H.; Platt, S. R.

    1989-01-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent.

  17. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  18. Comprehension and retrieval of failure cases in airborne observatories

    NASA Astrophysics Data System (ADS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-05-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  19. Analysis of Polarization Data from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1999-01-01

    The purpose of this grant was to complete the analysis of data obtained with the polarimeter, Hertz, on the Kuiper Airborne Observatory. This has enabled us to complete and publish two student theses (one on Sgr B2 and one on Orion) and a paper on the first results on the far-infrared polarization-spectrum. In addition it has enabled us to analyze data for two additional papers (one on W3 and the other a complete archive of KAO polarization data) which have reached the stage of complete drafts but still need checking and editing before final submission.

  20. Test of IR arrays on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Russell, R. W.; Rossano, G. S.; Lynch, D. K.; Colon-Bonet, G. T.; Hackwell, J. A.

    1986-01-01

    NASA's Kuiper Airborne Observatory, which is a C-141 transport aircraft equipped with a 90-cm, all-reflective altazimuth telescope, has been engaged in the Kuiper Infrared Technology Experiment. Attention is presently given to the Experiment's flight series for state-of-the-art two-dimensional, 500-element arrays that use either blocked impurity band or bulk silicon devices. The switched FET readout scheme used on the three arrays flown thus far yields exceptionally low crosstalk. System sensitivities are found to be sufficient for the detection of both pointlike and extended sources; several of each type have been used in staring and scanning experiments.

  1. Optical measurements of nasa/usaf crres high altitude rocket borne chemical release experiments in conjunction with the USAF airborne ionospheric observatory aircraft. Final report, 9 January 1991-30 September 1992

    SciTech Connect

    Boquist, W.P.; Ledley, B.G.

    1992-10-01

    In order to provide post experiment optical imagery data for correlation of airborne measurements of satellite signal modification from intervening chemical vapor clouds released in the upper atmosphere, Technology International Corporation provided and operated as part of the NASA/USAF PL/CRRES research program a ground optics station on Grand Turk Island in the Caribbean during June-July 1992. Optical data was acquired on the AA-1 event (approximately 95%) and the AA-7 event (approximately 60%). The third release (AA-2 event) occurred when the Grand Turk optics site was fully obscured by clouds for the duration of the normal period of visibility. All three rocket borne experiments were launched at morning twilight.

  2. Testing of the Kuiper Airborne Observatory 91-CM telescope

    NASA Technical Reports Server (NTRS)

    Parks, R. E.

    1979-01-01

    The 91 cm telescope of the Kuiper Airborne Observatory was tested for optical figure errors in the surface of the mirrors and misalignment of the optical components. When the present set of optical components are installed in the telescope in proper alignment, the telescope produces an image with 80% of the energy in a circle of 1.50 arc seconds in diameter; that is, a 0.11 mm spot diameter in the focal plane. The primary mirror, an f/2 parabola, was tested against a flat and has a quality that puts 80% of the energy in a 0.51 arc second diameter spot. Two principal sources account for the residual error: the tertiary folding flat and the chopping secondary. It appears that the method of mounting the folding flat causes some distortion and that the secondary mirror has some residual spherical aberration in its figure.

  3. The FOSTER Project: Flying Teachers On NASA's Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Koch, D.; Gillespie, C.; Devore, E.; Morrow, C.

    1993-12-01

    An educational outreach pilot project is underway at NASA Ames Research Center. The FOSTER (Flight Opportunities for Science Teacher EnRichment) project goal is to provide an educationally enriching experience for elementary and high school science teachers. The project consists of a summer workshop where the selected teachers receive insight into contemporary astrophysics, curriculum supplement materials and an orientation to their upcoming science flight. During the academic year they return to NASA/Ames when they are introduced to and fly with the Kuiper Airborne Observatory investigators as the team conducts its observing program. It is anticipated that the first-hand experience of the scientific process (its excitement, hardships, challenges, discoveries, teamwork, social relevance and educational value) will provide an enriching experience that the teachers can take back into their classrooms and use to help with their teaching.

  4. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  5. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the

  6. Description and catalog of ionospheric F-region data, Jicamarca Radar Observatory, November 1966 - April 1969

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Mcclure, J. P.; Vanzandt, T. E.

    1976-01-01

    Equatorial ionospheric F-region data reduced from the Jicamarca Radar Observatory (JRO) incoherent scatter observations for particular periods is described. It lists in catalog form the times of the observations made during those periods. These F-region data include the electron concentration and the electron and ion temperatures. The data were inferred from the incoherent scatter observations of JRO.

  7. Automated long-term scheduling for the SOFIA airborne observatory

    NASA Astrophysics Data System (ADS)

    Civeit, Thomas

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the “ Early Science” program as well as a deployment to Germany. The next observing period, known as Cycle 1, is scheduled to begin in late fall 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA's long-term schedules. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  8. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  9. Symmetry and asymmetry of ionospheric weather at magnetic conjugate points for two midlatitude observatories

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.; Poustovalova, L. V.

    2013-11-01

    Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the

  10. Global Ultra-Violet Ionosphere-Thermosphere Observatory (GUVITO)

    NASA Astrophysics Data System (ADS)

    Curtis, N.; Crowley, G.; Christensen, A. B.; Paxton, L. J.; Robichaud, J.; Barry, M. A.; Bust, G. S.

    2009-12-01

    UV spectrographic imagers such as SSUSI and GUVI provide measurements of the aurora, ionospheric electron density, ionospheric bubbles, and thermospheric temperature, composition, and density. These imagers have been a key element of the Air Force DMSP program, but to accommodate new satellite concepts and maintain flexibility in the choice of new space systems and launch options, lighter weight and more capable UV instruments are needed to replace the current series of SSUSI sensors. Here we describe a technological alternative to the currently flying SSUSI sensors. It is a spectrographic imaging capability known as the “Global Ultra-Violet Ionosphere-Thermosphere Observatory” (GUVITO) sensor and associated software. GUVITO improves upon current instruments by being smaller in size, weight and power but with improved functionality. The GUVITO sensor represents an upgrade of the SSUSI and GUVI sensors in terms of scan mirror functionality and reliability, sensor functionality, mass, and power requirements. In particular, this improved functionality is expected to lead to enhanced capability in observing ionospheric bubbles, which are thought to cause scintillation and serious technological challenges for communications, navigation and surveillance systems. Initial development and risk reduction activities are currently funded by AFRL through a SBIR Phase II contract. The enhanced reliability and performance of the GUVITO sensor system is achieved with flight heritage components, concepts, software, hardware and is guided by key personnel experienced with both the SSUSI and GUVI hardware, software and operations. GUVITO would meet DoD priority requirements in ionospheric density, scintillation, and satellite drag, meet NPOESS IORD-II requirements for space environment Environmental Data Records (EDRs), maintain current DMSP capability, ensure long-term continuity of space environmental monitoring and leverage new technology development for future operational

  11. Airborne studies of equatorial F layer ionospheric irregularities

    SciTech Connect

    Weber, E.J.; Buchau, J.; Moore, J.G.

    1980-09-01

    Radio wave and optical experiments were conducted onboard a U.S. Air Force research aircraft in March 1977 and March 1978 at low magnetic latitudes to investigate the effects of F region electron density amplitude. Scintillation measurements were used to monitor the development and motion of F region 6300-A O I airglow depletions, spread F, and scintillation producing irregularities that are all associated with low-density bubbles in the postsunset equatorial ionosphere. The 6300-A airglow depletions are the bottomside signature of low plasma density within the bubbles. Examples of multiple airglow depletions and their relation to variations in the F layer virtual height (h'F) and to the occurrence of amplitude scintillations on 250-MHz satellite signals are described. Estimates of the average bottomside electron density, from simultaneous ionosonde measurements and 6300-A airglow intensities, show electron density decreases of approx.66% within the bubbles. These decreases are approximately the same for bubbles observed at the magnetic equator and near Ascension Island (18 /sup 0/S magnetic latitude). The measurements at Ascension Island show that airglow depletions extend away from the magnetic equator into the southern 6300-A intertropical arc. Variations in the maximum poleward extent of airglow depletions and of associated ionospheric irregularities that give rise to amplitude scintillations were observed. These latitudinal variations are interpreted, using field line mapping considerations, as variations in the maximum altitude of plasma bubbles over the magnetic equator. A north-south flight confirms that the overall pattern of airglow depletions and associated ionospheric irregularities extends continuously across the magnetic equator to +-15/sup 0/ magnetic latitude.

  12. An analysis of water in galactic infrared sources using the NASA Lear Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Hilgeman, T.

    1979-01-01

    The Michelson interferometer system on the NASA Lear Jet Airborne Observatory is described as well as the data reduction procedures. The objects observed (standard stars, M stars, a nebula, planets, and the moon) are discussed and the observing parameters are listed for each flight date. The spectra obtained from these data flights are presented, grouped by class of object.

  13. Assimilating Electron Density Profiles Measured by the Real Time Global Ionospheric Radio Observatory - GIRO

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Galkin, I. A.

    2009-04-01

    deduced as 95% uncertainty bounds for a histogram of the distribution of the differences between the ionogram parameters obtained manually and automatically. New ionospheric assimilation models like the Global Assimilation of Ionospheric Measurements (GAIM) differ from prior generation adaptive ionospheric models in that they analyze the uncertainty of the observational inputs before using them as constraints on the physical model drivers. The SAO data exchange format was expanded into the SAO-XML format [Reinisch and Galkin, 2008] to accommodate the expanded data content. In August 2008 during the URSI General Assembly in Chicago, Commission G of URSI accepted SAO-XML as the standard format for ionogram data exchange. All digisonde stations are currently being updated to SAO-XML for ingestion of the scaled data together with the raw ionograms in data centers like the Digital Ionogram Data Base (DIDBase). DIDBase and the digisonde network using SAO-XML truly form a real time Global Ionospheric Radio Observatory (GIRO). Since SAO-XML can easily accommodate data from any digital ionosonde, other ionosonde models can become part of GIRO.

  14. Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data

    NASA Astrophysics Data System (ADS)

    Sun, J.; Kelbert, A.; Egbert, G. D.

    2015-10-01

    Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.

  15. Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie L.; Davidson, Jacqueline; Dowell, C. Darren; Schleuning, David A.; Hildebrand, Roger H.

    1999-01-01

    In this paper we present a complete summary of the data obtained with the far-infrared polarimeter, Stokes, in flights of the Kuiper Airborne Observatory. We have observed 12 Galactic clouds and have made over 1100 individual measurements at 100 micrometer and 60 micrometer. The median P for all of the 60 micrometer and 100 micrometer measurements is 3.6% and 2.6% respectively. We also present flux maps obtained simultaneously with the polarimetry.

  16. Airborne Astronomy Symposium. A symposium commemorating the tenth anniversary of operations of the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr. (Editor); Erickson, E. F. (Editor)

    1984-01-01

    Airborne infrared astronomy is discussed with respect to observations of the solar system, stars, star formation, and the interstellar medium. Far infrared characteristics of the Milky Way, its center, and other galaxies are considered. The instrumentation associated with IR astronomy is addressed.

  17. Characterization of different magnetospheric and ionospheric contributions at mid-latitude magnetic observatories

    NASA Astrophysics Data System (ADS)

    Castillo, Yvelice; Pais, Maria Alexandra; Fernandes, João; Ribeiro, Paulo; Morozova, Anna; Pinheiro, Fernando J. G.

    2016-04-01

    The main goal of space weather (SW) research is to produce reliable forecasts and nowcasts of the space environment and to evaluate the risks for technological infrastructures and human safety. Most of SW studies concern high and equatorial latitudes, because of well-known and significant effects of field-aligned currents and the equatorial electrojet at those latitudes. Less studies are made at mid-latitudes, resulting in an incomplete understanding of the local effect of magnetospheric and ionospheric currents. We compare the performance of global indices of geomagnetic activity such as Kp and Dst with simulations of the Tsyganenko semi-empirical model of storm-time geomagnetic field, in predicting the irregular geomagnetic activity observed at the Coimbra magnetic observatory (40.22 N, 351.58 E). At first we use principal component analysis to efficiently separate the geomagnetic daily variation. Then we identify the effect of different magnetospheric current systems and estimate their contributions. Finally, we discuss how ground observatory observations can benefit from semi-empirical models, but also contribute to improve their parameterization.

  18. Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; McCorkel, Joel; Hamlin, Louise; Green, Robert O.; Krause, Keith S.; Johnson, Brian R.

    2011-09-01

    The National Ecological Observatory Network (NEON) is a planned facility of the National Science Foundation with the mission to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON Airborne Observation Platform is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing. Fused airborne spectroscopy and waveform LiDAR is used to quantify vegetation composition and structure. Panchromatic photography at better than 30 cm resolution will retrieve fine-scale information on land use, roads, impervious surfaces, and built structures. NEON will build three airborne systems to allow for regular coverage of NEON sites and the capacity to respond to investigator requests for specific projects. The system design achieves a balance between performance and development cost and risk, taking full advantage of existing commercial airborne LiDAR and camera components. To reduce risk during NEON construction, an imaging spectrometer design verification unit is being developed at the Jet Propulsion Laboratory to demonstrate that operational and performance requirements can be met. As part of this effort, NEON is also focusing on science algorithm development, computing hardware prototyping and early airborne test flights with similar technologies. This paper presents an overview of the development status of the NEON airborne instrumentation in the context of the NEON mission.

  19. Initial Observations from a Narrow-Field Ionospheric Airglow Imager at the Cerro Tololo Inter-American Observatory

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Miller, E. S.

    2006-12-01

    In August 2006, a miniaturized narrow-field ionospheric airglow imager was installed at the Cerro Tololo Inter- American Observatory (CTIO) east of La Serena, Chile (-29.9 N, 288.7 E geo; -16.46 N, 0.0388 E mag), in order to observe irregularities associated with equatorial spread-F. Two GPS L1 scintillation monitors were also installed to study the characteristics of the irregularities at the GPS Fresnel size. The imager looks north parallel to the Earth's magnetic field in the ionosphere towards the magnetic equator. By doing so, the imager can observe small-scale structure mapped along the magnetic field lines from the equatorial ionosphere to the local ionosphere. Initial observations include secondary instabilities, bifurcations, and kilometer-scale structure. Coordination with an all-sky imager near the CTIO magnetic conjugate point in Villa de Leyva, Colombia (5.57 N, 287.37 E geo; 17.79 N, -0.125 E mag), and the Jicamarca incoherent-scatter radar near Lima, Peru (-11.95 N, 283.13 E geo; 0.616 N, -5.39 E mag), are anticipated in the near future. In this way, we will be able to study the entire flux-tube geometry associated with the development of equatorial instabilities and investigate the relative roles of the equatorial and local, off-equatorial ionospheres in the severity of these scintillation-causing irregularities.

  20. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  1. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  2. Real Time Data/Video/Voice Uplink and Downlink for Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Harper, Doyal A.

    1997-01-01

    LFS was an educational outreach adventure which brought the excitement of astronomical exploration on NASA's Kuiper Airborne Observatory (KAO) to a nationwide audience of children, parents and children through live, interactive television, broadcast from the KAO at an altitude of 41,000 feet during an actual scientific observing mission. The project encompassed three KAO flights during the fall of 1995, including a short practice mission, a daytime observing flight between Moffett Field, California to Houston, Texas, and a nighttime mission from Houston back to Moffett Field. The University of Chicago infrared research team participated in planning the program, developing auxiliary materials including background information and lesson plans, developing software which allowed students on the ground to control the telescope and on-board cameras via the Internet from the Adler Planetarium in Chicago, and acting as on-camera correspondents to explain and answer questions about the scientific research conducted during the flights.

  3. A hardware/software simulation for the video tracking system of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Boozer, G. A.; Mckibbin, D. D.; Haas, M. R.; Erickson, E. F.

    1984-01-01

    This simulator was created so that C-141 Kuiper Airborne Observatory investigators could test their Airborne Data Acquisition and Management System software on a system which is generally more accessible than the ADAMS on the plane. An investigator can currently test most of his data acquisition program using the data computer simulator in the Cave. (The Cave refers to the ground-based computer facilities for the KAO and the associated support personnel.) The main Cave computer is interfaced to the data computer simulator in order to simulate the data-Exec computer communications. However until now, there has been no way to test the data computer interface to the tracker. The simulator described here simulates both the KAO Exec and tracker computers with software which runs on the same Hewlett-Packard (HP) computer as the investigator's data acquisition program. A simulator control box is hardwired to the computer to provide monitoring of tracker functions, to provide an operator panel similar to the real tracker, and to simulate the 180 deg phase shifting of the chopper squre-wave reference with beam switching. If run in the Cave, one can use their Exec simulator and this tracker simulator.

  4. Receptor modeling of globally circulating airborne particles collected at Mauna Loa Observatory, Hawaii

    SciTech Connect

    Hermann, D.M.

    1988-01-01

    Weekly airborne particle samples were collected at Mauna Loa Observatory (MLO), Hawaii from February 1979 through May 1985. Receptor models were used to identify sources of airborne particles at MLO, determine compositions of particles from these sources, and assess the relative impacts of them. Major sources of ambient particles at MLO include Asian continental material, oceanic biological production of Se and SO{sub 4} species, marine particles, Asian anthropogenic material, local volcanic emissions, and basalt. Source composition profiles were developed for each component. The Asian continental component represents particles transported from Eastern Asia to the North Pacific, and the component consists of crustal material contaminated by anthropogenic emissions. To account for variations in the relative strengths of anthropogenic and crustal sources, a separate Asian anthropogenic component was also developed. During the dust season, Asian continental material accounts for 80% of total suspended particulate material (TSP) at MLO, oceanic productions of Se and SO{sub 4} 11%, marine particles 2.8%, basalt 1.9%, volcanic emissions 1.7%, and Asian anthropogenic material in excess of Asian continental material 3.2%. During the clean season, the oceanic biological production of Se and SO{sub 4} contributes 62% of TSP at MLO. Continental material contributes 22%, marine particles 6.4%, basalt 2.7%, volcanic emissions 2.4%, and anthropogenic materials in excess of continental material 4.3%.

  5. A Compute Perspective: Delivering Decision Support Products in 24 Hours from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Mattmann, C. A.; Painter, T. H.; Seidel, F. C.; Trangsrud, A.; Hart, A. F.; Goodale, C. E.; Boardman, J. W.; Heneghan, C.; Verma, R.; Khudikyan, S.; Boustani, M.; Zimdars, P. A.; Horn, J.; Neely, S.

    2013-12-01

    The JPL Airborne Snow Observatory (ASO) must process 100s of GB of raw data to 100s of Terabytes of derived data in 24 hour Near Real Time (NRT) latency in a geographically distributed mobile compute and data-intensive processing setting. ASO provides meaningful information to water resource managers in the Western US letting them know how much water to maintain; or release, and what the prospectus of the current snow season is in the Sierra Nevadas. Providing decision support products processed from airborne data in a 24 hour timeframe is an emergent field and required the team to develop a novel solution as this process is typically done over months. We've constructed a system that combines Apache OODT; with Apache Tika; with the Interactive Data Analysis (IDL)/ENVI programming environment to rapidly and unobtrusively generate, distribute and archive ASO data as soon as the plane lands near Mammoth Lakes, CA. Our system is flexible, underwent several redeployments and reconfigurations, and delivered this critical information to stakeholders during the recent "Snow On" campaign March 2013 - June 2013. This talk will take you through a day in the life of the compute team from data acquisition, delivery, processing, and dissemination. Within this context, we will discuss the architecture of ASO; the open source software we used; the data we stored; and how it was delivered to its users. Moreover we will discuss the logistics, system engineering, and staffing that went into the developing, deployment, and operation of the mobile compute system.

  6. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

    NASA Astrophysics Data System (ADS)

    Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei

    2014-10-01

    Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth's atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at ionospheric_maps.php">www.gnss.be. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 ± 0.9 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 ± 2.2 and 0.6 ± 6.8 TECu respectively with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric

  7. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  8. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  9. 100-micron array polarimetry from the Kuiper Airborne Observatory - Instrumentation, techniques, and first results

    NASA Technical Reports Server (NTRS)

    Platt, S. R.; Hildebrand, R. H.; Pernic, R. J.; Davidson, J. A.; Novak, G.

    1991-01-01

    The University of Chicago far-infrared array polarimeter, 'STOKES', is the first multiple-beam polarimeter for far-infrared astronomy. Observations are made from the NASA Kuiper Airborne Observatory. Two orthogonal components of linear polarization are detected simultaneously by corresponding pairs of bolometers in two 32-detector arrays. Novel observing and data-analysis techniques are used to overcome the inherent difficulties of array polarimetry. Results from the first observing flights with the new instrument are reported for the molecular clouds W3 and W51. The measurements show that the magnetic-field structure in both clouds is nonuniform on the scale of 0.5-1.5 pc. This is consistent with molecular line and Zeeman observations that indicate the presence of turbulent velocities and significant small-scale structure. Preliminary results from the second flight series have yielded approximately 40 new measurements in the Sgr A complex. These results indicate that modifications made since the first flights have significantly improved the performance of STOKES.

  10. The National Astronomy and Ionosphere Center's (NAIC) Arecibo Observatory in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Altschuler, Daniel R.

    2002-12-01

    This paper reviews the history of the Arecibo Observatory, its genesis, construction, and the two upgrades through which the remarkable 305-m telescope continues to contribute significant results in many areas of astronomy and atmospheric physics.

  11. Revisiting Runoff Model Calibration: Airborne Snow Observatory Results Allow Improved Modeling Results

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2014-12-01

    Deterministic snow accumulation and ablation simulation models are widely used by runoff managers throughout the world to predict runoff quantities and timing. Model fitting is typically based on matching modeled runoff volumes and timing with observed flow time series at a few points in the basin. In recent decades, sparse networks of point measurements of the mountain snowpacks have been available to compare with modeled snowpack, but the comparability of results from a snow sensor or course to model polygons of 5 to 50 sq. km is suspect. However, snowpack extent, depth, and derived snow water equivalent have been produced by the NASA/JPL Airborne Snow Observatory (ASO) mission for spring of 20013 and 2014 in the Tuolumne River basin above Hetch Hetchy Reservoir. These high-resolution snowpack data have exposed the weakness in a model calibration based on runoff alone. The U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) calibration that was based on 30-years of inflow to Hetch Hetchy produces reasonable inflow results, but modeled spatial snowpack location and water quantity diverged significantly from the weekly measurements made by ASO during the two ablation seasons. The reason is that the PRMS model has many flow paths, storages, and water transfer equations, and a calibrated outflow time series can be right for many wrong reasons. The addition of a detailed knowledge of snow extent and water content constrains the model so that it is a better representation of the actual watershed hydrology. The mechanics of recalibrating PRMS to the ASO measurements will be described, and comparisons in observed versus modeled flow for both a small subbasin and the entire Hetch Hetchy basin will be shown. The recalibrated model provided a bitter fit to the snowmelt recession, a key factor for water managers as they balance declining inflows with demand for power generation and ecosystem releases during the final months of snow melt runoff.

  12. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  13. Analysis of Snow Albedo, Grain Size and Radiative Forcing based on the Airborne Snow Observatory (ASO) Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2013-12-01

    Climate is expected to be most vulnerable in mountainous and arctic regions where the atmosphere and the hydrosphere are directly linked to the cryosphere. A combination of modeling and large-scale observational efforts is required to investigate related scientific questions. NASA's Airborne Snow Observatory (ASO) at the Jet Propulsion Laboratory addresses some of these needs by establishing new quantitative observational capabilities in regional mapping of mountain snow properties. In addition, ASO's key products showed that we are able to achieve societal benefits by improving water resources management. We will show the first analysis of snow optical products (albedo, grain size, and radiative forcing) from the spring 2013 ASO campaign in the Sierra Nevada, CA, USA. In addition, we will present the retrieval methods used to derive these products based on airborne imaging spectroscopy, LiDAR, as well as radiative transfer models. The preliminary findings provide new important insights into the temporal and spatial aspects of Western US mountain snow and its melt.

  14. Weekly LiDAR snow depth mapping for operational snow hydrology - the NASA JPL Airborne Snow Observatory (Invited)

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.; McGurk, B. J.

    2013-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, providing an unprecedented snowpack monitoring capability and enabling a new operational paradigm. In the Spring of 2013, the ASO mapped snow depth in the Tuolumne River Basin in California's Yosemite National Park on a nominally weekly basis, and provided fast-turnaround spatial snow depth and water equivalent maps to the operators of Hetch Hetchy Reservoir, the water supply for 2.5 million people on the San Francisco peninsula. These products enabled more accurate runoff simulation and optimal reservoir management in a year of very low snow accumulation. We present the initial results from this new application of multi-temporal LiDAR mapping in operational snow hydrology.

  15. A Rapid Turn-around, Scalable Big Data Processing Capability for the JPL Airborne Snow Observatory (ASO) Mission

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2014-12-01

    The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years

  16. The SOFIA Airborne Infrared Observatory - first science highlights and future science potential

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2014-10-01

    SOFIA, short for Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP aircraft with a 2.7m telescope flying as high as 45000 ft in the stratosphere above 99 percent of the precipitable water vapor. SOFIA normally operates from its base in Palmdale, California, and a typical observing flight lasts for 10 hours before returning to base. SOFIA has started astronomical observations in Dec 2010 and has completed some 30 early science flights in 2011, delivering a number of exciting results and discoveries, both in mid-infrared imaging (5-40mu) and in far-infrared (THz) heterodyne high-resolution spectroscopy which were published in mid-2012 in special issues of ApJ Letters and A & A, respectively. Meanwhile, in July 2013, as part of Cycle 1, SOFIA has deployed to New Zealand for a total of 9 flights (all of them successful) and has observed key targets in the southern hemisphere at THz frequencies, including star forming regions in the Large and Small Magellanic Clouds. In this talk, I will present a few highlights of SOFIA early science and its future potential, when the full suite of 7 instruments will be implemented by the time of full operations in 2015. As Herschel ran out of cryogens in April 2013, SOFIA will be the premier FIR-astronomical facility for many years to come. Synergies with ALMA and CCAT must be explored. SOFIA is a major bilateral project between NASA and the German Space Agency (DLR), however as an international observatory it offers observing time to the whole astronomical community world-wide, not only to the US and German primary partners.

  17. Integrating snow albedo from the Airborne Snow Observatory into the distributed energy balance snowmelt model iSnobal

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2015-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  18. The Planet Mercury Surface Spectroscopy and Analysis from the Kuiper Airborne Observatory and Analysis and Modeling to Determine Surface Composition

    NASA Technical Reports Server (NTRS)

    Sprague, Ann

    1997-01-01

    We had two successful flights to observe Mercury from the Kuiper Airborne Observatory (KAO) using High-efficiency Infrared Faint-Object Grating Spectrograph (HIFOGS). Flights were May 8, 1995 (eastern elongation) and July 6, 1995 (western elongation) For the observations one half of the primary mirror was covered to prevent sunlight from entering the telescope. All equipment and the airplane and its crew performed well. These flights were historical firsts for the KAO and for spectroscopy of Mercury in that it was the first time any spectroscopic observations of Mercury from above the Earth's atmosphere had been made. It was the first time the KAO had been used to @bserve an object less than 30 degrees from the Sun. Upon completion of the basic data reduction it became obvious that extensive modeling and analysis would be required to understand the data. It took three years of a graduate student's time and part time the PI to do the thermal modeling and the spectroscopic analysis. This resulted in a lengthy publication. A copy of this publication is attached and has all the data obtained in both KAO flights and the results clearly presented. Notable results are: (1) The observations found an as yet unexplained 5 micron emission enhancement that we think may be a real characteristic of Mercury's surface but could have an instrumental cause; (2) Ground-based measurements or an emission maximum at 7.7 microns were corroborated. The chemical composition of Mercury's surface must be feldspathic in order to explain spectra features found in the data obtained during the KAO flights.

  19. Converting Snow Depth to SWE: The Fusion of Simulated Data with Remote Sensing Retrievals and the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Marks, D. G.; Painter, T. H.; Hedrick, A. R.; Deems, J. S.

    2015-12-01

    Snow cover monitoring has greatly benefited from remote sensing technology but, despite their critical importance, spatially distributed measurements of snow water equivalent (SWE) in mountain terrain remain elusive. Current methods of monitoring SWE rely on point measurements and are insufficient for distributed snow science and effective management of water resources. Many studies have shown that the spatial variability in SWE is largely controlled by the spatial variability in snow depth. JPL's Airborne Snow Observatory mission (ASO) combines LiDAR and spectrometer instruments to retrieve accurate and very high-resolution snow depth measurements at the watershed scale, along with other products such as snow albedo. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage SWE from the measured snow depths. Snow density is a spatially and temporally variable property that cannot yet be reliably extracted from remote sensing techniques, and is difficult to extrapolate to basin scales. However, some physically based snow models have shown skill in simulating bulk snow densities and therefore provide a pathway for snow depth to SWE conversion. Leveraging model ability where remote sensing options are non-existent, ASO employs a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. After an adjustment scheme guided by in-situ data, these density estimates are used to derive the elusive spatial distribution of SWE from the observed snow depth distributions from ASO. In this study, we describe how the process of fusing model data with remote sensing retrievals is undertaken in the context of ASO along with estimates of uncertainty in the final SWE volume products. This work will likely be of interest to those working in snow hydrology, water resource management and the broader remote sensing community.

  20. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially

  1. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  2. Comparison of airborne CO2 flask samples and measurements from the Mauna Loa Observatory during the HAMEC Project (June 1980)

    NASA Astrophysics Data System (ADS)

    Herbert, G. A.; Harris, T. B.; Chin, J. F. S.

    1983-08-01

    A P3 aircraft has been used to measure meteorological variables upwind and downwind of the island of Hawaii in order to provide data for the evaluation of mesoscale models of airflow and cloud physics. An attempt was made to obtain flask samples upwind of the island which might confirm that the CO2 values gathered at the Mauna Loa Observatory (MLO) are representative of the free air at comparable altitudes. CO2 flask samples exposed aboard the aircraft at the altitude of the observatory and immediately above the trade inversion yielded flask pairs which were in reasonable agreement. The average difference between the aircraft measurements at the observatory altitude and the continuous CO2 record from the observatory over the same period was 0.8 mole fraction in ppm. Attention is given to measurement differences in light of prevailing meteorological conditions.

  3. Ionospheric physics

    SciTech Connect

    Sojka, J.J. )

    1991-01-01

    Advances in all areas of ionospheric research are reviewed for the 1987-1990 time period. Consideration is given to the equatorial ionosphere, the midlatitude ionosphere and plasmasphere, the auroral ionosphere, the polar ionosphere and polar wind, ionospheric electrodynamic inputs, plasma waves and irregularities, active experiments, ionospheric forecasting, and coupling the ionosphere with other regions.

  4. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  5. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  6. Spatial patterns of vegetation biomass and soil organic carbon acquired from airborne lidar and hyperspectral imagery at Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Will, R. M.; Li, A.; Glenn, N. F.; Benner, S. G.; Spaete, L.; Ilangakoon, N. T.

    2015-12-01

    Soil organic carbon distribution and the factors influencing this distribution are important for understanding carbon stores, vegetation dynamics, and the overall carbon cycle. Linking soil organic carbon (SOC) with aboveground vegetation biomass may provide a method to better understand SOC distribution in semiarid ecosystems. The Reynolds Creek Critical Zone Observatory (RC CZO) in Idaho, USA, is approximately 240 square kilometers and is situated in the semiarid Great Basin of the sagebrush-steppe ecosystem. Full waveform airborne lidar data and Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-ng) collected in 2014 across the RC CZO are used to map vegetation biomass and SOC and then explore the relationships between them. Vegetation biomass is estimated by identifying vegetation species, and quantifying distribution and structure with lidar and integrating the field-measured biomass. Spectral data from AVIRIS-ng are used to differentiate non-photosynthetic vegetation (NPV) and soil, which are commonly confused in semiarid ecosystems. The information from lidar and AVIRIS-ng are then used to predict SOC by partial least squares regression (PLSR). An uncertainty analysis is provided, demonstrating the applicability of these approaches to improving our understanding of the distribution and patterns of SOC across the landscape.

