Science.gov

Sample records for airborne laser fluorosensor

  1. Locating spilled oil with airborne laser fluorosensors

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Nelson, Robert D.; Mullin, Joseph V.

    1999-02-01

    Locating oil in marine and terrestrial environments is a daunting task. There are commercially available off the shelf (COTS) sensors with a wide field-of-view (FOV) which can be used to map the overall extent of the spill. These generic sensors, however, lack the specificity required to positively identify oil and related products. The problem is exacerbated along beach and shoreline environments where a variety of organic and inorganic substrates are present. One sensor that can detect and classify oil in these environments is the laser fluorosensor. Laser fluorosensors have been under development by several agencies around the world for the past two decades. Environment Canada has been involved with laser fluorosensor development since the early 1990s. The prototype system was known as the Laser Environmental Airborne Fluorosensor (LEAF). The LEAF has recently been modified to provide real-time oil spill detection and classification. Fluorescence spectra are collected and analyzed at the rate of 100 Hz. Geo-referenced maps showing the locations of oil contamination are produced in real-time onboard the aircraft. While the LEAF has proven to be an excellent prototype sensor and a good operational tool, it has some deficiencies when it comes to oil spill response operations. A consortium including Environment Canada and the Minerals Management Service has recently funded the development of a new fluorosensor, called the Scanning Laser Environmental Airborne Fluorosensor (SLEAF). The SLEAF was designed to detect and map oil in shoreline environments where other non-specific sensors experience difficulty. Oil tends to pile up in narrow bands along the high tide line on beaches. A nadir-looking, small footprint sensor such as the LEAF would have difficulty locating oil in this situation. The SLEAF employs a pair of conical scanning mirrors to direct the laser beam in a circular pattern below the aircraft. With a sampling rate of 400 Hz and real-time spectral analysis

  2. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  3. USE OF WATER RAMAN EMISSION TO CORRECT AIRBORNE LASER FLUOROSENSOR DATA FOR EFFECTS OF WATER OPTICAL ATTENUATION

    EPA Science Inventory

    Airborne laser fluorosensor measurements of fluorophore concentrations in surface waters are highly sensitive to interference from changes in optical attenuation. This interference can be eliminated by normalizing the fluorescence signal with the concurrent water Raman signal. In...

  4. Development of a laser fluorosensor for airborne surveying of the aquatic environment

    NASA Technical Reports Server (NTRS)

    Bristow, M. P. F.; Houston, W. R.; Measures, R. M.

    1975-01-01

    A field based laser fluorosensor, employing a pulsed nitrogen laser and telescope photomultiplier detector system, has been successfully tested at night from a cliff top site overlooking Lake Ontario providing target ranges greater than 274 meters. Remotely sensed spectra and amplitude changes in the fluorescence emission of natural waters have shown potential as a water quality indicator. In this connection, a convenient internal reference standard with which to gauge the amplitude of the fluorescence signal is realized in the form of the concurrent water Raman emission. Remote measurements of oil fluorescence emission spectra suggest that airborne laser fluorosensors are capable of detecting and characterizing the oil in a given slick and that environmental aging of these slicks does not significantly alter their fluorescence emission signature.

  5. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1975-01-01

    An airborne laser fluorosensor for the detection of oil derivatives on water has been tested. The system transmits 337 nm UV radiation at the rate of 100 pulses per second and monitors fluorescent emission at 540 nm. Daylight flight tests were made over the areas of controlled oil spills and additional reconnaissance flights were made over a 50 km stretch of the Delaware River to establish ambient oil baseline in the river. The results show that the device is capable of monitoring and mapping out extremely low level oil on water which cannot be identified by ordinary photographic method.

  6. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  7. NASA`s airborne oceanographic lidar: A two excitation frequency laser fluorosensor

    SciTech Connect

    Wright, C.W.

    1996-10-01

    NASA has recently designed its AOL to acquire individual laser-induced fluorescence (LIF) spectra from two excitation frequencies emitted from a single laser transmitter. The backscattered laser-induced fluorescence (LEF) signal from each of the separate two footprints pass through the same optical train to form separate spectral images upon the focal plane of the AOL spectrometer. Other major modifications include a redesign of the AOL spectrometer to provide substantial reduction of scattered light and the inclusion of a narrow band (notch) holographic filter to reject 532nm radiation from the spectrometer. Results from initial mission show good signal-to-noise characteristics and has demonstrated high precision resolution for the measurement of chromophobic dissolved organic matter, chlorophyll, and phycoerythrin (an axillary pigment found in marine phytoplankton). The most significant result of these recent engineering modifications has been the development of the capability of the AOL to capture clean LEF signals from the two phycoerythrin pigments, phycourobilin and phycoerythrobilin. 12 refs., 4 figs.

  8. Review of the development of laser fluorosensors for oil spill application.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    As laser fluorosensors provide their own source of excitation, they are known as active sensors. Being active sensors, laser fluorosensors can be employed around the clock, in daylight or in total darkness. Certain compounds, such as aromatic hydrocarbons, present in petroleum oils absorb ultraviolet laser light and become electronically excited. This excitation is quickly removed by the process of fluorescence emission, primarily in the visible region of the spectrum. By careful choice of the excitation laser wavelength and range-gated detection at selected emission wavelengths, petroleum oils can be detected and classified into three broad categories: light refined, crude or heavy refined. This paper will review the development of laser fluorosensors for oil spill application, with emphasis on system components such as excitation laser source, and detection schemes that allow these unique sensors to be employed for the detection and classification of petroleum oils. There have been a number of laser fluorosensors developed in recent years, many of which are strictly research and development tools. Certain of these fluorosensors have been ship-borne instruments that have been mounted in aircraft for the occasional airborne mission. Other systems are mounted permanently on aircraft for use in either surveillance or spill response roles. PMID:12899891

  9. Sensitivity of airborne fluorosensor measurements to linear vertical gradients in chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Punjabi, A. R.; Poole, L. R.

    1984-01-01

    A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.

  10. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  11. Analysis of laser fluorosensor systems for remote algae detection and quantification

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1977-01-01

    The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.

  12. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  13. Remote sensing of phytoplankton density and diversity in Narragansett Bay using an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.; Brown, C. A., Jr.; Jarrett, O., Jr.; Campbell, J. W.; Staton, W. L.

    1979-01-01

    An aircraft-borne remote system is presented that utilizes narrow-band light from multiple dye lasers to excite selected algae photopigments and then measures the resultant flourescence emitted from chlorophyll a at 685 nm. Tests were conducted with both pure and mixed cultures of marine algae from a series of field tests taken from piers and bridges of Narragansett Bay, and a prototype remote fluorosensor was flown over the Bay during the 1978 winter-spring diatom bloom. Remote fluorescence obtained at hover points over sea-truth stations showed correlations with in situ fluorescence, total chlorophyll a, and cell count. It was concluded that the ratio of remote fluorescence to direct chlorophyll a concentration was less variable than expected, and the distribution of total chlorophyll a between two major photoplankton color groups showed three distinct areas, within the Bay, of green and golden-brown species.

  14. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  15. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  16. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  17. Time-resolved lidar fluorosensor for sea pollution detection

    NASA Technical Reports Server (NTRS)

    Ferrario, A.; Pizzolati, P. L.; Zanzottera, E.

    1986-01-01

    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described.

  18. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  19. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  20. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  1. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  2. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  3. An algorithm for computing chlorophyll-a concentrations using a dual-frequency fluorosensor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1981-01-01

    An algorithm to be used on data from a dual-frequency fluorosensor (i.e. one using two wavelengths for excitation of chlorophyll-a fluorescence) to compute total chlorophyll-a concentration and to partition that chlorophyll between two color groups present in a mixed phytoplankton population is described. The algorithm is based on laboratory and field-testing experience gained with the airborne lidar oceanographic probing experiment fluorosensor.

  4. Delineation of estuarine fronts in the German Bight using airborne laser-induced water Raman backscatter and fluorescence of water column constituents

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1982-01-01

    The acquisition and application of airborne laser induced emission spectra from German Bight water during the 1979 MARSEN experiment is detailed for the synoptic location of estuarine fronts. The NASA Airborne Oceanographic Lidar (AOL) was operated in the fluorosensing mode. A nitrogen laser transmitter at 337.1 nm was used to stimulate the water column to obtain Gelbstoff or organic material fluorescence spectra together with water Raman backscatter. Maps showing the location and relative strength of estuarine fronts are presented. The distribution of the fronts indicates that mixing within the German Bight takes place across a relatively large area. Reasonable agreement between the patterns observed by the AOL and published results are obtained. The limitations and constraints of this technique are indicated and improvements to the AOL fluorosensor are discussed with respect to future ocean mapping applications.

  5. Assessment of Superflux relative to remote sensing. [airborne remote sensing of the Chesapeake Bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1981-01-01

    The state-of-the-art advancements in remote sensor technology due to the Superflux program are examined. Three major individual sensor technologies benefitted from the program: laser fluorosensors, optical-range scanners, and passive microwave sensors. Under Superflux, convincing evidence was obtained that the airborne oceanographic lidar fluorosensor can map chlorophyll, i.e., is linear, over a wide range from less than 0.5 to 5.0 mg/cu m. The lidar oceanographic probe dual-excitation concept for addressing phytoplankton color group composition was also demonstrated convincingly. Algorithm development, real time capabilities, and multisensor integration are also addressed.

  6. AIRBONE LASER FLUOROSENSING OF SURFACE WATER CHLOROPHYLL 'A'

    EPA Science Inventory

    A prototype airborne laser fluorosensor for monitoring surface water chlorophyll 'a' has been tested over Lake Mead, Nevada. Trends in the remotely sensed data are in close correspondence with ground truth data. It is suggested that system performance can be improved by concurren...

  7. Laboratory tank studies of a single species of phytoplankton using a remote sensing fluorosensor

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Jarrett, O., Jr.; Farmer, F. H.

    1981-01-01

    Phytoplankton were grown in the laboratory for the purpose of testing a remote fluorosensor. The fluorosensor uses a unique four-wavelength dye laser system to excite phytoplankton bearing chlorophyll and to measure the chlorophyll fluorescence generated by this excitation. Six different species were tested, one at a time, and each was grown two to four times. Fluorescence measured by the fluorosensor provides good quantitative measurement of chlorophyll concentrations for all species tested while the cultures were in log phase growth. Fluorescene cross section ratios obtained in the single species tank tests support the hypothesis that the shape of the fluorescence cross section curve remains constant with the species (differences in fluorescence cross section ratios are a basis for determining composition of phytoplankton according to color group when a multiwavelength source of excitation is used. Linear relationships exist between extracted chlorophyll concentration and fluorescence measured by the remote fluorosensor during the log phase growth of phytoplankton cultures tested.

  8. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  9. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  10. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  11. Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics.

    PubMed

    Chekalyuk, A M; Hoge, F E; Wright, C W; Swift, R N; Yungel, J K

    2000-01-01

    Initial results of the airborne LIDAR measurement of photochemical quantum yield, Phi(Po), and functional absorption cross-section, sigma(PS II), of Photosystem II (PS II) are reported. NASA's AOL3 LIDAR was modified to implement short-pulse pump-and-probe (SP-P&P) LIDAR measurement protocol. The prototype system is capable of measuring a pump-induced increase in probe-stimulated chlorophyll fluorescence, DeltaF/F(sat), along with the acquisition of ;conventional' LIDAR-fluorosensor products from an operational altitude of 150 m. The use of a PS II sub-saturating probe pulse increases the response signal but also results in excessive energy quenching (EEQ) affecting the DeltaF/F(sat) magnitude. The airborne data indicated up to a 3-fold EEQ-caused decline in DeltaF/F(sat), and 2-fold variability in the EEQ rate constant over a spatial scale a few hundred kilometers. Therefore, continuous monitoring of EEQ parameters must be incorporated in the operational SP-P&P protocol to provide data correction for the EEQ effect. Simultaneous airborne LIDAR measurements of Phi(Po) and sigma(PS II) with EEQ correction were shown to be feasible and optimal laser excitation parameters were determined. Strong daytime DeltaF/F(sat) decline under ambient light was found in the near-surface water layer over large aquatic areas. An example of SP-P&P LIDAR measurement of phytoplankton photochemical and fluorescent characteristics in the Chesapeake Bay mouth is presented. Prospects for future SP-P&P development and related problems are discussed. PMID:16228409

  12. Laser links for mobile airborne nodes

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  13. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  14. Laser Systems For Use With Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Jepsky, Joseph

    1984-10-01

    This paper describes a family of airborne laser systems in use for terrain profiling, surveying, mapping, altimetry, collision avoidance and shipboard landing systems using fixed and rotary wing aircraft as the platforms. The laser altimeter has also been used in systems compatible with the Army T-16 and. T-22 carrier missiles (platform). Both pulsed gallium arsenide and Nd:YAG (neodymium-doped, yttrium-aluminum-garnet) laser rangefinders have been used for these applications. All of these systems use ACCI's advanced measurement techniques that permit range accuracies of 8 cm, single shot, 1 cm averaged, to be achieved. Pulse rates up to 4 Khz are employed for airborne profiling. This high data density rate provides 1 data point every 2" along the aircraft flight line at aircraft speed of 500 knots. Scanning modes for some applications are employed. Systems have been integrated with all current inertial navigation systems (Litton, Ferranti and Honeywell), as well as a number of microwave positioning systems. Removal of aircraft motion from the laser range measurements by use of an accelerometer is described. Flight data from a number of program performed by U.S. and Canadian Federal Agencies, in addition to those of commercial surveying and mapping companies are described.

  15. Airborne Laser Mapping of Greenland

    SciTech Connect

    Krabill, W.B.; Thomas, R.H.; Martin, C.F.; Sonntag, J.G.

    1996-10-01

    The Polar ice sheets contain enough water to raise Earth`s sea level by some 70 m. It is not clear whether changes in these ice sheets are contributing to the current rise. Ice sheet mass balance estimates can be obtained by monitoring the topography of selected Polar regions. The Arctic Ice Mapping (AIM) Project is a continuing program designed to provide a record of the absolute height of representative Arctic ice sheets. Using the Global Positioning System (GPS), aircraft flight lines may be duplicated with sufficient tolerance to provide repeated laser elevation measurements from one year to another. The raw GPS measurements are re-processed post-mission to provide sub-10 cm trajectories for each aircraft flight. This program began in 1991 with a proof-of-concept mission to Greenland. The data from this mission demonstrates 20 cm repeatability, principally due to the limited GPS constellation available. Refinements in all phases of the program (software, law and GPS hardware, and a complete GPS constellation) have yielded 10 cm repeatability in data from subsequent years, which includes probable geophysical change in the surface due to storm events and wind drift. 5 refs., 5 figs., 2 tabs.

  16. Development of an airborne laser bathymeter

    NASA Technical Reports Server (NTRS)

    Kim, H., H.; Cervenka, P. O.; Lankford, C. B.

    1975-01-01

    An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped.

  17. Airborne laser program revolutionizing airpower for the 21st century

    NASA Astrophysics Data System (ADS)

    Kanazawa, Tyle T.; Simon, Albert J.

    1998-09-01

    The Airborne Laser is an Air Force Major Defense Acquisition Program to develop and field an airborne high energy laser weapon system to provide speed-of-light lethal defense against hostile theater ballistic missiles in the boost phase. The Air Force believes the Airborne Laser has the potential to revolutionize air warfare. The advanced technologies being introduced by the Airborne Laser presents new and unique challenges for acquisition, operations, and supportability. This paper provides a program overview, and will cover the threat, system description, technology maturity, and acquisition strategy. The Airborne Laser program successfully passed through its Milestone 1 Defense Acquisition Board decision to proceed from Concept Design into Program Definition and Risk Reduction phase, to design, build, integrate, and conduct a lethal airborne demonstration against a boosting missile in 2002. Upon a successful lethal demonstration, the program will then proceed into Engineering and Manufacturing Development and Production. Initial Operation Capability will be in 2006 with three aircraft, and Full Operational Capability will be in 2008 with seven aircraft.

  18. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  19. Analysis techniques for airborne laser range safety evaluations

    NASA Astrophysics Data System (ADS)

    Ramsburg, M. S.; Jenkins, D. L.; Doerflein, R. D.

    1982-08-01

    Techniques to evaluate safety of airborne laser operations on the range are reported. The objectives of the safety evaluations were to (1) protect civilian and military personnel from the hazards associated with lasers, (2) provide users with the least restrictive constraints in which to perform their mission and still maintain an adequate degree of safety, and (3) develop a data base for the Navy in the event of suspected laser exposure of other related incidents involving military or civilian personnel. A microcomputer code, written in ASNI 77 FORTRAN, has been developed, which will provide safe flight profiles for airborne laser systems. The output of this code can also be used in establishing operating areas for ground based Lasers. Input to the code includes output parameters, NOHD and assigned buffer zone for the laser system, as well as parameters describing the geometry of the range.

  20. AIRBORNE INERTIAL SURVEYING USING LASER TRACKING AND PROFILING TECHNIQUES.

    USGS Publications Warehouse

    Cyran, Edward J.

    1986-01-01

    The U. S. Geological Survey through a contract with the Charles Stark Draper Laboratory has developed the Aerial Profiling of Terrain System. This is an airborne inertial surveying system designed to use a laser tracker to provide position and velocity updates, and a laser profiler to measure terrain elevations. The performance characteristics of the system are discussed with emphasis placed on the performance of the laser devices. The results of testing the system are summarized for both performance evaluation and applications.

  1. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  2. Tunable Infrared Laser Instruments for Airborne Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Fried, A.; Diskin, G.; Weibring, P.; Richter, D.; Walega, J. G.; Sachse, G.; Slate, T.; Rana, M.; Podolske, J.

    2008-01-01

    Tunable infrared laser-based instruments on airborne platforms have provided invaluable contributions to atmospheric studies over the past several decades. This paper presents an overview of some recent studies and developments using this approach that were presented at the 2007 Field Laser Applications in Industry and Research (FLAIR, http://www.inoa.it/flair/) conference in Florence, Italy. The present overview only covers select in situ absorption-based instruments that were presented in the airborne session at this conference. In no case are comprehensive details presented. These details can be found in the numerous references given. Additional approaches based upon cavity-enhanced and photoacoustic measurements, which are also making invaluable contributions in airborne atmospheric studies, are not discussed in this brief overview.

  3. Laser Communications Airborne Testbed: Potential For An Air-To-Satellite Laser Communications Link

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert J.

    1988-05-01

    The Laser Communications Airborne Testbed (LCAT) offers an excellent opportunity for testing of an air-to-satellite laser communications link with the NASA Advanced Communications Technology Satellite (ACTS). The direct detection laser portion of the ACTS is suitable for examining the feasibility of an airborne terminal. Development of an airborne laser communications terminal is not currently part of the ACTS program; however, an air-to-satellite link is of interest. The Air Force performs airborne laser communications experiments to examine the potential usefulness of this technology to future aircraft. Lasers could be used, for example, by future airborne command posts and reconnaissance aircraft to communicate via satellite over long distances and transmit large quantities of data in the fastest way possible from one aircraft to another or to ground sites. Lasers are potentially secure, jam resistant and hard to detect and in this regard increase the survivability of the users. Under a contract awarded by Aeronautical Systems Division's Avionics Laboratory, a C-135E testbed aircraft belonging to ASD's 4950th Test Wing will be modified to create a Laser Communications Airborne Testbed. The contract is for development and fabrication of laser testbed equipment and support of the aircraft modification effort by the Test Wing. The plane to be modified is already in use as a testbed for other satellite communications projects and the LCAT effort will expand those capabilities. This analysis examines the characteristics of an LCAT to ACTS direct detection communications link. The link analysis provides a measure of the feasibility of developing an airborne laser terminal which will interface directly to the LCAT. Through the existence of the LCAT, the potential for development of an air-to-satellite laser communications terminal for the experimentation with the ACTS system is greatly enhanced.

  4. The use of airborne lasers in terrestrial and water environments

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Link, L. E.; Swift, R. N.

    1983-01-01

    This document has the objective to provide some information regarding the applications for which an airborne laser system can be utilized. The considered data have been collected with the NASA Airborne Oceanographic Lidar (AOL), operational since 1977 as a flying laser laboratory. The most basic mode of operation of the AOL involves operation as a profiler. The data collected are similar to those which would be collected by a ground survey party. In the fluorosensing mode, pulsed laser light is used to induce fluorescence in various pigments contained in land and water targets. A capability for reliably mapping bottom geometry in clear ocean water to depths of 10-12 meters was also demonstrated, while other studies are related to the utilization of the AOL for synoptic mapping of surface layer concentrations of chlorophyll and other photopigments contained in phytoplankton.

  5. Optical-Fiber Fluorosensors With Polarized Light Sources

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  6. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  7. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  8. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  9. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  10. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  11. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  12. Airborne visible laser optical communication experiment.

    NASA Technical Reports Server (NTRS)

    Randall, J. L.

    1972-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station are planned by NASA in the summer of 1972. The basic concept is that an optical tracker and transmitter will be located in each terminal. The aircraft transceiver consists of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon is an argon laser operating at 488 nm. A separate pulsed laser radar is used for initial acquisition. The objective of the experiment is to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance are of prime importance.

  13. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  14. Estimating forest biomass and volume using airborne laser data

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  15. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  16. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  17. NCALM: NSF Supported Center for Airborne Laser Mapping

    NASA Astrophysics Data System (ADS)

    Shrestha, R. L.; Carter, W. E.; Dietrich, W. E.

    2003-12-01

    The National Science Foundation (NSF) recently awarded a grant to create a research center to support the use of airborne laser mapping technology in the scientific community. The NSF supported Center for Airborne Laser Mapping (NCALM) will be operated jointly by the Department of Civil & Coastal Engineering, College of Engineering, University of Florida (UF) and the Department of Earth and Planetary Science, University of California-Berkeley (UCB). NCALM will use the Airborne Laser Swath Mapping (ALSM) system jointly owned by UF and Florida International University (FIU), based at the UF Geosensing Engineering and Mapping (GEM) Research Center. The state-of-the-art laser surveying instrumentation, GPS systems, which are installed in a Cessna 337 Skymaster aircraft, will collect research grade data in areas selected through the competitive NSF grant review process. The ALSM observations will be analyzed both at UF and UCB, and made available to the PI through an archiving and distribution center at UCB-building upon the Berkeley Seismological Laboratory (BSL) Northern California Earthquake Data Center system. The purpose of NCALM is to provide research grade data from ALSM technology to NSF supported research studies in geosciences. The Center will also contribute to software development that will increase the processing speed and data accuracy. This presentation will discuss NCALM operation and the process of submitting proposals to NSF. In addition, it will outline the process to request available NCALM seed project funds to help jump-start small scientific research studies. Funds are also available for travel by academic researchers and students for hands-on knowledge and experience in ALSM technology at UF and UCB.

  18. Airborne tunable diode laser measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce; Drummond, James R.

    1999-09-01

    Accurate measurements of formaldehyde (CH 2O) in the atmosphere are essential to further our understanding of various atmospheric cycles involving hydrogen and carbon-containing species. Comparisons among independent measurements of this gas and between measurements and model calculations have raised numerous questions regarding the veracity of both endeavors. The present paper describes a long-term effort by our group to develop and employ tunable diode laser absorption spectroscopy (TDLAS) for highly accurate measurements of this gas on both ground-based and aircraft platforms. A highly sensitive and selective TDLAS system, which has successfully flown on three different aircraft campaigns, will be described. Many new hardware and software features, which have been implemented, now make it possible to detect ambient CH 2O concentrations as low as 55 parts-per-trillion employing a 20-s integration time. This paper will also discuss the many aspects associated with high accuracy and its verification, including a brief discussion of our aircraft sampling system and inlet surface effects.

  19. The Use Of Airborne Lasers In Terrestrial And Water Environments

    NASA Astrophysics Data System (ADS)

    Krabill, William B.; Link, L. E.; Swift, R. N.

    1983-09-01

    Since 1977 the NASA Airborne Oceanographic Lidar (AOL) has been utilized to evaluate the potential of airborne lidar systems for a variety of marine and terrestrial applications. The AOL is designed as a flying laser laboratory with flexibility that allows rapid modification of transmitter and receiver optical configurations as well as operation with various lasers. This flexibility in design has permitted the use of the AOL for numerous types of investigations in differing and often unrelated disciplines. The AOL can can be operated in two basic modes; backscattered signals can be temporally resolved and recorded in the bathymetric mode, while in the fluorescensing mode returning on-wavelength, water Raman, and laser induced flourescence response signals are spectrally resolved. Results of investigations conducted during the past several years over marine and terrestrial targets are discussed along with planned improvements to the lidar system. Results are presented for terrain, shoreline, and ice topography, and hydrography performed in the bathymetric mode as well as for chlorophyll a and phytoplankton photopigment investigations performed in the fluorosensing mode.

  20. Visualisation of urban airborne laser scanning data with occlusion images

    NASA Astrophysics Data System (ADS)

    Hinks, Tommy; Carr, Hamish; Gharibi, Hamid; Laefer, Debra F.

    2015-06-01

    Airborne Laser Scanning (ALS) was introduced to provide rapid, high resolution scans of landforms for computational processing. More recently, ALS has been adapted for scanning urban areas. The greater complexity of urban scenes necessitates the development of novel methods to exploit urban ALS to best advantage. This paper presents occlusion images: a novel technique that exploits the geometric complexity of the urban environment to improve visualisation of small details for better feature recognition. The algorithm is based on an inversion of traditional occlusion techniques.

  1. Data fusion techniques for object space classification using airborne laser data and airborne digital photographs

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong

    The objective of this research is to investigate possible strategies for the fusion of airborne laser data with passive optical data for object space classification. A significant contribution of our work is the development and implementation of a data-level fusion technique, direct digital image georeferencing (DDIG). In DDIG, we use navigation data from an integrated system (composed of global positioning system (GPS) and inertial measurement unit (IMU)) to project three-dimensional data points measured with the University of Florida's airborne laser swath mapping (ALSM) system onto digital aerial photographs. As an underlying math model, we use the familiar collinearity condition equations. After matching the ALSM object space points to their corresponding image space pixels, we resample the digital photographs using cubic convolution techniques. We call the resulting images pseudo-ortho-rectified images (PORI) because they are orthographic at the ground surface but still exhibit some relief displacement for elevated objects; and because they have been resampled using a interpolation technique. Our accuracy tests on these PORI images show that they are planimetrically correct to about 0.4 meters. This accuracy is sufficient to remove most of the effects of the central perspective projection and enable a meaningful fusion of the RGB data with the height and intensity data produced by the laser. PORI images may also be sufficiently accurate for many other mapping applications, and may in some applications be an attractive alternative to traditional photogrammetric techniques. A second contribution of our research is the development of several strategies for the fusion of data from airborne laser and camera systems. We have conducted our work within the sensor fusion paradigm formalized in the optical engineering community. Our work explores the fusion of these two types of data for precision mapping applications. Specifically, we combine three different types of

  2. Airborne laser altimetry survey of Glaciar Tyndall, Patagonia

    NASA Astrophysics Data System (ADS)

    Keller, Kristian; Casassa, Gino; Rivera, Andrés; Forsberg, Rene; Gundestrup, Niels

    2007-10-01

    The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser-INS-GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of - 3.1 ± 1.0 m a - 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of - 7.7 ± 1.0 m a - 1 at the calving front at 50 m a.s.l. and minimum values of between - 1.0 and - 2.0 ± 1.0 m a - 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at ˜ 600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of - 3.2 m a - 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239-247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation

  3. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming. PMID:19104536

  4. Airborne-mercury detection by resonant UV laser pumping.

    PubMed

    Bahns, J T; Lynds, L; Stwalley, W C; Simmons, V; Robinson, T; Bililign, S

    1997-05-15

    Optical pumping of the Hg(0) (6s (1)S(0) --> 6p (3)P(1)) transition at 253.7 nm (in air) leads to extremely fast energy transfer and strong laser-induced-fluorescence (LIF) from the Hg(0) (7s(3)S(1) --> 6p (3)P(2)) green transition at 546.2 nm, which is not directly populated by the laser. Ionization occurs simultaneously and becomes particularly strong at reduced background pressures. These observations are consistent with the existence of a multiphoton process followed by electron collisional excitation. Preliminary studies are made to evaluate these phenomena for detecting elemental airborne mercury by LIF and point monitoring with an ionization detector. Measured sensitivities of 2 and 10 parts in 10(9) (ppb), respectively, at 0.1-Torr air pressure are projected to increase to 1 x 10(-4) and 1 x 10(-5) ppb after relevant system optimization. PMID:18185642

  5. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  6. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  7. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  8. Nd:YLF laser for airborne/spaceborne laser ranging

    NASA Technical Reports Server (NTRS)

    Dallas, Joseph L.; Selker, Mark D.

    1993-01-01

    In order to meet the need for light weight, long lifetime, efficient, short pulse lasers, a diode-pumped, Nd:YLF oscillator and regenerative amplifier is being developed. The anticipated output is 20 mJ per 10 picosecond pulse, running at a repetition rate of 40 Hz. The fundamental wavelength is at 1047 nm. The oscillator is pumped by a single laser diode bar and mode locked using an electro-optic, intra-cavity phase modulator. The output from the oscillator is injected as a seed into the regenerative amplifier. The regenerative amplifier laser crystal is optically pumped by two 60W quasi-cw laser diode bars. Each diode is collimated using a custom designed micro-lens bar. The injected 10 ps pulse from the oscillator is kept circulating within the regenerative amplifier until this nanojoule level seed pulse is amplified to 2-3 millijoules. At this point the pulse is ejected and sent on to a more standard single pass amplifier where the energy is boosted to 20 mJ. The footprint of the entire laser (oscillator-regenerative amplifier-amplifier) will fit on a 3 by 4 ft. optical pallet.

  9. The Airborne Laser Ranging System - Its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1983-01-01

    The Airborne Laser Ranging System is a proposed multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the earth's surface. Depending on the host aircraft and terrain characteristics, the system can interrogate hundreds of targets distributed over an area as large as 60,000 sq. km in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a 6 hr flight. The precision of these range measurements is approximately 1 cm. These measurements are then used in a procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  10. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  11. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  12. Gravel-bed surface roughness from airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Huang, G.; Wang, C.

    2011-12-01

    The roughness of gravel-bed surface is of great importance for fluvial geomorpholoy. Numerous studies have demonstrated that the fractal theory and the log-log variogram are useful for describing the multi-scaling behavior(grain scale and form scale) of the gravel-bed surface. In this study, we obtained the 3D surface information of the gravel surface of a central bar in Nan-Shih River, Taiwan using an airborne laser scanning with a nominal point density of 100 points/m2. The data were divided into 6m × 6m grids. The roughness characteristics of the gravel bar were discussed using the anisotropy axes (also called the directions of maximum and minimum continuity, respectively) determined from the variogram map for each grid. And, the fractal dimension of the two directions were also calculated.

  13. Airborne Laser Scanning and Image Processing Techniques for Archaeological Prospection

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Nový, P.

    2014-06-01

    Aerial photography was, for decades, an invaluable tool for archaeological prospection, in spite of the limitation of this method to deforested areas. The airborne laser scanning (ALS) method can be nowadays used to map complex areas and suitable complement earlier findings. This article describes visualization and image processing methods that can be applied on digital terrain models (DTMs) to highlight objects hidden in the landscape. Thanks to the analysis of visualized DTM it is possible to understand the landscape evolution including the differentiation between natural processes and human interventions. Different visualization methods were applied on a case study area. A system of parallel tracks hidden in a forest and its surroundings - part of old route called "Devil's Furrow" near the town of Sázava was chosen. The whole area around well known part of Devil's Furrow has not been prospected systematically yet. The data from the airborne laser scanning acquired by the Czech Office for Surveying, Mapping and Cadastre was used. The average density of the point cloud was approximately 1 point/m2 The goal of the project was to visualize the utmost smallest terrain discontinuities, e.g. tracks and erosion furrows, which some were not wholly preserved. Generally we were interested in objects that are clearly not visible in DTMs displayed in the form of shaded relief. Some of the typical visualization methods were tested (shaded relief, aspect and slope image). To get better results we applied image-processing methods that were successfully used on aerial photographs or hyperspectral images in the past. The usage of different visualization techniques on one site allowed us to verify the natural character of the southern part of Devil's Furrow and find formations up to now hidden in the forests.

  14. Urban Tree Classification Using Full-Waveform Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Koma, Zs.; Koenig, K.; Höfle, B.

    2016-06-01

    Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  15. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  16. A radiative transfer model for remote sensing of laser induced fluorescence of phytoplankton in non-homogeneous turbid water

    NASA Technical Reports Server (NTRS)

    Venable, D. D.

    1983-01-01

    A semi-analytic Monte Carlo simulation methodology (SALMON) was discussed. This simulation technique is particularly well suited for addressing fundamental radiative transfer problems in oceanographic LIDAR (optical radar), and also provides a framework for investigating the effects of environmental factors on LIDAR system performance. The simulation model was extended for airborne laser fluorosensors to allow for inhomogeneities in the vertical distribution of constituents in clear sea water. Results of the simulations for linearly varying step concentrations of chlorophyll are presented. The SALMON technique was also employed to determine how the LIDAR signals from an inhomogeneous media differ from those from homogeneous media.

  17. Test field for airborne laser scanning in Finland

    NASA Astrophysics Data System (ADS)

    Ahokas, E.; Kaartinen, H.; Kukko, A.; Litkey, P.

    2014-11-01

    Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km × 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest-northeast and northwest-southeast, will be flown both in opposite directions.

  18. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  19. Airborne Tunable Laser Absorption Spectrometer (ATLAS) instrument characterization: Accuracy of the AASE (Airborne Arctic Stratospheric Expedition) and AAOE (Airborne Antarctic Ozone Experiment) nitrous oxide data sets

    SciTech Connect

    Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. )

    1990-03-01

    ATLAS, the Airborne Tunable Laser Absorption Spectrometer, was used to measure nitrous oxide in the 1987 Airborne Antarctic Ozone Experiment (AAOE) and in the 1989 Airborne Arctic Stratospheric Expedition (AASE). After the AASE, a detailed study of the ATLAS characteristics was undertaken to quantify the error inherent in the in situ measurement of atmospheric N{sub 2}O. Using the latest calibration of the ATLAS (June 1989) and incorporating the recognized errors arising in the flight environment of ATLAS, the authors have established that for both the AASE and the AAOE most of the acquired N{sub 2}O data sets are accurate to {plus minus}10% (2 sigma). Data from two of the earlier AAOE flights had a larger uncertainty.

  20. Water depth measurement using an airborne pulsed neon laser system

    SciTech Connect

    Hoge, F.E.; Swift, R.N.; Frederick, E.B.

    1980-03-15

    Initial base-line field test performance results of the National Aeronautics and Space Administration's airborne oceanographic lidar (AOL) in the bathymetry mode are presented. Flight tests over the Atlantic Ocean yielded water depth measurements to 10 m. Water depths to 4.6 m were measured in the more turbid Chesapeake Bay. Water-truth measurements of depth and beam attenuation coefficients by boat were taken at the same time as the air craft overflights to aid in determining the system's operational performance. Beam attenuation coefficient and depth d product d was established early in the program as the performance criterion index. A performance product of 6 was determined to be the goal. This performance goal was successfully met or exceeded in the large number of field tests executed. Included are selected data from nadir-angle tests conducted at 0, 5, 10, and 15. Field-of-view data chosen from the 2-, 5-, 10-, and 20-mrad tests are also presented. Depth measurements obtained to altitudes of 456 m are given for additional comparison. This laser bathymetry system represents a significant improvement over prior models in that (1) the complete surface-to-bottom pulse waveform is digitally recorded on magnetic tape at a rate of 400 pulse waveforms/sec, and (2) wide-swath mapping data may be routinely acquired using the 30 full-angle conical scanner. Space does not allow all the 5,000,000 laser soundings to be included. Qualified interested users may obtain complete data sets for their own in-depth analysis. 15 references, 9 figures, 1 table.

  1. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  2. Estimation of forest parameters using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Cohen, J.

    2015-12-01

    Methods for the estimation of forest characteristics by airborne laser scanning (ALS) data have been introduced by several authors. Tree height (TH) and canopy closure (CC) describing the forest properties can be used in forest, construction and industry applications, as well as research and decision making. The National Land Survey has been collecting ALS data from Finland since 2008 to generate a nationwide high resolution digital elevation model. Although this data has been collected in leaf-off conditions, it still has the potential to be utilized in forest mapping. A method where this data is used for the estimation of CC and TH in the boreal forest region is presented in this paper. Evaluation was conducted in eight test areas across Finland by comparing the results with corresponding Multi-Source National Forest Inventory (MS-NFI) datasets. The ALS based CC and TH maps were generally in a good agreement with the MS-NFI data. As expected, deciduous forests caused some underestimation in CC and TH, but the effect was not major in any of the test areas. The processing chain has been fully automated enabling fast generation of forest maps for different areas.

  3. Footprint Map Partitioning Using Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2016-06-01

    Nowadays many cities and countries are creating their 3D building models for a better daily management and smarter decision making. The newly created 3D models are required to be consistent with existing 2D footprint maps. Thereby the 2D maps are usually combined with height data for the task of 3D reconstruction. Many buildings are often composed by parts that are discontinuous over height. Building parts can be reconstructed independently and combined into a complete building. Therefore, most of the state-of-the-art work on 3D building reconstruction first decomposes a footprint map into parts. However, those works usually change the footprint maps for easier partitioning and cannot detect building parts that are fully inside the footprint polygon. In order to solve those problems, we introduce two methodologies, one more dependent on height data, and the other one more dependent on footprints. We also experimentally evaluate the two methodologies and compare their advantages and disadvantages. The experiments use Airborne Laser Scanning (ALS) data and two vector maps, one with 1:10,000 scale and another one with 1:500 scale.