  7. Digital ionospheric sounding in the Arctic

    NASA Astrophysics Data System (ADS)

    Reinisch, B.; Bibl, K.

    1981-01-01

    New ionogram observation techniques were applied at the Goose Bay Ionospheric Observatory (GBIO) in Newfoundland, Canada, and aboard AFGL's Airborne Ionospheric Observatory (AIO), using the Digisonde 128PS system. A receiving array of four crossed-loop antennas at GBIO enabled incidence angle and polarization measurements within the ionogram in addition to the Doppler observations. The Doppler information in the propagation ionograms between the GBIO Digisonde and the moving AIO sounder facilitates the interpreting of different modes of propagation. Software for the AFGL CDC 6600 computer and for a microcomputer was developed for the processing of the digital ionograms. The identification of ordinary and extraordinary echoes in the Goose Bay ionograms greatly simplify the automatic processing of ionograms. Indeed, it became clear that for automatic ionogram trace identification the O and X tagging is a prerequisite. In support of the ESD 414L project an ionogram communicator (ICOM) was added to the GBIO Digisonde providing - via telephone lines - realtime ionogram printouts at the Over-The-Horizon Backscatter Experimental Radar System in Maine. Another Digisonde station was equipped and brought to operation in Keflavik, Iceland, to provide environmental data for the OTH radar operation.

  8. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  9. Airborne Snow Observatory: measuring basin-wide seasonal snowpack with LiDAR and an imaging spectrometer to improve runoff forecasting and reservoir operation (Invited)

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2013-12-01

    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission collected detailed snow information for portions of the Tuolumne Basin in California and the Uncompahgre Basin in Colorado in spring of 2013. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were used in a hydrologic simulation model to improve the accuracy and timing of runoff forecasting tools used to manage Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.5 million people on the San Francisco Peninsula. The USGS PRMS simulation model was calibrated to the 459 square mile basin and was updated with both weather forecast data and distributed snow information from ASO flights to inform the reservoir operators of predicted inflow volumes and timing. Information produced by the ASO data collection was used to update distributed SWE and albedo state variables in the PRMS model and improved inflow forecasts for Hetch Hetchy. Data from operational ASO programs is expected to improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be more assured of meeting operational mandates. This presentation will provide results from the project after its first year.

  10. Assimilation of Airborne Snow Observatory Snow Water Equivalent to Improve Runoff Forecasting Model Performance and Reservoir Management During Warm and Dry Winters

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2015-12-01

    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission has collected detailed snow information for portions of the Tuolumne Basin in California for three years, 2013 - 2015. Both 2014 and 2015 were low snow years, and 2015 was exceptionally warm and analogous to future years after climate change. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were provided to Hetch Hetchy Reservoir operators. The data were also assimilated into an hydrologic simulation model in an attempt to improve the accuracy and timing of a runoff forecasting tool that can be used to improve the management of Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.6 million people on the San Francisco Peninsula. The USGS Precipitation Runoff Modeling System was calibrated to the 1181 square kilometer basin and simulation results compared to observed runoff with and without assimilation of ASO data. Simulated and observed were also compared with observed with both single updates associated with each flight, and with sequential updates from each flight. Sequential updating was found to improve correlation between observed and simulated reservoir inflows, and there by improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be assured of filling the reservoir and minimizing ecologically-damaging late season spills.

  11. Automatic ionospheric layers detection: Algorithms analysis

    NASA Astrophysics Data System (ADS)

    Molina, María G.; Zuccheretti, Enrico; Cabrera, Miguel A.; Bianchi, Cesidio; Sciacca, Umberto; Baskaradas, James

    2016-03-01

    Vertical sounding is a widely used technique to obtain ionosphere measurements, such as an estimation of virtual height versus frequency scanning. It is performed by high frequency radar for geophysical applications called "ionospheric sounder" (or "ionosonde"). Radar detection depends mainly on targets characteristics. While several targets behavior and correspondent echo detection algorithms have been studied, a survey to address a suitable algorithm for ionospheric sounder has to be carried out. This paper is focused on automatic echo detection algorithms implemented in particular for an ionospheric sounder, target specific characteristics were studied as well. Adaptive threshold detection algorithms are proposed, compared to the current implemented algorithm, and tested using actual data obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory. Different cases of study have been selected according typical ionospheric and detection conditions.

  12. Comparison of airborne CO/sub 2/ flask samples and measurements from the Mauna Loa Observatory during the HAMEC project (June 1980)

    SciTech Connect

    Herbert, G.A.; Harris, T.B.; Chin, J.F.S.

    1983-08-20

    During June 1980, the Hawaii Mesoscale Energy and Climate Project (HAMEC) field program was conducted in the vicinity of the island of Hawaii. The objective of the program was to use the NOAA P3 aircraft to measure meteorological variables upwind and downwind of the island to provide data to evaluate mesoscale models of airflow and cloud physics. One specific objective was to obtain flask samples upwind of the island to confirm that the CO/sub 2/ values observed at the Mauna Loa Observatory (MLO) are representative of the free air at comparable altitudes. On 2 days, carbon dioxide flask samples were exposed aboard the aircraft at the altitude of the observatory and immediately above the trade inversion. Flask pairs in reasonable agreement were obtained on both occasions. During the same period the sampling conditions at MLO were free of obvious local contamination. The average difference between the aircraft measurements at the altitude of the observatory and the continuous CO/sub 2/ record from the observatory over the same period of time was 0.8 mole fraction in ppM. Differences in the individual measurements are discussed with respect to prevailing meteorological conditions. 11 references, 2 figures, 2 tables.

  13. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  14. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    ERIC Educational Resources Information Center

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  15. An investigation of the optimization of parameters affecting the implementation of fourier transform spectroscopy at 20-500 micron from the C-141 airborne infrared observatory

    NASA Technical Reports Server (NTRS)

    Thompson, R. I.; Erickson, E. F.

    1976-01-01

    A program for 20-500 micron spectroscopy from the NASA flying C141 infrared observatory is being carried out with a Michelson interferometer. The parameters affecting the performance of the instrument are studied and an optimal configuration for high performance on the C-141 aircraft is recommended. As each parameter is discussed the relative merits of the two modes of mirror motion (rapid scan or step and integrate) are presented.

  16. Ionosphere research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A report is presented on on-going research projects in ionospheric studies. The topics discussed are planetary atmospheres, E and F region, D region, mass spectrometer measurements, direct measurements and atmospheric reactions.

  17. Ionospheric research

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data from research on ionospheric D, E, and F, regions are reported. Wave propagation, mass spectrometer measurements, and atmospheric reactions of HO2 with NO and NO2 and NH2 with NO and O2 are summarized.

  18. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  19. Integration of fuzzy logic and image analysis for the detection of gullies in the Calhoun critical zone observatory using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Noto, L. V.; Dialynas, Y. G.; Bras, R. L.

    2015-12-01

    The entire Piedmont of the Southeastern United States, where the Calhoun Critical Zone Observatory (CCZO) is located, experienced one of the most severe erosive events in the United States during last two centuries. Forested areas were cleared to cultivate cotton, tobacco and other crops during the nineteenth and early twentieth century and these land use change, together with intense rainfalls, initiated deep gullying. An accurate mapping of these landforms is important since, despite some gully stabilization and reforestation efforts, gullies are still major contributors of sediment to streams. Mapping gullies in the CCZO area is hindered by the presence of dense canopy which precludes the identification through aerial photogrammetry and other traditional remote sensing methods. Moreover, the wide spatial extent of the gullies makes detailed field surveys, for the identification and characterization of entire gullies, a very large and expensive proposition. This work aims to develop and assess an automated set of algorithms to detect and map gullies using morphological characteristics retrieved by very high resolution imagery (VHRI). A one-meter resolution LiDAR DEM is used to derive different morphometric indices whose combination, carried out using spatial analysis methods and fuzzy logic rules, are a tool to identify gullies. This spatial model has been calibrated using the reference perimeters of two gullies that we measured during a recent field survey. The entire procedure attempts to provide estimates of gully erosion patterns, which characterize the entire Calhoun CZO area and to develop and evaluate a method to measure characteristic features of gullies (i.e. depth and volume).

  20. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  1. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  2. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  3. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  4. Ondrejov Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Ondrejov Observatory is located 20 miles from Prague in the village of Ondrejov. It was established in 1898 as a private observatory and donated to the state of Czechoslovakia in 1928. Since 1953 it has been part of the Astronomical Institute, Academy of Sciences of the Czech Republic; there are 40 astronomers....

  5. Amateur Observatories

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1997-08-01

    A roundup of amateur observatories in this country and abroad, with construction and location details, concluding with a detailed description and architect's drawing of the author's own observatory at Worcester Park, Surrey. The text of the 1996 Presidential Address to the British Astronomical Association.

  6. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric

    2015-08-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747SP, is now fully operational with cameras and spectrometers in the 1 to 240 micron region. It will be one of the major observatories for the next 20 years to observe the local ISM in this spectral region. We will give a brief overview of the SOFIA observatory, telescope, instrumentation and recent science. Future observing opportunities and participation in future instrument developments, over the lifetime of the SOFIA observatory will be discussed.

  7. Coordinated airborne and satellite measurements of equatorial plasma depletions

    SciTech Connect

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-12-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18/sup 0/ MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O/sup +/, were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O/sup +//sub 2/ for 6300 A and radiative recombination of O/sup +/ for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O/sup +/ biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar.

  8. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  9. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  10. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  11. Ionosphere-reflected propagation

    NASA Technical Reports Server (NTRS)

    Reddy, B. M.

    1979-01-01

    The predictability of those ionospheric parameters relevant to ionosphere-reflected communications is considered along with their optimum utilization. Several excellent original articles and review papers which have been published from time to time dealing with the long term and short term forecasting of ionospheric parameters, radio systems, and modelling needs for ionospheric communications, are covered.

  12. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  13. LIFDAR: A Diagnostic Tool for the Ionosphere

    NASA Astrophysics Data System (ADS)

    Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.

    2011-12-01

    ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.

  14. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  15. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  16. The terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1983-01-01

    The theory relating to the basic physics governing the behavior of the terrestrial ionosphere is reviewed. The review covers the coupling of the ionosphere to both the neutral atmosphere and magnetosphere, the creation and transport of ionization in the ionosphere, and the ionospheric thermal structure. The review also covers the variation of the ionosphere with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. In addition, some unique ionospheric features are discussed, such as the polar ionization hole, the main electron density trough, the ion temperature hot spots, the high-latitude ionization tongue, the equatorial fountain, Appleton's peaks, and the polar wind.

  17. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  18. The Arecibo Observatory as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    The radars and other systems at the Arecibo Observatory were designed and built, originally, for incoherent-scatter and radio-astronomy research. More recently, important additions have been made for planetary radar and artificial RF heating of the ionosphere. Although designed and built for a different application, these systems have shown to be very powerful tools for tropospheric, stratospheric and mesospheric research. The Observatory at present has two main radars: one at 430 and the other at 2380 MHz. In addition, 50-MHz MST radar work has been done using portable transmitters brought to the Observatory for this purpose. This capability will become permanent with the recent acquisition of a transmitter at this frequency. Furthermore, control and data processing systems have been developed to use the powerful HF transmitter and antennas of the HF-heating facility as an HF bistatic radar. A brief description of the four radars available at the Observatory is presented.

  19. Physics of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1973-01-01

    The fundamental physical and chemical processes in an idealized planetary ionosphere are considered as a general abstraction, with actual planetary ionospheres representing special cases. After describing the structure of the neutral atmospheres (the barosphere, the thermosphere, and the exosphere) and noting the principal ionizing radiations responsible for the formation of planetary ionospheres, a detailed study is made of the thermal structure of these ionospheres and of the chemical processes and plasma-transport processes occurring in them. The features of equilibrium and realistic models of planetary ionospheres are discussed, and an attempt is made to determine the extent of these ionospheres. Considering the ionosphere as a plasma, a plasma kinetic approach is developed for determining the effects of interactions between individual particles and waves in this plasma. The use of remote-sensing radio techniques and direct measurement or in situ techniques is discussed. Finally, the observed properties of the ionospheres of the Earth, Mars, Venus, and Jupiter are reviewed.

  20. Grand Observatory

    NASA Technical Reports Server (NTRS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  1. Ionospheric disturbances at the equatorial anomaly crest region during the March 1989 magnetic storms

    SciTech Connect

    Yinn-Nien Huang; Kang, Cheng )

    1991-08-01

    On March 6, 1989, the largest sunspot group since 1982 came into view as it moved out of the eastern limb of the Sun. It was highly active during March8-18, and a great many transient ionospheric and geomagnetic variations were triggered by this sunspot group. The intensive ionospheric observations at Lunping Observatory and Chungli Ionosphere Station during this period recorded 30 solar flares manifested as shortwave fade-outs, sudden frequency deviations, and solar flare effects and three storm sudden commencement (SSC)-tupe geomagnetic storms, among which the March 13 SSC-type geomagnetic storm triggered an unusually severe ionospheric disturbance. The ionospheric total electron content, the critical frequency of the F{sub 2} layer, f{sub o}F{sub 2}, and the virtual heights at given frequencies all show wavelike up-and-down oscillations of the ionosphere. This oscillatory ionospheric motion is explained as due to the compression and expansion of the plasmasphere.

  2. Photochemistry of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Nagy, Andrew F.

    1987-01-01

    The dominant photochemical reactions taking place in the ionospheres of Venus, Saturn, and Comet P/Halley are presented. It is shown that the differences in the ionospheres of these celestial bodies result from the different chemistry, energetics, and dynamics of the respective atmospheres. The role of photochemistry in the formation of the individual ionospheres is discussed.

  3. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  4. Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2011-06-01

    Astronomy has been at the forefront among scientific disciplines for the sharing of data, and the advent of the World Wide Web has produced a revolution in the way astronomers do science. The recent development of the concept of Virtual Observatory builds on these foundations. This is one of the truly global endeavours of astronomy, aiming at providing astronomers with seamless access to data and tools, including theoretical data. Astronomy on-line resources provide a rare example of a world-wide, discipline-wide knowledge infrastructure, based on internationally agreed interoperability standards.

  5. Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becklin, Eric E.

    2001-01-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. Present and future instrumentation will allow unique astrobiology experiments to be carried out. Several experiments related to organic molecules in space will be discussed.

  6. Propagation in the ionosphere, A

    NASA Astrophysics Data System (ADS)

    Cannon, Paul S.

    1994-09-01

    The use of ionospheric models and ray tracing models as components of a propagation model are discussed. These can be used as decision aids to support human interpretation of ionospheric propagation. The physical basis for ionospheric decision aids is introduced by reference to ionospheric morphology and the basic theory of ionospheric propagation, which, along with ray tracing techniques, is then reviewed.

  7. Solar initiative at Oukaimeden Observatory

    NASA Astrophysics Data System (ADS)

    Benkaldoun, Zouhair; Makela, Jonathan J.; Meriwether, John W.

    2013-07-01

    The solar research program at Oukaimeden Observatory started in 1988 with the helioseimological IRIS network. The Moroccan researchers involved in this research have analyzed solar observations in order to detect and characterize the solar sphere modes of oscillations. In the coming year, the researchers at the Oukaimeden Observatory will add new research capabilities by joining the International Space Weather Initiative (ISWI), installing a suite of optical instruments, comprising a Remote Equatorial Nighttime Observatory of Ionospheric Regions (RENOIR). The scope and objectives to be achieved in this proposed project are to: • deploy a Fabry-Perot interferometer and wide-angle imaging system to the Observatoire Astronomique Universitaire de LOukaimeden; • train students and researchers from Cadi Ayyad University on the operation of the equipment and related analysis techniques; • collect and analyze data from the equipment to study properties of upper-atmospheric winds and temperatures and how they relate to the occurrence of space weather; and • develop an international collaboration network with other researchers using similar instrumentation in Brazil and Peru. We will present here the plan we intend to develop for the Moroccan solar program in connection with ISWI.

  8. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  9. Recent Advances in Mid-latitude Ionosphere/Thermosphere Science

    NASA Astrophysics Data System (ADS)

    Kelley, Michael

    One of the original reasons for building a National Ionospheric Observatory (now the National Astronomy and Ionospheric Center or NAIC) near Arecibo, Puerto Rico was the location, which is in the best behaved region of the ionosphere. At 30° magnetic latitude and 19° geographic latitude, it is well equatorward of the auroral and sub-auroral zones and poleward of the equatorial anomalies most of the time. The island thus has some of the best weather and space weather on the planet. However, similar to an occasional hurricane striking the island, the ionosphere overhead has occasional ionospheric and thermospheric disturbances. Some of these space weather phenomena, e.g., mesoscale TIDs and unstable sporadic E layers, are endemic to the region and, prior to the advent of airglow imagers and GPS networks, were difficult to visualize using radiowave data alone. Other weather events are caused by infringement on this zone from processes in more active weather regions. For example, neutral waves launched from the auroral oval (large scale TIDs) pass through the region; electric fields penetrate from the solar wind and create both plasma uplifts, causing positive ionospheric storms, and stormenhanced density plumes, coursing through the region. From the south, convective equatorial ionospheric storms create plasma bubbles that can reach mid-latitudes. Examples of data obtained during these phenomena, and possibly more, will be presented and discussed in light of our present understanding.

  10. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  11. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  12. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  13. SOFIA: The Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.; Davidson, Jacqueline A.

    1990-01-01

    SOFIA, an airborne observatory intended to be carried aboard a Boeing 747 high performance aircraft, is described. The observatory is predicted to provide a threefold greater aperture than that of the Kuiper telescope. The Boeing aircraft will carry the 2.5 diameter telescope and its observers to altitudes of 14,000 and above where the atmosphere is very nearly transparent at all wavelengths. Various aspects and specific missions of the SOFIA project, a cooperative venture of the U.S. and Germany, are described.

  14. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; Hurlburt, N.; Roberts, D. A.; Sanchez Duarte, L.

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  15. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  16. Ionospheric modelling for navigation

    NASA Astrophysics Data System (ADS)

    Aragon Angel, M. A.

    Signals transmitted to and from satellites for communication and navigation purposes must pass through the ionosphere Ionospheric irregularities most common at equatorial latitudes although they could occur anywhere can have a major impact on system performance and reliability and commercial navigation service satellite-based providers need to account for their effects For a GNSS single-frequency receiver the Slant Total Electron Content STEC must be known by the user through broadcast corrections In this context there are several sets of broadcast parameters that can be defined to take into account this ionospheric term The chosen model to generate the ionospheric correction coefficients for the present study is the NeQuick model although with a number of adaptations intended to improve effective ionospheric effect modelling performances The aim of this study is to describe a possible adaptation to the NeQuick model for real time purposes and suitable for single frequency users Therefore it will be necessary to determine the performance of this modified NeQuick model in correcting the ionospheric delay In order to generate the ionospheric corrections for single frequency receivers using the NeQuick model a certain approach should be followed to adapt the performance of NeQuick since this model was originally developed to provide TEC using averaged monthly information of the solar activity and not daily one Thus to use NeQuick for real time applications as an ionospheric broadcasted model such as Klobuchar solar daily information at the user point

  17. New Ionospheric Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.

    2004-11-01

    Current upgrades to both the HF transmitter and diagnostic capabilities at the HAARP facility near Gakona, AK will permit a new generation ionospheric interaction experiments. We explore some of the new phenomena accessible with significantly increased ERP. Large-scale long-lived density structures induced by the HF pump in the ionospheric plasma are investigated. Long-lived density structures which convect with the ambient ionosphere, may serve as tracers for ionospheric flows and fields. Recent advances in HF and VHF radar diagnostics available for HAARP experiments, permit plasma wave detection and monitoring. We survey the mode structures expected with the next generation of high intensity experiments. Together with existing complementary diagnostics such as stimulated HF emissions and optical effects, these data will provide unprecedented views of highly nonlinear phenomena induced by high intensity RF radiation in the ionosphere.

  18. Ionospheric response to EUV emission from post-eruptive arcades

    NASA Astrophysics Data System (ADS)

    Hinrichs, Johannes; Bothmer, Volker; Venzmer, Malte; Erdogan, Eren; Dettmering, Denise; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bernert, Barbara; Florczak, Josua

    2015-04-01

    Commonly, an arcade of post-eruptive loops is formed beneath the trailing edge of a coronal mass ejection (CME). The loop system emits EUV radiation for several hours after the CME lift-off, in addition to the commonly associated, classical X-ray flare. We present results of a systematic study of the ionospheric response to the EUV emission from these post-eruptive arcades, taking into account their position on the solar disk, size, lifetime and underlying photospheric field. The solar observations are provided by telescopes on board the Solar Dynamics Observatory and the Proba2 satellite, the ionospheric data is derived from analysis of GNSS and radio wave data.

  19. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  20. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  1. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  2. Ionospheric irregularity physics modelling

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-01-01

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  3. Multi-Instrument Observations of an MSTID over Arecibo Observatory

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Seker, I.; Pfaff, R. F.; Rowland, D. E.; Fung, S. F.; Mathews, J. D.

    2011-01-01

    The Penn State All-Sky Imager (PSASI) at Arecibo Observatory provides planar horizontal context to the vertical ionospheric profiles obtained by the Incoherent Seatter Radar (TSR). Electric field measurements from the Communication/Navigation Outage Forecast System (C/NOFS) satellite are mapped down geomagnetic field lines to the height of the airglow layer; allowing multi-instrument studies of field-aligned irregularities with radar, imager, and satellite. A Medium-Scale Traveling Ionospheric Disturbance (MSTID) was observed during such a conjunction near the December solstice of 2009.

  4. Ionospheric imaging using merged ultraviolet airglow and radio occultation data

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.; Budzien, Scott A.; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya; Powell, Steven P.; Psiaki, Mark L.

    2014-09-01

    The Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet to the International Space Station (ISS). LITES is a compact imaging spectrograph that makes one-dimensional images of atmospheric and ionospheric ultraviolet (60-140 nm) airglow above the limb of the Earth. The LITES optical design is advantageous in that it uses a toroidal grating as its lone optical surface to create these high-sensitivity images without the need for any moving parts. GROUP-C consists of two instruments: a nadir-viewing ultraviolet photometer that measures nighttime ionospheric airglow at 135.6 nm with unprecedented sensitivity, and a GPS receiver that measures ionospheric electron content and scintillation with the assistance of a novel antenna array designed for multipath mitigation. By flying together, these two experiments form an ionospheric observatory aboard the ISS that will provide new capability to study low- and mid-latitude ionospheric structures on a global scale. This paper presents the design and implementation of the LITES and GROUP-C experiments on the STP-H5 payload that will combine for the first time high-sensitivity in-track photometry with vertical spectrographic imagery of ionospheric airglow to create high-fidelity images of ionospheric structures. The addition of the GPS radio occultation measurement provides the unique opportunity to constrain, as well as cross-validate, the merged airglow measurements.

  5. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  6. Simulation study of ionospheric response to the annular eclipse on May 21, 2012

    NASA Astrophysics Data System (ADS)

    Shinagawa, H.; Miyoshi, Y.; Jin, H.; Matsumura, M.; Fujiwara, H.; Tsugawa, T.; Kubo, Y.; Murata, T.

    2012-12-01

    It is widely accepted that the ionosphere varies significantly during a solar eclipse. Previous ionospheric observations have indicated that reduction in solar EUV and X-ray radiation results in significant decrease of electron densities. In addition, some studies have suggested that neutral wind variations and neutral composition changes caused by local cooling of the neutral atmosphere indirectly affect the ionosphere. However, effects of the atmospheric processes on the ionospheric variations have not been fully understood. The annular solar eclipse on May 21, 2012 passed over Japan provided us with a good opportunity for studying the ionospheric variations during a solar eclipse. A number of ionospheric data have been obtained at various observatories in Japan. In order to quantitatively study variations in the ionosphere and atmosphere during the solar eclipse, we used the whole atmosphere-ionosphere coupled model (GAIA), and compared the simulation results with the observed data of the ionosphere. The results indicate that electron density decrease is primarily caused by reduction in solar EUV/X-ray radiation, but that neutral atmospheric variations driven by cooling of the atmosphere during the solar eclipse also play an important role in the electron density variations.

  7. Dayside Ionospheric Superfountain

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Mannucci, Anthony J.

    2010-01-01

    The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag.

  8. An MF/HF radio array for radio and radar imaging of the ionosphere

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence

    2016-07-01

    The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.

  9. External field contributions in observatory monthly means

    NASA Astrophysics Data System (ADS)

    Olsen, N.

    2009-04-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions of external (magnetospheric and ionospheric) origin in the monthly means. Such a contamination makes monthly means less favorable for core field studies. We investigate this problem by calculating modified monthly means from observatory hourly means using different statistical approaches (arithmetic mean, median, robust mean, ...) and data selection criteria (all days, quiet days only, local night data only, ...). An assessment of the different approaches is done by means of generalized cross-validation.

  10. Ionospheric Effects of Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Park, J.; von Frese, R. R.; G-Brzezinska, D. A.; Morton, Y.

    2010-12-01

    Telemetry from the Russian INTERCOSMOS 24 satellite recorded ELF and VLF electromagnetic disturbances in the outer ionosphere from an underground nuclear explosion that was detonated at Novaya Zemlya Island on 24 October 1994. The IC24 satellite observations were obtained at about 900 km altitude within a few degrees of ground zero. The disturbances were interpreted for magnetohydrodynamic excitation of the ionosphere’s E layer by the acoustic wave. Electrons are accelerated along the magnetic force lines to amplify longitudinal currents and magnetic disturbances that may be measured by magnetometers at ground-based observatories and on-board satellites. The underground nuclear test near P’unggye, North Korea on 25 May 2009 provides a further significant opportunity for studying the utility of ionospheric disturbances for characterizing ground zero. Of the seismic, infrasound, hydroacoustic, and radionuclide detection elements of the International Monitoring System (IMS) established by the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), only the first two elements detected this event. However, the event also appears to have been recorded as a direct traveling ionospheric disturbance (TID) in the slant total electron content (TEC) observations derived from a network of the Global Navigation Satellite System (GNSS) measurements. The TID was observed to distances of at least 600 km from the explosion site propagating with a speed of about 281m/s. Thus, the global distributions and temporal variations of the TEC, may provide important information to help detect and characterize clandestine underground nuclear explosions.

  11. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  12. The Low-latitude Ionospheric Sensor Network: The Initial Campaigns

    NASA Astrophysics Data System (ADS)

    Doherty, P. H.; Valladares, C. E.; Carrano, C.

    2009-05-01

    The Low-latitude Ionospheric Sensor Network (LISN) is a distributed observatory designed to provide regional coverage in South America and high-temporal resolution measurements to diagnose the initiation and development of plasma structures and the state and dynamics of the low latitude ionosphere. It combines inexpensive GPS receivers and state-of-the-art radars such as the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes and magnetometers. This paper describes the characteristics of the LISN distributed observatory and discusses the results of the first two campaigns. LISN will be comprised of nearly 70 GPS receivers with the capability to measure Total Electron Content (TEC), amplitude and phase scintillation and Traveling Ionospheric Disturbances (TIDs). LISN will also include 5 ionosondes able to measure nighttime E-region densities and 5 collocated magnetometers that will be placed along the same magnetic meridian. The first campaign was dedicated to detect medium-scale (~100 km) TIDs and was conducted at Huancayo, Peru in July 2008 using 3 GPS receivers spaced by 4-5 km arranged in a triangular configuration. TEC data corresponding to 3 consecutive days indicate that the TIDs phase velocity was close to 120 m/s and directed northward during the early evening hours. The second campaign was conducted in February 2009 using 3 GPS receivers installed near Ancon and coordinated with the VIPIR ionosonde running in an interferometer mode. We will discuss the implications of these new results within the frame of the current theories of plasma bubble onset.

  13. The NASA Airborne Astronomy Program: A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1995-01-01

    The scientific, educational, and instrumental contributions from NASA's airborne observatories are deduced from the program's publication record (789 citations, excluding abstracts, involving 580 authors at 128 institutions in the United States and abroad between 1967-1990).

  14. The Arecibo Observatory Visitor and Educational Facility

    NASA Astrophysics Data System (ADS)

    Altschuler, Daniel R.

    1994-12-01

    As the world's largest single-dish radio telescope, Arecibo Observatory in Puerto Rico attracts thousands of visitors each year of all ages and from many countries. Pride in the Observatory has caused local Puerto Rican organizations to contribute the funds necessary for the construction of the new Arecibo Observatory Visitor and Educational Facility (AOVEF). Funds to develop the exhibits were obtained through a grant from the National Science Foundation. The Observatory is the main facility of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. The AOVEF consists of approximately 9,000 square feet of building and outdoor program space. It will house about 3500 square feet of exhibits, a 100 person multi-purpose theater, a science merchandise store and appropriate meeting rooms and workspace. We expect to be able to begin construction in early 1995. Based on current experience, we anticipate that half of the expected 100,000 visitors per year will be school children brought by buses from their schools and half will be families and individuals, coming for a visit on their own. Details about our project and a discussion of the contents of the exhibitions which are being prepared will be presented.

  15. Study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) in the ionospheric F-region using all-sky imager and digisonde data

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Machado, C. S.; Pimenta, A. A.; Schuch, N. J.

    2013-05-01

    The plasma irregularities are characterized by an abrupt variation in the ionospheric plasma density at F-region. The ionospheric irregularities may manifest as Travelling Ionospheric Disturbances (TID's), Plasma Bubbles, Blobs and Brightness Waves. Some irregularities can affect the propagation of electromagnetic waves in the ionosphere, interfering in the transmission of radio signals used in telecommunications and positioning systems such as GPS and satellite navigation. This work presents a study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) using all-sky images in the OI 630.0 nm emission obtained with an all-sky imager installed at the Southern Space Observatory (29.4° S, 53.8° W) in São Martinho da Serra, RS. Also, data of a digisonde installed at Cachoeira Paulista Observatory (22.7° S, 45.0° W) and other at Falkland Islands (51.4° S, 57.5° W), were used in the present study. In this work we present events of MSTID's and the effects of the ionization on its propagation in the nighttime ionosphere.

  16. Robust detection of ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Walter, T.; Hansen, A.; Blanch, J.; Enge, P.; Mannucci, T.; Pi, X.; Sparks, L.; Iijima, B.; El-Arini, B.; Lejeune, R.; Hagen, M.; Altshuler, E.; Fries, R.; Chu, A.

    2000-01-01

    The approach outlined in this paper conservatively bounds the ionospheric errors even for the worst observed ionospheric conditions to date, using data sets taken from the operational receivers in the WAAS reference station network.

  17. Magnetosphere-ionosphere waves

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Wright, A. N.

    2012-01-01

    Self-consistent electrodynamic coupling of the ionosphere and magnetosphere produces waves with clearly defined properties, described here for the first time. Large scale (ideal) disturbances to the equilibrium, for which electron inertia is unimportant, move in the direction of the electric field at a characteristic speed. This may be as fast as several hundred meters per second or approximately half the E × B drift speed. In contrast, narrow scale (strongly inertial) waves are nearly stationary and oscillate at a specific frequency. Estimates of this frequency suggest periods from several tenths of a second to several minutes may be typical. Both the advection speed and frequency of oscillation are derived for a simple model and depend on a combination of ionospheric and magnetospheric parameters. Advection of large scale waves is nonlinear: troughs in E-region number density move faster than crests and this causes waves to break on their trailing edge. Wavebreaking is a very efficient mechanism for producing narrow (inertial) scale waves in the coupled system, readily accessing scales of a few hundred meters in just a few minutes. All magnetosphere-ionosphere waves are damped by recombination in the E-region, suggesting that they are to be best observed at night and in regions of low ionospheric plasma density. Links with observations, previous numerical studies and ionospheric feedback instability are discussed, and we propose key features of experiments that would test the new theory.