  4. Detection of windthrown trees using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nyström, Mattias; Holmgren, Johan; Fransson, Johan E. S.; Olsson, Håkan

    2014-08-01

    In this study, a method has been developed for the detection of windthrown trees under a forest canopy, using the difference between two elevation models created from the same high density (65 points/m2) airborne laser scanning data. The difference image showing objects near the ground was created by subtracting a standard digital elevation model (DEM) from a more detailed DEM created using an active surface algorithm. Template matching was used to automatically detect windthrown trees in the difference image. The 54 ha study area is located in hemi-boreal forest in southern Sweden (Lat. 58°29‧ N, Long. 13°38‧ E) and is dominated by Norway spruce (Picea abies) with 3.5% deciduous species (mostly birch) and 1.7% Scots pine (Pinus sylvestris). The result was evaluated using 651 field measured windthrown trees. At individual tree level, the detection rate was 38% with a commission error of 36%. Much higher detection rates were obtained for taller trees; 89% of the trees taller than 27 m were detected. For pine the individual tree detection rate was 82%, most likely due to the more easily visible stem and lack of branches. When aggregating the results to 40 m square grid cells, at least one tree was detected in 77% of the grid cells which according to the field measurements contained one or more windthrown trees.

  5. Estimation of terracing characteristics from airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga

    2015-04-01

    Agricultural terraces are a fundamental morphological form of the Slovenian landscape. They are present in all of its diverse geographical regions, from Mediterranean and Dinaric hills and plateaus, Alpine mountains and plains, to Pannonian hills. New systematic research based on mapping aerial orthophotos and historical maps revealed previously unrecorded distribution and extent of terracing. However, the extensive overgrowing of the Slovenian countryside in the past century, when forest cover has grown from 40% to more than 60%, hid many of the terraces under a thick forest canopy. This is especially true for the higher and more remote areas where unfavourable natural conditions have coupled with depopulation processes. In such conditions, the only reasonable technique to observe cultural terraces and other remains of past human activities over large areas is airborne laser scanning. With the country-wide airborne lidar data becoming available, many new possibilities for discovery as well as quantitative analyses are becoming available. We explored manual and semiautomatic approaches to obtain terracing characteristics around representative villages of diverse landscape types. Individual terraces can be described with several attributes, such as riser slope gradient, riser height, tread area, length and width, ratio of length and width, altitude, location of the terrace in the thermal band, distance to the settlement, number and type of trees, distance between trees, and number of vineyard rows. Such characteristics can be derived manually, which can be painstakingly slow, but with relative precisions reaching the order of centimetres and decimetres, or semiautomatically, which is much faster, but with worse precision levels, mainly due to various outliers and errors in processing. The success of attribute derivation is highly dependent on raw lidar data acquisition parameters and processing. Manual interpretation has a distinct advantage of the possibility to

  6. Airborne Gravimetry and Laser Altimetry over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Richter, T. G.; Kempf, S. D.; Holt, J. W.; Morse, D. L.; Blankenship, D. D.; Peters, M. E.

    2002-05-01

    In response to an NSF-OPP proposal from Lamont Doherty Earth Observatory (R. Bell and M. Studinger) to study Lake Vostok, a team from the University of Texas Institute for Geophysics (UTIG) conducted the first comprehensive aerogeophysical survey of Lake Vostok during the 2000/01 austral summer. A Twin Otter was instrumented for measurements of gravity, magnetics, ice thickness, and surface elevation. The survey grid was 165 x 330 km (line spacing 7.5 km with 11.25 km and 22.5 km tie-lines), augmented by 12 regional lines extending 180 - 440 km from the primary grid. The remote polar location, high altitude, and extreme cold presented significant technical and physiological challenges, but the survey was completed successfully in 36 flights over 26 days, and has resulted in excellent geophysical data sets. We describe here the acquisition and reduction of the gravity field and ice-surface elevation data sets. Gravimetry and laser altimetry both require high-quality, precise positioning for use in data reduction. Three carrier-phase GPS receivers were operated in parallel aboard the aircraft, with an identical suite at the surface camp. All GPS data sets were reduced using two different software packages -- K&RS and GIPSY-OASIS. K&RS produced the most accurate positions but is inappropriate for long baselines. While GIPSY-OASIS yields positions in circumstances unfavorable to K&RS (i.e., long baselines and lines without closure), it was about half as accurate as K&RS and was insufficient for achieving the desired accuracy of 1-2 mGal in the reduced gravity data. Gravity was measured with a Bell Aerospace BGM-3 marine gravimeter provided by the Naval Oceanographic Office and modified for airborne use. GPS data are used to correct for inertial accelerations induced by aircraft movement. Up to 21 GPS solutions were available for each line. Selection was made through correlation of the high-frequency accelerations recorded by the gravity meter and those derived from the

  7. First Airborne Laser Remote Measurements of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobbs, M. E.; Dobler, J.; Kooi, S.; Choi, Y.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2008-12-01

    A unique, multi-frequency, single-beam, laser absorption spectrometer (LAS) that operates at 1.57 μm has been developed for a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A prototype of the space-based LAS system was developed by ITT, and it has been successfully flight tested in five airborne campaigns conducted in different geographic regions over the last three years. Flight tests were conducted over Oklahoma, Michigan, New Hampshire, and Virginia under a wide range of atmospheric conditions. Remote LAS measurements were compared to high-quality in situ measurements obtained from instrumentation on the same aircraft on spirals under the ground track of the LAS. LAS flights were conducted over a wide range of land and water reflectances and in the presence of scattered clouds. An extensive data set of CO2 measurements has been obtained for evaluating the LAS performance. LAS CO2 measurements with a signal-to-noise in excess of 250 were obtained for a 1-s average over land and for a 10-s average over water. Absolute comparisons of CO2 remote and in situ measurements showed agreement over a range of altitudes to better than 2 percent. LAS oxygen (O2) measurements, which are needed to convert LAS CO2 density measurements to CO2 mixing ratios (XCO2), have been made in the 1.26-μm region in horizontal ground-based experiments and in initial flight tests. Details of flight test campaigns and measured versus modeled results are presented in this paper.

  8. Single tree biomass modelling using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2013-11-01

    Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.

  9. Using airborne laser scanning profiles to validate marine geoid models

    NASA Astrophysics Data System (ADS)

    Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis

    2014-05-01

    Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross

  10. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  11. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  12. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam.

    PubMed

    Ling, Lin; Li, Yong-qing

    2013-02-15

    We demonstrate a method for optical trapping and Raman spectroscopy of micron-sized, airborne absorbing particles using a single focused laser beam. A single Gaussian beam at 532 nm is used to trap and precisely manipulate absorbing airborne particles. The fluctuation of the position of the trapped particles is substantially reduced by controlling the power of the laser beam with a position-sensitive detector and a locking circuit. Raman spectra of the position-stabilized particles or clusters are then measured with an objective and CCD spectrograph. PMID:23455087

  13. Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform.

    SciTech Connect

    Augustoni, Arnold L.

    2004-02-01

    A laser safety and hazard analysis was performed for the airborne AURA (Big Sky Laser Technology) lidar system based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances or ranges from the airborne platform. In order to protect personnel, who may be in the target area and may be subjected to exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength, calculate the Nominal Ocular Hazard Distance (NOHD), and determine the maximum 'eye-safe' dwell times for various operational altitudes and conditions. It was also necessary to calculate the appropriate minimum Optical Density (ODmin) of the laser safety eyewear used by authorized personnel who may receive hazardous exposures during ground base operations of the airborne AURA laser system (system alignment and calibration).

  14. Analysis of ALOPE data from Superflux. [airborne lidar sensing of phytoplankton color groups in the Chesapeake Bay and shelf regions

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Esaias, W. E.; Brown, C. A., Jr.; Pritchard, E. B.

    1981-01-01

    Remote sensing data collected with the airborne lidar oceanographic probing experiment (ALOPE) laser fluorosensor during the Superflux 1 and Superflux 2 experiments were analyzed using two techniques. A qualitative technique which requires no supplementary data provided a near-real-time estimate of relative abundance of the golden-brown and green phytoplankton color groups. Contour plots developed for the later mission are used to demonstrate the utility of this technique. A quantitative technique which requires supplementary data to define the attenuation coefficient provides chlorophyll a concentration by color group. The sum of the golden-brown and green chlorophyll a data yields total chlorophyll a values which may be compared with in situ data. As expected, the golden-brown population was dominant in the Chesapeake Bay and the Bay plume whereas the green population was dominant in shelf waters.

  15. Tree Height Growth Measurement with Single-Scan Airborne, Static Terrestrial and Mobile Laser Scanning

    PubMed Central

    Lin, Yi; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Kaartinen, Harri

    2012-01-01

    This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: “Can the new technique characterize the height growth for each individual tree?” and “Can this technique refine the minimum growth-discernable temporal interval further?” To solve these two puzzles, the sampling principles of the three laser scanning modes were first examined, and their error sources against the task of tree-top capturing were also analyzed. Next, the three-year growths of 58 Nordic maple trees (Crimson King) for test were intermittently surveyed with one type of laser scanning each time and then analyzed by statistics. The evaluations show that the height growth of each individual tree still cannot be reliably characterized even by single-scan terrestrial laser scanning, and statistical analysis is necessary in this scenario. After Gaussian regression, it is found that the minimum temporal interval with distinguishable tree height growths can be refined into one month based on terrestrial laser scanning, far better than the two years deduced in the previous works based on airborne laser scanning. The associated mean growth was detected to be about 0.12 m. Moreover, the parameter of tree height generally under-estimated by airborne and even mobile laser scanning can be relatively revised by means of introducing static terrestrial laser scanning data. Overall, the effectiveness of the proposed technique is primarily validated. PMID:23112743

  16. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  17. Recent advances in the applications of pulsed lasers in the hydrosphere. [considering airborne bathymetry system

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.

    1975-01-01

    Laboratory and field measurements have been performed on the transmission/scattering characteristics of a pulsed neon laser as a function of water turbidity. These results have been used to establish the criteria for an airborne laser bathymetry system. Extensive measurements have been made of laser induced fluorescence using a pulsed tunable dye laser. Feasibility has been demonstrated for remote detection and possible identification of various types of algae and oils. Similar measurements made on a wide variety of organic dyes have shown this technique to have applications in remote measurements of subsurface currents, temperature and salinity.

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  20. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  1. Classification of airborne laser scanning data using JointBoost

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Huang, Xianfeng; Zhang, Fan; Sohn, Gunho

    2015-02-01

    The demands for automatic point cloud classification have dramatically increased with the wide-spread use of airborne LiDAR. Existing research has mainly concentrated on a few dominant objects such as terrain, buildings and vegetation. In addition to those key objects, this paper proposes a supervised classification method to identify other types of objects including power-lines and pylons from point clouds using a JointBoost classifier. The parameters for the learning model are estimated with various features computed based on the geometry and echo information of a LiDAR point cloud. In order to overcome the shortcomings stemming from the inclusion of bare ground data before classification, the proposed classifier directly distinguishes terrain using a feature step-off count. Feature selection is conducted using JointBoost to evaluate feature correlations thus improving both classification accuracy and operational efficiency. In this paper, the contextual constraints for objects extracted by graph-cut segmentation are used to optimize the initial classification results obtained by the JointBoost classifier. Our experimental results show that the step-off count significantly contributes to classification. Seventeen effective features are selected for the initial classification results using the JointBoost classifier. Our experiments indicate that the proposed features and method are effective for classification of airborne LiDAR data from complex scenarios.

  2. Potential Use of CW High Energy Laser on an Airborne Platform

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.; Cusumano, Salvatore J.; Whiteley, Mathew R.

    2006-05-01

    Beamed energy propulsion (BEP) offers advanced and intellectually satisfying options to a class of space applications by using a high energy laser (HEL) as the prime power that is external to the system being propelled. Included in this class of applications are: launching satellites into orbit, space debris clearing, and orbital maneuvering, among others. Realistic applications or demonstrations of such BEP applications have been limited by the availability of HEL devices ever since the concept was first suggested by Arthur Kantrowitz in 1972. Development of the devices needed for BEP has been slow due to technology challenges and the significant non-recurring engineering costs. In general HEL systems of viable power levels have been exclusively the domain of military research and development. With the recent investment in the airborne platform laser systems, it may now be possible to capitalize on the military successes of such a system. The next decade may hold the possibility of transitioning defense HEL technology into BEP. The transitioning of military technology into civilian applications has occurred many times in the past, so speculation on available sources for BEP is not completely without merit. The concept of an airborne platform for BEP offers mobility and mitigates the coherence, reducing atmospheric turbulence. Operating at 12 kilometers (km), an airborne platform significantly reduces the beam path issues associated with ground to space. The trade-off is that the airborne platform disturbances are much greater and require more creative stabilization solutions than one sitting on "Terra Firma." The use of jitter reduction techniques may provide a profitable compromise for an airborne versus a ground-based system for BEP. This paper concentrates on the potential benefits from the use of an airborne platform for the BEP community.

  3. Determining forest canopy characteristics using airborne laser data

    NASA Technical Reports Server (NTRS)

    Nelson, R.; Krabill, W.; Maclean, G.

    1984-01-01

    A study is reported in which a profiling laser system flown at relatively low altitudes over a forested area was used to measure various forest canopy attributes, including tree heights. An analysis of the data obtained indicates that canopy closure is most strongly related to the penetration capability of the laser pulse, with the pulses attenuated more quickly in a dense canopy. Laser estimates of the average tree heights differ by less than 1 m from the photogrammetrically acquired values. It is concluded that the laser system is suitable for remotely sensing the vertical forest canopy profile. Elements of this profile are linearly related to crown closure and can be used to assess tree height.

  4. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.

    PubMed

    Elsayed, Khaled A; Chen, Songsheng; Petway, Larry B; Meadows, Byron L; Marsh, Waverly D; Edwards, William C; Barnes, James C; DeYoung, Russell J

    2002-05-20

    Two compact, high-pulse-energy, injection-seeded, 30-Hz frequency-doubled Nd:YAG-laser-pumped Ti: sapphire lasers were developed and operated at infrared wavelengths of 867 and 900 nm. Beams with laser pulse energy >30 mJ at ultraviolet wavelengths of 289 and 300 nm were generated through a tripling of the frequencies of these Ti:sapphire lasers. This work is directed at the replacement of dye lasers for use in an airborne ozone differential absorption lidar system. The ultraviolet pulse energy at 289 and 300 nm had 27% and 31% absolute optical energy conversion efficiencies from input pulse energies at 867 and 900 nm, respectively. PMID:12027160

  5. Airborne Laser/GPS Mapping of Assateague National Seashore Beach

    NASA Technical Reports Server (NTRS)

    Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark; Hulslander, William

    1997-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  6. Multispectral airborne laser scanning - a new trend in the development of LiDAR technology

    NASA Astrophysics Data System (ADS)

    Bakuła, K.

    2015-12-01

    Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  7. Oil film thickness using airborne laser-induced oil fluorescence backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1983-01-01

    Remote airborne measurement of oil film thickness on ocean surface using laser-induced water Raman backscatter is discussed. It is pointed out that the theoretical model of oil fluorescence by Horvath et al. (1971) contains the necessary constituents to provide for the natural background fluorescence that is also induced by the laser during the course of an oil thickness experiment. How the various parameters of the model are obtained from typical airborne profile data is discussed, and it is shown that the water Raman backscatter may be used to assist further in the application of the data. The regions or water types over which the technique might be most useful or applicable are discussed.

  8. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  9. Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Utilization of a two-color airborne lidar system in the systematic study of a major oceanographic feature is reported here for the first time. An excimer pumped dye laser was optically and electronically integrated into the NASA Airborne Oceanographic Lidar for simultaneous use with a frequency doubled Nd:YAG laser. The output beams exit the laser system along parallel paths after being produced on an alternating pulse basis at a combined rate of 12.5 pps. Results are presented for missions flown over a Gulf Stream Warm Core Ring (WCR) as well as over shelf, slope, Gulf Stream, and Sargasso Sea waters. From the airborne data a high coherence is shown between the two-color chlorophyll a data and between the Nd:YAG chlorophyll a and phycoerythrin responses within each of these water masses. However, distinct differences in the response patterns of these photopigments are shown to exist between the differing water masses. At certain of the boundaries separating the water masses a sharp transition is seen to occur, while at others a wider transition zone was observed in which the correlation between the photopigments appears to degrade.

  10. Field investigation of techniques for remote laser sensing of oceanographic parameters

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.; Exton, R. J.; Gregory, R. W.

    1983-01-01

    A laser fluorosensor, previously studied in the laboratory, was deployed at a pier in lower Chesapeake Bay for field testing. A Q-switched Nd:YAG laser doubled to 532 nm in conjunction with a gated optical multichannel analyzer (OMA) allow spectra with high signal-to-noise ratios to be recorded in full daylight at a distance of 20 m. As a test of the system a study was conducted of the spatial and temporal variations of the phytopigments phycoerythrin and chlorophyll. The phycoerythrin feature was resolved into two components, one attributable to cyanophytes and the other to cryptophytes. A comparison was also made with spectra obtained by the NASA airborne oceanographic lidar (AOL).

  11. True airspeed measured by airborne laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Munoz, R.; Mocker, H. W.; Koehler, L. E.

    1973-01-01

    Velocimeter utilizing carbon dioxide laser measures true airspeed of aircraft. Results of flight tests indicate that clear-weather airspeeds can be measured with accuracy better than 0.1% at altitudes up to 3000 meters; measurements can be made at much greater altitudes in cloudy or turbid air.

  12. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    NASA Technical Reports Server (NTRS)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  13. Analysis of remote sensing data collected for detection and mapping of oil spills: Reduction and analysis of multi-sensor airborne data of the NASA Wallops oil spill exercise of November 1978

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Airborne, remotely sensed data of the NASA Wallops controlled oil spill were corrected, reduced and analysed. Sensor performance comparisons were made by registering data sets from different sensors, which were near-coincident in time and location. Multispectral scanner images were, in turn, overlayed with profiles of correlation between airborne and laboratory-acquired fluorosensor spectra of oil; oil-thickness contours derived (by NASA) from a scanning fluorosensor and also from a two-channel scanning microwave radiometer; and synthetic aperture radar X-HH images. Microwave scatterometer data were correlated with dual-channel (UV and TIR) line scanner images of the oil slick.

  14. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  15. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  16. Transmitter design with alterable view field for airborne laser radar

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Hu, Yun'an

    2009-10-01

    The variable focus telescope is utilized now in the laser transmitter system design. It changes the telescope's magnifying power in order to adjust the exit beam through moving the inner focus lens. This system has complicated structure and high machining expense. This paper investigates the focusing character of Gaussian beam through misadjust telescope and presents a new method for lidar transmission system design. The laser beam divergence angle and the radius of exit beam are changed through moving the distance between the back focus of object lens and the front focus of ocular. This design can provide a convenient method for calculating the focusing parameters. The restriction of assembly dimension and the effect of fitting and adjusting error which should be considered in engineering application are studied, and then bring a method to choose the right parameters of focusing optic system by the focusing requirement.

  17. Airborne tunable diode laser measurements of trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce E.; Drummond, James R.

    1998-05-01

    Highly sensitive and accurate measurements of numerous trace gases are required to further our understanding of atmospheric processes. Tunable diode laser systems, which offer many advantages in this regard, can be designed for reliable field measurements on both ground-based and aircraft platforms. The present paper describes the long term effort at the National Center for Atmospheric Research (NCAR) to develop, employ, and validate a highly sensitive tunable diode laser absorption spectrometer for the measurement of various trace gases, including formaldehyde and carbon monoxide. This system was successfully employed on three recent aircraft campaigns. The present paper describes the aircraft instrument along with hardware and software features incorporated for high sensitivity, with particular emphasis on major modifications to the NCAR aircraft system over the past year.

  18. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  19. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  20. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  1. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  2. Flow visualization techniques in the Airborne Laser Laboratory program

    NASA Technical Reports Server (NTRS)

    Walterick, R. E.; Vankuren, J. T.

    1980-01-01

    A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.

  3. Detection and Classification of Individual Airborne Microparticles using Laser Ablation Mass Spectroscopy and Multivariate Analysis

    SciTech Connect

    Gieray, R.A.; Lazar, A.; Parker, E.P.; Ramsey, J. M.; Reilly, P.T.A.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.; Whitten, W.B.

    1999-04-27

    We are developing a method for the real-time analysis of airborne microparticles based on laser ablation mass spectroscopy. Airborne particles enter an ion trap mass spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a 10 ns excimer laser pulse at 308 nm as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. In this work thousands of positive and negative ion spectra were collected for eighteen different species: six bacteria, six pollen, and six particulate samples. The data were then averaged and analyzed using the Multivariate Patch Algorithm (MPA), a variant of traditional multivariate anal ysis. The MPA correctly identified all of the positive ion spectra and 17 of the 18 negative ion spectra. In addition, when the average positive and negative spectra were combined the MPA correctly identified all 18 species. Finally, the MPA is also able to identify the components of computer synthesized mixtures of the samples studied

  4. A Multiple Resource Inventory of Delaware Using an Airborne Profiling Laser

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Short, Austin; Valenti, Michael A.; Keller, Cherry; Smith, David E. (Technical Monitor)

    2002-01-01

    An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.

  5. Voxel Based Representation of Full-Waveform Airborne Laser Scanner Data for Forestry Applications

    NASA Astrophysics Data System (ADS)

    Stelling, N.; Richter, K.

    2016-06-01

    The advantages of using airborne full-waveform laser scanner data in forest applications, e.g. for the description of the vertical vegetation structure or accurate biomass estimation, have been emphasized in many publications. To exploit the full potential offered by airborne full-waveform laser scanning data, the development of voxel based methods for data analysis is essential. In contrast to existing approaches based on the extraction of discrete 3D points by a Gaussian decomposition, it is very promising to derive the voxel attributes from the digitised waveform directly. For this purpose, the waveform data have to be transferred into a 3D voxel representation. This requires a series of radiometric and geometric transformations of the raw full-waveform laser scanner data. Thus, the paper deals with the geometric aspects and describes a processing chain from the raw waveform data to an attenuationcorrected volumetric forest stand reconstruction. The integration of attenuation-corrected waveform data into the voxel space is realised with an efficient parametric voxel traversal method operating on an octree data structure. The voxel attributes are derived from the amplitudes of the attenuation-corrected waveforms. Additionally, a new 3D filtering approach is presented to eliminate non-object voxel. Applying these methods to real full-waveform laser scanning data, a voxel based representation of a spruce was generated combining three flight strips from different viewing directions.

  6. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Walega, James G.; Richter, Dirk A.; Potter, William T.

    2002-09-01

    Formaldehyde (CH2O) is a ubiquitous component of both the remote atmosphere as well as the polluted urban atmosphere. This important gas-phase intermediate is a primary emission product from hydrocarbon combustion sources as well as from oxidation of natural hydrocarbons emitted by plants and trees. Through its subsequent decomposition, formaldehyde is a source of reactive hydrogen radicals, which control the oxidation capacity of the atmosphere. Because ambient CH2O concentrations attain levels as high as several tens of parts-per-billion (ppbv) in urban areas to levels as low as tens of parts-per-trillion (pptv) in the remote background atmosphere, ambient measurements become quite challenging, particularly on airborne platforms. The present paper discusses an airborne tunable diode laser absorption spectrometer, which has been developed and refined over the past 6 years, for such demanding measurements. The results from a recent study will be presented.

  7. Enhanced detection of water and ground surface in airborne laser bathymetry data using waveform stacking

    NASA Astrophysics Data System (ADS)

    Roncat, Andreas; Mandlburger, Gottfried

    2016-04-01

    The past years have seen an increasing scientific interest in high-resolution topographic data of fluvial geomorphology. Moreover, from an administrative perspective, the European Union's water framework directive and the flood directive formulate further requirements on monitoring fluvial landscapes. For capturing the geomorphology of shallow water bodies, e.g. creeks and rivers, airborne laser bathymetry (ALB) has become a method of choice. These instruments operate in the green wavelength domain, enabling for the laser to penetrate the water column. As the water surface is the boundary between two media, i.e. between air and water, and from a physical perspective represents the locus where the laser beam is bent and decelerated. Therefore, the detection of this boundary is crucial for retrieving the channel morphology correctly. However, in case of low signal-to-noise ratio (SNR) these detection may fail for single laser shots. This gives the motivation for increasing the SNR by simulating a bigger laser footprint by means of stacking adjacent laser waveforms in a spatial neighbourhood, e.g. a slanted cylinder. On the one hand, this implies a reduction in spatial resolution; on the other hand though, it means an increase in reliability of the results, both in the detection of the water surface and enabling for assessing the turbidity of water column. The presented approach is evaluated by means of a multi-temporal airbone laser bathymetry dataset captured over the river Pielach and neigbhouring standing water bodies in Loosdorf, Lower Austria.

  8. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  9. Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Collins, J. E., Jr.; Hill, G. F.; Wade, L. O.; Burney, L. G.; Ritter, J. A.

    1991-01-01

    An airborne tunable diode laser instrument is described that is capable of operating in two measurement modes. One mode provides high precision (0.1 percent CH4; 1 percent CO) measurements of CH4 and CO with a 5 second response time, and a second mode achieves the very fast response time that is necessary to make airborne eddy correlation flux measurements. Examples of data from atmospheric expeditions of the Global Tropospheric Experiment are presented.

  10. Improving Aboveground Carbon Estimates in Dryland Ecosystems with Airborne LiDAR and Satellite Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Shrestha, R.; Li, A.; Spaete, L.

    2014-12-01

    Numerous studies have demonstrated the utility of ground and airborne LiDAR data to quantify ecosystem structure. In addition, data from satellite-based laser altimetry (e.g. ICESat's GLAS instrument) have been used to estimate vegetation heights, aboveground carbon, and topography in forested areas. With the upcoming ICESAT-2 satellite scheduled to launch in 2017, we have the potential to map vegetation characteristics and dynamics in other ecosystems, including semiarid and low-height ecosystems, at global and regional scales. The ICESat-2 satellite will include the Advanced Topographic Laser Altimeter System (ATLAS) with a configuration of 6 laser beams with 532 nm wavelength and photon counting detectors. We will demonstrate the potential of ICESat-2 to provide estimates of vegetation structure and topography in a dryland ecosystem by simulating the configuration of the ATLAS mission. We will also examine how airborne LiDAR can be used together with ICESat-2 and other satellite data to achieve estimates of aboveground carbon. We will explore how these data may be used for future monitoring and quantification of spatial and temporal changes in aboveground carbon and topography.

  11. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  12. Towards Automatic Single-Sensor Mapping by Multispectral Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ahokas, E.; Hyyppä, J.; Yu, X.; Liang, X.; Matikainen, L.; Karila, K.; Litkey, P.; Kukko, A.; Jaakkola, A.; Kaartinen, H.; Holopainen, M.; Vastaranta, M.

    2016-06-01

    This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features - without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.

  13. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  14. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  15. Classification of Airborne Laser Scanning Data Using Geometric Multi-Scale Features and Different Neighbourhood Types

    NASA Astrophysics Data System (ADS)

    Blomley, R.; Jutzi, B.; Weinmann, M.

    2016-06-01

    In this paper, we address the classification of airborne laser scanning data. We present a novel methodology relying on the use of complementary types of geometric features extracted from multiple local neighbourhoods of different scale and type. To demonstrate the performance of our methodology, we present results of a detailed evaluation on a standard benchmark dataset and we show that the consideration of multi-scale, multi-type neighbourhoods as the basis for feature extraction leads to improved classification results in comparison to single-scale neighbourhoods as well as in comparison to multi-scale neighbourhoods of the same type.

  16. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  17. Development and Utilization of High Precision Digital Elevation Data taken by Airborne Laser Scanner

    NASA Astrophysics Data System (ADS)

    Akutsu, Osamu; Ohta, Masataka; Isobe, Tamio; Ando, Hisamitsu, Noguchi, Takahiro; Shimizu, Masayuki

    2005-03-01

    Disasters caused by heavy rain in urban areas bring a damage such as chaos in the road and railway transport systems, power failure, breakdown of the telephone system and submersion of built up areas, subways and underground shopping arcades, etc. It is important to obtain high precision elevation data which shows the detailed landform because a slight height difference affects damages by flood very considerably. Therefore, The Geographical Survey Institute (GSI) is preparing 5m grid digital terrain model (DTM) based on precise ground elevation data taken by using airborne laser scanner. This paper describes the process and an example of the use of a 5m grid digital data set.

  18. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  19. Reference Value Provision Schemes for Attenuation Correction of Full-Waveform Airborne Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Richter, K.; Blaskow, R.; Stelling, N.; Maas, H.-G.

    2015-08-01

    The characterization of the vertical forest structure is highly relevant for ecological research and for better understanding forest ecosystems. Full-waveform airborne laser scanner systems providing a complete time-resolved digitization of every laser pulse echo may deliver very valuable information on the biophysical structure in forest stands. To exploit the great potential offered by full-waveform airborne laser scanning data, the development of suitable voxel based data analysis methods is straightforward. Beyond extracting additional 3D points, it is very promising to derive voxel attributes from the digitized waveform directly. However, the 'history' of each laser pulse echo is characterized by attenuation effects caused by reflections in higher regions of the crown. As a result, the received waveform signals within the canopy have a lower amplitude than it would be observed for an identical structure without the previous canopy structure interactions (Romanczyk et al., 2012). To achieve a radiometrically correct voxel space representation, the loss of signal strength caused by partial reflections on the path of a laser pulse through the canopy has to be compensated by applying suitable attenuation correction models. The basic idea of the correction procedure is to enhance the waveform intensity values in lower parts of the canopy for portions of the pulse intensity, which have been reflected in higher parts of the canopy. To estimate the enhancement factor an appropriate reference value has to be derived from the data itself. Based on pulse history correction schemes presented in previous publications, the paper will discuss several approaches for reference value estimation. Furthermore, the results of experiments with two different data sets (leaf-on/leaf-off) are presented.

  20. Demonstration of high-rate laser communications from fast airborne platform: flight campaign and results

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Mitzkus, Wolfgang; Horwath, Joachim; Shrestha, Amita; Brechtelsbauer, Martin; Martin, Luis; Lozano, Alberto; Diaz Gonzalez, Dionisio

    2014-10-01

    Some current and future airborne payloads like high resolution cameras and radar systems need high channel capacity to transmit their data from air to ground in near real-time. Especially in reconnaissance and surveillance missions, it is important to downlink huge amount of data in very short contact times to a ground station during a flyby. Aeronautical laser communications can supply the necessary high data-rates for this purpose. Within the project DODfast (Demonstration of Optical Data link fast) a laser link from a fast flying platform was demonstrated. The flight platform was a Panavia Tornado with the laser communication terminal installed in an attached avionic demonstrator pod. The air interface was a small glass dome protecting the beam steering assembly. All other elements were integrated in a small box inside the Pod's fuselage. The receiver station was DLR's Transportable Optical Ground Station equipped with a free-space receiver front-end. Downlink wavelength for communication and uplink wavelength for beacon laser were chosen from the optical C-band DWDM grid. The test flights were carried out at the end of November 2013 near the Airbus Defence and Space location in Manching, Germany. The campaign successfully demonstrated the maturity and readiness of laser communication with a data-rate of 1.25 Gbit/s for aircraft downlinks. Pointing, acquisition and tracking performance of the airborne terminal and the ground station could be measured at aircraft speed up to 0.7 Mach and video data from an onboard camera has been transmitted. Link distances with stable tracking were up to 79 km and distance with data transmission over 50 km. In this paper, we describe the system architecture, the flight campaign and the results.

  1. Airborne megawatt class free-electron laser for defense and security

    SciTech Connect

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  2. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  3. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  4. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  5. An entropy-based filtering approach for airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Zeng, Zhe; Wan, Jiaxin; Liu, Hui

    2016-03-01

    Parameter-tuning is a challenging task when generating digital terrain models from airborne laser scanning (light detection and ranging, LiDAR) data. To address this issue, this paper presents a filtering method for near-infrared laser scanning data that exploits the principle of entropy maximization as the optimization objective. The proposed approach generates ground elevation of point cloud by constructing a triangulated irregular network, calculates the entropy of the elevation from different parts, and automatically separates ground and non-ground points by the principle of entropy maximization. Experimental results from different ground surfaces show that the proposed entropy-based filtering method can effectively extract bare-earth points from the point cloud without adjusting thresholds.

  6. High repetition rate frequency-doubled Nd:YAG laser for airborne bathymetry

    NASA Astrophysics Data System (ADS)

    Northam, D. B.; Guerra, M. A.; Mack, M. E.; Itzkan, I.; Deradourian, C.

    1981-03-01

    A flashlamp pumped frequency-doubled Nd:YAG laser producing 7-nsec 2.8-mJ pulses at 530 nm and 400 pps has been developed for use in airborne bathymetry. A flashlamp gas mixture of krypton and xenon provides efficient laser operation and rapid lamp recovery. Pulse transmission mode operation is used to achieve a narrow pulse width. Thermally induced lensing and birefringence in the rod are compensated for in the optical resonator. Rapid, high repetition rate Pockels cell switching is accomplished with a thyratron driver. A CD(asterisk)A crystal cut for 85 deg phase matching at 55 C is used to provide high conversion efficiency second harmonic generation.

  7. Comparison of three airborne laser bathymetry data sets for monitoring the German Baltic Sea Coast

    NASA Astrophysics Data System (ADS)

    Song, Yujin; Niemeyer, Joachim; Ellmer, Wilfried; Soergel, Uwe; Heipke, Christian

    2015-10-01

    Airborne laser bathymetry (ALB) can be used for hydrographic surveying with relative high resolution in shallow water. In this paper, we examine the applicability of this technique based on three flight campaigns. These were conducted between 2012 and 2014 close to the island of Poel in the German Baltic Sea. The first data set was acquired by a Riegl VQ-820-G sensor in November 2012. The second and third data sets were acquired by a Chiroptera sensor of Airborne Hydrography AB in September 2013 and May 2014, respectively. We examine the 3D points classified as seabed under different conditions during data acquisition, e.g. the turbidity level of the water and the flight altitude. The analysis comprises the point distribution, point density, and the area coverage in several depth levels. In addition, we determine the vertical accuracy of the 3D seabed points by computing differences to echo sounding data. Finally, the results of the three flight campaigns are compared to each other and analyzed with respect to the different conditions during data acquisition. For each campaign only small differences in elevation between the laser and the echo sounding data set are observed. The ALB results satisfy the requirements of IHO Standards for Hydrographic Surveys (S-44) Order 1b for several depth intervals.

  8. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  9. Multilateration with the wide-angle airborne laser ranging system: positioning precision and atmospheric effects.

    PubMed

    Bock, O

    1999-05-20

    Numerical simulations based on previously validated models for the wide-angle airborne laser ranging system are used here for assessing the precision in coordinate estimates of ground-based cube-corner retroreflectors (CCR's). It is shown that the precision can be optimized to first order as a function of instrument performance, number of laser shots (LS's), and network size. Laser beam divergence, aircraft altitude, and CCR density are only second-order parameters, provided that the number of echoes per LS is greater than 20. Thus precision in the vertical is approximately 1 mm, with a signal-to-noise ratio of 50 at nadir, a 10-km altitude, a 20 degrees beam divergence, and approximately 5 x 10(3) measurements. Scintillation and fair-weather cumulus clouds usually have negligible influence on the estimates. Laser biases and path delay are compensated for by adjustment of aircraft offsets. The predominant atmospheric effect is with mesoscale nonuniform horizontal temperature gradients, which might lead to biases near 0.5 mm. PMID:18319932

  10. Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Pfennigbauer, Martin; Riegl, Ursula; Haring, Alexander; Wieser, Martin; Glira, Philipp; Winiwarter, Lukas

    2015-10-01

    In this paper we report on a flight experiment employing airborne laser bathymetry (ALB) and unmanned aerial vehicle (UAV) based laser scanning (ULS) for capturing very high resolution topography of shallow water areas and the surrounding littoral zone at the pre-alpine Pielach River in Austria. The aim of the research is to assess how information gained from non-bathymetric, ultra-high resolution ULS can support the ALB data. We focus first on the characterization of the water surface of a lowland river and provide validation results using the data of a topographic airborne laser scanning (ALS) sensor and a low flying ULS system. By repeat ULS survey of a the meandering river reach we are able to quantify short-term water level changes due to surface waves in high resolution. Based on a hydrodynamic-numerical (HN) model we assess the accuracy of the water surface derived from a water penetrating ALB sensor. In the second part of the paper we investigate the ability of ALB, ALS, and ULS to describe the complex topography and vegetation structure of the alluvial area. This is carried out by comparing the Digital Terrain Models (DTM) derived from different sensor configurations. Finally we demonstrate the potential of ULS for estimating single tree positions and stem diameters for detailed floodplain roughness characterization in HN simulations. The key findings are: (i) NIR scan data from ALS or ULS provide more precise water level height estimates (no bias, 1σ: 2 cm) compared to ALB (bias: 3 cm, 1σ: 4 cm), (ii) within the studied reach short-term water level dynamics irrelevant for ALB data acquisition considering a 60 cm footprint diameter, and (iii) stem diameters can be estimated based on ULS point clouds but not from ALS and ALB.

  11. Airborne Laser Bathymetry for Documentation of Submerged Archaeological Sites in Shallow Water

    NASA Astrophysics Data System (ADS)

    Doneus, M.; Miholjek, I.; Mandlburger, G.; Doneus, N.; Verhoeven, G.; Briese, Ch.; Pregesbauer, M.

    2015-04-01

    Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm) two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water) were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.

  12. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  13. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  14. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, C.; Spence, Rod

    1988-01-01

    The Advanced Communications Technology Satellite (ACTS) will carry a laser communications transmitter package in order to attempt the experimental reception of signals transmitted from earth orbit. The ACTS laser package includes both a heterodyne transmitter and a direct-detection transmitter. The laser receiver will be installed in an aircraft that is fitted with the requisite signal window. The anticipated capability of this signal detector is noted.

  15. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  16. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  17. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  18. Inviscid Flow Field Effects: Experimental results. [optical distortions over airborne laser turrets

    NASA Technical Reports Server (NTRS)

    Otten, L. J., III; Gilbert, K. G.