  18. The Caltech airborne submillimeter SIS receiver

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas; Carlstrom, J.; Miller, D.; Ugras, N. G.

    1995-01-01

    We have constructed a sensitive submillimeter receiver for the NASA Kuiper Airborne Observatory (KAO) which at present operates in the 500-750 GHz band. The DSB receiver noise temperature is about 5 h nu/k(sub B) over the 500-700 GHz range. This receiver has been used to detect H2O(18)O, HCl, and CH in interstellar molecular clouds, and also to search for C(+) emission from the highly redshifted galaxy (z = 2.3) IRAS 10214.

  19. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  20. Report from ionospheric science

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Banks, Peter M.; Nagy, A. F.; Chappell, C. R.

    1989-01-01

    The general strategy to advance knowledge of the ionospheric component of the solar terrestrial system should consist of a three pronged attack on the problem. Ionospheric models should be refined by utilization of existing and new data bases. The data generated in the future should emphasize spatial and temporal gradients and their relation to other events in the solar terrestrial system. In parallel with the improvement in modeling, it will be necessary to initiate a program of advanced instrument development. In particular, emphasis should be placed on the area of improved imaging techniques. The third general activity to be supported should be active experiments related to a better understanding of the basic physics of interactions occurring in the ionospheric environment. These strategies are briefly discussed.

  1. Ionospheric Data Assimilation

    NASA Astrophysics Data System (ADS)

    Schunk, R.; Scherliess, L.; Sojka, J.; Thompson, D.

    2003-04-01

    Ionospheric weather disturbances can have detrimental effects on a variety of civilian and military systems and operations. They can affect over-the-horizon (OTH) radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the FAA's Wide-Area Augmentation System (WAAS). In an effort to mitigate the adverse effects of the ionosphere on these systems/operations, there is a strong emphasis on developing specification and forecast models. One of the models under development is the Global Assimilation of Ionospheric Measurements (GAIM) model. GAIM uses a physics-based ionosphere-plasmasphere-polar wind model and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. Some of the data that are assimilated include in situ electron density measurements from the DMSP satellites, bottomside electron density profiles from the Air Force network of digisondes, GPS-TEC data from a network of more than 100 stations, and occultation data. GAIM provides specifications and forecasts on a spatial grid that can be global, regional, or local (25 x 25 km). The primary GAIM output is in the form of 3-dimensional electron density distributions from 90 km to the geosynchronous altitude (35,000 km). GAIM also provides auxiliary parameters (N_mF_2, h_mF_2, N_mE, h_mE, slant and vertical TEC) and global distributions of the self-consistent ionospheric drivers (neutral winds and densities, magnetospheric and dynamo electric fields, and particle precipitation patterns). In its specification mode, GAIM provides quantitative estimates for the accuracy of the reconstructed ionospheric densities. An outline of the GAIM model will be presented and then the presentation will focus on data issues, including the availability of real-time data sources, data quality problems, and the need to have realistic errors attached to all of the real-time data.

  2. GROUP-C and LITES Experiments for Ionospheric Remote Sensing aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.

    2013-12-01

    Ionospheric irregularities, also known as ionospheric bubbles, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Understanding irregularity formation, development, and evolution is vital for efforts within NASA and DoD to forecast scintillation. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the International Space Station (ISS) would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. The GPS Radio Occultation and Ultraviolet Photometry Colocated (GROUPC) and the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet. By combining for the first time high-sensitivity in-track photometry with vertical ionospheric airglow spectrographic imagery, we demonstrate that high-fidelity optical tomographic reconstruction of bubbles can be performed from the ISS. Ground-based imagery can supplement the tomography by providing all-sky images of ionospheric structures (e.g. bubbles and TIDs) and of signatures of lower atmospheric dynamics, such as gravity waves, that may play a role in irregularity formation. The optical instrumentation can be augmented with additional sensors to provide measurements of scintillation and in situ plasma density, composition, and drifts.

  3. Ionospheric and magnetospheric 'plasmapauses'

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Maynard, N. C.; Hoffman, J. H.

    1978-01-01

    The locations of Explorer 45 plasmapause crossings are studied as a likely indicator of ionospheric and magnetospheric trough locations. Attention is given to vertical flows of H(+) ions in the light ion trough, as detected by the magnetic ion mass spectrometer aboard Isis 2 (which was operating in conjunction with Explorer 45 during August 1972). The possibility of an equatorial plasmapause is discussed, whose field lines map into the ionosphere at latitudes poleward of the H(+) density decrease, probably due to the refilling of magnetic flux tubes in the outer plasmasphere.

  4. Ionosphere Waves Service - A demonstration

    NASA Astrophysics Data System (ADS)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  5. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1997-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001, and the observatory is expected to operate for over 20 years. The specifications, instruments and science potential of SOFIA are discussed.

  6. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.; Roellig, T. L.

    2012-10-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a program to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747SP, has obtained first science with the FORCAST camera in the 5 to 40 micron spectral region and the GREAT heterodyne spectrometer in the 130 to 240 micron spectral region. We briefly review the characteristics and status of the observatory. Spectacular science results on regions of star formation will be discussed. The FORCAST images show several discoveries and the potential for determining how massive stars form in our Galaxy. The GREAT heterodyne spectrometer has made mapping observations of the [C II] line at 158 microns, high J CO lines, and other molecular lines including SH. The HIPO high speed photometer and the high speed camera FDC were used to observe the 2011 June 23 UT stellar occultation by Pluto.

  7. Global ionospheric weather

    SciTech Connect

    Decker, D.T.; Doherty, P.H.

    1994-02-28

    In the last year, the authors have studied several issues that are critical for understanding ionospheric weather. Work on global F-region modeling has consisted of testing the Phillips Laboratory Global Theoretical Ionosphere Model. Comparisons with both data and other theoretical models have been successfully conducted and are ongoing. GPS observations, as well as data analysis, are also ongoing. Data have been collected for a study on the limitations in making absolute ionospheric measurements using GPS. Another study on ionospheric variability is the first of its kind using GPS data. The observed seasonal total electron content behavior is consistent with that determined from the Faraday rotation technique. Work on the FAA's Phase 1 Wide Area Differential GPS (WADGPS) Satellite Navigation Testbed Experiment also continues. Initial results indicate that stations using operational WADGPS should be located no greater than 430 km apart. Work comparing the authors electron-proton-H atom model to both observations and other models has been generally successful. They have successfully modeled the creation of high-latitude large-scale plasma structures using two separate mechanisms (time-varying global convection and meso-scale convection events).

  8. Solitons and ionospheric heating

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Goldman, M. V.; Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.

    1982-01-01

    It is noted that for parameters characterizing the Platteville ionospheric heating facility, the Langmuir wave evolution at the exact reflection point of the heater wave involves an oscillating two-stream instability followed by a collisionally damped three-dimensional soliton collapse. The result gives an alternative explanation for certain experimental observations.

  9. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  10. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  11. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  12. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  13. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  14. The North Pole Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Morison, J.; Aagaard, K.; Falkner, K.; Heiberg, A.; McPhee, M.; Moritz, D.; Overland, J.; Perovich, D.; Richter-Menge, J.; Shimada, K.; Steele, M.; Takizawa, T.; Woodgate, R.

    2001-12-01

    The Arctic environment is changing. The North Pole Environmental Observatory (NPEO) was established as a type of program of long-term observations required to understand Arctic change. The North Pole region was chosen because it is central to observed changes, there is a reasonable past history of measurements, and there is often a large gap there in the coverage of surface measurements. NPEO has three main components, (1) an automated drifting station composed of several buoys to measure atmospheric, upper ocean, and ice variables, (2) a sub-surface mooring at the Pole measuring ocean properties and ice draft, and (3) an airborne hydrographic survey that provides a snapshot spatial description of upper ocean properties. The first observatory was established at the Pole in April 2000 by aircraft flying out of Alert. The drifting station portion consisted of ocean ice and meteorological buoys. Over one year the drifting station passed south through Fram Strait and stopped operating in the Greenland Sea. The airborne hydrographic survey made 6 stations between Alert, the Pole, and beyond. The sub-surface mooring was not deployed. In 2001 the drifting station was similar, but the operation was expanded to deploy a 4000-m mooring at the Pole. The mooring includes current meters, C-T sensors, ADCP, and an ice draft-profiling sonar. It will be recovered in 2002. The hydrographic survey covered a new line from the Pole to 85N, 170W. The 2000 hydrographic survey showed that the changes characterizing the Pole region in the 1990s persist, but with some deepening and some slight retreat toward climatology. The section from Alert shows that upper ocean conditions near the coast have become much like the Western Arctic with low mixed layer salinity and a secondary shallow temperature maximum. The observations indicate a general counterclockwise shift in water mass locations. Among other things, the NPEO 2000 drifting station data indicate the cold halocline is still thinner

  15. Strasbourg's "Academy" observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The observing post located on the roof of Strasbourg's 19th-century "Academy" is generally considered as the second astronomical observatory of the city: a transitional facility between the (unproductive) turret lantern at the top of the Hospital Gate and the German (Wilhelminian) Observatory. The current paper reviews recent findings from archives (blueprints, inventories, correspondence, decrees and other documents) shedding some light on this observatory of which virtually nothing was known to this day. While being, thanks to Chrétien Kramp (1760-1826), an effective attempt to establish an actual observatory equipped with genuine instrumentation, the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. A meridian instrument with a Cauchoix objective doublet was however recovered by the German observatory and is still existing.

  16. HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2015-12-01

    It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.

  17. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  18. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  19. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  20. Modelling ionospheric density structures

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1989-01-01

    Large-scale density structures are a common feature in the high-latitude ionsphere. The structures were observed in the dayside cusp, polar cap, and nocturnal auroral region over a range of altitudes, including the E-region, F-region and topside ionosphere. The origins, lifetimes and transport characteristics of large-scale density structures were studied with the aid of a three-dimensional, time-dependent ionospheric model. Blob creation due to particle precipitation, the effect that structured electric fields have on the ionosphere, and the lifetimes and transport characteristics of density structures for different seasonal, solar cycle, and interplanetary magnetic field (IMF) conditions were studied. The main conclusions drawn are: (1) the observed precipitation energy fluxes are sufficient for blob creation if the plasma is exposed to the precipitation for 5 to 10 minutes; (2) structured electric fields produce structured electron densities, ion temperatures, and ion composition; (3) the lifetime of an F-region density structure depends on several factors, including the initial location where it was formed, the magnitude of the perturbation, season, solar cycle and IMF; and (4) depending on the IMF, horizontal plasma convection can cause an initial structure to break up into multiple structures of various sizes, remain as a single distorted structure, or become stretched into elongated segments.

  1. Ionospheric variability over Japan

    NASA Astrophysics Data System (ADS)

    Ezquer, R. G.; Mosert, M.; Corbella, R.; Erazu, M.; de La Zerda, L.

    The understanding of ionospheric variability is important for the user of ionospheric models. A satellite designer or operator needs to know not only monthly average conditions but also the expected deviations from these mean values. In order to contribute to the studies on ionospheric variability, in this paper values of critical frequencies of F2, F1 and E regions and M(3000)F2 factor measured at 4 Japanese stations are used. Data correspond to equinoxes, solstices, high and low solar activity. Quartiles and median values are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results are similar for the considered stations and show that the highest variability correspond to foF2. For March high solar activity the variability of fof2 decreases during hours of maximum ionisation. The M3000F2 factor, in general, shown low variability. Akita (39.72° N, 140.13° E) showed the highest variability for the three frequencies. Moreover, it can be seen that quartiles are not equidistant from the median value.

  2. The night when the auroral and equatorial ionospheres converged

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Baumgardner, J.; Mendillo, M.; Wroten, J.; Coster, A.; Paxton, L.

    2015-09-01

    An all-sky imaging system at the McDonald Observatory (30.67°N, 104.02°W, 40° magnetic latitude) showed dramatic ionospheric effects during a moderate geomagnetic storm on 1 June 2013. The auroral zone expanded, leading to the observation of a stable auroral red (SAR) arc. Airglow depletions associated with equatorial spread F (ESF) were also seen for the first time at such high magnetic latitude. Total electron content measurements from a Global Positioning System (GPS) receiver exhibited ionospheric irregularities typically associated with ESF. We explore why this moderate geomagnetic disturbance leads to such dramatic ionospheric perturbations at midlatitudes. A corotating interaction region-like driver and a highly contracted plasmasphere caused the SAR arc to occur at L shell ~ 2.3. For ESF at L ~ 2.1, timing of the storm intensification, alignment of the sunset terminator with the central magnetic meridian, and sudden variations in the westward auroral electrojet all combined to trigger equatorial irregularities that reached altitudes of ~ 7000 km. The SAR arc and ESF signatures at the ionospheric foot points of inner magnetosphere L shells (L ~ 2) represent a dramatic convergence of pole to equator/equator to pole coupling at midlatitudes.

  3. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  4. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  5. Coupled Magnetotail-Ionosphere Asymmetries from Ionospheric Hall Conduction

    NASA Astrophysics Data System (ADS)

    Lotko, W.; Smith, R. H.; Zhang, B.; Ouellette, J.; Brambles, O.; Lyon, J.; Wiltberger, M. J.

    2014-12-01

    Fast convective transport in the plasma sheet is more prevalent in the premidnight (dusk) sector relative to postmidnight. Ionospheric convection exhibits related asymmetries - more flux typically circulates in the dusk cell than in the dawn cell, and the nightside convection pattern is rotated clockwise when viewed over the North Pole. We show, using global simulations of the solar wind-magnetosphere-ionosphere interaction, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces asymmetries resembling observed distributions in plasmasheet flows and ionospheric convection (Figure, center panel). The primary causal agent in the simulations is a meridional gradient in ionospheric Hall conductance which, through Cowling polarization, regulates the distributions of i) electrical currents flowing within and between the ionosphere and magnetotail and ii) the nightside reconnection rate and resulting dawn-dusk distribution of plasma sheet fast flows. The asymmetry disappears in the simulation when the Hall conductance is taken to be uniform (left panel), and it reverses when the conductance is artificially depleted at auroral latitudes (right panel). The coupling between meridional currents and electric fields in the ionosphere and axial currents and electric fields in the plasmasheet is demonstrated by a simple model for non-ideal coupling of field-aligned currents flowing between the plasma sheet and the region of enhanced ionospheric conductance straddling the nightside convection throat.

  6. Nonlinear Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    2016-07-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  7. Stratospheric Observatory for Infrared Astronomy (SOFIA) system concept

    NASA Technical Reports Server (NTRS)

    Wiltsee, Christopher B.; Brooks, Walter F.

    1989-01-01

    The system concept for the Stratospheric Observatory for Infrared Astronomy (SOFIA), as developed by NASA Ames Research Center is described. The SOFIA facility is a 3-meter class optical/infrared/submillimeter telescope mounted in an open cavity in the forebody of a Boeing 747 aircraft, to be operational in 1992. It represents the next generation of Ames' existing airborne IR facilities, and is about ten times more sensitive than the Kuiper Airborne Observatory (KAO) with 3 times better angular resolution, and able to detect all the far-infrared point sources discovered by IRAS (Infrared Astronomical Satellite) survey in 1983. Major requirements and design attributes of the SOFIA telescope are presented, along with a brief description of the Ground Support/Operations System.

  8. Global Health Observatory (GHO)

    MedlinePlus

    ... repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the SDGs ... relevant web pages on the theme. Monitoring the health goal: indicators of overall progress Mortality and global ...

  9. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  10. Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Big Bear Solar Observatory (BBSO) is located at the end of a causeway in a mountain lake more than 2 km above sea level. The site has more than 300 sunny days a year and a natural inversion caused by the lake which makes for very clean images. BBSO is the only university observatory in the US making high-resolution observations of the Sun. Its daily images are posted at http://www.bbso.njit.e...

  11. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Ming; Komjathy, Attila; Langley, Richard B.; Vergados, Panagiotis; Butala, Mark D.; Mannucci, Anthony J.

    2014-05-01

    On 15 February 2013, the Chelyabinsk meteor event (the largest in size since 1908) provided a unique opportunity to observe ionospheric perturbations associated with the ablation and ionospheric impact of the meteor using GPS measurements. The hypersonic bolide generated powerful shock waves while acoustic perturbations in the atmosphere led to the upward propagation of acoustic and gravity waves into the ionosphere. In our research, we applied two different techniques to detect ionospheric disturbances in dual-frequency global positioning system (GPS) measurements during the meteor impact event. The data were collected from near-field GPS networks in Russia, GPS Earth Observation Network (GEONET) in Japan, and Plate Boundary Observatory (PBO) stations in the coterminous U.S. Using a novel wavelet coherence detection technique, we were able to identify three different wave trains in the measurements collected from the nearest GPS station to the meteor impact site, with frequencies of approximately 4.0-7.8 mHz, 1.0 -2.5 mHz, and 2.7-11 mHz at 03:30 UTC. We estimated the speed and direction of arrival of the total electron content (TEC) disturbances by cross-correlating TEC time series for every pair of stations in several areas of the GEONET and PBO networks. The results may be characterized as three different types of traveling ionospheric disturbances (TIDs). First, the higher-frequency (4.0-7.8 mHz) disturbances were observed around the station ARTU in Arti, Russia (56.43°N, 58.56°E), with an estimated mean propagation speed of about 862 ± 65 m/s (with 95% confidence interval). Another type of TID disturbance related to the wave trains was identified in the lower frequency band (1.0-2.5 mHz), propagating with a mean speed of 362 ± 23 m/s. The lower frequency ionospheric perturbations were observed at distances of 300-1500 km away from Chelyabinsk. The third type of TID wave train was identified using the PBO stations in the relative short-period range of 1

  12. Ionospheric Electric Field and Energetic Particles; Past Successes, Future Challenges

    NASA Astrophysics Data System (ADS)

    Rodger, A. S.

    2005-12-01

    The International Geophysical Year (1957-58) saw a step-increase in the number of ionospheric observations in both polar regions and the establishment of the World Data Centres allowing free exchange of information. Exploitation of these data from such networks of observatories, combined with the early satellite measurements, demonstrated that electric fields and energetic particles driven by solar wind-magnetosphere interactions are of paramount importance in determining the structure and dynamics of the high-latitude ionosphere. Over the next five decades, much greater understanding of the interactions of the solar wind-magnetosphere-ionosphere system has been achieved. Many features and phenomena can now be predicted with a good degree of accuracy, given the initial solar wind conditions. A few scientific milestones will be presented, many of which have resulted from technical innovations, such as coherent and incoherent radars, and optical imaging. The International Heliophysical and Polar Years offer an excellent opportunity to address the outstanding issues of geospace research. Specific examples will be described. These include the spatial and temporal deposition of energy into the ionosphere and thermosphere by particles and electric fields both on the day side and nightside as a result of reconnection and substorms, and the interaction of micro-scale processes on the meso and macro-scale structure of the coupled system. Such complex topics can now be addressed for the first time with the enhanced capabilities of the ground-based networks of observatories, well complemented by remote sensing from satellites. The outcome will be much improved understanding of the closely-coupled SW-M-I-T system and hence better predictions both for space weather and Sun-Earth connections.

  13. Anomalous reflections from the ionosphere

    NASA Astrophysics Data System (ADS)

    Givishvili, G. V.; Leshchenko, L. N.

    2013-09-01

    The existence of anomalous ionospheric reflections was shown on the basis of vertical soundings at the Moskow station. They are observed at heights of 100-200 km. These anomalous reflections are not related to the main Ne( h) ionospheric profile. Morphological characteristics of such reflections are presented: the daily, seasonal, and cyclic dependences of their appearance.

  14. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-12-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m infrared telescope in a Boeing 747SP. Flying at altitudes as high as 45,000 feet, it will enable 0.3 μm- 1.6 mm observations with an average transmission of ≥ 80%. We describe the key role that Tom Phillips played in the early days of airborne astronomy that culminated in the development of SOFIA. The facility design and status are described. Nine first generation instruments that will fly on SOFIA include broadband imaging cameras, moderate resolution spectrographs capable of resolving emission features due to dust and large molecules, and high resolution spectrometers suitable for kinematical studies of molecular and atomic gas lines at km s-1 resolution. World-wide deployments will provide access to the entire sky and enable timely observations of transient events. SOFIA's sensitivity for imaging and spectroscopy is similar to that of the space observatory ISO. Its telescope is diffraction-limited beyond 25μm, making its images 3 times sharper than those obtained by the Spitzer Space Telescope at these wavelengths. We describe the characteristics of the observatory and give several examples of science opportunities with SOFIA.

  15. Effective recombination coefficients in the high-latitude lower ionosphere from solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Cherniakov, Sergey

    2016-07-01

    The photochemistry of processes in the lower ionosphere is rather difficult and up to the end is not developed: it is necessary to specify photochemical schemes, there is big uncertainty in coefficients of separate reactions and concentration of small neutral components. Therefore introduction of the effective coefficients determining the total speed of several reactions was widely adopted when modeling the lower ionosphere, especially the D-region. Experimental opportunities of obtaining of effective recombination coefficients are rather limited. One of the methods allows to define effective recombination coefficients is based on the phenomenon of a solar eclipse and the changes of electron concentration in the ionosphere connected with it. During a solar eclipse there is a short-term and controlled change of solar ionizing radiation intensity that allows to research photochemical processes at known input parameters. The time delay between the eclipse maximum (the sunlight minimum) and the electron concentration minimum at the chosen height during the "short night" is defined as the "sluggishness" [Appleton E.V., 1953] and "relaxation time" [Mitra A., 1974]. The received time delay from observations at the considered ionosphere height with the known electron concentration value gives possibility to calculate the effective recombination coefficient for this height. During solar eclipses on 1 August 2008, on 1 June 2011 and on 20 March 2015 at the partial reflection facility of the observatory "Tumanny" (69° N, 35.7 E) observations of the lower ionosphere behavior were made. On the basis of the obtained data the electron concentration profiles at the heights of the lower ionosphere were received. Calculation of relaxation times allowed to define effective recombination coefficients at some heights of D region of the ionosphere. Appleton, E. V. A note on the "sluggishness" of the ionosphere // J. Atmos. Terr. Phys. - 1953. - Vol. 3, N 5. - P. 282-284. Mitra, A. P

  16. Vertical characteristics of midlatitude E and F region ionospheric drifts during disturbed conditions..

    NASA Astrophysics Data System (ADS)

    Boska, Josef; Kouba, Daniel; Koucka Knizova, Petra; Potuznikova, Katerina

    2015-04-01

    Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory of the Institute of Atmospheric Physics, Prague (IAP) from 2004, enables us to carry out standard ionospheric sounding and ionospheric drifts measurements. Using standard mode of automatic drift (autodrift mode) measurements the velocity of the F region drifts is usually determined in the vicinity of the peak of the electron density profile (N(h) profile). Since 2005 we are also measuring ionospheric drifts at the heights of the ionospheric E region. This new experimental arrangement makes possible to study vertical changes and profiles of the ionospheric drift velocity in two different ionospheric regions. From E region within the altitudinal interval of 90-150 km to F region in altitudes from 150 km up to height of the maximum electron density profile N(h). This paper present the results of the analysis of the plasma drifts velocity in two different ionospheric regions observed under quiet geomagnetic and ionospheric conditions and especially during ionospheric spread F conditions. These spread F conditions are often observed in the ionosphere as effect of travelling ionopheric disturbances TIDs. The presence of this TIDS can be detected from the F layer isoelectrondensity contours. The spread F conditions are often present also under moderate-to-intense ionospheric and geomagnetic storm conditions. Our results shows, that behavior of Es layer drifts can be different than drifts in E-layer. During winter geomagnetic storm -more dramatic increasing of all drift velocities components was observed (50 - 100 m/s vertical drift component). Different behaviour ionospheric drifts at the heights intervals 90 - 110 km and 110 - 130 km was observed during winter storm. Significant height changes of the drift velocity height profile in the interval of heights 90 - 130 km during winter event was observed. Our results shows that behavior of Es layer drifts can be

  17. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  18. Solitons and ionospheric modification

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.

    1982-01-01

    The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.

  19. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  20. The Imaging Spectrometric Observatory for the ATLAS 1 mission

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1995-01-01

    The Imaging Spectrometric Observatory (ISO) was flown on the ATLAS 1 mission and was enormously successful, providing a baseline database on the coupled stratospheric, mesospheric, thermospheric, and ionospheric regions. Specific ISO accomplishments include measurements of the hydroxyl radical, studies of the global ionosphere, retrieval of the concentrations of neutral species from the ISO data, studies of mesospheric oxygen emissions, retrieval of mesospheric O from oxygen emissions, studies of the OH Meinel bands and the search for the Herzberg III bands, search for metallic species, studies of thermospheric nitric oxide, auroral study of molecular nitrogen emissions, and studies of thermospheric species. Apart from participation in the data analysis, the primary post-flight responsibility of Marshall Space Flight Center was the delivery of the final post mission dataset. Support provided by the University of Alabama in Huntsville is described.

  1. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  2. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  3. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  4. Improving geomagnetic observatory data in the South Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  5. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  6. SOFIA: The future of airborne astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    1995-01-01

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  7. SOFIA: The future of airborne astronomy

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  8. Ionospheric and magnetospheric plasmapauses'

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoffman, J. H.; Maynard, N. C.

    1977-01-01

    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause.

  9. Ionospherically reflected proton whistlers

    NASA Astrophysics Data System (ADS)

    Vavilov, D. I.; Shklyar, D. R.

    2014-12-01

    We present experimental observations and detailed investigation of the variety of proton whistlers that includes transequatorial and ionospherically reflected proton whistlers. The latter have previously been indicated from numerical modeling of spectrograms. The study is based on six-component ELF wave data from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite which permits to obtain not only spectrograms displaying the power spectral density but also such wave properties as the polarization, wave normal angle, wave refractive index, and normalized parallel component of the Poynting vector. The explanation of various types of proton whistlers is based on the properties of ion cyclotron wave propagation in a multicomponent magnetoplasma, with special consideration of the effect of ion hybrid resonance reflection. Analysis of experimental data is supplemented by numerical modeling of spectrograms that reproduces the main features of experimental ones. As a self-contained result, we provide conclusive experimental evidences that the region illuminated by a lightning stroke in the Earth-ionosphere waveguide may spread over a distance of 4000 km in both hemispheres.

  10. Stratospheric Observatory for Infrared Astronomy (SOPHIA) Mirror Coating Facility

    NASA Astrophysics Data System (ADS)

    Austin, Ed

    The joint US and German project, Stratospheric Observatory for Infrared Astronomy (SOFIA), to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began late last year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOPHIA. The 2.5 meter telescope will be designed and built by a consortium of German companies. The observatory is expected to operate for over 29 years with the first science flights beginning in 2001. The SOPHIA Observatory will fly at and above 12.5 km, where the telescope will collect radiation in the wavelength range from 0.3 micrometers to a 1.6 millimeters. Universities Space Research Association (USRA) with support from NASA is currently evaluating methods of recoating the primary mirror in preparation for procurement of mirror coating equipment. The decision analysis technique, decision criteria and telescope specifications will be discussed.

  11. Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies.

    PubMed

    Mendillo, M; Baumgardner, J; Allen, D P; Foster, J; Holt, J; Ellis, G R; Klekociuk, A; Reber, G

    1987-11-27

    The Spacelab-2 Plasma Depletion Experiments were a series of studies to examine shuttle-induced perturbations in the ionosphere and their application to ground-based radio astronomy. The space shuttle Challenger fired its orbital maneuvering subsystem engines on 30 July and 5 August 1985, releasing large amounts of exhaust molecules (water, hydrogen, and carbon dioxide) that caused the electrons and ions in Earth's upper atmosphere to chemically recombine, thereby creating so-called "ionospheric holes." Two burns conducted over New England produced ionospheric peak depletions ranging from 25 to 50 percent, affected the ionosphere over a 200-kilometer altitude range, and covered 1 degrees to 2 degrees of latitude. Optical emissions associated with the hole spanned an area of several hundred thousand square kilometers. A third burn was conducted over a low-frequency radio observatory in Hobart, Australia, to create an "artificial window" for ground-based observations at frequencies normally below the natural ionospheric cutoff (penetration) frequency. The Hobart experiment succeeded in making high-resolution observations at 1.7 megahertz through the induced ionospheric hole. PMID:17744364

  12. Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies

    NASA Astrophysics Data System (ADS)

    Mendillo, M.; Baumgardner, J.; Allen, D. P.; Foster, J.; Holt, J.

    1987-11-01

    The Spacelab-2 Plasma Depletion Experiments were a series of studies to examine Shuttle-induced perturbations in the ionosphere and their application to ground-based radio astronomy. The Space Shuttle Challenger fired its orbital maneuvering subsystem engines, releasing large amounts of exhaust molecules that caused the electrons and ions in earth's upper atmosphere to chemically recombine, thereby creating so-called 'ionospheric holes'. Two burns conducted over New England produced ionospheric peak depletions ranging from 25 to 50 percent, affected the ionosphere over a 200-kilometer altitude range, and covered 1 to 2 deg of latitude. Optical emissions associated with the hole spanned an area of several hundred thousand square kilometers. A third burn was conducted over a low-frequency radio observatory in Hobart, Australia, to create an 'artificial window' for ground-based observations at frequencies normally below the natural ionospheric cutoff (penetration) frequency. The Hobart experiment succeeded in making high-resolution observations at 1.7 megahertz through the induced ionospheric hole.

  13. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  14. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  15. Ionospheric climate and weather modeling

    SciTech Connect

    Schunk, R.W.; Sojka, J.J.

    1988-03-01

    Simulations of the ionospheric model of Schunk et al. (1986) have been used for climatology and weather modeling. Steady state empirical models were used in the climatology model to provide plasma convection and particle precipitation patterns in the northern high-latitude region. The climatology model also depicts the ionospheric electron density and ion and electron temperatures for solar maximum, winter solstice, and strong geomagnetic activity conditions. The weather model describes the variations of ionospheric features during the solar cycle, seasonal changes, and geomagnetic activity. Prospects for future modeling are considered. 23 references.

  16. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit

  17. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  18. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  19. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  20. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  1. Armenian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    Vast amount of information continuously accumulated in astronomy requires finding new solutions for its efficient storage, use and dissemination, as well as accomplishing new research projects. Virtual Observatories (VOs) have been created in a number of countries to set up a new environment for these tasks. Based on them, the International Virtual Observatory Alliance (IVOA) was created in 2002, which unifies 19 VO projects, including Armenian Virtual Observatory (ArVO) founded in 2005. ArVO is a project of Byurakan Astrophysical Observatory (BAO) aimed at construction of a modern system for data archiving, extraction, acquisition, reduction, use and publication. ArVO technical and research projects are presented, including the Global Spectroscopic Database, which is being built based on Digitized First Byurakan Survey (DFBS). Quick optical identification of radio, IR or X-ray sources will be possible by plotting their positions in the DFBS or other spectroscopic plate and matching all available data. Accomplishment of new projects by combining data is so important that the International Council of Scientific Unions (ICSU) recently created World Data System (WDS) for unifying data coming from all science areas, and BAO has also joined it.

  2. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  3. Poznan acute Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    This Poznan acute Astronomical Observatory is a unit of the Adam Mickiewicz University, located in Poznan acute, Poland. From its foundation in 1919, it has specialized in astrometry and celestial mechanics (reference frames, dynamics of satellites and small solar system bodies). Recently, research activities have also included planetary and stellar astrophysics (asteroid photometry, catalysmic b...

  4. Arecibo Observatory for All

    ERIC Educational Resources Information Center

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  5. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  6. Magnetosphere, ionosphere and atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1979-01-01

    In the present review, the general nature of the earth's space environment is discussed with particular reference to the physical processes which link the magnetosphere, the ionosphere, and the upper atmosphere. Recent theoretical and experimental research has revealed the existence of subtle couplings which closely link the electrical and mass properties of these regions. Some of these couplings have been known for many years. Recent discoveries include such couplings as the formation of the plasmasphere through the mutual action of convective electric fields and ionospheric plasma flows. However, there is still insufficient information to define accurately the basic processes associated with space plasma dynamics when cool thermal plasma of ionospheric origin interacts with the neutral atmosphere, the energetic plasma of the ionosphere, and the solar wind. The primary objective of the discussion is to provide a general introduction to the more challenging processes as they are presently known.

  7. A new global ionospheric model

    NASA Technical Reports Server (NTRS)

    Yip, K. W.; Vonroos, O. H.

    1975-01-01

    A new global ionospheric model was successfully implemented. The daytime portion of this model provides one-way ionospheric range corrections that compare favorably with those derived from the Mariner Venus/Mercury S- and X-band dual frequency Doppler data. For elevation angles, gamma higher than 30 deg and solar zenith angle less than 80 deg, this model provides calibrations accurate to a few centimeters. The calibrations provided by the nighttime model are also very reasonable. It is interesting to note that the daytime ionospheric calibrations derived from the current calibration scheme, DIEN/TIEN, are fairly close to those given by the new global model, especially in the temporal variations and thus the Doppler effects. The comparison between the nighttime model and DIEN/TIEN was based on the one-way ionospheric range corrections for three passes near the Mariner 9 encounter with Mars in 1971. They can differ by over 30%.

  8. Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.

    2013-10-01

    We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.

  9. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2009-06-01

    SOFIA is a 2.5-meter infrared airborne telescope in a Boeing 747-SP that will begin will begin science flights in mid-2009. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA will be used to conduct spectroscopic and imaging observations throughout the infrared and sub-mm region with an average transmission of greater than 80 percent. The SOFIA first-generation instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The characteristics and status of the observatory and its instrumentation will be briefly reviewed. SOFIA`s operations schedule and opportunities for observers and instrument developers will be described.

  10. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1989-01-01

    SOFIA will be a three meter class telescope operating in a Boeing 747, offering astronomers routine access to infrared wavelengths unavailable from the ground, and with the means to observe transient astronomical events from anywhere in the world. The concept is based on 15 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA will replace in the mid 1990's. SOFIA's wavelength range covers nearly four decades of the electromagnetic spectrum: from the visible, throughout the infrared and submillimeter, to the microwave region. Relative to the KAO, SOFIA will be roughly ten times more sensitive for compact sources, enabling observations of fainter objects and measurements at higher spectral resolution. Also, it will have three times the angular resolving power for wavelengths greater than 30 microns, permitting more detailed imaging at far infrared wavelengths.

  11. Ionospheric disturbances during November 30-December 1, 1988. XI - Abnormal propagations of HF and VHF radio waves

    NASA Astrophysics Data System (ADS)

    Ichinose, Masaru; Kamata, Mitsuhiro

    1992-07-01

    Unusual propagations of HF and VHF radio waves associated with a geomagnetic storm during the period from November 30 to December 1, 1988 are investigated using ionospheric data collected from Japan, China, and Taiwan. The increased field strength of the Japanese frequency standard signals (JJY 2.5 MHz and 5 MHz) which were received at Akita Radio Wave Observatory on the night of November 30 seem to have been caused by increased MUFs and/or scattering due to the disturbed ionosphere. The VHF-TV radio waves propagated from China were received at Kokubunji in Tokyo. One of the most probable mechanisms explaining this unusual propagation of VHF is a one-hop-F2 mode of propagation created by an ionosphere with an anomalously high f0F2. It was found out that these unusual HF and VHF propagations were attributed to unusual ionospheric conditions associated with these geomagnetic disturbances.

  12. First results from the Swarm Dedicated Ionospheric Field Inversion chain

    NASA Astrophysics Data System (ADS)

    Chulliat, A.; Vigneron, P.; Hulot, G.

    2016-06-01

    Data-based modeling of the magnetic field originating in the Earth's ionosphere is challenging due to the multiple timescales involved and the small spatial scales of some of the current systems, especially the equatorial electrojet (EEJ) that flows along the magnetic dip equator. The Dedicated Ionospheric Field Inversion (DIFI) algorithm inverts a combination of Swarm satellite and ground observatory data at mid- to low latitudes and provides models of the solar-quiet (Sq) and EEJ magnetic fields on the ground and at satellite altitude. The basis functions of these models are spherical harmonics in quasi-dipole coordinates and Fourier series describing the 24-, 12-, 8- and 6-h periodicities, as well as the annual and semiannual variations. A 1-D conductivity model of the Earth and a 2-D conductivity model of the oceans and continents are used to separate the primary ionospheric field from its induced counterpart. First results from the DIFI algorithm confirm several well-known features of the seasonal variability and westward drift speed of the Sq current systems. They also reveal a peculiar seasonal variability of the Sq field in the Southern hemisphere and a longitudinal variability reminiscent of the EEJ wave-4 structure in the same hemisphere. These observations suggest that the Sq and EEJ currents might be electrically coupled, but only for some seasons and longitudes and more so in the Southern hemisphere than in the Northern hemisphere.

  13. Sodankylä ionospheric tomography data set 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Roininen, Lassi; Kero, Antti; Raita, Tero; Ulich, Thomas; Markkanen, Markku; Juusola, Liisa; Kauristie, Kirsti

    2016-07-01

    Sodankylä Geophysical Observatory has been operating a receiver network for ionospheric tomography and collecting the produced data since 2003. The collected data set consists of phase difference curves measured from COSMOS navigation satellites from the Russian Parus network (Wood and Perry, 1980) and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three to five operational stations at the Fennoscandia sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this data set, one solar cycle of ionospheric VTEC estimates is constructed. The measurements are compared against the International Reference Ionosphere (IRI)-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model results are on average 40 % higher than that of the tomographic results.

  14. Comparison of ionospheric plasma drifts obtained by different techniques

    NASA Astrophysics Data System (ADS)

    Kouba, Daniel; Arikan, Feza; Arikan, Orhan; Toker, Cenk; Mosna, Zbysek; Gok, Gokhan; Rejfek, Lubos; Ari, Gizem

    2016-07-01

    Ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde DPS-4D. The paper is focused on F-region vertical drift data. Vertical component of the drift velocity vector can be estimated by several methods. Digisonde DPS-4D allows sounding in drift mode with direct output represented by drift velocity vector. The Digisonde located in Pruhonice provides direct drift measurement routinely once per 15 minutes. However, also other different techniques can be found in the literature, for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. This comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisonde. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  15. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  16. Ionospheric effects of the missile destruction on 9 December 2009

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Shalimov, Sergey; Lukianova, Renata; Lester, Mark

    2014-05-01

    We report on ionosonde and meteor radar observations made in Sodankylä Geophysical Observatory (SGO, 67°22'N, 26°38'E, Finland) on 9 December 2009, during a test launch of the Russian solid propellant military missile. Due to a technical problem, the missile was self-destroyed around 07 UT at an ionospheric height (near 200 km altitude) over the Kola Peninsula (Russia), at a distance about 500 km to east from the observatory. Products of the explosion were spread into a large area and reached the region of SGO meteor radar observations in about 2 h (around 09 UT). After about 3 h (around 10 UT), a sporadic E layer presumably composed of the remains including long-lived metallic (aluminum and its oxides) ions, was observed near the zenith of the SGO ionosonde. We discuss possible mechanisms accounting for transport of the remains. (1) Since the event occurred during a long-lasting period of extremely low solar and magnetic activity, the ionospheric electric field was unlikely to play a substantial role in the transport of the remains and sporadic E layer formation. (2) The horizontal transport of the remains cannot be explained by the neutral winds based on empirical models. (3) Theoretical estimations suggest that the observed transport could be due to thermospheric turbulence.

  17. New Ecuadorian VLF and ELF receiver for study the ionosphere

    NASA Astrophysics Data System (ADS)

    Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.

  18. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  19. Ionospheric current contribution to the main impulse of a negative sudden impulse

    NASA Astrophysics Data System (ADS)

    Vichare, Geeta; Rawat, Rahul; Bhaskar, Ankush; Pathan, Bashir M.

    2014-12-01

    The geomagnetic field response to a moderate-amplitude negative sudden impulse (SI-) that occurred on 14 May 2009 at 10:30 UT was examined at 97 geomagnetic observatories situated all over the globe. The response signature contains a contribution from magnetospheric as well as ionospheric currents. The main impulse (MI) is defined as the maximum depression in the observed geomagnetic field. It is observed that for low-to-high latitudes, the amplitude of the MI is larger in the afternoon to post-dusk sector than in the dawn-noon sector, indicating asymmetry in the MI amplitude. We estimated the contribution at various observatories due to the Chapman-Ferraro magnetopause currents using the Tsyganenko model (T01) and subtracted this from the observed MI amplitude to obtain the contribution due to ionospheric currents. It is found that the ionospheric currents contribute significantly to the MI amplitude of moderate SI- even at low-to-mid latitudes and that the contribution is in the same direction as that from the magnetopause currents near dusk and in the opposite direction near dawn. The equivalent current vectors reveal a clockwise (anticlockwise) ionospheric current loop in the afternoon (morning) sector during the MI of the negative pressure impulse. This evidences an ionospheric twin-cell-vortex current system (DP2) due to field-aligned currents (FACs) associated with the dusk-to-dawn convection electric field during the MI of an SI-. We also estimated the magnetic field variation due to prompt penetration electric fields, which is found to be very small at low latitudes in the present case. The studied SI- is not associated with shock, and hence no preliminary reverse impulse was evident. In addition, the summer hemisphere reveals larger MI amplitudes than the winter hemisphere, indicating once again the role of ionospheric currents.

  20. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  1. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  2. Arecibo Observatory support of the US international cometary Explorer mission encounter at comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Gordon, D. D.; Ward, M. T.

    1986-01-01

    The Arecibo Observatory in Puerto Rico participated in the support of the U.S. International Cometary Explorer (ICE) mission when the ICE spacecraft passed through the tail of comet Giacobini-Zinner on September 11, 1985. The Arecibo Observatory is a research facility of the National Astronomy and Ionosphere Center (NAIC) operated by Cornell University under contract to the National Science Foundation (NSF). Coverage of the encounter involved the use of the observatory's 305-m (1000-ft) radio reflector antenna and RF and data system equipment fabricated or modified specifically for support of the ICE mission. The successful implementation, testing, and operation of this temporary receive, record, and data relay capability resulted from a cooperative effort by personnel at the Arecibo Observatory, the Goddard Space Flight Center, and the Jet Propulsion Laboratory.

  3. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  4. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  5. Arcetri Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Arcetri Astrophysical Observatory, a government research institute founded in 1972, is located close to the villa where Galileo spent the last 11 years of his life. Under the directorship of Giorgio Abetti (1921-53) it became the growth point of Italian astrophysics with emphasis on solar physics; a tradition continued by his successor Guglielmo Righini (1953-78). Since 1978 the activities ha...

  6. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert; Becklin, Eric; Young, Erick; Krabbe, Alfred; Marcum, Pamela; Roellig, Thomas

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 and is capable of observations from 0.3 microns to 1.6 mm with an average transmission greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 8 to 10 hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. SOFIA will initially fly with eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and future instrumentation developments. The operational characteristics of the SOFIA first-generation instruments are summarized and we give several specific examples of the types of scientific studies to which these instruments are expected to make fundamental scientific contributions.

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  8. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  9. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  10. Megalithic observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  11. Sierra Remote Observatories

    NASA Astrophysics Data System (ADS)

    Ringwald, Fred; Morgan, G. E.; Barnes, F. S., III; Goldman, D. S.; Helm, M. R.; Mortfield, P.; Quattrocchi, K. B.; Van Vleet, L.

    2009-05-01

    We report the founding of a new facility for astrophotography and small-telescope science. Sierra Remote Observatories are eight small observatories at 4610' altitude in the Sierra Nevada Mountains of California. The sky brightness during New Moon typically rates 3 on the Bortle scale. Typical seeing is 1.2", with a one-sigma range between 1.0" and 1.6", measured during 2007 June-September. All eight observatories are operated by remote control over the Internet, from as far away as Toronto and South Carolina. The telescopes range in aperture from 106 mm to 16 inches. Color images have so far been published in several magazines (Astronomy, Practical Astronomer, and Sky & Telescope) and on NASA's Astronomy Picture of the Day website. Science programs include time-resolved photometry of cataclysmic variables including the discovery of a 3.22-hour periodicity in the light curve of the nova-like V378 Pegasi, the serendipitous discovery of a previously undesignated spherical bubble in Cygnus, the discovery of three asteroids, and monitoring of Comet Lulin.

  12. The Russian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O. B.; Malkov, O. Yu.; Kilpio, A. A.; Kilpio, E. Yu.; Kovaleva, D. A.; Sat, L. A.

    The Russian Virtual Observatory (RVO) will be an integral component of the International Virtual Observatory (IVO). The RVO has the main goal of integrating resources of astronomical data accumulated in Russian observatories and institutions (databases, archives, digitized glass libraries, bibliographic data, a remote access system to information and technical resources of telescopes etc.), and providing transparent access for scientific and educational purposes to the distributed information and data services that comprise its content. Another goal of the RVO is to provide Russian astronomers with on-line access to the rich volumes of data and metadata that have been, and will continue to be, produced by astronomical survey projects. Centre for Astronomical Data (CAD), among other Russian institutions, has had the greatest experience in collecting and distributing astronomical data for more than 20 years. Some hundreds of catalogs and journal tables are currently available from the CAD repository. More recently, mirrors of main astronomical data resources (VizieR, ADS, etc) are now maintained in CAD. Besides, CAD accumulates and makes available for the astronomical community information on principal Russian astronomical resources.

  13. Observing rapid quasi-wave ionospheric disturbance using amplitude charts

    NASA Astrophysics Data System (ADS)

    Kurkin, Vladimir; Laryunin, Oleg; Podlesnyi, Alexey

    Data from vertical (quasi-vertical) sounding are traditionally used for determining a number of ionospheric parameters such as critical frequencies of E and F layers, peaks of these layers, and for reconstructing electron density profiles. In this respect, radio sounding is not used to its full capacity. Modern ionosondes provide additional information encoded in ionospheric echoes, including information on reflected-signal amplitude. The time dependence of the amplitude-frequency characteristic of reflected signal has been named "amplitude chart" (A-chart). Ionosondes used by the ISTP SB RAS Geophysical Observatory for constructing A-charts employ the frequency-modulated continuous-wave (FMCW) signal in a range 1.3-15 MHz. One-minute sounding interval allows a more detailed study of dynamic processes in the ionosphere. The ionosonde has a direct digital synthesizer and direct sampling receiver without automatic gain control (AGC). The absence of AGC and the high dynamic range enable determination of the relative field strength at a receiving point and registration of relative long-term variations in reflected-signal amplitude over the entire range of operating frequencies of the ionosonde. We have revealed that the passage of travelling ionospheric disturbances (TID) along with height-frequency distortion modulates amplitude characteristics of signal. The characteristic depth of the modulation reaches 40 dB. The pronounced alternate vertical stripes typical for A-charts are likely to be associated with focusing properties of TID. In order to examine the space-time structure of TID able to induce such a focusing of the radio waves, we performed ray tracing simulations. We used geometrical-optics approximation, took magneto-ionic effects into account and prescribed electron density to be a stratified electron density profile on which an undulating disturbance was superimposed. This work was supported by the RFBR grant №14-05-00259-а.

  14. The 20 March 2015 total solar eclipse: effects in the high-latitude lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, Sergey; Tereshchenko, Valentina; Ogloblina, Olga; Vasiliev, Evgeny; Gomonov, Alexander

    2016-07-01

    The medium-wave facility of partial reflections of the Polar Geophysical Institute (observatory "Tumanny", 69 N, 35.7 E) has observed behavior of the lower high-latitude ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. Generally on the heights of the lower ionosphere the "short night" effect had shown, but at some heights local enhanced electron concentration were revealed and the behavior of the electron concentration had the wave-like form. It had seen also at the behavior of the total electron content of the lower ionosphere. The periods and behavior of the wave are considered. It can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere by the lunar shadow during its supersonic movement along the earth surface. The periods and behavior of waves during the eclipse were also received using riometer data at the observatory "Tumanny" and the magnetometer at the observatory "Loparskaya" (68.63 N, 33.38 E).

  15. Ionospheric Profiling using GPS/MET Data

    NASA Technical Reports Server (NTRS)

    Hajj, George; Romans, Larry

    1996-01-01

    A report on ionospheric profiling using GPS and MET data is presented. A description of the GPS occultation technique, some examples of GPS/MET data products, the data processing system and a preliminary validation of ionospheric profiles is discussed.

  16. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  17. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  18. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  19. The McDonnell Douglas geophysical observatory program progress report 13 Conjugate point riometer program

    NASA Technical Reports Server (NTRS)

    Baker, M. B.

    1975-01-01

    This report, the thirteenth and final progress report on the McDonnell Douglas Geophysical Observatory Program, discusses history of the program from 1962 through 1973, and results of the research carried out in 1974. Topic areas covered include: Station operation; Ionospheric work; Solar studies, Magnetospheric studies; Satellite measurements; International participation; and, 1974 research on solar activity, ATS-6 studies, magnetospheric physics, and station operation.

  20. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  1. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  2. Low-latitude ionospheric effects on SBAS

    NASA Astrophysics Data System (ADS)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  3. Ionospheric refraction correction in radio astronomy

    NASA Astrophysics Data System (ADS)

    Chai, Yan; Han, Wen-Jun

    1986-10-01

    Using Snell's law in polar coordinates, the ionospheric refraction effects on the declination and right ascension determination are discussed in this paper. A ray tracing method is also given. With the ionospheric data observed in Beijing, the correction of ionospheric refraction is estimated and some useful conclusions are drawn.

  4. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  5. Solar flare and IMF sector structure effects in the lower ionosphere

    SciTech Connect

    Lastovicka, J.

    1984-05-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  6. High time resolution observations of HF cross-modulation within the D region ionosphere

    NASA Astrophysics Data System (ADS)

    Langston, J.; Moore, R. C.

    2013-05-01

    High-frequency cross-modulation is employed to probe the D region ionosphere during HF heating experiments at the High-frequency Active Auroral Research Program (HAARP) observatory. We have adapted Fejer's well-known cross-modulation probing method to determine the extent of ionospheric conductivity modification in the D region ionosphere with high (5 μsec) time resolution. We demonstrate that the method can be used to analyze D region conductivity changes produced by HF heating both during the initial stages of heating and under steady state conditions. The sequence of CW probe pulses used allow the separation of cross-modulation effects that occur as the probe pulse propagates upward and downward through the heated region. We discuss how this probing technique can be applied to benefit ELF/VLF wave generation experiments and ionospheric irregularities experiments at higher altitudes. We demonstrate that large phase changes equivalent to Doppler shift velocities >60 km/s can be imposed on HF waves propagating through the heated D region ionosphere.

  7. The effect of moving cold fronts over Central Europe to the variability of the ionosphere

    NASA Astrophysics Data System (ADS)

    Potuznikova, Katerina; Koucka Knizova, Petra; Boska, Josef; Sindelarova, Tereza; Mosna, Zbysek

    2015-04-01

    Cold fronts represent well known source of atmospheric waves, (especially short and medium scale AGW - acoustic gravity waves), that are able to propagate up to the ionospheric heights. In our study we focus on the effects of the transitions of cold front over the region of Central Europe on the variations of the ionosphere. We concentrate on periods of low solar and geomagnetic activity. Neutral atmosphere data are compared with the wave-like oscillations in the E and F layer. Our tropospheric data comprise synoptic maps on of 500 hPa and 850 hPa geopotential heights. Within ionospheric data we search for variability that is linked to the tropospheric disturbances. The ionospheric parameters (electron concentration and corresponding height) we analyse by the wavelet transform method. The Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory (49.59 N; 14.33 E) of the Institute of Atmospheric Physics, Prague (IAP) since 2004, represents an excellent source of the ionospheric data for Central Europe. Pruhonice digisonde usually operates in standard mode - one ionogram and electron density profie N(h) each 15 minutes. Besides that, data from several european stations of the digisonde world network (data from Juliusruhe, Chilton, Brusel, Roma and Tortosa digisonde stations) are included in the study.

  8. Data Management Challenges for Airborne NASA Earth Venture Sub-Orbital Investigations

    NASA Astrophysics Data System (ADS)

    Boyer, A.; Lindsley, C.; Wright, D.; Cook, R. B.; Santhana Vannan, S. K.

    2015-12-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) is developing technology infrastructure to archive airborne remote sensing observations from two of NASA's Earth Venture Sub-orbital Missions. The two missions are CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). These missions collected over 140 TB of data from extensive ground-based and airborne instruments. The metadata and documentation requirements necessary for proper archive and dissemination of such transect-based, and often 3-dimensional, airborne data are quite different from traditional field campaign data and satellite remote sensing data streams. Staff at the ORNL DAAC have developed a metadata and data infrastructure for airborne data that enables spatial or keyword-based search and discovery, integration of related satellite- or ground-based data sets, and subsetting and visualization tools for both CARVE and AirMOSS. Here we discuss challenges, progress, and lessons learned.

  9. Did Tsunami-Launched Gravity Waves Trigger Ionospheric Turbulence over Arecibo?

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Pradipta, R.; Burke, W. J.; Labno, A.; Burton, L. M.; Cohen, J. A.; Dorfman, S. E.; Coster, A. J.; Sulzer, M. P.; Kuo, S. P.

    2008-01-01

    We report on measurements of ionospheric plasma dynamics conducted at the Arecibo Observatory between 20:00 and 24:00 local time (LT) on December 25 and 26, 2004 using the 430 MHz incoherent scatter radar (ISR). For interpretive purposes these measurements are supported by data from two nearby ionosondes and Global Positioning System (GPS) satellites. The ISR detected different ionospheric behaviors during the vertical-transmission periods on the consecutive, magnetically quiet nights. On the night of December 25 the ionosphere descended smoothly and spread F signatures faded. For about two hours on the following evening the bottomside ionosphere rose by ˜50 km, inducing plasma irregularities and intense spread F. Alternating cycles of bottom-side plasma rising and falling persisted through the remainder of the experiments. We postulate that this sinusoidal behavior is a response to gravity waves propagating above Puerto Rico. Nearly simultaneous data from two nearby stations show that GPS signals were modified by variations in total electron content (TEC) indicating the presence of traveling ionospheric disturbances (TIDs). The December 26 experiments were conducted about a day after an MW = 9.2 earthquake launched tsunami waves first across the Indian, then into the Atlantic and Pacific Oceans. We suggest that coupling at the tsunami sea-air interface launched gravity waves that propagated for great distances beneath the mesopause. GPS data recorded TEC variation in Asia, Europe, and the Caribbean, suggesting that TIDs were induced on a global scale at the wake of tsunami-launched gravity waves. Energy from imperfectly ducted gravity waves leaked into the ionosphere, partially over Puerto Rico. The wind-velocity field of these gravity waves caused local ionospheric plasma to rise, seeding bottomside irregularities via the generalized Rayleigh-Taylor instability.

  10. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  11. Ionospheres of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Nagy, A. F.

    1980-01-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  12. Chemical releases in the ionosphere

    NASA Technical Reports Server (NTRS)

    Davis, T. N.

    1979-01-01

    The study of the interaction between the atmosphere, ionosphere and magnetosphere is identified as a major task worthy of pursuit. The present review demonstrates the major contributions to this complex problem already made by active experiments involving the injection of chemicals and energetic electron beams into the atmosphere, ionosphere and magnetosphere. Through the use of chemical releases, it has been possible to investigate a number of quantities including high-altitude winds and electric fields, the detailed configurations of the geomagnetic field within the ionosphere and the magnetosphere, as well as the propagation of energetic particle beams and their interaction with natural neutral and ionized constituents of the high atmosphere. So far, virtually all of this effort has been accomplished using rockets. In the future, it is obvious that satellite platforms will play a greater role, both in making injections and in observing their effects.

  13. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  14. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  15. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  16. The PS1 Observatory

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick; Morgan, J.; Pier, E.; Chambers, K.

    2007-12-01

    The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) will use gigapixel cameras on multi-aperture telescopes to survey the sky in the visible and near-infrared bands. The first surveys will begin in 2008 using a single telescope system (PS1) has been deployed on Haleakala, Maui. This facility is currently undergoing commissioning tests. The PS1 telescope is a 1.8-m f/4 Richey-Chretien design that employs three 50 cm diameter correcting lens. The optical system produces a 3 degree diameter field of view at the focal plane. Images will be recorded on a 1.4 gigapixel CCD camera (described in an accompanying poster presentation). The survey programs will be conducted using g, r, i, and z filters which closely approximate the band-pass and response of those used in the Sloan Digital Sky Survey. These filters will be supplemented with a y band filter further to the infrared of z and a wide w filter for solar system observations. The images from the PS1 camera are supplemented by an Imaging Sky Probe that will provide co-pointed photometric calibration images of each target field. An all-sky camera at the observatory monitors sky conditions and transparency. The operation of the PS1 telescope is supported by the Observatory, Telescope, and Instrument Software (OTIS) system. The OTIS software interfaces the telescope control software provided by the vendor and the CCD camera computer systems. OTIS also records and archives environmental metadata from the dome and the observatory weather station.

  17. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  18. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  19. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  20. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  1. Strasbourg Observatory Archives Revisited

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2002-12-01

    Official talks in France and Germany after World War I were generally of hatred and revenge. Strasbourg Observatory had just changed nationality (from Prussian to French) for the first time (this would happen again at the outbreak of WWII and after the conflict). Documents show that astronomers did not share the general attitude. For example the inventory book started in German was continued in French after 1918. It is moving to see those different handwritings in two different languages on the same pages -- making of that book a unique document in various respects, but also reminding us that the native language of the region was in fact Alsacian.

  2. Acquirement of the observatory code of Langkawi National Observatory

    NASA Astrophysics Data System (ADS)

    Loon, Chin Wei; Zainuddin, Mohd. Zambri; Ahmad, Nazhatulshima; Shukor, Muhammad Shamim; Tahar, Muhammad Redzuan

    2015-04-01

    Observatory code was assigned by The International Astronomical Union (IAU) Minor Planet Center (MPC) for a permanent observatory that intended to do astrometric CCD-observing program of minor planet or comets in solar system. The purpose of acquiring an observatory code is to document specific details about a particular observation site and the types of instruments used within the observatory. In addition, many astronomical centers and stations worldwide will know there is an active observatory at the particular location and international cooperation program in astronomy observation is possible. The Langkawi National Observatory has initiated an observation program to monitor minor planet, specifically those Near Earth Objects (NEOs) that may bring potentially hazardous to the Earth. In order to fulfil the requirement that stated by MPC for undertaking astrometric CCD-observing program, an observatory code was required. The instruments and methods that applied to obtain the observatory code will be discussed. The Langkawi National Observatory is now coded as O43 and listed in the MPC system, the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of major planets.

  3. The lower ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Poppoff, I. G.

    1975-01-01

    Recently reported (Savich et al. 1975) results of dual frequency (0.94 and 3.75 GHz) radio occultation experiments indicated the existence of a nocturnal ionospheric layer between the Martian surface and 80 km altitude. It is suggested that the observed ionosphere is due to ionization by galactic cosmic rays. The observed nocturnal electron density profile is compared with that of the negative ion model assumed by Whitten et al. (1971). The profiles are similar below 50 km if the negative ion concentration is reduced by a factor of 10.

  4. Overview of midlatitude ionospheric storms

    NASA Astrophysics Data System (ADS)

    Kintner, Paul; Coster, Anthea; Fuller-Rowell, Tim; Mannucci, Anthony J.

    Solar flares and coronal mass ejections erupting from the roiling Sun can smash into the Earth's magnetosphere causing geomagnetic storms that penetrate deep into the atmosphere, which can short out satellites, upset radio communications, disrupt navigation, and even damage terrestrial electrical power grids. Though effects on other regions of the atmosphere have been analyzed, the mechanism by which geomagnetic storms influence the ionosphere's middle latitudes remains poorly understood.This brief report provides an overview of current knowledge in midlatitude ionospheric dynamics and disturbances, from the historic record to recent discoveries presented at a January AGU Chapman Conference.

  5. Stratospheric Observatory for Infrared Astronomy (SOFIA) science rationale

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Erickson, Edwin F.

    1989-01-01

    SOFIA, a proposed 3-meter class telescope in a Boeing 747 aircraft, would have the ability to make astronomical observations over a wavelength range from 0.3 microns to 1.6mm. Relative to the KAO (Kuiper Airborne Observatory) the larger telescope on SOFIA would provide a factor of 10 improvement in sensitivity for compact sources and a factor of 3 improvement in (diffraction-limited) angular resolution at wavelengths beyond 30 microns. In addition, SOFIA will retain the major features of the KAO which have made the airborne astronomy program so successful. Among these are continuous in-flight access to focal plane instruments while flying at or above 41,000 ft altitude; pointing stability of 0.2 arcseconds; and mobility and scheduling flexibility to accommodate targets of opportunity such as comets, eclipses, occultations, and novae.

  6. The Asiago Observatory's reflectogoniometer

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Pernechele, C.; Barbieri, C.

    1999-09-01

    We present the Asiago Astrophysical Observatory reflectogoniometer, a useful instrument which allows to perform laboratory studies of transmitted and diffuse light. In particular the instrument allows a complete characterization of the Bidirectional Reflectance Function (BDRF) for spherical shape samples and of the Transmittance Function for plane samples. The instrument is placed in an optical laboratory of the Asiago Astrophysical Observatory. Data are acquired by a CCD camera, equipped with its own frame grabber card, and analysed by a pc. Image calibration, i.e. the procedure that converts the value of each pixel of a CCD frame in a radiometric quantity, follows the standard sequence used for remote sensing application (bias, dark, flat fielding, distortion corrections, reflectogoniometric calibration, using a reflectometric standard), and it is implemented in a data reduction pipeline. The instrument tests performed until now have confirm that the imaging-goniophotometer is an instrument suitable for the quick characterization of diffusing surfaces in all the tree possible configuration: transmittance measurements (translucent plates), partial reflectance measurements (diffusing sheets), and bidirectional function characterization (coatings and paints). The goniophotometer may have different astronomical and industrial applications: it can be used for the characterization of absorbance properties of paints for baffling in spatial missions, of diffusive properties of flat field panels, of trasmittance properties of different glasses type and of reflective properties of rocks surfaces, like, for example, meteorites samples.

  7. Wendelstein Observatory Operations Software

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Snigula, J. M.; Munzert, T.

    2014-05-01

    LMU München operates an astrophysical observatory on Mt. Wendelstein which has been equipped with a modern 2m-class telescope recently. The new Fraunhofer telescope is starting science operations now with a 64 Mpixel, 0.5°×0.5° FoV wide field camera and will successively be equipped with a three channel optical/NIR camera and two fibre coupled spectrographs (IFU spectrograph VIRUSW already in operation at the 2.7m McDonald, Texas and an upgraded Echelle spectrograph FOCES formerly operated at Calar Alto oberservatory, Spain). All instruments will be mounted simultaneously and can be activated within a minute. The observatory also operates a small 40cm telescope with a CCD-camera and a simple fibre coupled spectrograph for students lab and photometric monitoring as well as a large number of support equipment like a meteo station, allsky cameras, a multitude of webcams, in addition to a complex building control system environment. Here we describe the ongoing effort to build a centralised controlling interface for all. This includes remote/robotic operation, visualisation via browser technologies, and data processing and archiving.