    1980-01-01

    The aero-optical distortions due to invisid flow effects over airborne laser turrets is investigated. Optical path differences across laser turret apertures are estimated from two data sources. The first is a theoretical study of main flow effects for a spherical turret assembly for a Mach number (M) of 0.6. The second source is an actual wind tunnel density field measurement on a 0.3 scale laser turret/fairing assembly, with M = 0.75. A range of azimuthal angles from 0 to 90 deg was considered, while the elevation angle was always 0 deg (i.e., in the plane of the flow). The calculated optical path differences for these two markedly different geometries are of the same order. Scaling of results to sea level conditions and an aperture diameter of 50 cm indicated up to 0.0007 cm of phase variation across the aperture for certain forward look angles and a focal length of F = -11.1 km. These values are second order for a 10.6 micron system.

  19. Airborne laser study quantifies El Niño-induced coastal change

    USGS Publications Warehouse

    Sallenger, Asbury H., Jr.; Krabill, William; Brock, John H.; Swift, Robert; Jansen, Mark; Manizade, Serdar; Richmond, Bruce; Hampton, Monty; Eslinger, David

    1999-01-01

    Winter storms during the 1997–1998 El Niño caused extensive changes to the beaches and cliffs of the west coast of the United States, a NASA-NOAA-USGS investigation using a scanning airborne laser has found. For example, near Pacifica in central California, the cliff eroded locally as much as 10–13 m landward during the El Niño winter, at least 40 times the long term average erosion rate. However, only several hundred meters away the cliff was stable. This variability in cliff response may be related to differences in local beach changes where an accreting beach protected part of the cliff and an eroding beach exposed another part to attack by waves.

  20. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Hou, Zhengyang; Maltamo, Matti; Tokola, Timo

    2014-07-01

    Diameter distribution is essential for calculating stem volume and timber assortments of forest stands. A new method was proposed in this study to improve the estimation of stem volume and timber assortments, by means of combining the Area-based approach (ABA) and individual tree detection (ITD), the two main approaches to deriving forest attributes from airborne laser scanning (ALS) data. Two methods, replacement, and histogram matching were employed to calibrate ABA-derived diameter distributions with ITD-derived diameter estimates at plot level. The results showed that more accurate estimates were obtained when calibrations were applied. In view of the highest accuracy between ABA and ITD, calibrated diameter distributions decreased its relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points at best, respectively. Calibration improved pulpwood fraction significantly, which contributed to the negligible bias of the estimated entire growing stock.

  1. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  2. A digital elevation model of the Greenland ice sheet and validation with airborne laser altimeter data

    NASA Technical Reports Server (NTRS)

    Bamber, Jonathan L.; Ekholm, Simon; Krabill, William B.

    1997-01-01

    A 2.5 km resolution digital elevation model (DEM) of the Greenland ice sheet was produced from the 336 days of the geodetic phase of ERS-1. During this period the altimeter was operating in ice-mode over land surfaces providing improved tracking around the margins of the ice sheet. Combined with the high density of tracks during the geodetic phase, a unique data set was available for deriving a DEM of the whole ice sheet. The errors present in the altimeter data were investigated via a comparison with airborne laser altimeter data obtained for the southern half of Greenland. Comparison with coincident satellite data showed a correlation with surface slope. An explanation for the behavior of the bias as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet.

  3. Multi-Target Detection from Full-Waveform Airborne Laser Scanner Using Phd Filter

    NASA Astrophysics Data System (ADS)

    Fuse, T.; Hiramatsu, D.; Nakanishi, W.

    2016-06-01

    We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn't require a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and confirmed its ability and accuracy.

  4. Airborne laser scanner aided inertial for terrain referenced navigation in unknown environments

    NASA Astrophysics Data System (ADS)

    Vadlamani, Ananth Kalyan

    A dead-reckoning terrain referenced navigation (TRN) system that uses airborne laser ranging sensors to aid an aircraft inertial navigation system (INS) is presented. Improved navigation performance is achieved through estimation of vehicle velocity and position using terrain measurements. The system only uses aircraft sensors and simultaneously performs the dual functions of mapping and navigation in unknown environments. The theory, algorithms and results of the system performance are presented using simulations and flight test data. This dissertation focuses primarily on the use of dual airborne laser scanners (ALS) for aiding an INS. Dual ALS measurements are used to generate overlapping terrain models, which are then used to estimate the INS velocity and position errors and constrain its drift. By keeping track of its errors, a navigation-grade INS is aided in a feed-forward manner. This dead-reckoning navigation algorithm is generic enough to be easily extendable to use other optical sensors. Data integrity, sensor alignment and the effects of vegetation noise, attitude and heading accuracy are analyzed. Furthermore, a feedback coupled aiding scheme is presented in which a tactical-grade inertial measurement unit (IMU) is aided with dual ALS measurements by feeding the estimated velocity back into the IMU computations. The proposed system can potentially serve as a backup during temporary Global Positioning System (GPS) signal outages, or it can be used to coast for extended periods of time. Although it has elements of conventional TRN, this system does not require a terrain database since its in-flight mapping capability generates the terrain data for navigation. Hence, the system can be used in both non-GPS as well as unknown terrain environments. The navigation system is dead-reckoning in nature and errors accumulate over time, unless the system can be reset periodically by geo-referenced terrain data or a position estimate from another navigation aid.

  5. Research of the coastal zone by the airborne laser scanning data (Verbyanaya bay-bar, sea of Azov)

    NASA Astrophysics Data System (ADS)

    Pogorelov, Anatoliy V.; Antonenko, Mihail; Boyko, Evgeniy

    2015-06-01

    In the area Verbyanaya bay-bar (Sea of Azov) in an attempt to create large-scale cartographic base and subsequent thematic mapping of the geographical environment components airborne laser scanning and aerial photography were conducted. Airborne laser scanning data formed the basis of a comprehensive study of the coastal zone components. Methodical research apparatus includes receiving and processing technology of laser reflection points, constructing highprecision digital elevation model and raster surfaces. Mosaic of aerial photography is converted into a format mosaic - a geometrically correct image of the terrain. Set of high-precision digital surface models and thematic raster images obtained for specific dates, allows to analyze the dynamic adjustment of components of the coastal zone (shoreline, beach, shore dam with surge prism).

  6. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  7. An automated method to register airborne and terrestrial laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Zang, Yufu; Dong, Zhen; Huang, Ronggang

    2015-11-01

    Laser scanning techniques have been widely used to capture three-dimensional (3D) point clouds of various scenes (e.g. urban scenes). In particular, airborne laser scanning (ALS) and mobile laser scanning (MLS), terrestrial laser scanning (TLS) are effective to capture point clouds from top or side view. Registering the complimentary point clouds captured by ALS and MLS/TLS provides an aligned data source for many purposes (e.g. 3D reconstruction). Among these MLS can be directly geo-referenced to ALS according to the equipped position systems. For small scanning areas or dense building areas, TLS is used instead of MLS. However, registering ALS and TLS datasets suffers from poor automation and robustness because of few overlapping areas and sparse corresponding geometric features. A robust method for the registration of TLS and ALS datasets is proposed, which has four key steps. (1) extracts building outlines from TLS and ALS data sets independently; (2) obtains the potential matching pairs of outlines according to the geometric constraints between building outlines; (3) constructs the Laplacian matrices of the extracted building outlines to model the topology between the geometric features; (4) calculates the correlation coefficients of the extracted geometric features by decomposing the Laplacian matrices into the spectral space, providing correspondences between the extracted features for coarse registration. Finally, the multi-line adjustment strategy is employed for the fine registration. The robustness and accuracy of the proposed method are verified using field data, demonstrating a reliable and stable solution to accurately register ALS and TLS datasets.

  8. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  9. Detection of lying tree stems from airborne laser scanning data using a line template matching algorithm

    NASA Astrophysics Data System (ADS)

    Lindberg, E.; Hollaus, M.; Mücke, W.; Fransson, J. E. S.; Pfeifer, N.

    2013-10-01

    Dead wood is an important habitat characteristic in forests. However, dead wood lying on the ground below a canopy is difficult to detect from remotely sensed data. Data from airborne laser scanning include measurement of surfaces below the canopy, thus offering the potential to model objects on the ground. This paper describes a new line template matching algorithm for detecting lines along the ground. The line template matching is done directly to the laser point cloud and results in a raster showing the support of the line in each raster cell. Line elements are vectorized based on the raster to represent lying tree stems. The results have been validated versus field-measured lying tree stems. The number of detected lines was 845, of which 268 could be automatically linked to the 651 field-measured stems. The line template matching produced a raster which visually showed linear elements in areas where lying tree stems where present, but the result is difficult to compare with the field measurements due to positioning errors. The study area contained big piles of storm-felled trees in some places, which made it an unusually complex test site. Longer line structures such as ditches and roads also resulted in detected lines and further analysis is needed to avoid this, for example by specifically detecting longer lines and removing them.

  10. On analysis and visualization of full-waveform airborne laser scanner data

    NASA Astrophysics Data System (ADS)

    Soederman, Ulf; Persson, Asa; Toepel, Johanna; Ahlberg, Simon

    2005-05-01

    The ongoing technical developments on airborne laser scanner systems, with shorter pulses, increased operation altitudes, focal plane array detectors, full-waveform digitization and recoding, etc. provide new opportunities for the expansion and growth of military as well as civilian applications. However, for the continuing development of systems and applications one crucial issue is the research and development of new and efficient laser data processing methods for analysis and visualization. In this paper we will present some recent developments on visualization and analysis of full-waveform data. We will discuss visualization of waveform data by inserting the waveform samples in a 3D volume consisting of small 3D cells referred to as voxels. We will also present an approach for extracting additional 3D point data from the waveforms. The long term goal of this research is to develop methods for automated extraction of natural as well as man-made objects. The aim is to support the construction of high-fidelity 3D virtual environment models and detection and identification of man-made objects.

  11. Detecting pruning of individual stems using Airborne Laser Scanning data captured from an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Wallace, Luke; Watson, Christopher; Lucieer, Arko

    2014-08-01

    Modern forest management involves implementing optimal pruning regimes. These regimes aim to achieve the highest quality timber in the shortest possible rotation period. Although a valuable addition to forest management activities, tracking the application of these treatments in the field to ensure best practice management is not economically viable. This paper describes the use of Airborne Laser Scanner (ALS) data to track the rate of pruning in a Eucalyptus globulus stand. Data is obtained from an Unmanned Aerial Vehicle (UAV) and we describe automated processing routines that provide a cost-effective alternative to field sampling. We manually prune a 500 m2 plot to 2.5 m above the ground at rates of between 160 and 660 stems/ha. Utilising the high density ALS data, we first derived crown base height (CBH) with an RMSE of 0.60 m at each stage of pruning. Variability in the measurement of CBH resulted in both false positive (mean rate of 11%) and false negative detection (3.5%), however, detected rates of pruning of between 96% and 125% of the actual rate of pruning were achieved. The successful automated detection of pruning within this study highlights the suitability of UAV laser scanning as a cost-effective tool for monitoring forest management activities.

  12. development of a medium repetition rate (10 Hz - 500 Hz) diode pumped laser transmitter for airborne scanning altimetry

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Lindauer, Steven J., II; Kay, Richard B.

    1998-01-01

    Since the late 1980's, NASA has developed several small, all-solid state lasers of low repetition rates for use as transmitters in prototype LIDAR and raster scanned altimetry retrieval systems. Our early laser transmitters were developed for high resolution airborne altimetry which employed cavity dumping techniques to produce a pulse shape with a 1 ns rise time. The first such laser was the SUMR (Sub-millimeter resolution) transmitter which used a side pumped, D-shaped half-rod of Nd:YAG for the oscillator active media and produced approximately 3 ns pulses of 100 micro-J energy at a 40 Hz repetition rate. (Coyle and Blair, 1993; Coyle et al., 1995) After several upgrades to improve rep rate and pulse energy, the final version produced 1.2 mJ pulses at 120 Hz with a 3.7 ns pulse width. The laser has become known as SPLT (Sharp Pulsed Laser Transmitter), and has flown successfully on a variety of airborne altimetry missions. (Coyle and Blair, 1995; Blair et al., 1994) From building these systems, we have accrued valuable experience in delivering field-deployable lasers and have become aware of the advantages and disadvantages of employing new technologies. For example, even though the laser's main operating environment is in a "cold" aircraft during flight, the laser must still operate in very warm temperatures. This is important if the mission is based in the desert or a tropical climate since ground calibration data from stationary targets must be gathered before and after each data flight. Because conductive cooling is much more convenient than closed loop water flow, achieving the highest possible laser efficiency is becoming a high priority when designing a flight laser. This is especially true for lasers with higher pulse energies and repetition rates which are needed for high altitude scanning altimeters and LIDARs.

  13. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    NASA Astrophysics Data System (ADS)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  14. Airborne laser scanner measurements for the detection of sinkholes and their changes

    NASA Astrophysics Data System (ADS)

    Bielenberg, Olaf; Meyer, Uwe; Heyde, Ingo

    2010-05-01

    The Dead Sea Transform (DST) is a system of left-lateral strike-slip faults that accommodates the relative motion between the African and Arabian plates. Furthermore the water level of the Dead Sea is sinking rapidly at an average of one meter per year. Because of this the salt lake has already lost one third of its surface and along the parched shores are formed daily new sinkholes that are up to 20 meters deep. About 1000 of these sudden incident sinkholes have formed in the meanwhile the shoreline of the Dead Sea. They represent danger both to life and property, disrupt life in the area, and aversely affect building and development. During the measurement campaign for the Dead Sea Integrated Research Project (DESIRE) 2007 the coastal area was flown to the south of Ein Gedi also with a laser mirror scanner constructed by RIEGL to detect relevant sinkholes. The airborne survey area covers a surface of approximately 20 by 4 km. The data acquisition was done by flights in North-South direction in 20 strips with an overlap of 50 percent. For the data analysis focused on the software TopPIT of Trimble Geospatial was used. The aim of the airborne survey was the calculation of a digital terrain model (DTM) but also the creation of an inventory of existing sinkholes, that can be used to detect temporal changes by comparison with future recordings. Moreover, the efficiency of the method used should be demonstrated as an appropriate procedure compared with traditional field data collection.

  15. Compact Ti:Sapphire laser with its Third Harmonic Generation (THG) for an airborne ozone Differential Absorption Lidar (DIAL) transmitter

    NASA Astrophysics Data System (ADS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2001-02-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonics at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After experimentally compared with Beta-Barium Borate (b-BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5'5'20 mm3) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900nm and its third harmonics at 300nm. The desired high ultraviolet (UV) output pulse energy is more than 30mJ at 300nm and the energy conversion efficiency from 900nm to 300nm is 30%.

  16. A research on snow distribution in mountainous area using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nishihara, T.; Tanise, A.

    2015-12-01

    In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are

  17. Processing of airborne laser scanning data to generate accurate DTM for floodplain wetland

    NASA Astrophysics Data System (ADS)

    Szporak-Wasilewska, Sylwia; Mirosław-Świątek, Dorota; Grygoruk, Mateusz; Michałowski, Robert; Kardel, Ignacy

    2015-10-01

    Structure of the floodplain, especially its topography and vegetation, influences the overland flow and dynamics of floods which are key factors shaping ecosystems in surface water-fed wetlands. Therefore elaboration of the digital terrain model (DTM) of a high spatial accuracy is crucial in hydrodynamic flow modelling in river valleys. In this study the research was conducted in the unique Central European complex of fens and marshes - the Lower Biebrza river valley. The area is represented mainly by peat ecosystems which according to EU Water Framework Directive (WFD) are called "water-dependent ecosystems". Development of accurate DTM in these areas which are overgrown by dense wetland vegetation consisting of alder forest, willow shrubs, reed, sedges and grass is very difficult, therefore to represent terrain in high accuracy the airborne laser scanning data (ALS) with scanning density of 4 points/m2 was used and the correction of the "vegetation effect" on DTM was executed. This correction was performed utilizing remotely sensed images, topographical survey using the Real Time Kinematic positioning and vegetation height measurements. In order to classify different types of vegetation within research area the object based image analysis (OBIA) was used. OBIA allowed partitioning remotely sensed imagery into meaningful image-objects, and assessing their characteristics through spatial and spectral scale. The final maps of vegetation patches that include attributes of vegetation height and vegetation spectral properties, utilized both the laser scanning data and the vegetation indices developed on the basis of airborne and satellite imagery. This data was used in process of segmentation, attribution and classification. Several different vegetation indices were tested to distinguish different types of vegetation in wetland area. The OBIA classification allowed correction of the "vegetation effect" on DTM. The final digital terrain model was compared and examined

  18. Extracting Roof Parameters and Heat Bridges Over the City of Oldenburg from Hyperspectral, Thermal, and Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bannehr, L.; Luhmann, Th.; Piechel, J.; Roelfs, T.; Schmidt, An.

    2011-09-01

    Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS) digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  19. Example of the assessment of data integration accuracy on the base of airborne and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Warchoł, A.; Hejmanowska, B.

    2011-12-01

    Light detection and ranging (LiDAR) technology has changed conventional approach to the spatial data acquisition. Unusually amount of the measurements points with extremely high precision are now available from generally two platforms: airborne (Airborne Laser Scanner -ALS) and terrestrial (Terrestrial Laser Scanner -TLS). There are however some gaps in these products, in ALS -on vertical surfaces and in TLS -on horizontal one. The reason is that these laser systems register the same object from different points in space. Integration of the data obtained for airborne and terrestrial platforms can fulfill the gaps. The aim of the research presented in the paper was comparing the matched ALS and TLS data to the in-situ total station (TS) measurements. Different test areas were chosen: placed on horizontal, vertical or inclined surfaces and covered by grass or asphalt pavement. Point's positions obtained from ALS, TLS and TS measurements are analysed together. TS measurements are taken as a reference. ALS and TLS point position accuracy analysis based on these perpendicular distance from the plane defined by the nearest three non-collinear TS points. The discrepancies were further statistically analysed. In conclusion can be stated that some bias was observed in ALS data, they are below TLS and TS points as well. Besides more significant discrepancy between TS points are observed for ALS points in compare to the TLS one, confirming our expectations.

  20. Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. C.

    2004-12-01

    The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing

  1. Estimating single-tree branch biomass of Norway spruce by airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Hauglin, Marius; Dibdiakova, Janka; Gobakken, Terje; Næsset, Erik

    2013-05-01

    The use of forest biomass for bioenergy purposes, directly or through refinement processes, has increased in the last decade. One example of such use is the utilization of logging residues. Branch biomass constitutes typically a considerable part of the logging residues, and should be quantified and included in future forest inventories. Airborne laser scanning (ALS) is widely used when collecting data for forest inventories, and even methods to derive information at the single-tree level has been described. Procedures for estimation of single-tree branch biomass of Norway spruce using features derived from ALS data are proposed in the present study. As field reference data the dry weight branch biomass of 50 trees were obtained through destructive sampling. Variables were further derived from the ALS echoes from each tree, including crown volume calculated from an interpolated crown surface constructed with a radial basis function. Spatial information derived from the pulse vectors were also incorporated when calculating the crown volume. Regression models with branch biomass as response variable were fit to the data, and the prediction accuracy assessed through a cross-validation procedure. Random forest regression models were compared to stepwise and simple linear least squares models. In the present study branch biomass was estimated with a higher accuracy by the best ALS-based models than by existing allometric biomass equations based on field measurements. An improved prediction accuracy was observed when incorporating information from the laser pulse vectors into the calculation of the crown volume variable, and a linear model with the crown volume as a single predictor gave the best overall results with a root mean square error of 35% in the validation.