  8. Wendelstein Observatory control software

    NASA Astrophysics Data System (ADS)

    Gössl, Claus; Snigula, Jan; Kodric, Mihael; Riffeser, Arno; Munzert, Tobias

    2014-07-01

    LMU München operates an astrophysical observatory on Mt. Wendelstein1 which has been equipped with a modern 2m-class telescope2, 3 recently. The new Fraunhofer telescope has started science operations in autumn 2013 with a 64 Mpixel, 0:5 x 0:5 square degree FoV wide field camera,4 and will successively be equipped with a 3 channel optical/NIR camera5 and 2 fibre coupled spectrographs (IFU spectrograph VIRUSW6 already in operation at the 2.7 McDonald, Texas and an upgraded Echelle spectrograph FOCES7, 8 formerly operated at Calar Alto oberservatory, Spain). All instruments will be mounted simultaneously and can be activated within a minute. The observatory also operates a small 40cm telescope with a CCD-camera and a simple fibre coupled spectrograph for students lab and photometric monitoring as well as a large number of support equipment like a meteo station, allsky cameras, a multitude of webcams, in addition to a complex building control system environment. Here we describe the ongoing effort to build a centralised controlling interface for all hardware. This includes remote/robotic operation, visualisation via web browser technologies, and data processing and archiving.

  9. The Ionosphere Real-Time Assimilative Model, IRTAM - A Status Report

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Galkin, Ivan; Huang, Xueqin; Vesnin, Artem; Bilitza, Dieter

    2014-05-01

    Ionospheric models are generally unable to correctly predict the effects of space weather events on the ionosphere. Taking advantage of today's real-time availability of measured electron density profiles of the bottomside ionosphere, we have developed a technique "IRTAM" to specify real-time foF2 and hmF2 global maps. The measured data arrive at the Lowell GIRO Data Center (LGDC) from some ~70 ionosonde stations of the Global Ionosphere Radio Observatory (GIRO) [Reinisch and Galkin, 2011], usually at a 15 min cadence, and are ingested in LGDC's databases (http://ulcar.uml.edu/DIDBase/). We use the International Reference Ionosphere (IRI) electron density model [Bilitza et al., 2011] as the background model. It is an empirical monthly median model that critically depends on the correct values of the F2 layer peak height hmF2 and density NmF2 (or critical frequency foF2). The IRI model uses the so-called CCIR (or URSI) coefficients for the specification of the median foF2 and hmF2 maps. IRTAM assimilates the measured GIRO data in IRI by "adjusting" the CCIR coefficients on-the-fly. The updated maps of foF2 and hmF2 for the last 24 hours before now-time are continuously displayed on http://giro.uml.edu/RTAM [Galkin et al., 2012]. The "adjusted" bottomside profiles can be extended to the topside by using the new Vary-Chap topside profile model [Nsumei et al., 2012] which extends the profile from hmF2 to the plasmasphere. References Bilitza D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85:909-920, DOI 10.1007/s00190-010-0427-x Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952. Nsumei, P., B. W. Reinisch, X. Huang, and D. Bilitza (2012), New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time

  10. Holes in the nightside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Mayr, H. G.; Curtis, S. A.; Luhmann, J. G.

    1982-01-01

    Measurements of electron density and temperature by the Pioneer Venus orbiter electron temperature probe have been employed to examine the characteristics and morphology of ionospheric holes in the antisolar ionosphere of Venus. The holes apparently exist as north-south pairs which penetrate the ionosphere vertically down to altitudes as low as 160 km. Magnetic field measurements show that the holes are permeated by strong radial fields whose pressure is sufficient to balance the plasma pressure of the surrounding ionosphere. The electron temperature in the holes is substantially cooler than the surrounding ionosphere, except in the lowest density regions of the holes where the temperatures greatly exceed the ionosphere temperature. The low temperatures and the low densities of the holes are consistent with the strong radial magnetic fields which inhibit horizontal transport of plasma and thermal energy from the surrounding ionosphere. Plasma depletion processes associated with magnetotail electric fields may be important in the formation of the holes.

  11. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  12. Calibrating for Ionospheric Phase Delays

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1985-01-01

    Technique determines ionospheric phase delay on real-time universally applicable basis in terms of electrons per meter squared by coherently modulating two L-band carrier frequencies received from two Global Positioning System satelites. Two pseudorandom number sequences cross-correlated to derive delay time.

  13. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  14. ICON: The Ionospheric Connection Explorer - NASA's Next Space Physics and Aeronomy Mission

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Kamalabadi, F.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Gerard, J. M.; Hubert, B. A.; Rowland, D. E.; Hysell, D. L.; Saito, A.; Frey, S.; Bester, M.; Valladares, C. E.

    2013-12-01

    Earth's ionosphere is a highly variable layer of plasma surrounding earth that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Selected for development by NASA, ICON will launch in early 2017 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with other ground- and space-based facilities at low and middle latitudes. The ICON Observatory carries a compliment of 4 instruments on the nadir facing payload integration plate.

  15. Observation and Modeling of Ionospheric Scintillation Associated with Irregularities in the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.; Zhang, Q. H.; Ma, Y. Z.; Wang, Y.; Zanyang, X.

    2015-12-01

    It is well understood that Ionospheric scintillation is a consequence of random electron density fluctuations present in the ionosphere. They appear at all local time of the polar regions therefore, it is essential to understand their evolution and dynamics. Using Madrigal database and South Pole Scintillation Receiver data an empirical model of ionospheric scintillation has been proposed for South Pole. Model has been validated and compared with the observations. We have investigated some interesting scintillation patterns associated with polar patches and structured flux of precipitated electrons. Our results illustrate well the irregularity structures causing ionospheric scintillation at the polar ionosphere. Limitations of our modeling approach is discussed. Keywords: Ionospheric irregularities, polar patches, scintillation.

  16. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  17. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  18. Ionospheric Processes Associated with Intense Sub-Auroral Electric Fields.

    NASA Astrophysics Data System (ADS)

    Providakes, James Fred

    1990-01-01

    Observations of ionospheric parameters were obtained near the equatorward edge of the auroral oval with a clustered set of instrumentation that included the Millstone Hill Incoherent Scatter Radar, the Boston University Mobile Ionospheric Observatory, and the HILAT, DMSP F6 and DMSP F7 satellites. On the evenings of April 20 and 21, 1985, during an intense magnetic storm (DST > 150 nT), large ionospheric electric fields (E > 80 mV/m) were detected along the edge of the auroral oval with the Millstone Hill Incoherent Scatter Radar. In this thesis, using both the experimental data and theory, we will discuss the ionospheric response to such substorm related intense localized electric fields at sub-auroral latitudes. A deep depletion in the ionospheric electron density was found to be colocated with these large electric fields at magnetic latitudes as low as 53^circ . We show that the associated fields aligned currents are very weak in this region and that it is the F region structure which dominates the conductivity gradient rather than the E region. The experimental data also indicate that the trough develops much more quickly than present theories predict, at least near the F peak. By developing a numerical model that includes Pedersen transport, enhanced recombination, a localized electric field, and F layer maintenance equatorward (by southward directed neutral winds) and poleward (by particle precipitation) of the trough, we were able to explain many trough features. We also show that when a sheared or turbulent velocity field is present within a scattering volume, the ISR spectra will be distorted. We study two different cases (large scale velocity shear and small scale turbulent velocity fluctuations) and compare the theory with observed distorted spectra obtained in scattering volumes known from in situ data to contain perpendicular velocity fluctuations. For both cases, we show that when standard ISR fitting programs were used to estimate the plasma

  19. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  20. The ionospheric outflow feedback loop

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Fok, M.-C.; Garcia-Sage, K.

    2014-08-01

    Following a long period of observation and investigation beginning in the early 1970s, it has been firmly established that Earth's magnetosphere is defined as much by the geogenic plasma within it as by the geomagnetic field. This plasma is not confined to the ionosphere proper, defined as the region within a few density scale heights of the F-region plasma density peak. Rather, it fills the flux tubes on which it is created, and circulates throughout the magnetosphere in a pattern driven by solar wind plasma that becomes magnetically connected to the ionosphere by reconnection through the dayside magnetopause. Under certain solar wind conditions, plasma and field energy is stored in the magnetotail rather than being smoothly recirculated back to the dayside. Its release into the downstream solar wind is produced by magnetotail disconnection of stored plasma and fields both continuously and in the form of discrete plasmoids, with associated generation of energetic Earthward-moving bursty bulk flows and injection fronts. A new generation of global circulation models is showing us that outflowing ionospheric plasmas, especially O+, load the system in a different way than the resistive F-region load of currents dissipating energy in the plasma and atmospheric neutral gas. The extended ionospheric load is reactive to the primary dissipation, forming a time-delayed feedback loop within the system. That sets up or intensifies bursty transient behaviors that would be weaker or absent if the ionosphere did not “strike back” when stimulated. Understanding this response appears to be a necessary, if not sufficient, condition for us to gain accurate predictive capability for space weather. However, full predictive understanding of outflow and incorporation into global simulations requires a clear observational and theoretical identification of the causal mechanisms of the outflows. This remains elusive and requires a dedicated mission effort.

  1. Observatory ends scientific investigations

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The Orbiting Astronomical Observatory (OAO-3), which was instrumental in the discovery of the first suspected black hole, wound up its scientific investigation at the end of 1980. Spacecraft science operations were terminated after 8½ years of operation. Named Copernicus, OAO-3 performed consistently beyond design specifications and 7½ years beyond project requirements. Its performance profile, according to the NASA-Goddard engineers and scientists, was ‘astonishing.’While formal scientific investigations were ended December 31, a series of engineering tests are still being made until February 15. At that time, all contact with the spacecraft will end. Project engineers are uncertain whether Copernicus will orient itself permanently toward the sun, begin a permanent orbital tumbling action, or a variation of both.

  2. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  3. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  4. The virtual observatory registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  5. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  6. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  7. Global geodetic observatories

    NASA Astrophysics Data System (ADS)

    Boucher, Claude; Pearlman, Mike; Sarti, Pierguido

    2015-01-01

    Global geodetic observatories (GGO) play an increasingly important role both for scientific and societal applications, in particular for the maintenance and evolution of the reference frame and those applications that rely on the reference frame for their viability. The International Association of Geodesy (IAG), through the Global Geodetic Observing System (GGOS), is fully involved in coordinating the development of these systems and ensuring their quality, perenniality and accessibility. This paper reviews the current role, basic concepts, and some of the critical issues associated with the GGOs, and advocates for their expansion to enhance co-location with other observing techniques (gravity, meteorology, etc). The historical perspective starts with the MERIT campaign, followed by the creation of international services (IERS, IGS, ILRS, IVS, IDS, etc). It provides a basic definition of observing systems and observatories and the build up of the international networks and the role of co-locations in geodesy and geosciences and multi-technique processing and data products. This paper gives special attention to the critical topic of local surveys and tie vectors among co-located systems in sites; the agreement of space geodetic solutions and the tie vectors now place one of the most significant limitations on the quality of integrated data products, most notably the ITRF. This topic focuses on survey techniques, extrapolation to instrument reference points, computation techniques, systematic biases, and alignment of the individual technique reference frames into ITRF. The paper also discusses the design, layout and implementation of network infrastructure, including the role of GGOS and the benefit that would be achieved with better standardization and international governance.

  8. Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  9. The Heliophysics Integrated Observatory

    NASA Astrophysics Data System (ADS)

    Csillaghy, A.; Bentley, R. D.

    2009-12-01

    HELIO is a new Europe-wide, FP7-funded distributed network of services that will address the needs of a broad community of researchers in heliophysics. This new research field explores the “Sun-Solar System Connection” and requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO will provide the most comprehensive integrated information system in this domain; it will coordinate access to the distributed resources needed by the community, and will provide access to services to mine and analyse the data. HELIO will be designed as a Service-oriented Architecture. The initial infrastructure will include services based on metadata and data servers deployed by the European Grid of Solar Observations (EGSO). We will extend these to address observations from all the disciplines of heliophysics; differences in the way the domains describe and handle the data will be resolved using semantic mapping techniques. Processing and storage services will allow the user to explore the data and create the products that meet stringent standards of interoperability. These capabilities will be orchestrated with the data and metadata services using the Taverna workflow tool. HELIO will address the challenges along the FP7 I3 activities model: (1) Networking: we will cooperate closely with the community to define new standards for heliophysics and the required capabilities of the HELIO system. (2) Services: we will integrate the services developed by the project and other groups to produce an infrastructure that can easily be extended to satisfy the growing and changing needs of the community. (3) Joint Research: we will develop search tools that span disciplinary boundaries and explore new types of user-friendly interfaces HELIO will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains.

  10. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  11. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  12. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  13. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  14. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  15. The Impact of the Ionosphere on Ground-based Detection of the Global Epoch of Reionization Signal

    NASA Astrophysics Data System (ADS)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (˜50-200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (˜100 mK) in comparison to the Galactic foreground emission (˜104 K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (˜tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (Te ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ100 MHz ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (˜100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10-5 Hz, but becomes flat below ≈10-5 Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is properly accounted for in the data analysis.

  16. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  17. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  18. New Near-Real Time Monitoring of the Ionosphere over Europe Available On-line

    NASA Astrophysics Data System (ADS)

    Chevalier, J. M.; Bergeot, N.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.

    2012-04-01

    With the beginning of the 24th Solar cycle, the increased Solar activity requires having a close eye on the ionosphere for better understanding Space Weather physics and its effects on radio communications. In that frame, near-real time ionospheric models over Europe are now routinely generated at the Royal Observatory of Belgium (ROB). These models are made available to the public through new interactive web pages at the web site of the GNSS team (www.gnss.be) and the Solar Influences Data Analysis Center (www.sidc.be) of ROB. The models are ionospheric Vertical Total Electron Content (VTEC) maps estimated every 15 minutes on a 0.5°x0.5° grid. They use the high-rate GPS observations of the real-time stations in the EUREF Permanent Network (EPN) provided by the ROB NTRIP broadcaster. The maps are published on the ROB web site with a latency of 7-15 minutes with respect to the last GPS measurement included in the 15-minute observation files. In a first step, this paper presents the processing strategy used to generate the VTEC maps: input data, parameter estimation, data cleaning and interpolation method. In addition, the tools developed to further exploit the product are introduced, e.g. on-demand animated VTEC maps. In a second step, the VTEC maps are compared with external ionospheric products and models such as Global Ionospheric Maps and IRI 2011. These new near-real time VTEC maps will allow any user within the geographical scope of the maps to estimate in near-real time the ionospheric delay induced along the signal of any observed satellite. In the future, the web site will continuously be updated in response to evolving user needs. This paper opens doors to discussions with the user community to target their needs.

  19. Electrical discharge from a thundercloud top to the lower ionosphere.

    PubMed

    Pasko, Victor P; Stanley, Mark A; Mathews, John D; Inan, Umran S; Wood, Troy G

    2002-03-14

    For over a century, numerous undocumented reports have appeared about unusual large-scale luminous phenomena above thunderclouds and, more than 80 years ago, it was suggested that an electrical discharge could bridge the gap between a thundercloud and the upper atmosphere. Since then, two classes of vertically extensive optical flashes above thunderclouds have been identified-sprites and blue jets. Sprites initiate near the base of the ionosphere, develop very rapidly downwards at speeds which can exceed 107 m s-1 (ref. 15), and assume many different geometrical forms. In contrast, blue jets develop upwards from cloud tops at speeds of the order of 105 m s-1 and are characterized by a blue conical shape. But no experimental data related to sprites or blue jets have been reported which conclusively indicate that they establish a direct path of electrical contact between a thundercloud and the lower ionosphere. Here we report a video recording of a blue jet propagating upwards from a thundercloud to an altitude of about 70 km, taken at the Arecibo Observatory, Puerto Rico. Above an altitude of 42 km-normally the upper limit for blue jets and the lower terminal altitude for sprites-the flash exhibited some features normally observed in sprites. As we observed this phenomenon above a relatively small thunderstorm cell, we speculate that it may be common and therefore represent an unaccounted for component of the global electric circuit. PMID:11894087

  20. Sodankylä ionospheric tomography dataset 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, J.; Roininen, L.; Kero, A.; Raita, T.; Ulich, T.; Markkanen, M.; Juusola, L.; Kauristie, K.

    2015-12-01

    Sodankylä Geophysical Observatory has been operating a tomographic receiver network and collecting the produced data since 2003. The collected dataset consists of phase difference curves measured from Russian COSMOS dual-frequency (150/400 MHz) low-Earth-orbit satellite signals, and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three-to-five operational stations at the Fenno-Scandinavian sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this dataset, one solar cycle of ionospheric vertical total electron content estimates is constructed. The measurements are compared against International Reference Ionosphere IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.

  1. Using Radio-Induced Aurora to Observe Ionospheric Irregularities

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Gondarenko, N.; Guzdar, P.; Huba, J.; Ossakow, S.; Djuth, F.; Tepley, C.; Sulzer, M.; Kagan, L.; Kelley, M.

    Two-dimensional images of F- and E- layers have been obtained using the technique called radio-induced aurora (RIA). This technique makes the plasma layers glow in the ionosphere glow when being stimulated by high power radio waves. Normally the irregularities in the ionosphere do not radiate strong enough visible emissions to be observed from the ground. Experiments at Arecibo Observatory in Puerto Rico and the SURA facility in Russia have shown that the plasma structures can be made to glow at 630.0 nm, 557.7 nm and other wavelengths by illuminating them by HF radio waves with effective radiated powers of 80 megawatts. The regions of the sporadic-E layers that have electron densities greater than the critical density for reflection of the radio waves emit electrons that collide with and excite atmospheric atomic oxygen and molecular nitrogen. A charge-coupled-device (CCD) imager located on the ground is used to capture images of the glowing E and F-region structures. The camera exposure- times were in the range of 15 to 45 seconds. The images obtained using this technique show a wide variety of both field-aligned and wind-aligned irregularities. Some layers cover the antenna pattern cone illuminated by the radio wave beam. Other layers show strong modulations by both plasma and neutral instabilities. Two-dimensional computer simulations of the coupling between neutral winds, electric fields and the ion layers simulate the structure in the images.

  2. A long-term study of the impact of solar flares on ionospheric characteristics measured by digisondes and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Tripathi, Sharad Chandra; Haralambous, Haris; Das, Tanmay

    2016-07-01

    Solar Flares are highly transient phenomena radiating over a wide spectrum of wavelengths with EUV and X-rays imposing the most significant effect on ionospheric characteristics. This study presents an attempt to examine qualitatively and quantitatively these effects as measured by digisondes and GNSS receivers on a global scale. For this purpose we have divided the whole globe in three sectors (American, African-European and Asian) based on longitude. We have extracted data for ionospheric characteristics by scaling, manually, the ionograms being provided by DIDBase (Digital Ionogram Database) as provided by the Global Ionospheric Radio Observatory (GIRO) during X-class flares for an approximate period of a solar cycle . We have also used TEC data extracted from GPS observations from collocated IGS Stations. Spectral analysis of Solar Flares are added to the methodology to compare the effects in terms of spectral characteristics.

  3. Ionospheric corrections for GPS time transfer

    NASA Astrophysics Data System (ADS)

    Rose, Julian A. R.; Watson, Robert J.; Allain, Damien J.; Mitchell, Cathryn N.

    2014-03-01

    A real-time ionospheric mapping system is tested to investigate its ability to compensate for the ionospheric delay in single-frequency Global Positioning System (GPS) time transfer over Europe. This technique is compared with two other single-frequency systems: one that does not incorporate any ionospheric correction and one that uses the broadcast Klobuchar model. A dual-frequency technique is also shown as a benchmark. A period in March 2003, during a solar maximum, has been used to display results when the ionospheric delays are large and variable. Data from two European GPS monitoring centers were used to test the time-transfer methods. For averaging times between several minutes and a few hours, the instabilities in the time transfers were dominated by ionospheric effects. The instabilities at longer averaging times were found to be due to clock noise and hardware instabilities. Improvements in time-transfer instabilities are shown by using the ionospheric tomography system.

  4. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  5. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  6. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  7. Far ultraviolet nighttime ionospheric photometer

    NASA Astrophysics Data System (ADS)

    Fu, Liping; Peng, Ruyi; Shi, Entao; Peng, Jilong; Wang, Tianfang; Jiang, Fang; Jia, Nan; Li, Xiaoyin; Wang, Yongmei

    2015-01-01

    Far Ultraviolet Nighttime Ionopsheric Photometer (FNIP) is a newly-designed instrument for low earth orbit missions, observing the earth night airglow nadir at OI 135.6 nm emission produced by ionospheric O++e recombination and receiving the horizontal information on nighttime ionosphere with a spatial resolution of about 1.6∘×3.8∘. This simple, highly robust instrument excludes OI 130.4 nm emission and Herzberg oxygen bands with lower power and approximately achieves a sensitivity of about 400 counts/s/Rayleigh at 135.6 nm with stray light less than 2 %. Some tests of the instrument have been conducted and the results will be discussed in the end.

  8. Radio tomography of the ionosphere

    SciTech Connect

    Kunitsyn, V.E.; Tereshchenko, E.D. RAN, Poliarnyi Geofizicheskii Inst., Murmansk )

    1992-10-01

    This paper provides on overview of tomographic approaches to ionospheric remote sensing in the radio-wave range. The ionosphere has a very complicated structure. Thus, it is reasonable to divide tomographic methods into deterministic and statistical ones. The deterministic tomography problems can be subdivided into ray radio tomography and diffraction radio tomography. The statistical radio tomography approach is used when it is necessary to reconstruct the statistical structure of a great number of inhomogeneities, on the basis of measurements of field statistics (instead of one realization of the reconstruction of an inhomogeneity). The methods of solving radio-tomography problems, and their connection with inverse-scattering problems, are considered. The results of some first experiments are described, which show the possibilities of the radio tomography approaches. In conclusion, we discuss perspectives, directions of the development of radio tomography, and problems which appear. 30 refs.

  9. Investigation of traveling ionospheric disturbances

    NASA Technical Reports Server (NTRS)

    Grossi, M.; Estes, R. D.

    1981-01-01

    Maximum entropy power spectra of the ionospheric electron density were constructed to enable PINY to compare them with the power independently obtained by PINY with in situ measurements of ionospheric electron density and neutral species performed with instrumentation carried by the Atmospheric Explorer (AE) satellite. This comparison corroborated evidence on the geophysical reality of the alleged electron density irregularities detected by the ASTP dual frequency Doppler link. Roughly half of the localized wave structures which are confined to dimensions of 1800 km or less (as seen by an orbiting Doppler baseline) were found to be associated with the larger crest of the geomagnetic anomaly in the Southern (winter) Hemisphere in the morning. The observed nighttime structures are also associated with local peaks in the electron density.

  10. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  11. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  12. Ionospheric very low frequency transmitter

    SciTech Connect

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HF heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach

  13. Lithosphere - Atmosphere - Ionosphere Circuit Model

    NASA Astrophysics Data System (ADS)

    Kereselidze, Z.; Kachakhidze, N.; Kachakhidze, M.

    2012-04-01

    There are offered possibilities of original LAI circuit model. The problem concerns of existence of self-generated electromagnetic oscillations in the segment of LAI system, which are results of tectonic stress developing in the focus area of expected earthquake. By this model the main (lowest) frequency of these electromagnetic oscillations frequency spectrum is expressed analytically by following formula: ω = β c l where β(ω) is the coefficient depended on the frequency and geological characteristics of the medium and approximate to one, c-is the speed of light, and l- the length of the fault in the focus of the expected earthquake. On the base of relevant diagnosis of experimental data, the model gives us possibility to discuss the problem about location, time of occurrence and intensity of an expected earthquake with certain accuracy. In addition to it, considered model does not block the fall-unstable model of earthquake preparing and electromagnetic phenomena accompanied earthquake preparing process. On the contrary, the imagination of physical picture may be simplified in the separate stage of earthquakes preparing. Namely, it is possible to reliably separate series of foreshocks and aftershocks. By this point of view, the certain optimism about using of EM emission as earthquake precursor of full value may be expressed. The base of such optimism is developing of various phenomena connected to VLF emission many times fixed in the surroundings of epicentral area and cosmic space (changing of intensity of electro-telluric current, perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations, perturbations of atmospheric electric field, perturbations of ionosphere critical frequency and TEC, variations of height of lower ionosphere, parameters of ionospheric medium: changing of specific dielectric conductivity and spectrum of MGD waves in it, atmospheric-ionospheric discharging and etc.).

  14. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  15. Sudden ionospheric disturbances in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Bothmer, Volker; Bernert, Barbara

    2014-05-01

    Sudden ionospheric disturbances in solar cycle 24 Within the framework of the UN International Space Weather Initiative, and building upon the achievements of the International Heliophysical Year, the German project SIMONE (Sun Ionosphere MOnitoring NEtwork) operates several SID monitors provided by the University of Stanford. Here we present an overview of sudden ionospheric disturbances recorded since 2006 at the high school Gymnasium Walsrode until to date. The continous measurements allow a detailed comparison of locally measured SIDs with the general trend of solar activity during the current solar maximum. We further show that the measurements reveal specific information on the variable response of the dayside ionosphere to solar flares.

  16. Response of Ionosphere to the Tropospheric disturbances

    NASA Astrophysics Data System (ADS)

    Maurya, A. K.; Dube, A.; Singh, R.; Cohen, M.

    2015-12-01

    The aim of the present work is to find out response of the ionosphere to the various cases of tropical cyclones. The main process involved is suggested through Atmospheric Gravity waves (AGWs) originating from strong convective systems, propagating upward upto the ionospheric heights and perturbing ionospheric parameters (Bishop et al., 2006). We have used ground and satellite data to extract cyclone induced perturbations at different ionospheric heights along with the various parameters of AGWs during cyclones and associated thunderstorm. The initial results suggest that there is increase in total electron content of the ionosphere with wave like signatures in ionosphere. The satellite observation in optical band shows presence of concentric gravity wave pattern associated with troposphere disturbances with horizontal wavelength of ~50-200km and periods ranging from hours to days. The ground based Very Low Frequency (VLF) measurement shows fluctuations in VLF navigational transmitter signal passing over the region of disturbance. The lightning data from GLD360 lightning network shows intense activity associated with cyclones and increase in lightning peak current and energy during main phase of cyclones which seems to be sufficient enough to derive ionospheric disturbances in the ionosphere. This multi-instrument analysis provide detail information of the three dimensional structure of cyclone and their effect at different altitudes of the ionosphere in the Indian subcontinent.

  17. Solar Rotational Effects on the Mars Ionosphere

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Paxton, L.; Zhu, X.; Yee, J.; Smith, D. C.

    2006-05-01

    In this paper, using opportune periods during the five years of MGS radio occultation observations of the Martian ionosphere, we examine the short-term variability in the ionospheric profile peak densities and peak heights. During solar maximum, strong solar rotational signatures were observed. On Mars, the morphology of the ionosphere is thought to be controlled by photochemical processes (coupled with the neutral atmosphere). In this paper, we will present the observed magnitude of the variabilities the phasing with solar forcing, and quantify the source mechanisms with a 1-D ionospheric model.

  18. Ionospheric plasma deterioration in the area of enhanced seismic activity as compared to antipodal sites far from seismicity

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Arikan, Feza; Poustovalova, Ljubov; Stanislawska, Iwona

    2016-07-01

    The early magnetogram records from two nearly antipodal sites at Greenwich and Melbourne corresponding to the activity level at the invariant magnetic latitude of 50 deg give a long series of geomagnetic aa indices since 1868. The aa index derived from magnetic perturbation values at only two observatories (as distinct from the planetary ap index) experiences larger extreme values if either input site is well situated to the overhead ionospheric and/or field aligned current systems producing the magnetic storm effects. Analysis of the earthquakes catalogues since 1914 has shown the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, and, in particular, at Australia. In the present study the ionospheric critical frequency, foF2, is analyzed from the ionosonde measurements at the nearby observatories, Canberra and Slough (Chilton), and Moscow (control site) since 1944 to 2015. The daily-hourly-annual percentage occurrence of positive ionospheric W index (pW+) and negative index (pW-) is determined. It is found that the ionospheric plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated to the aa index at all three sites but the positive storm signatures show drastic difference at Canberra (no correlation of pW+ with aa index) as compared to two other sites where the high correlation is found of the ionospheric plasma density enhancement with the geomagnetic activity. A possible suppression of the enhanced ionospheric variability over the region of intense seismicity is discussed in the paper. This study is supported by TUBITAK EEEAG 115E915.

  19. Architecture of Chinese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chen-Zhou; Zhao, Yong-Heng

    2004-06-01

    Virtual Observatory (VO) is brought forward under the background of progresses of astronomical technologies and information technologies. VO architecture design embodies the combination of above two technologies. As an introduction of VO, principle and workflow of Virtual Observatory are given firstly. Then the latest progress on VO architecture is introduced. Based on the Grid technology, layered architecture model and service-oriented architecture model are given for Chinese Virtual Observatory. In the last part of the paper, some problems on architecture design are discussed in detail.

  20. Development of Mykolaiv Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.; Protsyuk, Yu.

    Results obtained in 2010-2013 on the development of astronomical databases and web services are presented. Mykolaiv Virtual Observatory (MVO) is a part of the Ukrainian Virtual Observatory (UkrVO). At present, MVO consists of three major databases containing data on: astrometric catalogues, photographic plates, CCD observations. The databases facilitate the process of data mining and provide easy access to the textual and graphic information on the results of observations and their reduction obtained during the whole history of Nikolaev Astronomical Observatory (NAO).

  1. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  2. Plasma temperatures in Saturn's ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, Luke; Galand, Marina; Mueller-Wodarg, Ingo; Yelle, Roger; Mendillo, Michael

    2008-10-01

    We have calculated self-consistent electron and ion temperatures in Saturn's ionosphere using a series of coupled fluid and kinetic models developed to help interpret Cassini observations and to examine the energy budget of Saturn's upper atmosphere. Electron temperatures in the midlatitude topside ionosphere during solar maximum are calculated to range between 500 and 560 K during the Saturn day, approximately 80-140 K above the neutral temperature. Ion temperatures, calculated for only the major ions H+ and H3+, are nearly equal to the neutral temperature at altitudes near and below the height of peak electron density, while they can reach 500 K during the day at the topside. Plasma scale heights of the dusk electron density profile from radio occultation measurements of the Voyager 2 flyby of Saturn have been used to estimate plasma temperature as a comparison. Such an estimate agrees well with the temperatures calculated here, although there is a topside enhancement in electron density that remains unexplained by ionospheric calculations that include photochemistry and plasma diffusion. Finally, parameterizations of the heating rate from photoelectrons and secondary electrons to thermal, ambient electrons have been developed. They may apply for other conditions at Saturn and possibly at other giant planets and exoplanets as well.

  3. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  4. Use of Sudden Ionospheric Disturbance Monitors to Detect Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Campagna, A.; Amador, J.; Marchese, A. K.; Espinosa, M.

    2015-12-01

    The purpose of this research is to study the effect of Earth directed coronal mass ejections (CMEs) on the ionosphere in 2011, and to see if sudden ionospheric disturbance (SID) monitors could be used to predict whether a CME was geoeffective. A CME is a cloud of highly energized particles ejected from the Sun. It is hypothesized that a strong CME will affect the ionosphere, and this might be observed in certain data sets. Data was taken from two SID monitors in Vienna receiving transmissions from Norway and France from February through July, 2011. This data was then analyzed relative to the kinetic energy of Earth directed CMEs that occurred during the same time period. The Earth directed CME data was taken from the Large Angle and Spectrometric Coronagraph (LASCO) device on NASA's Solar and Heliospheric Observatory (SOHO). A correlation was found between CME kinetic energy and SID energy, with the maximum correlation at a 6 day lag of the SID data. The 6 day delay accounts for the travel time for the CME to reach Earth. Though the impact of the CME on the ionosphere was observed retrospectively, the research indicates that CMEs may be identified using SID monitors alone.

  5. Designing Sudden Ionospheric Disturbance Monitors -- a Unique Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Scherrer, D.; Mitchell, R.; Clark, W.; Styner, R.; Scherrer, P.; Inan, U.; Cohen, M.; Tan, J.; Lee, S.; Khanal, S.; Winegarden, S.; Mortfield, P.

    2005-05-01

    Funding agencies such as NASA and NSF encourage E/PO programs to provide local educators with research experience. However, many researchers have neither the time nor the expertize nor the training resources to effectively incorporate an educator into their computer- and numerical-analysis-based research environments. Stanford's Solar Center has been experimenting with a unique project that teams community college and high school educators with research groups to develop a hands-on instrument that the educators's students can, in turn, use to conduct their own research. With support from the researchers, the Educators design, develop, and classroom-test a VLF radio receiver that monitors changes to the Earth's ionosphere caused by solar activity. The educators bring to the table their knowledge of classroom needs plus their amateur background in electronics. Stanford's Electrical Engineering Department's Very Low Frequency Group provides EE resources and knowledge of ionospheric research. Stanford's Solar Observatories Group completes the team with their expertize on the Sun and solar activity. Together, the project team has designed and developed two forms of monitors: 1) an inexpensive Sudden Ionospheric Disturbance (SID) monitor that can be produced in quantity and made available to high schools and community colleges around the nation; and 2) a research quality SID monitor, nicknamed AWESOME, that can be placed in selected schools and will return data of sufficient quality and sensitivity that it can be used both by the students and for ionospheric research.

  6. Relating OGO-5 H(+) Plasmapause Transitions to Mid-Latitude Topside-Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Truhlik, Vladimir; Benson, Robert F.; Bilitza, Dieter; Grebowsky, Joseph M.; Wang, Yongli

    2009-01-01

    Plasmapause transitions, as seen in the H + and He+ density gradients measured by the Orbiting Geophysical Observatory 5 (OGO 5) ion spectrometer [Sharp, IEE Trans. in Geosci. Elect., 1969], have been investigated in an attempt to relate them to their topside ionospheric signatures as seen in the Alouette-1 & 2 and ISIS-1 data. The satellite data were obtained from the National Space Science Data Center (NSSDC). A search of the OGO-5 data revealed 54 sharp plasmapause crossings as evaluated from the H+ density. The ionospheric footprints (at 1400 km altitude) of the magnetic-field lines through the locations of these plasmapause crossings were then used to search for topside ionospheric electron-density profiles from the NSSDC. No profiles corresponding to these projections were identified. A similar search of the topside-sounder 35-mm ionogram-film database, however, identified 17 cases of candidate "conjunctions" involving Alouette l & 2 and ISIS 1. We will present samples of the plasmapause OGO-5 ion transitions and the related topside ionospheric signatures and discuss the observations in relation to the recent similar study based on Explorer-45 and ISIS-2 data [Grebowsky et al., JASTP, 2009].

  7. How Solar Flare Spectral Characteristics Determine the Thermosphere-Ionosphere Response

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Qian, L.

    2011-12-01

    Measurements of flare irradiance in the X-ray and EUV spectral regions by the Solar EUV Experiment on the TIMED satellite, the X-ray Photometer System on the SORCE satellite, and the X-ray monitors on the GOES spacecraft, have been used to demonstrate the importance of different flare spectral characteristics and temporal development in causing rapid changes in the thermosphere and ionosphere. Now, observations by the EUV Variability Experiment on the Solar Dynamics Observatory (SDO), show striking variability of coronal lines in the crucial 7-37 nm region during different types and phases of flares. Very limited measurements of this spectral region were made by TIMED and SORCE, so these new observations yield insight into the magnitude and distribution of flare-driven changes in the thermosphere and ionosphere. We present results of simulations using flare spectra measured by TIMED, SORCE, and SDO as input to the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, and compare the results to measurements of thermosphere and ionosphere density changes.

  8. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  9. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; Schuck, Peter; Uribe, Paulo; Yokoyama, Tatsuhiro

    2012-11-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfvén resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfvén wave propagation, and troposphere-ionosphere-magnetosphere coupling mechanisms.

  10. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  11. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  12. History of the Marseille Observatory

    NASA Astrophysics Data System (ADS)

    Prévot, Marie-Louise; Caplan, James

    The Marseille Observatory was founded in 1702 by the Jesuit order. It was located near the Vieux Port until the 1860s, when it was taken over as an annex to the Paris Observatory, directed by Le Verrier, and moved to its present location on the Plateau Longchamp. It again became independent in 1873. For information on the early history of the observatory we are largely indebted to F.X. von Zach, who spent several years in Marseille, and who was a good friend of J. Thulis, director from 1801 to 1810. Some aspects of the foundation and early history of the observatory, and of the lives of some of the astronomers who worked there, are presented and illustrated. Our collection of old instruments and documents are described.

  13. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  14. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  15. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  16. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  17. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  18. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  19. A comprehensive sounding of the ionospheric HF radio link from Antarctica to Spain

    NASA Astrophysics Data System (ADS)

    Ads, A. G.; Bergadã, P.; Vilella, C.; Regué, J. R.; Pijoan, J. L.; Bardají, R.; Mauricio, J.

    2013-01-01

    Since 2003, our group has been investigating the performance of different transmission techniques for low-power low-interference High Frequency (HF) ionospheric communication systems. Specifically, we have focused on the link between the Spanish Antarctic Station (SAS) Juan Carlos I in Livingston Island and Ebro Observatory (OE) in Spain, in order to transmit the data gathered from some geomagnetic sensors. These transmission techniques require a valuable knowledge of the channel behavior, thus a comprehensive narrowband and wideband sounding of the ionospheric channel is needed. Some significant improvements both in the system and in the signal processing have been done to achieve this goal. The analysis time and the frequency band have been extended to 24 hours per day and to the whole HF band (2-30 MHz). Moreover, new measurements of the absolute propagation time and the Doppler frequency shift are introduced. In this paper, the sounding results obtained using the new system are presented.

  20. Response of the auroral lower ionosphere to solar flares in March 2012 according to ELF observations

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Fedorenko, Yu. V.; Larchenko, A. V.; Pil'gaev, S. V.

    2015-11-01

    The response of the lower ionosphere to the solar flares that occurred in March 2012 is considered. Measurements of the propagation velocity and wave impedance of ELF electromagnetic pulses (atmospherics) performed at Lovozero and Barentsburg high-latitude observatories were used to estimate this response. It was shown that the daily average propagation velocity of atmospherics decreased by 20-30 thousand km/s under disturbed heliogeophysical conditions as compared to the velocity measured under quiet conditions. This is related to a decrease in the effective waveguide height that results from the change in the ionospheric conductivity profile during a solar flare. It was detected that pronounced bursts of wave impedance, the maximums of which exceed the impedance average value by a factor of more than 2, are observed during strong heliogeophysical disturbances. This fact cannot be explained in the scope of a spherically layered model; consequently, such deviations indicate an increase in the D-layer conductivity inhomogeneities.

  1. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  2. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.

  3. Generation of a severe convective ionospheric storm under stable Rayleigh-Taylor conditions: triggering by meteors?

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Ilma, R. R.

    2016-02-01

    Here we report on four events detected using the Jicamarca Radio Observatory (JRO) over an 18-year period, in which huge convective ionospheric storms (CISs) occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  4. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; Jakob, Holger; Killebrew, Jana; Lampater, Ulrich; Mandushev, Georgi; Marcum, Pamela; Meyer, Allan; Pfueller, Enrico; Reinacher, Andreas; Roeser, Hans-Peter; Savage, Maureen; Teufel, Stefan; Wiedemann, Manuel

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  5. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  6. Fourier and Wavelet Based Characterisation of the Ionospheric Response to the Solar Eclipse of August, the 11th, 1999, Measured Through 1-minute Vertical Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Sauli, P.; Abry, P.; Boska, J.

    2004-05-01

    The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric

  7. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  8. Contribution of the Ebro Observatory team to the IRI climatological modeling: A Review.

    NASA Astrophysics Data System (ADS)

    Altadill, David; Blanch, Estefania; Miquel Torta, J.

    During the recent years, the Geomagnetism and Aeronomy group of the Ebre Observatory has been working to improve the climatological prediction of some ionospheric key parameters. To do that, we have taken advantage of the increasing number of ionospheric stations providing data and sharing it through the Digital Ionospheric Data Base (DIDB). We have used the Spherical Harmonic analysis as analytical technique for globally modeling those parameters during quiet conditions. Models for bottom-side B0 and B1 parameters of IRI, for density peak height (hmF2) and for equivalent scale height (Hm) have been developed. Each SH model has been parameterized according to the time-space pattern of respectively ionospheric parameter and has been bounded to the solar activity. It has been proved that these empirical models improve, in average, the prediction of B0, B1 and hmF2 by 40%, 20% and 10% respectively with respect to previous IRI versions (hmF2 is improved by more than 30% at high and low latitudes). Due to these good results and to the analytical formulation, IRI has adopted the SH empirical models for B0 and B1 as an option in the current version (IRI 2012) and has proposed the SH model for hmF2 to be included into next releases. The analytical model for Hm could be useful to estimate information for the topside profile formulation.

  9. Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjuan; Yu, Haiyan; Cao, Bingxia; Qiao, Xiaolin

    2013-06-01

    The Schumann resonances (SRs) are of great significance for probing the global circuit. The diurnal and seasonal variations in mode amplitudes and frequencies of the first four modes of SR magnetic components based on 2 years measurements at the stations located in China are firstly presented here. The frequencies of all the four modes have their maxima during boreal winter and minima during summer, while the mode amplitudes change oppositely. The variations of both frequencies and amplitudes show their strong relationships with the lighting activity in south-east Asia (0800 UT) which is the nearest source to the observatories in China, while the other sources in Africa (1400 UT) and South America (2000 UT) have less effects on the mode amplitudes of both magnetic components. The effect of day-night asymmetry on SR parameters is estimated by a 3D-FDTD model of the Earth-ionosphere cavity with a single pulse traveling around the equator in a day. Two models of the Earth-ionosphere cavity, namely, a symmetric cavity and a cavity with day-night asymmetric conductivity profile are exploited. It is clear that the minima in the diurnal patterns of the mode frequencies near local sunrise/sunset times are mainly related to the migrations of the global lighting activity, not the day-night ionosphere asymmetry. Moreover, it is concluded that the ionosphere-induced variations of SR parameters including mode frequencies and amplitudes are much smaller than the variations resulting from lighting activity.

  10. Performance of ROB's near real-time ionospheric product during normal and disturbed space weather periods.

    NASA Astrophysics Data System (ADS)

    Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine

    2015-04-01

    Several agencies are routinely monitoring the vertical Total Electron Content (vTEC) using GNSS data. Derived maps are available with different latencies, area extents, and grid/time resolutions. However, no high-resolution maps are publically available over Europe in near real-time. In this frame, the Royal Observatory of Belgium (ROB) developed the ROB-IONO software which takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere. The main ROB products consist of ionospheric vTEC maps over Europe and their variability estimated in near real-time every 15 min on 0.5° x 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in the IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. During normal ionospheric activity, the ROB-TEC maps show a good agreement with widely used post-processed global products from IGS, CODE and ESA, with mean differences of 1.3 ± 0.9, 0.6 ± 0.7 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. For a disturbed period, such as the 2003 Halloween ionospheric storm, the mean differences with IGS, CODE and ESA maps are respectively 0.9 ± 2.2, 0.1 ± 2.0 and 0.6 ± 6.8 TECu, with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution of global products in time and space compared to the ROB-TEC maps. A description of two recent events, on March 17, 2013 and February 27, 2014 highlights the capability of the method adopted to detect in near real-time abnormal ionospheric behaviour over Europe. The potential of the variability maps as an indicator of rapid ionospheric variations during the 15 min of observations is also highlighted. More than 30 ionospheric events associated with Space weather were detected during the period 2012-2014. The ionospheric perturbations are associated with Coronal Mass Ejections (CMEs, ~70% of the time), active geomagnetic conditions

  11. Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona.

    PubMed

    Scott, C J; Bradford, J; Bell, S A; Wilkinson, J; Barnard, L; Smith, D; Tudor, S

    2016-09-28

    The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550766

  12. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A.; Marcum, P. M.; Roellig, T. L.; Temi, P.; Herter, T. L.; Guesten, R.; Dunham, E. W.; Backman, D.; Burgdorf, M.; Caroff, L. J.; Erickson, E. F.; Davidson, J. A.; Gehrz, R. D.; Harper, D. A.; Harvey, P. M.; and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  13. Topside Ionospheric Sounder for CubeSats

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Pratt, J.; Fish, C. S.; Winkler, C.; Pilinski, M.; Azeem, I.; Crowley, G.; Jeppesen, M.; Martineau, R.

    2014-12-01

    This presentation will outline the design of a Topside Ionospheric Sounder (TIS) for CubeSats. In the same way that an ionosonde measures the ionospheric profile from the ground, a Topside Sounder measures the ionospheric profile from a location above the F-region peak. The TIS will address the need for increased space situational awareness and environmental monitoring by estimating electron density profiles in the topside of the ionosphere. The TIS will measure topside electron density profiles for plasma frequencies ranging from 0.89 MHz to 28.4 MHz below the satellite altitude. The precision of the measurement will be 5% or 10,000 p/cm^3. The TIS average power consumption will be below 10 W and a mass of less than 10 kg, so it is appropriate for a 6U Cubesat (or multiple of that size). The sounder will operate via a transmitted frequency sweep across the desired plasma frequencies which, upon reception, can be differenced to determine range and density information of the topside ionosphere. The velocity of the spacecraft necessitates careful balancing of range resolution and frequency knowledge requirements as well as novel processing techniques to correctly associate the return signal with the correct plasma frequency. TIS is being designed to provide a low cost, low mass spacecraft that can provide accurate topside profiles of the ionospheric electron density in order to further understanding of ionospheric structure and dynamic processes in the ionosphere.

  14. Solitons versus parametric instabilities during ionospheric heating

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.; Payne, G. L.; Downie, R. M.; Sheerin, J. P.

    1984-01-01

    Various effects associated with ionospheric heating are investigated by numerically solving the modified Zakharov (1972) equations. It is shown that, for typical ionospheric parameters, the modulational instability is more important than the parametric decay instability in the spatial region of strongest heater electric field. It is concluded that the modulational instability leads to the formation of solitons, as originally predicted by Petviashvili (1976).

  15. Investigations of the ionosphere by space techniques

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1974-01-01

    Much of the impetus to ionosphere research since the International Geophysical Year has come from new types of measurement using space vehicles. The key developments are outlined, together with the contributions that they have made to the understanding of the ionosphere.

  16. Ionospheric disturbances produced by powerful explosives

    NASA Astrophysics Data System (ADS)

    Nagorskii, P. M.; Tarashchuk, Yu. E.

    1992-09-01

    Results of a study of wave-like ionospheric disturbances initiated by powerful explosives are presented and analyzed. Three types of wave processes with differing physical natures which propagate in the upper atmosphere and ionosphere to distances of thousands of kilometers are distinguished. The effect of shock-acoustic waves on indirect short wave radio propagation is considered.

  17. Effects of X-ray flares on the aeronomy of Mars: Simultaneous measurements of ionospheric effects of X-ray flares on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Haider, Syed A.; Machado Santos, Angela; Abdu, Mangalathayil A.; Batista, Inez S.; Shah, Siddhi Y.; Thirupathaiah, P.

    2016-07-01

    MIRI: Validation and Testing Requirements We have studied X-ray aeronomy in the ionospheric E region of Mars during six X-ray flares that occurred on 28 March and 6 April, 2001; 17,18 March and 21 April, 2003 and 19 February, 2005 respectively. These flares were responded by the corresponding electron density profiles of Mars Global Surveyor (MGS). The time series of photoionization rate, photoelectron impact ionization rate, photoelectron flux, ion density, electron density and total Electron Content (TEC) are predicted for each flare day. The estimated production rate, flux and densities are increased by 1-2 orders of magnitude due to effects of these flares in the E region ionosphere of Mars. The normalized estimated TEC are compared with the normalized measured TEC of MGS profiles. At the peak flare time the normalized estimated and normalized measured TEC were enhanced by a factor of 5-10 and 2 respectively. The effects of these flares were also registered in the D region equatorial ionosphere of Earth at Fortaleza observatory. The flares of 6 April, 2001, 17 March and 21 April, 2003 also produced electron density enhancement in the E region ionosphere of Earth at College AK and Cachoeira Paulista observatories. The minimum frequency fmin, recorded in ionogram, increased by 100% (due to D region absorption) while the foE increased by 20%, in the Earth's ionosphere.

  18. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  19. Driving mechanism of the nightside ionospheric convection

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2001-12-01

    Magnetometer and SuperDARN observations provided evidence of the instantaneous reaction of ionospheric convection on the dayside and nightside. The AMIE analyses revealed that the potential pattern did not move but remained nearly at fixed locations. SuperDARN observations demonstrated that the plasma motion in the nightside ionosphere was intensified immediately after the motion of dayside ionospheric plasma was intensified within a resolution of the measurement (2 min). The convection in the night-side polar ionosphere would cause the plasma convection in the near-earth magnetotail. In the companion paper (Hashimoto and Kikuchi, this meeting) we demonstrate that the growth phase signature at the geosynchronous orbit and the ground magnetic signatures of the partial ring currents developed several minutes after the magnetic reconnection at the dayside magnetopause. These results suggest that the electric field responsible for the convection in the near-Earth magnetotail propagated from the night-side polar ionosphere after having propagated from the magnetosphere to the polar ionosphere on the dayside. In order to explain the quick response of the nightside ionospheric convection, we examine possible propagation modes that could transmit the convection electric field from the dayside outer magnetosphere to the nightside ionosphere. The magnetospheric convection may be generated either by accumulation of the FTEs or by the dynamo action in the cusp and the HLBL. In either case, the electric field propagates from the dayside magnetosphere to the nightside ionosphere within a few minutes. One possible propagation mode would be the magnetosonic wave propagating across the geomagnetic field and the other is the shear Alfvén mode propagating parallel to the geomagnetic field. The magnetosonic waves would be totally reflected at the ionosphere and the resultant electric field would be vanished almost completely. On the other hand, the convective motion of the plasma can

  20. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  1. Ionospheric modification by rocket effluents. Final report

    SciTech Connect

    Bernhardt, P.A.; Price, K.M.; da Rosa, A.V.

    1980-06-01

    This report describes experimental and theoretical studies related to ionospheric disturbances produced by rocket exhaust vapors. The purpose of our research was to estimate the ionospheric effects of the rocket launches which will be required to place the Satellite Power System (SPS) in operation. During the past year, we have developed computational tools for numerical simulation of ionospheric changes produced by the injection of rocket exhaust vapors. The theoretical work has dealt with (1) the limitations imposed by condensation phenomena in rocket exhaust; (2) complete modeling of the ionospheric depletion process including neutral gas dynamics, plasma physics, chemistry and thermal processes; and (3) the influence of the modified ionosphere on radio wave propagation. We are also reporting on electron content measurements made during the launch of HEAO-C on Sept. 20, 1979. We conclude by suggesting future experiments and areas for future research.

  2. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Astrophysics Data System (ADS)

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  3. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  4. Ionospheric data assimilation and forecasting during storms

    NASA Astrophysics Data System (ADS)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  5. Atmospheric waves and the ionosphere.

    NASA Technical Reports Server (NTRS)

    Beer, T.

    1972-01-01

    A review of evidence supporting the existence of atmospheric waves is presented, and a simple, theoretical approach for describing them is shown. Suggestions for gravity wave sources include equatorial and auroral electrojet, auroral and polar substorm heating, atmospheric jet streams, and large oceanic tides. There are reviewed previous studies dealing with the interaction between ionization and atmospheric waves believed to exist at ionospheric heights. These waves include acoustic waves, evanescent waves, and internal atmospheric gravity waves. It is explained that mode analysis, often employed when an increased number of layers is used for a more complete profile, is inapplicable for waves very close to a source.

  6. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  7. Determination of travelling ionospheric disturbances

    NASA Technical Reports Server (NTRS)

    Degenhardt, W.; Hartmann, G. H.; Davies, K.

    1978-01-01

    A total of 35 days of Faraday rotation data was obtained from the ATS-6 radio beacon experiment operating with the closely spaced network of Elbert, Table Mountain, and Fort Morgan. The 140-MHz Faraday bandpass data are uncorrelated in the transmission range from 8 to 45 minutes. There are distinct, well correlated, and time-displaced maxima and minima that allow the calculation of the speed and direction of horizontal motions of plane fronts of disturbances in the ionosphere. For some selected events, velocities between 88 and 278 m/sec were obtained.

  8. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere? PMID:20299587

  9. Capabilities and Limitations of Radio Occultation Measurements for Ionosphere Monitoring

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Romans, L. J.; Pi, X.; Wang, Chunming

    1999-01-01

    The paper: (1) describes the range of capabilities of GPS radio occultation missions in ionospheric research: (a) ionospheric profiling; (b) ionospheric imaging; (c) ionospheric data assimilation; and (d) measurement of scintillation. (2) Identify strengths and weaknesses of measurements: (a) coverage; (b) resolution; and (c) uniqueness of solution.

  10. GEOSCOPE Observatory Recent Developments

    NASA Astrophysics Data System (ADS)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  11. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  12. Early results of the ionospheric experiment of the Apollo-Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1976-01-01

    A description is presented of a spacecraft-to-spacecraft Doppler-tracking experiment which was performed by the Smithsonian Astrophysical Observatory on the occasion of the Apollo-Soyuz Test Project (ASTP). The experiment involved the measurement of the relative velocity between the ASTP docking module and the Apollo command service module by a Doppler-tracking method. The objectives of the ionospheric experiment include the measurement of the time changes of the columnar electron content between the two spacecraft. The obtained data can provide a basis for the determination of the horizontal gradients of electron density at the height of 220 km.

  13. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  14. Precise Point Positioning with Ionosphere Estimation and application of Regional Ionospheric Maps

    NASA Astrophysics Data System (ADS)

    Galera Monico, J. F.; Marques, H. A.; Rocha, G. D. D. C.

    2015-12-01

    The ionosphere is one of most difficult source of errors to be modelled in the GPS positioning, mainly when applying data collected by single frequency receivers. Considering Precise Point Positioning (PPP) with single frequency data the options available include, for example, the use of Klobuchar model or applying Global Ionosphere Maps (GIM). The GIM contains Vertical Electron Content (VTEC) values that are commonly estimated considering a global network with poor covering in certain regions. For this reason Regional Ionosphere Maps (RIM) have been developed considering local GNSS network, for instance, the La Plata Ionospheric Model (LPIM) developed inside the context of SIRGAS (Geocentric Reference System for Americas). The South American RIM are produced with data from nearly 50 GPS ground receivers and considering these maps are generated for each hour with spatial resolution of one degree it is expected to provide better accuracy in GPS positioning for such region. Another possibility to correct for ionosphere effects in the PPP is to apply the ionosphere estimation technique based on Kalman filter. In this case, the ionosphere can be treated as a stochastic process and a good initial guess is necessary what can be obtained from an ionospheric map. In this paper we present the methodology involved with ionosphere estimation by using Kalman filter and also the application of global and regional ionospheric maps in the PPP as first guess. The ionosphere estimation strategy was implemented in the house software called RT_PPP that is capable of accomplishing PPP either for single or dual frequency data. GPS data from Brazilian station near equatorial region were processed and results with regional maps were compared with those by using global maps. Improvements of the order 15% were observed. In case of ionosphere estimation, the estimated coordinates were compared with ionosphere free solution and after PPP convergence the results reached centimeter accuracy.

  15. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  16. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  17. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  18. Implementing SPASE Metadata into the Virtual ITM Observatory

    NASA Astrophysics Data System (ADS)

    Colclough, C.; Weiss, M.; Morrison, D.; Immer, L.; Barnes, R.; Patrone, D.; Holder, R.; Potter, M.

    2008-12-01

    SPASE (Space Physics Archive Search and Extract) is a consortium of space physics users from a wide variety of institutions. This consortium is in the process of developing and updating a metadata specification for space physics products. Most Virtual Observatories are using SPASE as their source of information. Since SPASE uses XML, which is hierarchical, systems based upon SPASE tend to express themselves in a similar hierarchical manner. Often, knowledge of the data and its structure is needed in order to answer many questions. VITMO (Virtual Ionosphere Thermosphere Mesosphere Observatory) does not use SPASE internally, instead VITMO uses a relational database which allows the user to search based on scientific concepts, without apriori knowledge of the structure of the data. VITMO also has an architecture and metadata structure that predates the SPASE specification. SPASE, however, is the interlingua of the VO community. We will show how we have translated between the VITMO internal metadata structure and the SPASE metadata specification. This presentation will focus on the value in adopting SPASE and lessons learned in implementing it. group.org; http://vitmo.jhuapl.edu

  19. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  20. Ionospheric Challenges for GNSS Based Augmentation Systems

    NASA Astrophysics Data System (ADS)

    Doherty, P.; Valladares, C. E.

    2007-12-01

    The ionosphere is a highly dynamic physical phenomenon that presents a variable source of error for Global Navigation Satellite System (GNSS) signals and GNSS based operational systems. The Federal Aviation Administration's (FAA) Wide-Area Augmentation System (WAAS) was designed to enhance the GNSS standard positioning service by providing additional accuracy, availability and integrity that is sufficient for use in commercial aviation. It is the first of a number of planned regional Satellite Based Augmentation Systems (SBAS). Other systems in development include the European EGNOS system, the MSAS system in Japan and the GAGAN system in India. In addition, the South American countries are investigating the feasibility of operating an SBAS system in this region. Much of the WAAS ionospheric research and development focused on defining and mitigating ionospheric challenges characteristic of the mid-latitude regions, where the ionosphere is well studied and relatively quiescent. The EGNOS and MSAS systems will primarily operate under a similarly quiescent mid-latitude ionosphere. SBAS system development in South America, India and other low-latitude regions, however, will have to contend with much more extreme conditions. These conditions include strong spatial and temporal gradients, plasma depletions and scintillation. All of these conditions have a potential to limit SBAS performance in the low latitude regions. This presentation will review the effects that the ionosphere has on the mid-latitude WAAS system. It will present the techniques that are used to mitigate ionospheric disturbances induced on the system during severe geomagnetic activity and it will quantify the effect that this activity has on system performance. The presentation will then present data from the South American Low-latitude Ionospheric Sensor Network (LISN) that can be used to infer the ionospheric effects on SBAS performance in the most challenging low-latitude ionospheric environment

  1. Photometry of Galactic and Extragalactic Far-Infrared Sources using the 91.5 cm Airborne Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Harper, D. A.

    1996-01-01

    The objective of this grant was to construct a series of far infrared photometers, cameras, and supporting systems for use in astronomical observations in the Kuiper Airborne Observatory. The observations have included studies of galaxies, star formation regions, and objects within the Solar System.

  2. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  3. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  4. Magdalena Ridge Observatory Project Overview

    NASA Astrophysics Data System (ADS)

    Laubscher, Bryan E.; Buscher, David F.; Chang, Mark J.; Cobb, Michael L.; Haniff, Chris A.; Horton, Richard F.; Jorgensen, Anders M.; Klinglesmith, Dan; Loos, Gary; Nemzek, Robert J.

    The Magdalena Ridge Observatory (MRO) is a project with the goal of building a state of the art observatory on Magdalena Ridge west of Socorro New Mexico. This observatory will be sited above 3700 meters and will consist of a 10-element 400-meter baseline optical/infrared imaging interferometer and a separate 2.4-meter telescope with fast response capability. The MRO consortium members include New Mexico Institute of Mining and Technology University of Puerto Rico Mew Mexico Highlands University New Mexico State University and the Los Alamos National Laboratory. The University of Cambridge is a joint participant in the current design phase of the interferometer and expects to join the consortium. We will present an overview of the optical interferometer and single telescope designs and review their instrumentation and science programs

  5. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  6. Technology progress of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Zhao, Yongheng; Zhao, Gang; Zhang, Yanxia

    2002-12-01

    The project of Virtual Observatory (VO) is the result of breakthroughs in telescope, detector, computer and Internet technologies. The combination with the new information technology is the major characteristic of the VO development. Extensible markup language (XML) and Grid as two trends of information technology will be adopted widely in the VO. The VO architecture is based upon the standard layered architecture of Grid. In the paper, technologies related in each layer of the VO architecture are introduced. The global Virtual Observatory provides new chances for Chinese astronomy. Using the abundant resources in the Internet and chances provided by open-source software, Chinese astronomers should cooperate with national IT experts and push the Virtual Observatory projects of China as soon as possible.

  7. Global Assimilation of Ionospheric Measurements (GAIM)

    NASA Astrophysics Data System (ADS)

    Schunk, Robert W.; Scherliess, Ludger; Sojka, Jan J.; Thompson, Donald C.; Anderson, David N.; Codrescu, Mihail; Minter, Cliff; Fuller-Rowell, Timothy J.; Heelis, Roderick A.; Hairston, Marc; Howe, Bruce M.

    2004-02-01

    The ionosphere is a highly dynamic medium that exhibits weather disturbances at all latitudes, longitudes, and altitudes, and these disturbances can have detrimental effects on both military and civilian systems. In an effort to mitigate the adverse effects, we are developing a physics-based data assimilation model of the ionosphere and neutral atmosphere called the Global Assimilation of Ionospheric Measurements (GAIM). GAIM will use a physics-based ionosphere-plasmasphere model and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. Some of the data to be assimilated include in situ density measurements from satellites, ionosonde electron density profiles, occultation data, ground-based GPS total electron contents (TECs), two-dimensional ionospheric density distributions from tomography chains, and line-of-sight UV emissions from selected satellites. When completed, GAIM will provide specifications and forecasts on a spatial grid that can be global, regional, or local. The primary output of GAIM will be a continuous reconstruction of the three-dimensional electron density distribution from 90 km to geosynchronous altitude (35,000 km). GAIM also outputs auxiliary parameters, including NmF2, hmF2, NmE, hmE, and slant and vertical TEC. Furthermore, GAIM provides global distributions for the ionospheric drivers (neutral winds and densities, magnetospheric and equatorial electric fields, and electron precipitation patterns). In its specification mode, GAIM yields quantitative estimates for the accuracy of the reconstructed ionospheric densities.

  8. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  9. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  10. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  11. Mid-latitude Ionospheric HF Channel Reciprocity: Evidence from the Ionospheric Oblique Incidence Sounding Experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zhao, Zhengyu; Zhang, Yuannong

    The mid-latitude ionospheric HF channel reciprocity is studied in this paper through theoret-ical considerations and ionospheric oblique incidence sounding experiments. The reciprocity of ionospheric HF channel experiments were carried out by using two identical Wuhan Iono-spheric Oblique Incidence Sounding Systems (WIOISS) located in Wuhan (30° 32N, 114° 21E) and Wanning (18° 58N, 110° 31E) respectively. The comparisons of group distance and Doppler shift between Wuhan-Wanning and Wanning-Wuhan HF ionospheric propagation paths show that the reciprocity of ionospheric HF channel is satisfied to some extent. The group dis-tances of two paths are calculated by a 3-D ray tracing simulation as well. The theoretical and experimental results could be widely used for HF communication systems and sky wave over-the-horizon radar.

  12. Midlatitude ionospheric HF channel reciprocity: Evidence from the ionospheric oblique incidence sounding experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zhao, Zhengyu; Deng, Feng; Ni, Binbin; Chen, Gang

    2010-12-01

    Ionospheric HF channel reciprocity is investigated at middle latitudes on the basis of ionospheric oblique incidence sounding experiments. Two identical Wuhan Ionospheric Oblique Incidence Sounding Systems (WIOISS), located at Wuhan (30°32'N, 114°21'E) and Wanning (18°58'N, 110°31'E), are used to carry out the campaign. Comparisons of group distance and Doppler shift between Wuhan-Wanning and Wanning-Wuhan HF ionospheric propagation paths indicate that the reciprocity of the ionospheric HF channel is satisfied at midlatitude region. A 3-D ray tracing simulation is also implemented to evaluate the group distances of the two paths. Midlatitude ionospheric HF channel reciprocity, as verified both experimentally and theoretically in the present study, can be useful for HF communication systems and sky wave over-the-horizon radars.