  2. (Semi) automatic extraction from airborne laser scan data of roads and paths in forested areas

    NASA Astrophysics Data System (ADS)

    Vletter, Willem F.

    2014-08-01

    The possibilities of airborne laser scanning as a tool for visualisation of micro topology have been known for some decades. Indeed, in the archaeological field a lot of new features have been detected or reconfirmed. However, the task to map manually the enormous amount of features is time consuming and costly. Therefore, there is a need for automation. In this paper four workflows of visualisation and (semi) automatic extraction of (historical) roads and paths are compared. It proved that the concept of openness is preferred over the break line concept for visualisation. Regarding the extraction the software plug in Feature Analyst showed the best results. Openness and Feature Analyst stand also out when costs and processing time were considered. Therefore, we suggest the workflow which combines openness, for visualisation, and Feature Analyst for extraction. The results of this study contribute to the development of automatic extraction techniques in general. In this regard software packages like eCognition look promising to improve extraction methods.

  3. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification

    NASA Astrophysics Data System (ADS)

    Pawłuszek, Kamila; Borkowski, Andrzej

    2016-06-01

    Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  4. Detection and Classification of Changes in Buildings from Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Xu, S.; Vosselman, G.; Oude Elberink, S.

    2013-10-01

    Building change detection serves to investigate illegal buildings. Illegal built or removed structures, especially those concealed among gable roofs such as dormers, are difficult to track among potentially millions of buildings. Nevertheless, they can be efficiently located in changed areas. An approach is proposed to automatically detect and classify changes in buildings from two epochs of Airborne Laser Scanning Data. Both datasets are classified into water, ground, building, vegetation and undefined objects in advance. After generalization of a 3D surface separation map, we verify changes by making rules on the separation map. Changes belonging to buildings are then classified into roof, wall, dormers, vehicles, construction above roof and undefined objects. As the ALS data has accuracy in strip difference of lower than 5 cm within the same epoch and from different epochs, changes that are larger than 10 cm were detected. Building changes, which areas are larger than 4 m2, are identified as change. By inspection, nearly all changes are detected and approximately 80% changes are correctly classified.

  5. Airborne Nanoparticle Detection By Sampling On Filters And Laser-Induced Breakdown Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Dewalle, Pascale; Sirven, Jean-Baptiste; Roynette, Audrey; Gensdarmes, François; Golanski, Luana; Motellier, Sylvie

    2011-07-01

    Nowadays, due to their unique physical and chemical properties, engineered nanoparticles are increasingly used in a variety of industrial sectors. However, questions are raised about the safety of workers who produce and handle these particles. Therefore it is necessary to assess the potential exposure by inhalation of these workers. There is thereby a need to develop a suitable instrumentation which can detect selectively the presence of engineered nanoparticles in the ambient atmosphere. In this paper Laser-Induced Breakdown Spectroscopy (LIBS) is used to meet this target. LIBS can be implemented on site since it is a fast and direct technique which requires no sample preparation. The approach consisted in sampling Fe2O3 and TiO2 nanoparticles on a filter, respectively a mixed cellulose ester membrane and a polycarbonate membrane, and to measure the surface concentration of Fe and Ti by LIBS. Then taking into account the sampling parameters (flow, duration, filter surface) we could calculate a detection limit in volume concentration in the atmosphere. With a sampling at 10 L/min on a 10 cm2 filter during 1 min, we obtained detection limits of 56 μg/m3 for Fe and 22 μg/m3 for Ti. These figures, obtained in real time, are significantly below existing workplace exposure recommendations of the EU-OSHA and of the NIOSH. These results are very encouraging and will be completed in a future work on airborne carbon nanotube detection.

  6. Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Melin, M.; Packalén, P.; Matala, J.; Mehtätalo, L.; Pusenius, J.

    2013-08-01

    In the analysis of forest resources, the use of ALS (airborne laser scanning) enables detailed three dimensional (3D) descriptions of forests and their vegetation. Simultaneously, ecologists have recognized that 3D information on vegetation is highly important in analyzing the habitat suitability of a given site. Recently, animals’ habitat preferences have been analyzed, for example, with GPS-collared animals. This has resulted in detailed knowledge about the animals’ movements both spatially and temporally. This study combines 3D information on vegetation obtained from ALS data with information about animal locations from GPS data. The aim was to map and analyze the habitat preferences of moose. The study area was located on the west coast of Finland. The data consisted of 18 GPS-collared moose (monitored from 2009 to 2010) and ALS data collected in 2010. We investigated how habitat structure changes as a function of distance to observed moose locations and how observed moose locations differ from randomly selected locations in terms of 3D structure. We also created a model-based habitat suitability map and tested it against moose occurrences. The results suggested that there are clear differences between the areas occupied and not occupied by moose and that these differences can be detected from ALS data. More importantly, ALS proved its potential in linking 3D descriptions of vegetation directly to observed moose locations without any proxy variables. These observations strongly support future studies.

  7. Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Coops, N. C.; Nielsen, S. E.; Stenhouse, G.

    2015-06-01

    Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat - or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.

  8. Extraction of tidal channel networks from airborne scanning laser altimetry and aerial photography

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Wang, Hai-Jing; Lohani, Bharat

    2003-03-01

    The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of meters wide and meters deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitizing of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetery. The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels uing a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that nay network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.

  9. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of ˜70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  10. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    PubMed Central

    Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula

    2009-01-01

    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045

  11. Wide-Area Mapping of Forest with National Airborne Laser Scanning and Field Inventory Datasets

    NASA Astrophysics Data System (ADS)

    Monnet, J.-M.; Ginzler, C.; Clivaz, J.-C.

    2016-06-01

    Airborne laser scanning (ALS) remote sensing data are now available for entire countries such as Switzerland. Methods for the estimation of forest parameters from ALS have been intensively investigated in the past years. However, the implementation of a forest mapping workflow based on available data at a regional level still remains challenging. A case study was implemented in the Canton of Valais (Switzerland). The national ALS dataset and field data of the Swiss National Forest Inventory were used to calibrate estimation models for mean and maximum height, basal area, stem density, mean diameter and stem volume. When stratification was performed based on ALS acquisition settings and geographical criteria, satisfactory prediction models were obtained for volume (R2 = 0.61 with a root mean square error of 47 %) and basal area (respectively 0.51 and 45 %) while height variables had an error lower than 19%. This case study shows that the use of nationwide ALS and field datasets for forest resources mapping is cost efficient, but additional investigations are required to handle the limitations of the input data and optimize the accuracy.

  12. Parallel Processing Method for Airborne Laser Scanning Data Using a PC Cluster and a Virtual Grid.

    PubMed

    Han, Soo Hee; Heo, Joon; Sohn, Hong Gyoo; Yu, Kiyun

    2009-01-01

    In this study, a parallel processing method using a PC cluster and a virtual grid is proposed for the fast processing of enormous amounts of airborne laser scanning (ALS) data. The method creates a raster digital surface model (DSM) by interpolating point data with inverse distance weighting (IDW), and produces a digital terrain model (DTM) by local minimum filtering of the DSM. To make a consistent comparison of performance between sequential and parallel processing approaches, the means of dealing with boundary data and of selecting interpolation centers were controlled for each processing node in parallel approach. To test the speedup, efficiency and linearity of the proposed algorithm, actual ALS data up to 134 million points were processed with a PC cluster consisting of one master node and eight slave nodes. The results showed that parallel processing provides better performance when the computational overhead, the number of processors, and the data size become large. It was verified that the proposed algorithm is a linear time operation and that the products obtained by parallel processing are identical to those produced by sequential processing. PMID:22574032

  13. Roof Reconstruction from Airborne Laser Scanning Data Based on Image Processing Methods

    NASA Astrophysics Data System (ADS)

    Goebbels, S.; Pohle-Fröhlich, R.

    2016-06-01

    The paper presents a new data-driven approach to generate CityGML building models from airborne laser scanning data. The approach is based on image processing methods applied to an interpolated height map and avoids shortcomings of established methods for plane detection like Hough transform or RANSAC algorithms on point clouds. The improvement originates in an interpolation algorithm that generates a height map from sparse point cloud data by preserving ridge lines and step edges of roofs. Roof planes then are detected by clustering the height map's gradient angles, parameterizations of planes are estimated and used to filter out noise around ridge lines. On that basis, a raster representation of roof facets is generated. Then roof polygons are determined from region outlines, connected to a roof boundary graph, and simplified. Whereas the method is not limited to churches, the method's performance is primarily tested for church roofs of the German city of Krefeld because of their complexity. To eliminate inaccuracies of spires, contours of towers are detected additionally, and spires are rendered as solids of revolution. In our experiments, the new data-driven method lead to significantly better building models than the previously applied model-driven approach.

  14. Detection of Collapsed Buildings by Classifying Segmented Airborne Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Elberink, S. O.; Shoko, M. A.; Fathi, S. A.; Rutzinger, M.

    2011-09-01

    Rapid mapping of damaged regions and individual buildings is essential for efficient crisis management. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process ALS point clouds in order to detect collapsed buildings automatically. Our aim is to detect collapsed buildings using post event data only. The first step in the workflow is the segmentation of the point cloud detecting planar regions. Next, various attributes are calculated for each segment. The detection of damaged buildings is based on the values of these attributes. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detect- ing collapsed buildings. The results of the classification are analysed and assessed for accuracy against a reference map in order to validate the quality of the rules derived. Classification results have been achieved with accuracy measures from 60-85% complete- ness and correctness. It is shown that not only the classification strategy influences the accuracy measures; also the validation meth- odology, including the type and accuracy of the reference data, plays a major role.

  15. Mapping Forest Species Composition Using Imaging Spectrometry and Airborne Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Torabzadeh, H.; Morsdorf, F.; Leiterer, R.; Schaepman, M. E.

    2013-09-01

    Accurate mapping of forest species composition is an important aspect of monitoring and management planning related to ecosystem functions and services associated with water refinement, carbon sequestration, biodiversity, and wildlife habitats. Although different vegetation species often have unique spectral signatures, mapping based on spectral reflectance properties alone is often an ill-posed problem, since the spectral signature is as well influenced by age, canopy gaps, shadows and background characteristics. Thus, reducing the unknown variation by knowing the structural parameters of different species should improve determination procedures. In this study we combine imaging spectrometry (IS) and airborne laser scanning (ALS) data of a mixed needle and broadleaf forest to differentiate tree species more accurately as single-instrument data could do. Since forest inventory data in dense forests involve uncertainties, we tried to refine them by using individual tree crowns (ITC) position and shape, which derived from ALS data. Comparison of the extracted spectra from original field data and the modified one shows how ALS-derived shape and position of ITCs can improve separablity of the different species. The spatially explicit information layers containing both the spectral and structural components from the IS and ALS datasets were then combined by using a non-parametric support vector machine (SVM) classifier.

  16. Use of naturally available reference targets to calibrate airborne laser scanning intensity data.

    PubMed

    Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula

    2009-01-01

    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045

  17. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  18. Mapping of local-scale flooding on vegetated floodplains from radiometrically calibrated airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Malinowski, Radosław; Höfle, Bernhard; König, Kristina; Groom, Geoffrey; Schwanghart, Wolfgang; Heckrath, Goswin

    2014-05-01

    The agricultural use of riverine lowlands is often dependent on complex hydrological regimes including localized flooding. Knowledge about spatio-temporal inundation patterns enables a better understanding of the state of agricultural areas in lowlands and provides valuable and objective information on land suitability for land use administration and environmental planning. Data from Airborne Laser Scanning (ALS), also referred to as LiDAR, have become one of the most important sources of elevation data during the last two decades. Recently, geometric and radiometric attributes of ALS have also been explored for analysing the extent of water surfaces. Thus, the main objective of this work is to develop a method for mapping the spatial extent of floodplain inundation by means of remote sensing data. Our study focusses on analysing floodwaters partly covered by some vegetation, which is a major challenge in flood mapping. We hypothesize that ALS data due to its high sampling density and high rate of canopy penetration can effectively be used for floodwater detection in such areas. This research utilizes full-waveform ALS data with an average point density of 20 points/m2 obtained for an area of ca. 8 km2 of the Nørreå River valley in Jutland, Denmark. The study area is characterised by the presence of improved or semi-improved grasslands (meadows and pasture), few arable fields, irregularly scattered group of trees and bushes, and an extensive ditch network. Our approach is based on an inspection of properties of single laser points with regard to water vs. vegetation coverage within the laser footprint, which is compared with very detailed field reference data. Exploratory analysis and classification of ALS data were preceded by radiometric calibration of point cloud data, utilizing in situ measurements of reference targets reflectance. The resulting calibration derivatives provide very stable estimates of surface characteristics and are used as the main input in

  19. Accuracy in estimation of timber assortments and stem distribution - A comparison of airborne and terrestrial laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2014-11-01

    Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.

  20. Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

    SciTech Connect

    Parker, E.P.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.

    1999-01-22

    We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

  1. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

    NASA Astrophysics Data System (ADS)

    Montaghi, Alessandro; Corona, Piermaria; Dalponte, Michele; Gianelle, Damiano; Chirici, Gherardo; Olsson, Håkan

    2013-08-01

    This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches - such as single tree detection and area-based modeling - have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.

  2. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    SciTech Connect

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  3. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  4. Segmentation-based determination of terrain points from full-waveform airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Mücke, Werner; Hollaus, Markus; Briese, Christian

    2010-05-01

    Airborne laser scanning (ALS), also referred to as airborne LiDAR (light detection and ranging), is a widely-used method for the 3D sampling of the earth's surface. The resulting point cloud is often used to derive digital terrain models (DTM). As a preliminary step for this purpose, the point cloud has to be classified into the points belonging to terrain and those that do not. This process, which is also referred to as filtering, can be carried out even in vegetated areas, provided the fact ground echoes are present and can reliably be recognized. Especially the classification of dense lower vegetation poses problems for standard filtering algorithms. Points within these vegetation structures might be included in the terrain point cloud, causing the resulting DTM surface to run above the actual terrain and therefore being incorrect. The latest generation of ALS systems, the so-called full-waveform (FWF) scanners, provide 3D point clouds with extended information, which can support the process for terrain point classification. In contrast to conventional ALS hardware, which is able to detect one or more consecutive discrete echoes, FWF digitizers are capable of detecting and storing the whole emitted and backscattered signal, the so-called waveform. In order to obtain the single echoes, i.e. 3D points representing the backscattering surface, the recorded waveform has to be reconstructed and a decomposition algorithm has to be applied. During this echo detection process, not only the range from the scanner to the illuminated target, but also additional parameters can be derived. Apart from the amplitude, which is as well available in discrete ALS systems, the width of the backscattered echo, also referred to as echo width, is obtained. In this way, besides the acquisition of the geometry in terms of height measurements, the point cloud produced with FWF technology provides additional knowledge about the scanned surface that can be exploited for digital terrain

  5. Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems - A review

    NASA Astrophysics Data System (ADS)

    Torabzadeh, Hossein; Morsdorf, Felix; Schaepman, Michael E.

    2014-11-01

    Forest ecosystems play an important role in the global carbon cycle and it is largely unknown how this role might be altered by transients imposed by global change and deforestation. Remote sensing can provide information on ecosystem state and functioning and, among others, two remote sensing techniques, airborne laser scanning (ALS) and imaging spectroscopy (IS), have been used to characterize forest ecosystems, both independently and combined in fusion approaches. However, the fusion of these datasets should make the best use of the complementarity of both sensors and provide better and more robust vegetation products in forested ecosystems. Similar to other data fusion approaches, satisfying results depend on choosing appropriate fusion levels and methods. In this review paper, we summarize and classify relevant studies that focused on forest characterization using combined ALS and IS data, limited to the last decade. We classified the approaches by fusion level (data or product level) and by choice of methods (physical or empirical methods). Five different categories of products (landcover maps, aboveground biomass, biophysical parameters, gross/net primary productivity and biochemical parameters), have been found as the main aspects of forest ecosystems studied so far. A qualitative accuracy analysis of the products exposed that currently landcover maps are profiting the most from ALS and IS data fusion, while there is room for improvements in respect to the other products, such as biophysical parameters. Only few studies using physical approaches were found, but we expect the use of such approaches will increase with the growing availability of physically based radiative transfer models that can simulate both, ALS and IS data.

  6. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  7. Analysis of dolines using multiple methods applied to airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Bauer, Christian

    2015-12-01

    Delineating dolines is not a straightforward process especially in densely vegetated areas. This paper deals quantitatively with the surface karst morphology of a Miocene limestone occurrence in the Styrian Basin, Austria. The study area is an isolated karst mountain with a smooth morphology (former planation surface of Pliocene age), densely vegetated (mixed forest) and with a surface area of 1.3 km2. The study area is located near the city of Wildon and is named "Wildoner Buchkogel". The aim of this study was to test three different approaches in order to automatically delineate dolines. The data basis for this was a high resolution digital terrain model (DTM) derived from airborne laser scanning (ALS) and with a raster resolution of 1 × 1 m. The three different methods for doline boundary delineation are: (a) the "traditional" method based on the outermost closed contour line; (b) boundary extraction based on a drainage correction algorithm (filling up pits), and (c) boundary extraction based on hydrologic modelling (watershed). Extracted features are integrated in a GIS environment and analysed statistically regarding spatial distribution, shape geometry, elongation direction and volume. The three methods lead to different doline boundaries and therefore investigated parameters show significant variations. The applied methods have been compared with respect to their application purpose. Depending on delineation process, between 118 and 189 dolines could be defined. The high density of surface karst features demonstrates that solutional processes are major factors in the landscape development of the Wildoner Buchkogel. Furthermore the correlation to the landscape evolution of the Grazer Bergland is discussed.

  8. Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Crawford, James; Olson, Jennifer; Walega, Jim; Potter, William; Wert, Bryan; Jordan, Carolyn; Anderson, Bruce; Shetter, Rick; Lefer, Barry; Blake, Donald; Blake, Nicola; Meinardi, Simone; Heikes, Brian; O'Sullivan, Daniel; Snow, Julie; Fuelberg, Henry; Kiley, Christopher M.; Sandholm, Scott; Tan, David; Sachse, Glen; Singh, Hanwant; Faloona, Ian; Harward, Charles N.; Carmichael, Gregory R.

    2003-10-01

    Airborne measurements of CH2O were acquired employing tunable diode laser absorption spectroscopy during the 2001 Transport and Chemical Evolution Over the Pacific (TRACE-P) study onboard NASA's DC-8 aircraft. Above ˜2.5 km, away from the most extreme pollution influences and heavy aerosol loadings, comprehensive comparisons with a steady state box model revealed agreement to within ±37 pptv in the measurement and model medians binned according to altitude and longitude. Likewise, a near unity slope (0.98 ± 0.03) was obtained from a bivariate fit of the measurements, averaged into 25 pptv model bins, versus the modeled concentrations for values up to ˜450 pptv. Both observations suggest that there are no systematic biases on average between CH2O measurements and box model results out to model values ˜450 pptv. However, the model results progressively underpredict the observations at higher concentrations, possibly due to transport effects unaccounted for in the steady state model approach. The assumption of steady state also appears to contribute to the scatter observed in the point-by-point comparisons. The measurement-model variance was further studied employing horizontal flight legs. For background legs screened using a variety of nonmethane hydrocarbon (NMHC) tracers, measurement and model variance agreed to within 15%. By contrast, measurement variance was ˜60% to 80% higher than the model variance, even with small to modest elevations in the NMHC tracers. Measurement-model comparisons of CH2O in clouds and in the lower marine troposphere in the presence of marine aerosols suggest rather significant CH2O uptake by as much as 85% in one extreme case compared to expectations based on modeled gas phase processes.