  13. Ionospheric top side model ingesting observed STEC into an empirical ionospheric model

    NASA Astrophysics Data System (ADS)

    Gularte Scarone, A. E.; Brunini, C.; Meza, A. M.

    Several empirical models are currently used to describe the electron density distribution in the ionosphere The driving parameters used for the majority of these models are the electron density NmF2 and the height hmF2 of the peak Dual frequency ground GPS satellite observations provide estimates of the slant total electron content STEC that is the integral of the electron density along the ray-path of the signal In this contribution we present a method to improve the ionospheric top side model ingesting the observed STEC into an empirical ionospheric model and updating the climatological parameters to a better representation of the meteorological conditions of the ionosphere The analysis is done in periods with different levels of ionospheric activity during solstices or equinoxes and La Plata Ionospheric Model LPIM is used for computing 4-D free electron distribution

  14. Near-field co-seismic ionospheric response due to the northern Chile Mw 8.1 Pisagua earthquake on April 1, 2014 from GPS observations

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Sunil, A. S.; González, G.; Shrivastava, Mahesh N.; Moreno, Marcos

    2015-11-01

    Large earthquakes can induce near and far-field ionospheric perturbations by direct/secondary acoustic and gravity waves through Lithosphere-Atmosphere-Ionosphere (LAI) coupling. We analyze co-seismic induced ionospheric TEC perturbations following the northern Chile Mw 8.1 Pisagua earthquake occurred on April 1, 2014. The continuous Global Positioning System (GPS) data at 15 sites from the Integrated Plate Boundary Observatory Chile (IPOC) and International GPS Service (IGS) GPS networks have been used in the present study. The nearest GPS site iqqe, ~98 km away from the epicenter, recorded the ionospheric disturbance 12 min after the event. The maximum co-seismic induced peak-to-peak TEC amplitude is ~1.25 TECU (1TECU=1016 electrons/m2), and the perturbations are confined to less than 1000 km radius around the epicenter. The observed horizontal velocity of TEC perturbations has been determined as ~1180 m/s. We could also discern the signatures of acoustic gravity waves (AGW) with velocity~650 m/s and frequency~2 mHz. The ionospheric signal components due to Rayleigh and/or Tsunami waves could not be observed. This contribution presents characteristics of near-field co-seismic ionospheric response due to the 2014 Pisagua earthquake.

  15. Study of Ionospheric Indexes T and MF2 related to R12 for Solar Cycles 19-21

    NASA Astrophysics Data System (ADS)

    Villanueva, Lucia

    2013-04-01

    Modern worldwide communications are mainly based on satellite systems, remote communication networks, and advanced technologies. The most important space weather "meteorological" events produce negative effects on signal transmissions. Magnetic storm conditions that follow coronal mass ejections are particularly of great importance for radio communication at HF frequencies (3-30 MHz range), because the Ionization increase (or decrease), significantly over (or below), the Average Values. Nowadays new technologies make possible to establish Geophysical Observatories and monitor the sun almost in real time giving information about geomagnetic indices. Space Weather programs have interesting software predictions of foF2 producing maps and plots, every some minutes. The Average Values of the ionospheric parameters mainly depend on the position, hour, season and the phase of the 11-year cycle of the solar activity. Around 1990´s several ionospheric indexes were suggested to better predict the state of the foF2 monthly media, as: IF2, G, T and MF2, based on foF2 data from different latitude ionospheric observatories. They really show better seasonal changes than monthly solar indexes of solar flux F10.7 or the international sunspot numbers Ri. The main purpose of this paper is to present an analogic model for the ionospheric index MF2, to establish the average long term predictions of this index. Changes of phase from one cycle to the other of one component of the model is found to fit the data. The usefulness of this model could be the prediction of the ionospheric normal conditions for one entire solar cycle having just the prediction of the maximum of the next smooth sunspot number R12. In this presentation, comparisons of the Australian T index and and the Mikhailov MF2 index show an hysteresis variation with the solar monthly index Ri, such dependence is quite well represented by a polynomial fit of degree 6 for rising and decaying fases for solar cycles 19, 20 and

  16. Ionosphere monitoring using NOAA's CORS network

    NASA Astrophysics Data System (ADS)

    Smith, D.

    NOAA's National Geodetic Survey is currently engaged in research to use the CORS (Continuously Operating GPS Reference Stations) network to model the ionosphere over the conterminous United States and surrounding areas. The CORS network consists of over 700 stations that continuously collect data from all GPS satellite vehicles in view; these data are available free of charge for (predominantly) positioning applications. However, the nature of the network makes it an excellent tool for continuously monitoring the nature of the ionosphere over and near the conterminous United States. From the standpoint of geodesy, the ionosphere effect is generally considered a nuisance parameter: that should be modeled and removed so that the ambiguity in dual frequency GPS carrier-phase signals may be resolved and accurate positions determined. As such, the initial direction of this research is toward modeling the ionosphere for geodetic use, using a single-layer "shell model". The results presented here show the first steps toward accurately modeling the ionosphere through the CORS network, in terms of absolute (non-differential) Total Electron Content Units (TECUs) through an innovative cross-over adjustment of "tracks". Each track is made by the intersection of a satellite/receiver vector with the ionosphere shell as the satellite moves overhead. Results of the initial research in applying the modeled ionosphere toward ambiguity resolution will be discussed. Limitations of using the one-dimensional shell will also be presented. Future plans for creating a time-stream of the ionosphere, increasing the complexity beyond the shell model, and applications toward nowcast and forecast of the ionosphere, will also be discussed.

  17. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  18. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  19. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1986-01-01

    KAOS (Kuiper Airborne Observatory Scheduler) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  20. Solar daily variation at geomagnetic observatories in Pakistan

    NASA Astrophysics Data System (ADS)

    Rahim, Zain; Kumbher, Abdul Salam

    2016-03-01

    A study of solar daily variation is performed using the famous Chapman-Miller method for solar cycles 22 & 23 (1986-2007). The objective is to study the characteristics of Sq variation at Pakistani geomagnetic observatories using solar harmonics and a more traditional five quietest day's method. The data recorded at the Karachi geomagnetic observatory for SC 22 and 23 and data sets from other Pakistani geomagnetic observatories; Sonmiani, Quetta and Islamabad are analyzed for H, D and Z components of the geomagnetic field. Except for the D and Z components at Karachi and Sonmiani and H component at Islamabad, the two solar daily variations correlated well with each other. Also, the synthesized daily variation from the solar harmonics of H, D and Z components explained the equivalent Sq current system reasonably well for all seasons. For H component, the first solar harmonic (s1) obtained from spherical harmonic analysis of the data, appeared as the largest harmonic with no significant changes for the seasonal division of data. However, for D and Z components, amplitudes are comparable, but undergo distinct variations. s1 for H and D components increases with magnetic activity while for Z component it is the largest for the medium phase of magnetic activity. With the sunspot number division of data, the weighted mean of the Wolf ratio of all three components is in good agreement with the previous studies. The synthesized solar daily variation for D component, S(D), at Karachi, Sonmiani, Quetta and Islamabad did not show any signs of winter anomaly for the period studied. However, S(D) variation at Karachi during winter season showed morning minimum followed by a maximum at local noon and another minimum in the afternoon. We suggest this could be the effects of Equatorial Ionospheric Anomaly (EIA) observable at the Karachi observatory only during the winter season. Similarly, much disturbed in equinoctial and summer months, S(Z) illustrated an unwavering daily

  1. Ionosphere of Mars observed by Mars Express.

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Andrews, Dave; Morgan, Dave

    2016-04-01

    The Martian ionosphere is studied at different solar zenith angles using the local electron number densities and total electron content (TEC) derived from the observations by MARSIS onboard Mars Express. The data are complemented by the ASPERA-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider the Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere and its influence on ion escape.

  2. Ionospheric irregularity physics modelling. Memorandum report

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-02-09

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  3. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.

    1993-01-01

    This report investigates the potential of using Global Positioning System (GPS) data and a model of the ionosphere to supply a measure of the sub-satellite Total Electron Current (TEC) of the required accuracy (10 TECU rms) for the purpose of calibrating single frequency radar altimeter measurements. Since climatological (monthly mean) models are known to be in error by as much as 50 percent, this work focused on the Parameterized Real-Time Ionospheric Specification Model (PRISM) which has the capability to improve model accuracy by ingesting (adjusting to) in situ ionospheric measurements. A set of globally distributed TEC measurements were generated using GPS data and were used as input to improve the accuracy of the PRISM model. The adjusted PRISM TEC values were compared to TOPEX dual frequency TEC measurements (which are considered truth) for a number of TOPEX sub-satellite tracks. The adjusted PRISM values generally compared to the TOPEX measurements within the 10 TECU accuracy requirements when the sub-satellite track passed within 300 to 400 km of the GPS TEC data or when the track passed through a night time ionosphere. However, when the sub-satellite points were greater than 300 to 400 km away from the GPS TEC data or when a local noon ionosphere was sampled, the adjusted PRISM values generally differed by greater than 10 TECU rms with data excursions from the TOPEX TEC measurements of as much as 40 TECU (an 8 cm path delay error at K band). Therefore, it can be concluded from this analysis that an unrealistically large number of GPS stations would be needed to predict sub-satellite TEC at the 10 TECU level in the day time ionosphere using a model such as PRISM. However, a technique currently being studied at the Jet Propulsion Laboratory (JPL) may provide a means of supplying adequate TEC data to meet the 10 TECU ionospheric correction accuracy when using a realistic number of ionospheric stations. This method involves using global GPS TEC data to

  4. Physics of planetary atmospheres and ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1981-01-01

    The traditional atmospheric regions, the distinction between homosphere and heterosphere, and changing atmospheric composition are discussed. The validity of the barometric law based on a Maxwell-Boltzmann distribution, for the major part of a planetary atmosphere and its breakdown in the exosphere due to escape of atmospheric particles is considered. The formation and maintenance of photochemical and diffusion-controlled ionospheric layers are treated. Their applicability to planetary ionospheres is dealt with. The spatial extent of magnetic and nonmagnetic planet ionospheres is investigated. Thermal and nonthermal processes responsible for the mass loss of planetary atmospheres are surveyed.

  5. Ionosphere/thermosphere heating determined from dynamic magnetosphere-ionosphere/thermosphere coupling

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2011-09-01

    Ionosphere/thermosphere heating driven by magnetospheric convection is investigated through a three-fluid inductive (including Faraday's law) approach to describing magnetosphere-ionosphere/thermosphere coupling, for a 1-D stratified ionosphere/thermosphere in this initial study. It is shown that the response of the ionosphere/thermosphere and thus the heating is dynamic and height-dependent. The heating is essentially frictional in nature rather than Joule heating as commonly assumed. The heating rate reaches a quasi-steady state after about 25 Alfvén travel times. During the dynamic period, the heating can be enhanced and displays peaks at multiple times due to wave reflections. The dynamic heating rate can be more than twice greater than the quasi-steady state value. The heating is strongest in the E-layer but the heating rate per unit mass is concentrated around the F-layer peak height. This implies a potential mechanism of driving O+ upflow from O+ rich F-layer. It is shown that the ionosphere/thermosphere heating caused by the magnetosphere-ionosphere coupling can be simply evaluated through the relative velocity between the plasma and neutrals without invoking field-aligned currents, ionospheric conductance, and electric field. The present study provides understanding of the dynamic magnetosphere-ionosphere/thermosphere coupling from the ionospheric/thermospheric view in addition to magnetospheric perspectives.

  6. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  7. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  8. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  9. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  10. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  11. The Virtual Observatory in Transition

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2006-07-01

    In the past several years, the Virtual Observatory has progressed from concept to implementation. There is now a well-established International Virtual Observatory Alliance {http://ivoa.net/} with formal processes for the development and promotion of technical standards. The national VO projects have developed science applications layered on the core technologies, and these applications are providing new research opportunities for the astronomy community. The VO projects are also actively engaging the community through technical training programs such as the EuroVO Workshop (June 2005), AstroGrid Workshop (July 2005), and the US National Virtual Observatory Summer School (September 2005). As the research community begins to adopt VO tools and technology and rely on VO services, the VO projects need to prepare for something akin to routine observatory operations. System integration and testing, revision tracking, version/platform support, documentation, resource allocation, service reliability, metadata curation, and user support all need to be taken seriously in an environment/system that is inherently distributed, uncentralized, and undergoing continuing enhancements to the infrastructure.

  12. Lunar astronomical observatories - Design studies

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  13. Secular Change in the Coupled Thermosphere and Ionosphere System

    NASA Astrophysics Data System (ADS)

    Qian, L.; Roble, R. G.; Solomon, S. C.; Kane, T. J.

    2007-05-01

    Observed long-term changes in the upper atmosphere have been attributed to increasing of greenhouse gases, mainly CO2, which cools the mesosphere and thermosphere. There has also been evidence [e.g., Lastovica et al., Science, 314, 1253, 2006] indicating that changes in the ionosphere accompany the neutral atmosphere changes, including a slight decrease in E-region altitude and small increases in the maximum electron density of E-region and F1-region. However, trends in the peak electron density and peak electron density height of F2- region have been controversial. Using a global mean upper atmosphere model, CO2 concentration measured at Mauna Loa Observatory, and solar variation based on a proxy model, we have calculated the secular change of thermosphere neutral density. The model result is compared to trend estimates of thermosphere density derived from satellite drag observations, showing good agreement. Sensitivity studies show that in the upper thermosphere, the effect of CO2 increases is much greater than effects from changes in CH4, H2O and O3, etc., accounting for nearly 90% of upper thermosphere density change. We have also used the model to confirm the expected trends in the ionosphere E-region and F1-region. The non-geomagnetic trend of the height of peak electron density in the F2-region is predicted to be negative but the non-geomagnetic trend of the peak electron density of the F2-region can be either positive or negative, depending on solar activity.

  14. A Cyberinfrastructure for the National Ecological Observatory Network (NEON).

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Berukoff, S. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is an NSF-funded project designed to provide physical and information infrastructure to support the development of continental-scale, quantitative ecological sciences. The network consists of sixty sites located in the continental US, Alaska, Hawaii, and Puerto Rico, each site hosting terrestrial and aquatic sensors and observational apparati that acquire data across multiple ecoclimatic domains. As well, an airborne remote sensing platform provides spectral and LiDAR data, and acquisition of data sets from external agencies allows for land-use studies. Together, this data is ingested, vetted, processed, and curated by a standards-based, provenance-driven, metadata-rich cyberinfrastructure, which will provide not only access to but discovery and manipulation of NEON data, and the construction of integrative data products and inputs for ecological forecasting that address fundamental processual questions in climate change, land use change, and invasive species.

  15. Tools for Coordinating Planning Between Observatories

    NASA Astrophysics Data System (ADS)

    Jones, J.; Maks, L.; Fishman, M.; Grella, V.; Kerbel, U.; Misra, D.; Pell, V.

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wave bands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only a single observatory. Thus, programs using multiple observatories are limited not by scientific restrictions, but by operational inefficiencies. At present, multi-observatory programs are initiated by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among staffs at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming and error-prone, and the outcome of requests is not certain until the very end. To increase multi-observatory operations efficiency, such resource intensive processes need to be re-engineered. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the probability of scheduling all observations.

  16. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  17. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  18. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  19. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  20. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  1. Artificial defocusing lens in ionosphere

    NASA Astrophysics Data System (ADS)

    Boyko, G. N.; Vaskov, V. V.; Golyan, S. F.; Gurevich, A. V.; Dimant, Y. S.; Zyuzkin, V. A.; Kim, V. Y.; Komrakov, G. P.; Lobacheviskiy, L. A.; Migulin, V. V.

    1984-10-01

    Strong defocusing of perturbing radio waves is detected, indicating the creation of an effective defocusing lens in the ionosphere. Modess in which there is not anomalous absorption are employed in order to isolate the defocusing effects unambiguously. The experimental setup incorporates a 300 MW SURG heating system with a narrow radiation pattern. The concentration perturbations are diagnosed in the vertical sounding mode at 8 frequencies by means of a Doppler system. The experimental results were obtained during May and July 1983 under daytime conditions. The amplitude and Doppler frequency shift behavior of the probe wave is analyzed, and the defocusing coefficient is computed as a function of the frequency of the probe wave and power of the heating wave. The artificial lens detected results in significant attenuation of radio waves passing through it.

  2. Auroral pulsations from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1989-11-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pederson currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  3. Ionospheric effects of supernova explosions

    NASA Astrophysics Data System (ADS)

    Edwards, P. J.

    Possible ionospheric effects of supernova explosions are considered, with special attention given to those of SN 1987a. Results are presented on the calculations of anticipated X-ray/UV flare parameters, including the shock temperature, the minimum flare duration, the average photon energy, and the shock-front travel time for a range of stellar radii bracketing SK 202-69, which was identified by White Malin (1987) as the progenitor star for SN 1987a. It is shown that the characteristics of the X-ray/UV flare are strongly influenced by the radius of the shock wave breakout, so that the flare from SN 1987a can be anticipated to have characteristics intermediate between those attributed to compact stars and stars with extended envelopes.

  4. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  5. Investigation of ionospheric gradients for GAGAN application

    NASA Astrophysics Data System (ADS)

    Chandra, K. Ravi; Srinivas, V. Satya; Sarma, A. D.

    2009-05-01

    To cater to the needs of aviation applications, GPS Aided GEO Augmented Navigation (GAGAN) system is being implemented over the Indian region. The most prominent parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of TEC. In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating ionospheric gradients in multiple viewing directions. Rate of TEC (ROT) and Rate of TEC Index (ROTI) are calculated to identify the ionospheric gradients. Among the satellite signals arriving in multiple directions, the signals which suffer from severe ionospheric gradients are identified and avoided for improving GAGAN positional accuracy. The outcome of this paper will be helpful for improving GAGAN system performance.

  6. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  7. Global ionospheric weather. Scientific report No. 2

    SciTech Connect

    Decker, D.T.; Doherty, P.H.

    1995-02-28

    Work on global F region modeling has consisted of participation in the Phillips Laboratory Low Latitude Ionospheric Tomography Campaign, testing of the Global Theoretical Ionospheric Model (GTIM), and testing of the Parameterized Ionospheric Model (PIM). Analysis of TEC data and comparisons with other ionospheric models have been successfully conducted and are ongoing. Analysis of GPS observations are also ongoing. Studies have been made concerning limitations in determining TEC from dual frequency GPS measurements as well as the statistics of time rate of change of TEC. Software has been developed to process RINEX formatted GPS data into TEC. Work comparing the aulthors electron proton H atom model to both observations and other models has been very successful. The authors have also successfully modeled the creation of boundary blobs using time varying convection to first create patches in the polar cap and then to transport and distort them into boundary blobs in the auroral region.

  8. Thermospheric storms and related ionospheric effects

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.

    1976-01-01

    A comparative study of thermospheric storms for equinox and winter conditions is presented based on neutral-composition measurements from the Aeros-A neutral-atmosphere temperature experiment. The main features of the two storms as inferred from changes in N2, Ar, He, and O are described, and their implications for current theories of thermospheric storms are discussed. On the basis of the study of the F-region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are different manifestations of thermospheric storms.

  9. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  10. Wave coupling of atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.

    2011-12-01

    The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.

  11. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. PMID:25013068

  12. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  13. A Model of Callisto's Ionosphere

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Saur, J.; Bloecker, A.; Strobel, D. F.; Simon, S.

    2014-12-01

    We develop a model of the ionosphere of Jupiter's moon Callisto, where we assume a stationary balance between sources and sinks of electrons and electron energy. Hence, effects of electron transport and electron energy transport are neglected. At Callisto, the production of electrons and electron energy is basically driven by photoionization, which is implemented using the EUVAC model for solar activity. Dissociative recombination is the main electron loss process, whereas electron energy loss is further driven by dissociation, electron impact ionization as well as vibrational and rotational excitations of neutral atmospheric particles. All these effects are incorporated within our model by considering the associated cross sections. The neutral atmosphere is assumed to be stationary and consists of molecular oxygen with a column density of 3 to 4 x 1020 m-2 (e.g. Kliore et al. (2002), Liang et al. (2005)). Our results can be compared to radio occultation observations of four Galileo spacecraft flybys reported by Kliore et al. (2002), which shows that this simple model can explain the general pattern of the observational data. Indeed, our results indicate that the detection of enhanced electron densities is very sensitive to the exact position of the tangential point of the radio occultation method. Our model shows that photoionization produces a strong asymmetry of the electron density distribution between day and night-side of the moon. Further, model results for the electron energy allow for an estimation of the day glow of Callisto's atmosphere. This can be compared to HST observations (Strobel et al. (2002)) in order to evaluate the density of the neutral oxygen atmosphere. Future studies imply the modeling of the modification of the ionospheric structure through interaction with upstreaming jovian magnetospheric plasma.

  14. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  15. Remote Sensing of Ionosphere by IONOLAB Group

    NASA Astrophysics Data System (ADS)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  16. An Ionospheric Metric Study Using Operational Models

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Schunk, R. W.; Thompson, D. C.; Scherliess, L.; Harris, T. J.

    2006-12-01

    One of the outstanding challenges in upgrading ionospheric operational models is quantifying their improvement. This challenge is not necessarily an absolute accuracy one, but rather answering the question, "Is the newest operational model an improvement over its predecessor under operational scenarios?" There are few documented cases where ionospheric models are compared either with each other or against "ground truth". For example a CEDAR workshop team, PRIMO, spent almost a decade carrying out a models comparison with ionosonde and incoherent scatter radar measurements from the Millstone Hill, Massachusetts location [Anderson et al.,1998]. The result of this study was that all models were different and specific conditions could be found when each was the "best" model. Similarly, a National Space Weather Metrics ionospheric challenge was held and results were presented at a National Space Weather meeting. The results were again found to be open to interpretation, and issues with the value of the specific metrics were raised (Fuller-Rowell, private communication, 2003). Hence, unlike the tropospheric weather community, who have established metrics and exercised them on new models over many decades to quantify improvement, the ionospheric community has not yet settled on a metric of both scientific and operational value. We report on a study in which metrics were used to compare various forms of the International Reference Ionosphere (IRI), the Ionospheric Forecast Model (IFM), and the Utah State University Global Assimilation of Ionospheric Measurements Model (USU-GAIM) models. The ground truth for this study was a group of 11 ionosonde data sets taken between 20 March and 19 April 2004. The metric parameter was the ionosphere's critical frequency. The metric was referenced to the IRI. Hence, the study addressed the specific question what improvement does IFM and USU-GAIM have over IRI. Both strengths (improvements) and weaknesses of these models are discussed

  17. Tsunamis warning from space :Ionosphere seismology

    SciTech Connect

    Larmat, Carene

    2012-09-04

    Ionosphere is the layer of the atmosphere from about 85 to 600km containing electrons and electrically charged atoms that are produced by solar radiation. Perturbations - layering affected by day and night, X-rays and high-energy protons from the solar flares, geomagnetic storms, lightning, drivers-from-below. Strategic for radio-wave transmission. This project discusses the inversion of ionosphere signals, tsunami wave amplitude and coupling parameters, which improves tsunami warning systems.

  18. Airborne infrared investigation of water in the coma of Halley's Comet

    NASA Technical Reports Server (NTRS)

    Weaver, Harold A.; Mumma, Michael J.; Larson, Harold P.; Davis, D. Scott

    1986-01-01

    An infrared Fourier transform spectrometer on the Kuiper Airborne Observatory (KAO) was used to obtain high resolution spectra of the intense, solar-pumped infrared fluorescent emission in the (001 to 000) band of H2O near 2.6 microns. Differences between the observed H2O excitation and original expectations are discussed, and KAO water production rates are compared to those derived from International Ultraviolet Explorer observations. Possible future directions for high resolution IR spectroscopy of comets are discussed.

  19. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  20. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  1. Resolving Ionospheric E-region Modeling Challenges: The Solar Photon Flux Dependence

    NASA Astrophysics Data System (ADS)

    Jensen, Joseph; Sojka, Jan; David, Michael; Tobiska, Kent; Schunk, Robert; Woods, Tom; Eparvier, Frank

    2013-04-01

    The EVE instrument of the NASA Solar Dynamics Observatory (SDO) provides for the first time EUV and XUV measurements of the solar irradiance that adequately define the major source of ionization of the atmosphere. In our study we modeled the E-region of the ionosphere and analyzed how it is affected by the solar irradiance data obtained by EVE and contrast this with the S2000 Solar Irradiance model, used previously. The ionosphere has two major layers, the E-layer at 100 km, and the F-layer at 300 km. The difference in solar irradiances are small except at some wavelength bands, it is these differences that lead to a better understanding of the physical/chemical processes of the E-region. Observations of the ionospheric layers is best achieved using incoherent scatter radars (ISR). We have compared our model with ISR data available from Arecibo Puerto Rico in an effort to understand how specific solar irradiance wavelength bands affect the E-region. This study focuses on two specific wavelength bands 0.1-15 nm and 91-103 nm. Both are responsible for E-region production, but in quite different manners.

  2. Solar Cycle Variations in the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Milan, S. E.; Lester, M.

    2014-12-01

    The polar ionosphere is a dynamic region that readily responds to changes in solar irradiance, solar wind, the magnetosphere, and the neutral atmosphere. The most recent solar minimum brought to light gaps in the current understanding of the relationship between ionospheric structure and solar irradiance. The Super Dual Auroral Radar Network (SuperDARN) offers an invaluable dataset for studying long-term ionospheric variability, as it has been continuously providing extensive coverage of the northern and southern polar ionosphere since 1995 (the solar minimum preceding the 23rd solar cycle). An under-utilized portion of the SuperDARN dataset is the ground-backscatter: the backscatter that returns from a reflection point on the ground along an open (or irregularity-free) propagation path. The ground-backscatter provides a measure the ionospheric density at the peak of the radar signal's path. These measurements are used to the examine the changes in the bottomside, polar ionosphere over the 23rd and 24th solar cycles.

  3. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  4. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  5. Response of the Arecibo Ionosphere to the April 11, 2013 Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Sulzer, M. P.; Garnett Marques Brum, C.; Echer, E.; Aponte, N.; Cabassa-Miranda, E.

    2013-12-01

    On April 11th 2013 at 07:16 UTC, the active Region 1719 erupted with a M6,51 class flare. This Active Region was located almost central on the visible solar disk during the flare. The flare launched an asymmetric full halo Coronal Mass Ejection (CME). The blast left the sun with a speed of about 1100km/sec and slowed down shortly after about 800km/sec. The ejecta reaches the Earth's vicinity on April 13 at ~23:00UTC resulting in an increase of geomagnetic activity and changes of the global ionosphere configuration. This work will be presenting the responses of the middle latitude ionosphere to the aforementioned solar event based on Incoherent Scatter Radar (ISR), Fabry-Perot and GPS data registered at the Arecibo Observatory (18.35°N, 66.75°W; ˜28.25°N dip latitude) and digisonde data from the San Juan Magnetic Observatory (18.11°N, 66.15°W). Plasma line observations show that the electron density of the dawn F region is approximately three times higher, and located about 80 km higher in altitude, on April 14 than on the preceding and following days.

  6. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  7. Polarimetry from the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Vaillancourt, J.; Andersson, B.; Young, E.; Ruzek, M. J.

    2012-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-meter infrared airborne telescope in a Boeing 747SP that operates in the stratosphere at altitudes as high as 45,000 feet (14 km). A joint project of NASA and the German Aerospace Center (DLR), SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 micron to 1.6 millimeters with an average atmospheric transmission greater than 80 percent across that range. The first-generation instruments span the range from 0.3 to 240 microns. SOFIA's ability to regularly update its instrument complement over its 20-year lifetime will allow for polarimeters with imaging and spectroscopic capabilities; a second-generation imaging polarimeter is currently planned for far-infrared wavelengths. We discuss a sample of possible investigations of interest to the field of planetary science which can be carried out with an airborne polarimeter in SOFIA's near- and mid-infrared wavelength range including studies of comets, asteroids, and proto-stellar disks. A third-generation instrument call, where new polarimetric capabilities may be proposed, is currently planned for Fiscal Year 2014.

  8. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  9. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  10. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  11. Comparison of the USU ionospheric model with the UCL-Sheffield coupled thermospheric-ionospheric model

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Rees, D.; Fuller-Rowell, T. J.; Moffett, R. J.; Quegan, S.

    1992-01-01

    Several physical models of the high-latitude ionosphere have been developed that describe the time-dependent evolution of the E- and F-region plasma density. The models require a variety of inputs, including solar EUV fluxes, magnetospheric convection, auroral precipitation, and neutral atmosphere. Of specific relevance to this study is how the neutral atmosphere is incorporated into the ionospheric models. For the USU ionospheric model, the neutral atmosphere is the MSIS 1986 empirical model, while for the UCL-Sheffield coupled thermospheric-ionospheric model the neutral atmosphere is computed simultaneously with the ionosphere. Both models were run for similar solar and magnetospheric conditions (solar maximum, moderate geomagnetic activity, and winter solstice). Solar maximum conditions ensured a strong coupling between the ionosphere and thermosphere, which provided the possibility of a large ionospheric difference between the two physical models. This was further enhanced by choosing winter conditions so that the densities were not dominated by sunlight. The comparison of the two models indicated that both models predict the same morphological features with similar ionospheric densities, generally within about 30 percent.

  12. A Synergistic Approach to Atmospheric Compensation of Neon's Airborne Hyperspectral Imagery Utilizing an Airborne Solar Spectral Irradiance Radiometer

    NASA Astrophysics Data System (ADS)

    Wright, L.; Karpowicz, B. M.; Kindel, B. C.; Schmidt, S.; Leisso, N.; Kampe, T. U.; Pilewskie, P.

    2014-12-01

    A wide variety of critical information regarding bioclimate, biodiversity, and biogeochemistry is embedded in airborne hyperspectral imagery. Most, if not all of the primary signal relies upon first deriving the surface reflectance of land cover and vegetation from measured hyperspectral radiance. This places stringent requirements on terrain, and atmospheric compensation algorithms to accurately derive surface reflectance properties. An observatory designed to measure bioclimate, biodiversity, and biogeochemistry variables from surface reflectance must take great care in developing an approach which chooses algorithms with the highest accuracy, along with providing those algorithms with data necessary to describe the physical mechanisms that affect the measured at sensor radiance. The Airborne Observation Platform (AOP) part of the National Ecological Observatory Network (NEON) is developing such an approach. NEON is a continental-scale ecological observation platform designed to collect and disseminate data to enable the understanding and forecasting of the impacts of climate change, land use change, and invasive species on ecology. The instrumentation package used by the AOP includes a visible and shortwave infrared hyperspectral imager, waveform LiDAR, and high resolution (RGB) digital camera. In addition to airborne measurements, ground-based CIMEL sun photometers will be used to help characterize atmospheric aerosol loading, and ground validation measurements with field spectrometers will be made at select NEON sites. While the core instrumentation package provides critical information to derive surface reflectance of land surfaces and vegetation, the addition of a Solar Spectral Irradiance Radiometer (SSIR) is being investigated as an additional source of data to help identify and characterize atmospheric aerosol, and cloud contributions contributions to the radiance measured by the hyperspectral imager. The addition of the SSIR provides the opportunity to

  13. First Thermospheric Winds and Neutral Temperatures statistics Over Oukaimeden Observatory

    NASA Astrophysics Data System (ADS)

    Kaab, Mohamed; Benkhaldoun, Zouhair; Fisher, Daniel J.; Harding, Brian; Makela, Jonathan J.; Bounhir, Aziza; Lazrek, Mohamed; Lagheryeb, Amine; Daassou, Ahmed; Khalifa, Malki

    2015-08-01

    In order to study the thermospheric-ionospheric coupling and to gain a better understanding of thermospheric neutral winds and temperatures by providing measurements over the African sector, we have deployed a new suite of instruments in Morocco: a high-resolution Fabry-Perot interferometer (FPI) and a wide-angle ionospheric imaging system. In this work, we present the statistical results from the first year of observation of thermospheric winds and neutral temperatures made at Oukaimeden Observatory, located 75 km south of Marrakesh 7° 51' W / 31° 12' N. The available data is based on the FPI measurements of Doppler shift and Doppler broadening of the 630.0-nm spectral emission caused by the dissociative recombination of O2+. Viewing the profile of trends of the winds and neutral temperatures shows that the zonal winds are eastward in the early night just after sunset with a speed of 50 m.s-1 up to 150 m.s-1, reducing over the course of the night and switching to westward flow before sunrise. The meridional winds tend to move towards the equator in the summer with speeds exceeding 150 m.s-1, while in the winter they tend to move towards the north pole with a relatively low speed that does not exceed 50 m.s-1. The neutral temperatures show a maximum around ˜1100 K at the beginning of the night and decrease as the night continues until reaching minimum values of ˜700 K before sunrise. The 630.0 nm emission intensity was relatively dim during most of the year, with the exception of a few days in late January and early February when there was a significant increase in the emission's brightness. In this paper, we discuss the instrumentation as well as the variability of these parameters day-to-day, monthly, and seasonally.

  14. Local ionospheric electron density reconstruction from simultaneous ground-based GNSS and ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Stankov, S. M.; Warnant, R.; Stegen, K.

    2009-04-01

    entire altitude range is a straightforward process. As a by-product of the described procedure, the value of the ionospheric slab thickness can be easily computed. To be able to provide forecast, additional information about the current solar and geomagnetic activity is needed. For the purpose, observations available in real time -- at the Royal Institute of Meteorology (RMI), the Royal Observatory of Belgium (ROB), and the US National Oceanic and Atmospheric Administration (NOAA) -- are used. Recently, a new hybrid model for estimating and predicting the local magnetic index K has been developed. This hybrid model has the advantage of using both, ground-based (geomagnetic field components) and space-based (solar wind parameters) measurements, which results in more reliable estimates of the level of geomagnetic activity - current and future. The described reconstruction procedure has been tested on actual measurements at the RMI Dourbes Geophysics Centre (coordinates: 50.1N, 4.6E) where a GPS receiver is collocated with a digital ionosonde (code: DB049, type: Lowell DGS 256). Currently, the nominal time resolution between two consecutive reconstructions is set to 15 minutes with a forecast horizon for each reconstruction of up to 60 minutes. Several applications are envisaged. For example, the ionospheric propagation delays can be estimated and corrected much easier if the electron density profile is available at a nearby location on a real-time basis. Also, both the input data and the reconstruction results can be used for validation purposes in ionospheric models, maps, and services. Recent studies suggest that such ionospheric monitoring systems can help research/services related to aircraft navigation, e.g. for development of the ‘ionospheric threat' methodology.

  15. Bistatic Sounding of High-Latitude Ionospheric Irregularities Using a Decameter EKB Radar and an UTR-2 Radio Telescope: First Results

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Kutelev, K. A.; Kurkin, V. I.; Grkovich, K. V.; Yampolsky, Yu. M.; Kashcheyev, A. S.; Kashcheyev, S. B.; Galushko, V. G.; Grigorieva, S. A.; Kusonsky, O. A.

    2015-11-01

    We present the first results of the joint Russian-Ukrainian experiments for recording of signals from the EKB radar of the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (Arti observatory of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences, Sverdlovsk region, Russia) at a distance of over 1600 km by using a coherent receiving system and a high-gain phased array of the UTR-2 radio telescope (S.Ya. Braude Radioastronomical Observatory (RAO) of the Institute of Radio Astronomy of the Ukrainian National Academy of Sciences (IRA UNAS), Kharkov region, Ukraine). It is shown that two pulse sequences that are identical to the transmitted EKB radar signal, but arrive with different delays were observed at the reception point. The sequence which was received first corresponded to the direct-signal propagation along the great-circle arc. The second sequence was received with delays corresponding to a path length of 2800 to 3400 km and was the result of scattering of the transmitted radar signal by high-latitude ionospheric irregularities. The Doppler frequency shift of the scattered signal was range-dependent and varied from -3 to +4 Hz, which corresponded to the radial component of the ionospheric irregularity velocity from -43 to +58 m/s. To interpret the results of the experiments, we numerically simulated the signal propagation based on the actual ionospheric conditions at an appropriate time. Ionospheric characteristics were retrieved by the vertical ionospheric sounding technique, with the ionosonde located in close proximity to the EKB radar. Comparison between monostatic radar diagnostic results and bistatic sounding results has shown a good agreement of the retrieved parameters of the high-latitude ionospheric irregularities.

  16. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  17. A Comprehensive Assessment of Radio Occultation Ionospheric Measurements at Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Keele, C.; Brum, C. G. M.; Rodrigues, F. S.; Aponte, N.; Sulzer, M. P.

    2015-12-01

    The GPS radio occultation (RO) has become a widely used technique for global measurements of the ionospheric electron density (Ne). To advance our understanding of the accuracy of the RO profiles at mid latitudes, we performed a comprehensive comparison of RO measurements made by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations of Ne profiles made by the Arecibo Observatory incoherent scatter radar (ISR). COSMIC is formed by six satellites in circular, 800 km altitude low-Earth orbit (LEO) at 72° inclination. The satellites orbit in their own plane, approximately 24° apart in ascending node. The satellites are equipped with dual-frequency GPS receivers capable of making measurements of the total electron content (TEC) along the signal path and, therefore, RO observations. The Arecibo ISR, located at(18.35°N, 66.75°W; ˜28.25°N dip latitude), operates at a frequency of 430 MHz with a maximum bandwidth of about 1 MHz. The large collecting area provided by the 300 m dish antenna combined with high peak power transmitters (2.0-2.5 MW) allows the radar to make accurate Ne measurements throughout the entire ionospheric F-region and topside heights. We analyzed 74 and 89 days of line feed and Gregorian data, respectively, collected between 2006 and 2014. There were 638 RO profiles measured within 10° of latitude and 20° of longitude from Arecibo Observatory and within ±10 minutes of the radar measurements. Preliminary analyses of the observations show patterns in the relationship between densities measured by the Arecibo ISR and densities estimated from the COSMIC ROs. We will present and discuss the behavior of the patterns. We will also present results of a numerical model representing the patterns and discuss the possibility of using this model to improve RO estimates of density profiles.

  18. Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.; Pacheco, E.

    2014-12-01

    LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.

  19. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  20. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  1. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  2. The Role of the Observatories

    NASA Astrophysics Data System (ADS)

    Robson, I.

    2005-12-01

    Observatories are the engine room of astronomical outreach. They provide the tools that allow research discoveries to be made in addition to employing many of the research astronomers and public information officers (PIOs). Where accessible, they provide a natural venue for public visits and centres of excellence. They engage in a wide variety of outreach activities in their own right with varying degrees of success, often linked to funding. In all of this, the enthusiasm and high calibre activities of individuals can never be overestimated. We review the above and report the results from a 'health of stock' survey conducted of a large sample of mainly ground-based observatories refl ecting their overall activities and experiences.

  3. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  4. Heat balance of the ionosphere - Implications for the International Reference Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    1985-01-01

    Theoretical considerations can be helpful tools in modeling ionospheric parameters in regions and for times where not enough experimental data are available. This study asks whether results of heat balance calculations should be introduced to supplement the data base for the International Reference Ionosphere. The present status of the theoretical understanding is discussed and the influence of the following unresolved or neglected times are examined: (1) electron heating rate, (2) electron cooling by fine structure excitation of atomic oxygen, and (3) height-dependent Coulomb Logarithm. The ambiguity introduced by these terms leads to up to 30 percent uncertainty in the electron temperature of the lower ionosphere. The electron temperature in the upper ionosphere is largely determined by heat conduction from above and depends critically on the conditions assumed at the boundary between ionosphere and plasmasphere.

  5. Auroral research at the Tromsø Northern Lights Observatory: the Harang directorship, 1928-1946

    NASA Astrophysics Data System (ADS)

    Egeland, Alv; Burke, William J.

    2016-03-01

    The Northern Lights Observatory in Tromsø began as Professor Lars Vegard's dream for a permanent facility in northern Norway, dedicated to the continuous study of auroral phenomenology and dynamics. Fortunately, not only was Vegard an internationally recognized spectroscopist, he was a great salesman and persuaded the Rockefeller Foundation that such an observatory represented an important long-term investment. A shrewd judge of talent, Vegard recognized the scientific and managerial skills of Leiv Harang, a recent graduate from the University of Oslo, and recommended that he become the observatory's first director. In 1929, subsequent to receiving the Rockefeller Foundation grant, the University of Oslo established a low temperature laboratory to support Vegard's spectroscopic investigations. This paper follows the scientific accomplishments of observatory personnel during the 18 years of Harang's directorship. These include: identifying the chemical sources of auroral emissions, discovering the Vegard-Kaplan bands, quantifying height distributions of different auroral forms, interpreting patterns of magnetic field variations, remotely probing auroral electron distribution profiles in the polar ionosphere, and monitoring the evolving states of the ozone layer. The Rockefeller Foundation judges got it right: the Tromsø Nordlysobservatoriet was, and for decades remained, an outstanding scientific investment.

  6. The variations of ionosphere critical frequency of E layer over the equatorial geomagnetic region in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kenpankho, Prasert; Ishii, Mamoru; Supnithi, Pornchai

    2016-07-01

    We investigate the values of the critical frequency of the ionospheric E layer, foE, obtained at Chumphon ionospheric observatory station, Thailand. For a declining phase of the solar cycle 23 during the year 2005-2008 and an inclining phase of the solar cycle 24 during the year 2009-2013, the foE data have been used to investigate the foE variations over the equatorial geomagnetic region in Southeast Asia. A comparison between the observation data and International Reference Ionosphere (IRI) 2012 model has also been investigated and studied. The results show that the foE obtained from IRI 2012 model underestimates foE from Chumphon station especially during the period of 7-11 am and after 6 pm for each day and all seasons. As the results combining with the previous investigations, we suggest that the underestimation of ionospheric foE by IRI 2012 model is helpful for the correction and improvement of IRI model in an equatorial Asia region.

  7. Ny-Alesund Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Sieber, Moritz

    2013-01-01

    In 2012 the 20-m telescope at Ny-Alesund, Svalbard, operated by the Norwegian Mapping Authority (NMA), took part in 163 out of 168 scheduled sessions of the IVS program. Since spring, all data was transferred by network, and the receiver monitoring computer was replaced by a bus-coupler. In autumn, the NMA received building permission for a new observatory from the Governor of Svalbard. The bidding process and first construction work for the infrastructure will start in 2013.

  8. Planetary Science Virtual Observatory architecture

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Berthier, J.; Henry, F.; Chauvin, C.; André, N.; Génot, V.; Jacquey, C.; Gangloff, M.; Bourrel, N.; Schmitt, B.; Capria, M. T.; Chanteur, G.

    2014-11-01

    In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators.

  9. High Energy Astrophysical Observatory (HEAO)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Series of three NASA orbital observatories. HEAO-1, launched in August 1977, successfully completed the most accurate all-sky survey of x-ray sources up to that time. Discovered the `Cygnus Superbubble' created by a series of supernovae. HEAO-2 (later known as EINSTEIN), launched in 1978, was the first true x-ray astronomy satellite. HEAO-3, launched in September 1979, carried a gamma ray spectro...

  10. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  11. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  12. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  13. Las Cumbres Observatory Global Telescope

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Rosing, W.; Pickles, A.; Howell, D. A.

    2009-05-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. We will also continue to operate 2m telscopes in Hawaii and Australia, and we plan to deploy a few tens of 0.4m imaging telescopes for education and for bright-object research. LCOGT has membership in the Pan-STARRS1 consortium, in the Palomar Transient Factory (PTF), and in LSST. In accord with these affiliations, our staff's scientific interests are concentrated in (but not restricted to) the areas of extrasolar planets, extragalactic transients (especially SNe), and pulsating stars. In this poster we describe the observatory in general terms, including its research agenda, its telescope deployment plans and schedule, its notable technical challenges, and its anticipated methods of working with the wider astronomical community. For more detailed information about LCOGT's aims and projects, please see the related posters in this session.

  14. Ionospheric irregularity influences on GPS time delay

    NASA Astrophysics Data System (ADS)

    Mansoori, Azad Ahmad; Gwal, Ashok Kumar; Khan, Parvaiz A.; Bhawre, Purushottam

    All the trans-ionospheric signals interact with the ionosphere during their passage through ionosphere, hence are strongly influenced by the ionosphere. One of most important ionospheric effects on the trans-ionospheric signals is the delay both in range and time. Under this investigation we have studied the variability of ionospheric range delay in GPS signals. To accomplish this study we have used the GPS measurements at a low latitude station, IISC Bangalore (13.02N, 77.57E) during January 2012 to December 2012. We studied the diurnal monthly as well as seasonal variability of the range delay. We also selected five intense geomagnetic storms that occurred during 2012 and investigated the variability of delay during the disturbed conditions. From our study we found the diurnal variability of the range delay is similar to the diurnal pattern observed for TEC. The delay is maximum during the month of October while lowest delay is found to occur in the month of December. During summer season the range delay in GPS signals in less while the largest delay occurs during the equinox season. The variability of delay during the geomagnetic storms of 09 Mar. 2012, 24 Apr. 2012, 15 Jul. 2012, 01 Oct. 2012 and 14 Nov. 2012 were also studied. All these geomagnetic storms belonged to intense category. We found that the value of delay is strongly increased during the course of geomagnetic storms. We took the peak value of delay as well as calculated the enhancement in the delay during these geomagnetic storms and then investigated their correlation with the storm intensity index Dst. Both the delays follow a very good correlation with Dst index.

  15. Ionospheric Variability and Storms on Mars

    NASA Technical Reports Server (NTRS)

    Mendillo, Michael

    2004-01-01

    The goal of this grant was to conduct the first-ever study of ionospheric variability on Mars. To do so, we used data from the Radio Science (RS) experiment onboard the Mars Global Surveyor (MGS) satellite. Dr. David Hinson of the RS team at Stanford University was a most helpful and valuable colleague throughout the studies we conducted. For the initial RS datasets available from the MGS mission, there were no severe storms caused by solar wind activity, so we concentrated on day-to-day effects. This turned out to be a wise approach since understanding "normal variability" had to be done before any claim could be made about "space weather" effects. Our approach was three-fold: (1) select a good dataset for characterization of ionosphere variability at Mars, one for which excellent terrestrial data were also available. This turned out to be the period 9-27 March 1999; (2) once the variability at Mars was described, develop and use a new photochemical model of the martian ionosphere to find the extent to which solar variability on those days caused or contributed to the observed patterns; (3) use the results from the above, together with additional datasets from the MGS/RS experiment, to describe some practical consequences that the martian ionosphere would have upon NASA s proposed navigation and communications systems for Mars. The results of these studies showed that: (a) solar variability is the dominant source of ionospheric variability at Mars (during periods of quiet solar wind), (b) that current models do a good job in portraying such effects at the height of the ionospheric peak electron density, and (c) that ionospheric structure on Mars can affect attempts at precise position-fixing at Mars should relatively high (GPS-like) frequencies not be used in a Mars communications and navigation system.

  16. Role of Ionospheric Plasmas in Earth's Magnetotail

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    2007-01-01

    This tutorial will summarize observations and theories indicating a prominent role of ionospheric plasma in the Earth's magnetotail. At the Global scale, I will argue that it is ionospheric plasma momentum and dynamic pressure that are responsible for the production of plasmoids, through the action of a transient near-Earth neutral or X-line, which serves to release excessive plasma pressure from the magnetotail field. Ionospheric plasma gains the momentum and energy to produce plasmoids and their related effects through its interaction with the solar wind, beginning at the dayside reconnection region and extending across the polar caps through the magnetotail lobes. This distant neutral line can be depicted as a feature much like that found in cometary magnetospheres, where disconnection limits the amount of IMF hung up on the cometary coma. On the other hand, the near-Earth neutral one can be seen as a feature unique to planets with an intrinsic magnetic field and internal source of plasma, the heating of which produces pressures too large to be restrained. Ionospheric plasmas also have other more local roles to play in the magnetotail. The circulation influences the composition of the plasma sheet, and the resultant wave environment, giving rise to reduced wave propagation speeds. Important heavy ion cyclotron resonances, and enhanced finite gyro-radius effects including non-adiabatic particle acceleration. At minimum, the presence of ionospheric plasma must influence the rate of reconnection via its enhanced mass density. Other non-MHD effects of ionospheric plasma presence are likely to be important but need much more investigation to be well understood. The MMS mission is designed to penetrate the subtle diffusion region physics that is involved, and its ability to observe ionospheric plasma involvement in reconnection will contribute significantly toward that goal.

  17. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  18. The global ionosphere thermosphere model

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; Deng, Y.; Tóth, G.

    2006-05-01

    The recently created global ionosphere thermosphere model (GITM) is presented. GITM uses a three-dimensional spherical grid that can be stretched in both latitude and altitude, while having a fixed resolution in longitude. GITM is nontraditional in that it does not use a pressure-based coordinate system. Instead it uses an altitude-based grid and does not assume a hydrostatic solution. This allows the model to more realistically capture physics in the high-latitude region, where auroral heating is prevalent. The code can be run in a one-dimensional (1-D) or three-dimensional (3-D) mode. In 3-D mode, the modeling region is broken into blocks of equal size for parallelization. In 1-D mode, a single latitude and longitude is modeled by neglecting any horizontal transport or gradients, except in the ionospheric potential. GITM includes a modern advection solver and realistic source terms for the continuity, momentum, and energy equations. Each neutral species has a separate vertical velocity, with coupling of the velocities through a frictional term. The ion momentum equation is solved for assuming steady-state, taking into account the pressure, gravity, neutral winds, and external electric fields. GITM is an extremely flexible code—allowing different models of high-latitude electric fields, auroral particle precipitation, solar EUV inputs, and particle energy deposition to be used. The magnetic field can be represented by an ideal dipole magnetic field or a realistic APEX magnetic field. Many of the source terms can be controlled (switched on and off, or values set) by an easily readable input file. The initial state can be set in three different ways: (1) using an ideal atmosphere, where the user inputs the densities and temperature at the bottom of the atmosphere; (2) using MSIS and IRI; and (3) restarting from a previous run. A 3-D equinox run and a 3-D northern summer solstice run are presented. These simulations are compared with MSIS and IRI to show that the

  19. GAIA - A Virtual Auroral Observatory

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Spanswick, E.; Syrj M; Marple, S.; Jackel, B.; Kauristie, K.; Honary, F.; Mende, S.; Weatherwax, A.; Moen, J.; Sandahl, I.

    2005-12-01

    Advancements in computer, communications, and instrument technologies have spawned an explosion of activity in ground-based geospace observations. There is increasing interest in the development of virtual observatories as we approach the International Polar and Heliosphysical Years and the electronic Geophysical Year, and are faced with burgeoning data sets from arrays of different instrument types the world over. We are developing a virtual observatory for dealing with data from geospace optical and riometer systems. While these two classes of instruments are very different in their observational technique, they are close relatives in what they observe, which is primarily auroral precipitation. The GAIA (Global Auroral Imaging Access) Project is a network-based set of tools for browsing summary data from All-Sky Imagers (ASIs), Meridian Scanning Photometers (MSPs), and riometers worldwide, and that provides indexes for direct access to data at PI institutes. This program is the virtual observatory component of the IPY Auroral Optical Network (AON) and GLORIA (Global Riometer Imaging Array) projects, and falls under the ICESTAR IPY grouping. As well, GAIA is being developed so as to be fully consistent with the data policies described in the `Declaration of the eGY'. We demonstrate the GAIA concept with ASI data from Canada and Finland, MSP data from Canada, and riometer data from Canada and Scandinavia. We explore the requirements that such a system must meet in order to be successful, which include ease of use, credit to data providers, ability for data providers to monitor usage, and reliance on software rather than hardware. The latter is consistent with our concept of a summary data set consisting of keograms, time series, and thumbnail images, a fully peer to peer data access system, and a relational data base that allows for easy grouping of and linkages between data. We describe how we are ensuring that GAIA is compatible with larger efforts such as SPIDR

  20. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  1. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  2. High-resolution total electron content observations of severe ionospheric disturbances using dense GPS receiver networks

    NASA Astrophysics Data System (ADS)

    Tsugawa, Takuya; Kato, Hisao; Kubota, Minoru; Hidekatsu, Jin; Maruyama, Takashi; Nagatsuma, Tsutomu; Saito, Akinori; Nishioka, Michi; Otsuka, Yuichi; Miyake, Wataru; Supnithi, Pornchai; Kenpankho, Prasert

    Two-dimensional total electron content (TEC) maps have been derived from ground-based GPS receiver networks and applied to studies of various ionospheric disturbances since mid-1990s. For the purpose of monitoring and researching ionospheric disturbances which can degrade GNSS navigations and cause loss-of-lock on GNSS signals, National Institute of Information and Communications Technology (NICT), Japan has developed TEC maps over Japan using the dense GPS network, GEONET, which consists of more than 1,200 GPS receivers and is operated by Geophysical Survey Institute, Japan. Currently, we are providing two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock on GPS signal over Japan. These data and quick-look maps since 1997 are archived and available in the website of NICT (http://wdc.nict.go.jp/IONO/). Recently developed GPS receiver networks in North America and Europe make it possible to obtain regional TEC maps with higher spatial and temporal resolution than the global weighted mean TEC maps in the IONEX format provided by several institutes such as International GNSS Service (IGS) and another global TEC map provided by MIT Haystack observatory. Recently, we have also developed the regional TEC maps over North America and Europe. These data and quick-look maps are also available in the NICT website. In this presentation, we will show some severe ionospheric events such as high latitude storm-time plasma bubbles and storm enhanced density events observed over Japan using the GPS-TEC database. These events cause loss-of-lock of GPS signals and large GPS positioning errors. We will also introduce some interesting ionospheric events over Europe and North America, and discuss about a future direction of our GPS-TEC data service.

  3. Determination of ITM Key Parameters By the Ionospheric Connection Explorer (ICON)

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Mende, S. B.; Makela, J. J.; Harding, B. J.; Stephan, A. W.; Kamalabadi, F.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; Maute, A. I.; Crowley, G.; Huba, J. D.; Harlander, J.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Gerard, J. C. M. C.; Hubert, B. A.; Rowland, D. E.; Hysell, D. L.; Saito, A.; Frey, S.; Bester, M.; Craig, W.

    2014-12-01

    Selected for development by NASA in 2013, ICON is a mission that will launch in 2017 to discover the source of strong day-to-day variability in Earth's space environment. Recent observations continue to raise questions about the effects and interaction of these in our geospace environment, and how these vary between extremes in solar activity. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. ICON will fly in a 27-degree inclination orbit with a payload designed to observe the processes of vertical wave coupling in the Ionosphere/Thermosphere/Mesosphere system, how these processes influence the state of the system itself, and how that state preconditions the system for modification by external influence (e.g. solar and solar wind forcing). ICON will remotely observe winds and temperatures in the 90-150 km region while measuring the highly variable electric field in the ionosphere on magnetically connected field lines. Simultaneous to these observations, ICON remotely observes the thermospheric composition and density, and ionospheric density in day and night. The retrievals involved and resultant precision in the determination of key parameters will be presented. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Careful selection of these modes and the selective implementation of instrument redundancy provide the ability to operate with large technical margins that support the greatest return of science data.

  4. A statistical study of GPS loss of lock caused by ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Tsugawa, T.; Nishioka, M.; Otsuka, Y.; Saito, A.; Kato, H.; Kubota, M.; Nagatsuma, T.; Murata, K. T.

    2010-12-01

    Two-dimensional total electron content (TEC) maps have been derived from ground-based GPS receiver networks and applied to studies of various ionospheric disturbances since mid-1990s. For the purpose of monitoring and researching ionospheric disturbances which can degrade GNSS navigations and cause loss-of-lock on GNSS signals, National Institute of Information and Communications Technology (NICT), Japan has developed TEC maps over Japan using the dense GPS network, GEONET, which consists of more than 1,200 GPS receivers and is operated by Geophysical Survey Institute, Japan. Currently, we are providing two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock (LOL) on GPS signal over Japan. These data and quick-look maps since 1997 are archived and available in the website of NICT (http://wdc.nict.go.jp/IONO/). Recently developed GPS receiver networks in North America and Europe make it possible to obtain regional TEC maps with higher spatial and temporal resolution than the global weighted mean TEC maps in the IONEX format provided by several institutes such as International GNSS Service (IGS) and another global TEC map provided by MIT Haystack observatory. Recently, we have also developed the regional TEC maps over North America and Europe. These data and quick-look maps are also available in the NICT website. In this presentation, we will show some severe ionospheric events such as high latitude storm-time plasma bubbles and storm enhanced density events observed over Japan using the GPS-TEC database. These events cause loss-of-lock of GPS signals and large GPS positioning errors. We also discuss about the statistical characteristics of LOL on the GPS signal caused by ionospheric disturbances.

  5. Towards the Implementation of GPS-based Tsunami Early Warning System Using Ionospheric Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.

    2014-12-01

    Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS receiver networks. We will demonstrate the ability of using ground-based dual-frequency GPS measures to detect and monitor tsunami wave propagations from previous great earthquake and tsunami events including: 2011 Tohoku and 2010 Chile earthquakes and tsunamis. Two major TIDs with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. We compared GPS-based observations, corresponding model simulations and other geophysical measurements. Our results lead to a better understanding of the tsunami-induced ionosphere responses. In addition, we investigate ionospheric signatures caused by the 1964 Great Alaska Earthquake and tsunami using the GPS-based method. Based on current distribution of Plate Boundary Observatory (PBO) GPS stations, the simulated results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the US west coast. It is expected that this GPS-based technology becomes an integral part of future early-warning systems.

  6. A New Polar Magnetic Index of Geomagnetic Activity and its Application to Monitoring Ionospheric Parameters

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new, PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating in high latitude ionosphere, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters is approximately 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.

  7. The use of precise ephemerides, ionospheric data, and corrected antenna coordinates in a long-distance GPS time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.

    1990-01-01

    Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.

  8. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  9. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  10. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  11. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.; Markin, Robert E.

    1994-01-01

    This study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of

  12. Experimental evidence of electromagnetic pollution of ionosphere

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  13. Impact of X-Class Flares on the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Nicolls, M. J.; Woods, T. N.; Eparvier, F.

    2014-12-01

    The ionospheric impact of X-class and large M-class flares has posed severe observational challenges for the ionosonde community. The very strong high frequency (HF) radio absorption associated with the X-class flares creates black-out conditions making ionosonde observations impossible. Similarly incoherent scatter radar (ISR) observations have generated only a few X-class flare impact observations because of limited duty cycle of these radars. With the advent of the NSF Advanced Modular Incoherent Scatter Radar (AMISR) technology it has become possible to operate 24/7 with better than 10 minute cadence. The PFISR, located at Poker Flat, Alaska, has operated in such a mode since March 2007. This has provide a data base that has captured many X-class flares. The irradiance from a subset of these were also observed by the Extreme Ultraviolet Variability Experiment (EVE) on the NASA Solar Dynamics Observatory (SDO) satellite. Hence we are in a position to evaluate modeling approaches that describes E-region ionization via energetic photons as well as the subsequent ionization caused by these photoelectrons. A key issue remains, that associated with the Auger ionization process. This latter topic's relevance will be described from the modeling and future observational needs point of view. The extension of this study into the central polar cap using Resolute Bay, Canada, AMISRs will be discussed.

  14. Ionospheric criticial frequencies and solar cycle effects

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Rozelot, Jean Pierre; Yiǧit, Erdal; Elias, Ana; Donmez, Burcin; Yurchyshyn, Vasyl

    2016-07-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions critical frequencies (foF1 and foF2) are investigated observationally for the last four solar cycles (1976-2015). We here show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (foF1) peaks at the same time with small SG numbers, while the foF2 reaches its maximum at the same time with the large SG numbers especially during the solar cycle 23. Thus, we may conclude that the sensitivities of ionospheric F1 and F2 region critical frequencies to sunspot group (SG) numbers are associated with different physical processes that are yet to be investigated in detail. Such new results provide further evidence that the two ionospheric regions have different responses to the solar activity. We also analyzed short term oscillatory behavior of ionospheric critical frequencies and found some solar signatures.

  15. Fast ionospheric feedback instability and substorm onset

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Grieger, John; Song, Yan

    1992-01-01

    A study suggesting that the Alfven resonator can play an important role in modifying the ionosphere on the time and space scales required to play a significant role in substorm formation is presented. Although the effect of magnetosphere-ionosphere coupling on the onset of substorms has been studied, the effects due to gradients of the Alfven speed along auroral field line were neglected. The large increase of the Alfven speed with altitude above the ionosphere creates an effective resonant cavity, which can lead to fluctuations in the electric and magnetic fields as well as in particle fluxes in the range 0.1 to 1 Hz. Such fluctuations can be observed from the ground as PiB pulsations associated with substorm onset. These fluctuations can be excited by a fast feedback instability, which can grow on time scales much less than the Alfven travel time between the ionosphere and the plasma sheet. The instability enhances the value of both the Pedersen and Hall conductivity, and may play a role in preparing the ionosphere for substorm onset.

  16. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  17. Comparison of global and regional ionospheric models

    NASA Astrophysics Data System (ADS)

    Ranner, H.-P.; Krauss, S.; Stangl, G.

    2012-04-01

    Modelling of the Earth's ionosphere means the description of the variability of the vertical TEC (Total Electron Content) in dependence of geographic latitude and longitude, height, diurnal and seasonal variation as well as solar activity. Within the project GIOMO (next Generation near real-time IOnospheric MOdels) the objectives are the identification and consolidation of improved ionospheric modelling technologies. The global models Klobuchar (GPS) and NeQuick (currently in use by EGNOS, in future used by Galileo) are compared to the IGS (International GNSS Service) Final GIM (Global Ionospheric Map). Additionally a RIM (Regional Ionospheric Map) for Europe provided by CODE (Center for Orbit Determination in Europe) is investigated. Furthermore the OLG (Observatorium Lustbühel Graz) regional models are calculated for two test beds with different latitudes and extensions (Western Austria and the Aegean region). There are three different approaches, two RIMs are based on spherical harmonics calculated either from code or phase measurements and one RIM is based on a Taylor series expansion around a central point estimated from zero-difference observations. The benefits of regional models are the local flexibility using a dense network of GNSS stations. Near real-time parameters are provided within ten minutes after every clock hour. All models have been compared according to their general behavior, the ability to react upon extreme solar events and the robustness of estimation. A ranking of the different models showed a preference for the RIMs while the global models should be used within a fall-back strategy.

  18. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  19. Ionospheric TEC observations from TOPEX satellite

    SciTech Connect

    Vladimer, J.A.; Ewell, V.R.; Lee, M.C.; Doherty, P.H.; Decker, D.T.; Anderson, D.N.; Klobuchar, J.A.

    1996-12-31

    Variability of Total Electron Content (TEC) in the equatorial anomaly region of the ionosphere can be studied extensively using the results of measurements taken by the NASA/CNES satellite, TOPEX/Poseidon. The NASA radar altimeter (NRA) is the first space-borne dual-frequency altimeter capable of accurately measuring vertical ionospheric TEC below 1,340 km. TOPEX TEC observations have already been used to support results from an ionospheric measurement campaign that was conducted in equatorial anomaly regions of South America by Phillips Laboratory in Spring, 1994. The best agreement in TEC values is seen during intervals of longitudinal proximity of the satellites` paths. The TOPEX over-ocean data can be used as a supplement to land based measurements in applications to ionospheric research at low and middle latitudes. This study focuses on comparisons between TOPEX vertical TEC data and GPS equivalent vertical TEC measurements taken near the East and West coastal regions of South America. Also the Phillips Laboratory Global Parameterized Ionospheric Model (PIM) is utilized in an effort to estimate slant to vertical conversion errors.

  20. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.