  9. An airborne spectrometer with three infrared lasers for trace gas measurements applied to convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.

    2012-12-01

    An infrared absorption spectrometer named SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been built for airborne simultaneous online measurements of trace gases. SPIRIT is based on two recent technological advances, leading to optimal performances and miniaturization: continuous wave quantum cascade lasers (CW-QCL) operating near room temperature coupled to a new, patented, multipass optical cell (Robert, Appl. Optics, 2007). An essential electronic development allows the sequential use of three QCLs with the same single cell. With judicious selected spectral micro-windows, this potentially leads to the measurements of at least four species at 0.7 Hz frequency. The first deployment of SPIRIT was made onboard the DLR Falcon-20 aircraft during the campaign associated to the EU SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project in Nov.-Dec. 2011 over Malaysia. In the present paper, the flight of 19 Nov. is presented in detail as an example of the SPIRIT performances, with CO, CO2, CH4 and N2O as measured species. The aircraft crossed four times the anvil of a severe thunderstorm from 11.3 km to 12.8 km altitude corresponding to a large convective system near Borneo island (6.0°N-115.5°E). During the crossing, carbon monoxide mixing ratios increase by 5 to 10 ppbv from the ambient cloud free environment to the anvil cloud correlated with an increase of CH4 mixing ratio. Using these observations, the fraction of boundary layer air contained in fresh convective outflow has been calculated. Other convection cases were detected, allowing for other fractions to be calculated, with results ranging between 0.15 and 0.55 and showing the variability of the mixing taking place during convective transport.

  10. Algorithm for the Automatic Estimation of Agricultural Tree Geometric Parameters Using Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Hadaś, E.; Borkowski, A.; Estornell, J.

    2016-06-01

    The estimation of dendrometric parameters has become an important issue for the agricultural planning and management. Since the classical field measurements are time consuming and inefficient, Airborne Laser Scanning (ALS) data can be used for this purpose. Point clouds acquired for orchard areas allow to determine orchard structures and geometric parameters of individual trees. In this research we propose an automatic method that allows to determine geometric parameters of individual olive trees using ALS data. The method is based on the α-shape algorithm applied for normalized point clouds. The algorithm returns polygons representing crown shapes. For points located inside each polygon, we select the maximum height and the minimum height and then we estimate the tree height and the crown base height. We use the first two components of the Principal Component Analysis (PCA) as the estimators for crown diameters. The α-shape algorithm requires to define the radius parameter R. In this study we investigated how sensitive are the results to the radius size, by comparing the results obtained with various settings of the R with reference values of estimated parameters from field measurements. Our study area was the olive orchard located in the Castellon Province, Spain. We used a set of ALS data with an average density of 4 points m-2. We noticed, that there was a narrow range of the R parameter, from 0.48 m to 0.80 m, for which all trees were detected and for which we obtained a high correlation coefficient (> 0.9) between estimated and measured values. We compared our estimates with field measurements. The RMSE of differences was 0.8 m for the tree height, 0.5 m for the crown base height, 0.6 m and 0.4 m for the longest and shorter crown diameter, respectively. The accuracy obtained with the method is thus sufficient for agricultural applications.

  11. Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves

    NASA Astrophysics Data System (ADS)

    Valbuena, Rubén; Vauhkonen, Jari; Packalen, Petteri; Pitkänen, Juho; Maltamo, Matti

    2014-09-01

    The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scanning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indicators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient (GC), Lorenz asymmetry (LA), the proportions of basal area (BALM) and stem density (NSLM) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN-RF) or most similar neighbour (MSN). In the case of tree list estimation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN imputation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in forested areas.

  12. Precise mapping of annual river bed changes based on airborne laser bathymetry

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all

  13. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign. PMID:21556111

  14. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep

  15. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    NASA Astrophysics Data System (ADS)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  16. Classification of vegetation in an open landscape using full-waveform airborne laser scanner data

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Deák, Balázs; Kania, Adam; Mücke, Werner; Heilmeier, Hermann

    2015-09-01

    Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels - Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) - based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen's kappa coefficient, κ). The accuracies at Levels 2-4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution

  17. Airborne Laser-Induced Oceanic Chlorophyll Fluorescence: Solar-Induced Quenching Corrections by use of Concurrent Downwelling Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1998-05-01

    Airborne laser-induced (and water Raman-normalized) spectral fluorescence emissions from oceanic chlorophyll were obtained during variable downwelling irradiance conditions induced by diurnal variability and patchy clouds. Chlorophyll fluorescence profiles along geographically repeated inbound and outbound flight track lines, separated in time by 3 6 h and subject to overlying cloud movement, were found to be identical after corrections made with concurrent downwelling irradiance measurements. The corrections were accomplished by a mathematical model containing an exponential of the ratio of the instantaneous-to-average downwelling irradiance. Concurrent laser-induced phycoerythrin fluorescence and chromophoric dissolved organic matter fluorescence were found to be invariant to downwelling irradiance and thus, along with sea-surface temperature, established the near constancy of the oceanic surface layer during the experiment and validated the need for chlorophyll fluorescence quenching corrections over wide areas of the ocean.

  18. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  19. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  20. The Laser Vegetation Imaging Sensor (LVIS): A Medium-Altitude, Digitization-Only, Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    1999-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter designed and developed at NASA's Goddard Space Flight Center. LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25 m wide footprints. The entire time history of the outgoing and return pulses is digitized, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with decimeter accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 nsec, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the U.S. and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  1. Scanning lidar fluorosensor for remote diagnostic of surfaces

    NASA Astrophysics Data System (ADS)

    Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fiorani, Luca

    2013-08-01

    Scanning hyperspectral systems based on laser induced fluorescence (LIF) have been developed and realized at the ENEA allowing to obtain information of analytical and qualitative interest on different materials by the study of the emission of fluorescence. This technique, for a surface analysis, is fast, remote, not invasive and specific. A new compact setup capable of fast 2D monochromatic images acquisition on up to 90 different spectral channels in the visible/UV range will be presented. It has been recently built with the aim to increase the performances in terms of space resolution, time resolved capabilities and data acquisition speed. Major achievements have been reached by a critical review of the optical design. The results recently obtained with in-situ measurements of interest for applications in the field of cultural heritage will be shown. 2001 Elsevier Science. All rights reserved

  2. Airborne Laser Scanning - based vegetation classification in grasslands: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Vári, Ágnes; Deák, Balázs; Mücke, Werner; Székely, Balázs

    2013-04-01

    Airborne Laser Scanning is traditionally used for topography mapping, exploiting its ability to map terrain elevation under vegetation cover. Parallel to this, the application of ALS for vegetation classification and mapping of ecological variables is rapidly emerging. Point clouds surveyed by ALS provide accurate representations of vegetation structure and are therefore considered suitable for mapping vegetation classes as long as their vertical structure is characteristic. For this reason, most ALS-based vegetation mapping studies have been carried out in forests, with some rare applications for shrublands or tall grass vegetation such as reeds. The use of remote-sensing derived vegetation maps is widespread in ecological research and is also gaining importance in practical conservation. There is an increasing demand for reliable, high-resolution datasets covering large protected areas. ALS can provide both the coverage and the high resolution, and can prove to be an economical solution due to the potential for automatic processing and the wide range of uses that allows spreading costs. Grasslands have a high importance in nature conservation as due to the drastical land use changes (arable lands, afforestation, fragmentation by linear structures) in the last centuries the extent of these habitats have been considerably reduced. Among the habitat types protected by the Habitat Directive of the Natura 2000 system, several grassland habitat types (e.g. hay meadows, dry grasslands harbouring rare Orchid species) have special priority for conservation. For preserving these habitat types application of a proper management - including mowing or grazing - has a crucial role. Therefore not only the mapping of the locations of habitats but the way of management is needed for representing the natural processes. The objective of this study was to test the applicability of airborne laser scanning for ecological vegetation mapping in and around grasslands. The study site is

  3. Extended ocular hazard distances associated with intrabeam aided viewing of the Sandia remote sensing system, airborne aura laser (Big Sky Variant).

    SciTech Connect

    Augustoni, Arnold L.

    2004-08-01

    A laser hazard analysis to determine the Extended Ocular Hazard Distances associated with a possible intrabeam aided viewing of the Sandia Remote Sensing System (SRSS) airborne AURA laser (Big Sky Laser Technology) was performed based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances (ranges) from the airborne platform. Nominal Ocular Hazard Distance (NOHD) and maximum ''eye-safe'' dwell times for various operational altitudes associated with unaided intrabeam exposure of ground personnel were determined and presented in a previous SAND report. Although the target areas are controlled and the use of viewing aids are prohibited there is the possibility of the unauthorized use of viewing aids such as binoculars. This aided viewing hazard analysis is supplemental to the previous SAND report for the laser hazard analysis of the airborne AURA.

  4. Remote sea-water quality monitoring by means of a lidar fluorosensor

    SciTech Connect

    Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S.

    1995-12-31

    The lidar fluorosensor, built at ENEA Frascati to remotely monitor the sea-water quality by collecting the water Raman backscattering and induced fluorescence from dispersed oils, suspended matter and chlorophyll, has been employed in a marine campaign in the lower Adriatic sea. Extensive calibration measurements have been undertaken by analyzing with the lidar, both in the laboratory and during the campaigns, sea water samples taken at several places along the Italian coasts. Absolute values of organic matter chlorophyll concentrations have been obtained by calibrating the lidar data with standard physical-chemical methods. This system has been recently upgraded for detecting the photoplankton photosynthetic activity, by means of the pump-and-probe technique, which has been assessed to monitor the process in microalgae during laboratory experiments.

  5. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection

    NASA Astrophysics Data System (ADS)

    Richter, D.; Fried, A.; Wert, B. P.; Walega, J. G.; Tittel, F. K.

    The development of a compact tunable mid-IR laser system at 3.5 μm for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1σ replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5×10-10 cm-1.

  6. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection.

    PubMed

    Richter, D; Fried, A; Wert, B P; Walega, J G; Tittel, F K

    2002-01-01

    The development of a compact tunable mid-IR laser system at 3.5 micrometers for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1 sigma replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5 x 10-(10 )cm-1. PMID:12599397

  7. Airborne detection of natural gas leaks from transmission pipelines by using a laser system operating in visual, near-IR, and mid-IR wavelength bands

    NASA Astrophysics Data System (ADS)

    Ershov, Oleg V.; Klimov, Alexey G.; Vavilov, Vladimir P.

    2006-04-01

    An airborne gas detection IR system which includes a laser, infrared imager and video-recorder is described. The sensitivity of the system to leaks from ground pipelines by the laser channel is about 100 ppm*m at 100 m (by methane). The IR thermographic channel plays an auxiliary role and the video channel allows better coordinate positioning of detected gas leaks in conjunction with a built-in GPS device.

  8. Multiple-entity based classification of airborne laser scanning data in urban areas

    NASA Astrophysics Data System (ADS)

    Xu, S.; Vosselman, G.; Oude Elberink, S.

    2014-02-01

    There are two main challenges when it comes to classifying airborne laser scanning (ALS) data. The first challenge is to find suitable attributes to distinguish classes of interest. The second is to define proper entities to calculate the attributes. In most cases, efforts are made to find suitable attributes and less attention is paid to defining an entity. It is our hypothesis that, with the same defined attributes and classifier, accuracy will improve if multiple entities are used for classification. To verify this hypothesis, we propose a multiple-entity based classification method to classify seven classes: ground, water, vegetation, roof, wall, roof element, and undefined object. We also compared the performance of the multiple-entity based method to the single-entity based method. Features have been extracted, in most previous work, from a single entity in ALS data; either from a point or from grouped points. In our method, we extract features from three different entities: points, planar segments, and segments derived by mean shift. Features extracted from these entities are inputted into a four-step classification strategy. After ALS data are filtered into ground and non-ground points. Features generalised from planar segments are used to classify points into the following: water, ground, roof, vegetation, and undefined objects. This is followed by point-wise identification of the walls and roof elements using the contextual information of a building. During the contextual reasoning, the portion of the vegetation extending above the roofs is classified as a roof element. This portion of points is eventually re-segmented by the mean shift method and then reclassified. Five supervised classifiers are applied to classify the features extracted from planar segments and mean shift segments. The experiments demonstrate that a multiple-entity strategy achieves slightly higher overall accuracy and achieves much higher accuracy for vegetation, in comparison to the

  9. Airborne laser scanning based quantification of dead-ice melting in recently deglaciated terrain

    NASA Astrophysics Data System (ADS)

    Klug, C.; Sailer, R.; Schümberg, M.; Stötter, J.

    2012-04-01

    Dead-ice is explained as stagnant glacial ice, not influenced by glacier flow anymore. Whenever glaciers have negative mass balances and an accumulation of debris-cover on the surface, dead-ice may form. Although, there are numerous conceptual process-sediment-landform models for the melt-out of dead-ice bodies and areas of dead-ice environments at glacier margins are easily accessible, just a few quantitative studies of dead-ice melting have been carried out so far. Processes and rates of dead-ice melting are commonly believed to be controlled by climate and debris-cover properties, but there is still a lack of knowledge about this fact. This study has a focus on the quantification of process induced volumetric changes caused by dead-ice melting. The research for this project was conducted at Hintereisferner (Ötztal Alps, Austria), Gepatschferner (Ötztal Alps, Austria) and Schrankar (Stubai Alps, Austria), areas for which a good data basis of ALS (Airborne Laser Scanning) measurements is available. 'Hintereisferner' can be characterized as a typical high alpine environment in mid-latitudes, which ranges between approximately 2250 m and 3740 m a.s.l.. The Hintereisferner region has been investigated intensively since many decades. Two dead ice bodies at the orographic right side and one at the orographic left side of the Hintereisferner glacier terminus (approx. at 2500 m to 2550 m a.s.l.) were identified. Since 2001, ALS measurements have been carried out regularly at Hintereisferner resulting in a unique data record of 21 ALS flight campaigns, allowing long-term explorations of the two dead-ice areas. The second study area of 'Gepatschferner' in the Kaunertal ranges between 2060 m and 3520 m a.s.l. and is the second largest glacier of Austria. Near the glacier tongue at the orographic right side a significant dead ice body has formed. The ALS data used for quantification include a period of time of 4 years (2006 - 2010). 'Schrankar' is located in the Western

  10. Extraction of Forest Roads from Full-waveform Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Hollaus, Markus

    2013-04-01

    The knowledge about the position of forest roads is important for the management and protection of forests. Most often this information is not available on a digital form so that it can be integrated into a GIS to use it e.g. for routing applications or to plan harvesting activities. Furthermore, the available information about forest roads is often not up-to-date. The extraction of forest roads from remote sensing data i.e. aerial photographs is often limited due to the visibility of the terrain within a forest. The increasing availability of airborne laser scanning (ALS) data has changed this situation during the last years. As an active measurement system ALS provide geometric information from the forest floor as well as the forest canopy. Additionally, the new generation of ALS sensors, the so-called full-waveform sensors provide in addition to the geometric information (i.e. 3D position, echo width) radiometric information (i.e. backscatter cross section) about the backscattering objects, which are excellent data sources to describe the terrain surface within a forest. Thus the aim of this study is to develop a semi-automatic method to extract the position of forest roads from full-waveform ALS data. Based on the 3D point cloud different raster layers were derived such as the digital terrain model (DTM), the slope, the backscatter cross section, different roughness parameters (i.e. echo width, standard deviation of plane fitting residuals of terrain points), the vertical component of the surface normals and the normalized digital surface model (nDSM), which represents the object height above the natural ground. The developed workflow classifies each input raster separately into the classes roads and non-roads. Morphological operations were applied on the classified raster datasets to smooth the outline of the extracted roads and to remove any small gaps in the detected roads. Several raster outputs were combined and used further for additional GIS analysis and

  11. Semi-automatic mapping of cultural heritage from airborne laser scanning using deep learning

    NASA Astrophysics Data System (ADS)

    Due Trier, Øivind; Salberg, Arnt-Børre; Holger Pilø, Lars; Tonning, Christer; Marius Johansen, Hans; Aarsten, Dagrun

    2016-04-01

    This paper proposes to use deep learning to improve semi-automatic mapping of cultural heritage from airborne laser scanning (ALS) data. Automatic detection methods, based on traditional pattern recognition, have been applied in a number of cultural heritage mapping projects in Norway for the past five years. Automatic detection of pits and heaps have been combined with visual interpretation of the ALS data for the mapping of deer hunting systems, iron production sites, grave mounds and charcoal kilns. However, the performance of the automatic detection methods varies substantially between ALS datasets. For the mapping of deer hunting systems on flat gravel and sand sediment deposits, the automatic detection results were almost perfect. However, some false detections appeared in the terrain outside of the sediment deposits. These could be explained by other pit-like landscape features, like parts of river courses, spaces between boulders, and modern terrain modifications. However, these were easy to spot during visual interpretation, and the number of missed individual pitfall traps was still low. For the mapping of grave mounds, the automatic method produced a large number of false detections, reducing the usefulness of the semi-automatic approach. The mound structure is a very common natural terrain feature, and the grave mounds are less distinct in shape than the pitfall traps. Still, applying automatic mound detection on an entire municipality did lead to a new discovery of an Iron Age grave field with more than 15 individual mounds. Automatic mound detection also proved to be useful for a detailed re-mapping of Norway's largest Iron Age grave yard, which contains almost 1000 individual graves. Combined pit and mound detection has been applied to the mapping of more than 1000 charcoal kilns that were used by an iron work 350-200 years ago. The majority of charcoal kilns were indirectly detected as either pits on the circumference, a central mound, or both

  12. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012<-00001) absorption band. Their fiber coupled outputs are sinusoidal amplitude modulated by each EO devices with kHz rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging

  13. Mapping tree health using airborne full-waveform laser scans and hyperspectral imagery: a case study for floodplain eucalypt forest

    NASA Astrophysics Data System (ADS)

    Shendryk, I.; Tulbure, M. G.; Broich, M.

    2014-12-01

    Barmah-Millewa Forest (BMF), the largest River Red Gum forest in the world, located in south-eastern Australia is suffering from severe dieback, thus diminishing its ecological and economical value. Previous research showed that dieback is a good predictor of the forest health and stressed the need for BMF health mapping and change monitoring. In this respect, airborne laser scanning and hyperspectral imaging offer extensive spatial and spectral coverage of measurements and represent an ideal tool for forest health mapping at individual tree scale. The aim of this project is to quantify the health of individual, structurally complex floodplain eucalypt trees by integrating airborne hyperspectral imagery, full-waveform laser scans and field measurements. An aerial survey, conducted in May 2014, was designed to provide a representative sample of BMF tree health. The positioning of 17 flight lines aimed to capture the heterogeneity of the forest health and flood frequency. Preliminary analysis of the aerial remote sensing data with regards to chlorophyll concentrations, dieback levels and canopy densities allowed us to target our field campaign (conducted in June 2014). Field measurements included accurate position measurements, LAI, visual assessment, spectral measurement and mensuration of individual trees in 30 m2 plots. For detection of individual tree trunks from airborne laser scans we used a novel approach based on Euclidean distance clustering, taking advantage of the intensity and pulse width difference between woody and leaf tree compartments. The detected trunks were used to seed a minimum cut algorithm for tree crown delineation. In situ measurements confirmed the high structural diversity of the forest and allowed the calibration of the tree detection algorithm. An overall accuracy of the tree detection of 54% and 67% was achieved for trees with circumference over 40 cm and over 100 cm respectively. As a further step, 3D point clusters representing

  14. Application of Airborne Hydrographic Laser Scanning for Mapping Shallow Water Riverine Environments in the Pacific Northwest, United States

    NASA Astrophysics Data System (ADS)

    Cooper, C.; Nayegandhi, A.; Faux, R.

    2013-12-01

    Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.

  15. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  16. Full-waveform Airborne and Spaceborne Laser Altimetry for Mapping and Sampling the Earth's Forests, Cryosphere, and Land surfaces

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Dubayah, R.; Hofton, M. A.; Luthcke, S. B.; Rabine, D.; Wake, S.; Coyle, B.; Stysley, P.; Salerno, C.

    2014-12-01

    Laser altimetry is an established technique for providing precise and accurate measurements of topography, vegetation, ice sheets, glaciers and sea ice. The Land, Vegetation, and Ice Sensor (LVIS) is a wide swath, full-waveform laser altimeter that has been operational since the late 1990's and has mapped 100,000's of square kilometers around the globe. NASA is developing a Facility version of the LVIS sensor to make it more cost-effective and more easily available to the broader science community. Based heavily on the existing LVIS sensor, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring, lower cost for integration and ops, and data consistency. Building upon the foundation provided by LVIS, the Global Ecosystem Dynamics Investigation (GEDI) Lidar was recently selected for funding as a part of NASA's Earth Venture Program and will use multiple laser beams to measure high-resolution forest structure and surface topography from the International Space Station (ISS). Dependent on the funding profile and availability of launch options to ISS, GEDI could launch as early as 2018. Within a single year of operations GEDI will provide billions of vegetation height and structure measurements for the precise estimation of biomass within the orbital coverage provided by ISS (+/- 51.6 degrees latitude). GEDI uses the same high-SNR waveform measurement technique as the airborne LVIS sensor. LVIS will provide calibration and validation of GEDI's on-orbit performance.

  17. Airborne laser swath mapping of the Denton Hills, Transantarctic Mountains, Antarctica: Applications for structural and glacial geomorphic mapping

    USGS Publications Warehouse

    Wilson, Terry; Csathó, Beata

    2007-01-01

    High-resolution digital elevation data acquired by airborne laser scanning (ALS) for the Denton Hills, along the coastal foothills of the Royal Society Range, Transantarctic Mountains, are examined for applications to bedrock and glacial geomorphic mapping. Digital elevation models (DEMs), displayed as shaded-relief images and slope maps, portray geomorphic landscape features in unprecedented detail across the region. Structures of both ductile and brittle origin, ranging in age from the Paleozoic to the Quaternary, can be mapped from the DEMs. Glacial features, providing a record of the limits of grounded ice, of lake paleoshorelines, and of proglacial lake-ice conveyor deposits, are also prominent on the DEMs. The ALS-derived topographic data have great potential for a range of mapping applications in regions of ice-free terrain in Antarctica

  18. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  19. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  20. Fast in situ airborne and ground-based flux measurement of ammonia using a quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Yu, X.; Hubbe, J.; Kluzek, C. D.; Tomlinson, J. M.; Fischer, M. L.; Reichl, K.; Gupta, M.

    2012-12-01

    A pair of new ammonia (NH3) spectrometers were developed based on off-axis integrated cavity output spectroscopy. These ammonia gas analyzers consist of an optical cell, a quantum-cascade laser, a HgCdTe detector, gas sampling system, electronics for control and data acquisition, and data-analysis software. The NH3 mixing ratio is determined from high-resolution NH3 absorption line shapes by tuning the laser wavelength over the fundamental vibration band near 9.6 μm. Excellent linearity is obtained in a wide range (0- 500 ppb) with a precision of 75 ppt (1σ in 1 second). The analyzers' 1/e response time to step changes in ammonia concentration are 2.4 Hz and 8.1 Hz for the airborne and flux instruments, respectively. Feasibility was demonstrated in airborne test flights in the troposphere on board of the Department of Energy (DOE) Gulfstream-1 (G-1) aircraft. Two research flights were conducted over Sunnyside, Washington. In the first test flight, the ammonia gas sensor was used to identify signatures of feedstock from local dairy farms with high vertical spatial resolution under low wind and stable atmospheric conditions. In the second flight, the NH3 spectrometer showed high sensitivity in capturing feedstock emission signals under windy and less stable conditions. Mixing ratios aloft were measured between 0.75 ppb above the boundary layer and 100 ppb over large feedlots. Eddy covariance estimates of NH3 flux from a manure slurry amendment were performed in a pasture near Two Rock, California from May 18, 2012 to July 5, 2012. Measurement spanned pasture conditions from forage growth, cut-to-ground, manure slurry amendment (estimated to be 95 ± 33% kg NH3-N ha-1) and re-growth. An exponential decay fit to the NH3 flux data after slurry amendment provides an estimate of cumulative emission of 6.6 ± 0.5 kg NH3-N ha-1 (or 7 ± 0.24% of the total applied nitrogen) as a result of the slurry amendment. These results demonstrate that the new ammonia spectrometers

  1. Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning

    SciTech Connect

    Jang, Deoksuk; Kim, Dongsik; Park, Jin-Goo

    2011-04-01

    In laser shock cleaning (LSC), the shock wave is generated by laser-induced breakdown of the ambient gas. The shock wave intensity has thus been a factor limiting the performance of the LSC process. In this work, a novel method of amplifying a laser-induced plasma-generated shock wave by the breakdown of a liquid column is proposed and analyzed. When the laser beam is focused on a microscale liquid column, a shock wave having a significantly amplified intensity compared to that generated by air breakdown alone can be generated in air. Therefore, substantially amplified cleaning force can be obtained. The dynamics of a shock wave induced by a Q-switched Nd:YAG laser was analyzed by laser flash shadowgraphy. The peak pressure of the laser-induced shock wave was approximately two times greater than that of air breakdown at the same laser fluence. The proposed method of shock wave generation is expected to be useful in various applications of laser shock processing, including surface cleaning.

  2. Alexandrite laser characterization and airborne lidar developments for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, P.; Higdon, N. S.; Grossmann, B. E.; Browell, E. V.

    1991-01-01

    The spectral characteristics of an Alexandrite laser used for making water vapor DIAL measurements have been evaluated. The optical servo-system used to lock the laser wavelength on a water vapor absorption line is described. A brief description of the DIAL system is given and the data obtained with this lidar during flight tests in March 1990 are also presented.

  3. A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO

    NASA Technical Reports Server (NTRS)

    Bradshaw, J. D.; Rodgers, M. O.; Sandholm, S. T.; Kesheng, S.; Davis, D. D.

    1985-01-01

    This paper reports on a new two-photon laser-induced fluorescence (TP-LIF) sensor capable of making routine measurements at the few parts per trillion volume level. This direct spectroscopic detection method has been demonstrated to be a reliable instrument while performing both on the ground and in the air. As currently designed it is unique in being 'signal' rather than 'signal-to-noise' limited. The latter characteristic enables the TP-LIF sensor to make atmospheric measurements of NO under environmental conditions that might normally be considered unsuitable for a laser technique. These include clouds, rain, and, in general, high-atmospheric-aerosol loading conditions. Of special interest is the insensitivity of the TP-LIF NO instrument to changes in pressure while operating in the troposphere. This characteristic has enabled this sensor to be used to record real-time altitude profiles of NO. Future improvements should make possible two measurement opportunities: (1) NO flux measurements via the airborne eddy-correlation method and (2) nitrogen isotopic distribution measurements (e.g., (N-15)(0-16) versus (N-14)(0-16) as a means of identifying specific NO(x) sources.

  4. Simple approach to improving the extraction of canopy metrics from airborne laser scanning data for tropical forests

    NASA Astrophysics Data System (ADS)

    Hou, Zhengyang; Xu, Qing; Zhang, Chao; Maltamo, Matti; Tokola, Timo

    2016-01-01

    We aim to improve the predictive mapping of stem volume with airborne laser scanning (ALS) data acquired in Laos by adapting the area-based approach (ABA) to a tropical context. Separating laser returns of bushes from main stories with a cut-off threshold is a step very important to the ABA. The adaptation focused here on applying global and plot-adaptive cut-off thresholds to improve the extraction of canopy metrics. In order to select the optimal global cut-off threshold for removing understory bushes and ground objects, a sensitivity analysis of the modeling efficacy to the global cut-off threshold was conducted in the range from 0 to 5 m at 0.1-m intervals. To account for structural variation between plots, a simple plot-adaptive method was proposed for adjusting the threshold of each specific plot. The results showed that the optimal global cut-off threshold, which implicitly assumed the forest structure being homogeneous for all plots was 3.6 m. A model based on the plot-adaptive cut-off thresholds achieved better accuracy (RMSE 28%) than did the optimal global threshold-based model (RMSE 30%). It is concluded that the ALS-based canopy metrics extracted using the plot-adaptive method describe the structural heterogeneity of tropical forests adequately, whereas the global thresholding method is contingent on the forest structure being simple.

  5. Airborne laser scanning for forest health status assessment and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Novotny, Jan; Zemek, Frantisek; Pikl, Miroslav; Janoutova, Ruzena

    2013-04-01

    Structural parameters of forest stands/ecosystems are an important complementary source of information to spectral signatures obtained from airborne imaging spectroscopy when quantitative assessment of forest stands are in the focus, such as estimation of forest biomass, biochemical properties (e.g. chlorophyll /water content), etc. The parameterization of radiative transfer (RT) models used in latter case requires three-dimensional spatial distribution of green foliage and woody biomass. Airborne LiDAR data acquired over forest sites bears these kinds of 3D information. The main objective of the study was to compare the results from several approaches to interpolation of digital elevation model (DEM) and digital surface model (DSM). We worked with airborne LiDAR data with different density (TopEye Mk II 1,064nm instrument, 1-5 points/m2) acquired over the Norway spruce forests situated in the Beskydy Mountains, the Czech Republic. Three different interpolation algorithms with increasing complexity were tested: i/Nearest neighbour approach implemented in the BCAL software package (Idaho Univ.); ii/Averaging and linear interpolation techniques used in the OPALS software (Vienna Univ. of Technology); iii/Active contour technique implemented in the TreeVis software (Univ. of Freiburg). We defined two spatial resolutions for the resulting coupled raster DEMs and DSMs outputs: 0.4 m and 1 m, calculated by each algorithm. The grids correspond to the same spatial resolutions of hyperspectral imagery data for which the DEMs were used in a/geometrical correction and b/building a complex tree models for radiative transfer modelling. We applied two types of analyses when comparing between results from the different interpolations/raster resolution: 1/calculated DEM or DSM between themselves; 2/comparison with field data: DEM with measurements from referential GPS, DSM - field tree alometric measurements, where tree height was calculated as DSM-DEM. The results of the analyses

  6. Correcting attenuation effects caused by interactions in the forest canopy in full-waveform airborne laser scanner data

    NASA Astrophysics Data System (ADS)

    Richter, K.; Stelling, N.; Maas, H.-G.

    2014-08-01

    Full-waveform airborne laser scanning offers a great potential for various forestry applications. Especially applications requiring information on the vertical structure of the lower canopy parts benefit from the great amount of information contained in waveform data. To enable the derivation of vertical forest canopy structure, the development of suitable voxel based data analysis methods is straightforward. Beyond extracting additional 3D points, it is very promising to derive the voxel attributes from the digitized waveform directly. For this purpose, the differential backscatter cross sections have to be projected into a Cartesian voxel structure. Thereby the voxel entries represent amplitudes of the cross section and can be interpreted as a local measure for the amount of pulse reflecting matter. However, the "history" of each laser echo pulse is characterized by attenuation effects caused by reflections in higher regions of the crown. As a result, the received waveform signals within the canopy have a lower amplitude than it would be observed for an identical structure without the previous canopy structure interactions (Romanczyk et al., 2012). If the biophysical structure is determined from the raw waveform data, material in the lower parts of the canopy is thus under-represented. To achieve a radiometrically correct voxel space representation the loss of signal strength caused by partial reflections on the path of a laser pulse through the canopy has to be compensated. In this paper, we present an integral approach correcting the waveform at each recorded sample. The basic idea of the procedure is to enhance the waveform intensity values in lower parts of the canopy for portions of the pulse intensity, which have been reflected (and thus blocked) in higher parts of the canopy. The paper will discuss the developed correction method and show results from a validation both with synthetic and real world data.

  7. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  8. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  9. Stream Morphologic Measurements from Airborne Laser Swath Mapping: Comparisons with Field Surveys, Traditional DEMs, and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Schultz, L. L.

    2005-12-01

    Precise measurement of stream morphology over entire watersheds is one of the great research opportunities provided by airborne laser swath mapping (ALSM). ALSM surveys allow for rapid quantification of factors, such as channel width and gradient, that control stream hydraulic and ecologic properties. We compare measurements from digital elevation models (DEMs) derived from ALSM data collected by the National Center for Airborne Laser Mapping (NCALM) to field surveys, traditional DEMs (rasterized from topographic maps), and aerial photographs. The field site is in the northern Black Mountains in arid Death Valley National Park (California). The area is unvegetated, and therefore is excellent for testing DEM analysis methods because the ALSM data required minimal filtering, and the resulting DEM contains relatively few unphysical sinks. Algorithms contained in geographic information systems (GIS) software used to extract stream networks from DEMs yield best results where streams are steep enough for resolvable pixel-to-pixel elevation change, and channel width is on the order of pixel resolution. This presents a new challenge with ALSM-derived DEMs because the pixel size (1 m) is often an order of magnitude or more smaller than channel width. We find the longitudinal profile of Gower Gulch in the northern Black Mountains (~4 km total length) extracted using the ALSM DEM and a flow accumulation algorithm is 14% longer than a traditional 10-m DEM, and 13% longer than a field survey. These differences in length (and therefore gradient) are due to the computed channel path following small-scale topographic variations within the channel bottom that are not relevant during high flows. However, visual analysis of shaded-relief images created from high-resolution ALSM data is an excellent method for digitizing channel banks and thalweg paths. We used these lines to measure distance, elevation, and width. In Gower Gulch, the algorithm-derived profile is 10% longer than that

  10. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  11. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  12. Study for hardware application of airborne laser doppler system for severe storms measurement

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Specifications are discussed for the overall system configuration, the processor, the scanner, the CO2 laser, and data analysis methods required to measure velocity flow fields associated with severe storms. Modifications to the clear air turbulence (CAT) system and its capability for two dimensional measuring are examined.

  13. Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Shang-hong; Zhao, Wei-hu; Li, Yong-jun; Liu, Yun; Li, Xuan

    2016-01-01

    The high altitude turbulence is described by the "Clear 1" model in terms of refractive-index structure. The outage and Bit Error Rate (BER) performance of airborne communication links under atmospheric turbulence and aero-optics effects of homodyne binary phase shift keying (BPSK) system is deduced in the high altitude turbulence channel, the relation of probability of fade, mean fade time with flight altitude and transmission distance is analyzed, the Bit Error Rate (BER) vary characteristic along with the mean signal noise rate signal noise rate (SNR) of different modulates is discussed in the gamma-gamma turbulence channel. The results show that atmospheric turbulence and aero-optic effects can greatly reduce the SNR that would occur in the absence of optical turbulence, leading in some cases to unacceptable fade levels or BERs. The average SNR is 26 dB for BPSK to achieve a BER of 10-6. A bit error rate of 5.94×10-10 at 200 km propagation distance was achieved employing a homodyne BPSK based modem.

  14. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  15. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment

    NASA Astrophysics Data System (ADS)

    Razak, Khamarrul Azahari; Santangelo, Michele; Van Westen, Cees J.; Straatsma, Menno W.; de Jong, Steven M.

    2013-05-01

    Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been used to construct the digital terrain model (DTM) under dense vegetation, but its reliability for landslide recognition in the tropics remains surprisingly unknown. This study evaluates the suitability of ALS for generating an optimal DTM for mapping landslides in the Cameron Highlands, Malaysia. For the bare-earth extraction, we used hierarchical robust filtering algorithm and a parameterization with three sequential filtering steps. After each filtering step, four interpolations techniques were applied, namely: (i) the linear prediction derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), (iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). We assessed the quality of 12 DTMs in two ways: (1) with respect to 448 field-measured terrain heights and (2) based on the interpretability of landslides. The lowest root-mean-square error (RMSE) was 0.89 m across the landscape using three filtering steps and linear prediction as interpolation method. However, we found that a less stringent DTM filtering unveiled more diagnostic micro-morphological features, but also retained some of vegetation. Hence, a combination of filtering steps is required for optimal landslide interpretation, especially in forested mountainous areas. IDW was favored as the interpolation technique because it combined computational times more reasonably without adding artifacts to the DTM than T2R and NEN, which performed relatively well in the first and second filtering steps, respectively. The laser point density and the resulting ground point density after filtering are key parameters for producing a DTM applicable to landslide identification. The results showed that the

  16. Using object-based analysis to derive surface complexity information for improved filtering of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Yan, Menglong; Blaschke, Thomas; Tang, Hongzhao; Xiao, Chenchao; Sun, Xian; Zhang, Daobing; Fu, Kun

    2016-03-01

    Airborne laser scanning (ALS) is a technique used to obtain Digital Surface Models (DSM) and Digital Terrain Models (DTM) efficiently, and filtering is the key procedure used to derive DTM from point clouds. Generating seed points is an initial step for most filtering algorithms, whereas existing algorithms usually define a regular window size to generate seed points. This may lead to an inadequate density of seed points, and further introduce error type I, especially in steep terrain and forested areas. In this study, we propose the use of objectbased analysis to derive surface complexity information from ALS datasets, which can then be used to improve seed point generation.We assume that an area is complex if it is composed of many small objects, with no buildings within the area. Using these assumptions, we propose and implement a new segmentation algorithm based on a grid index, which we call the Edge and Slope Restricted Region Growing (ESRGG) algorithm. Surface complexity information is obtained by statistical analysis of the number of objects derived by segmentation in each area. Then, for complex areas, a smaller window size is defined to generate seed points. Experimental results show that the proposed algorithm could greatly improve the filtering results in complex areas, especially in steep terrain and forested areas.

  17. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  18. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  19. The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    PubMed Central

    2011-01-01

    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis. PMID:22004847

  20. Airborne Laser Swath Mapping (ALSM) for Enhanced Riparian Water Use Estimates, Basin Sediment Budgets, and Terrain Characterization

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Farid, A.; Miller, S. N.; Semmens, D.; Williams, D. J.; Moran, S.; Unkrich, C. L.

    2003-12-01

    The uses of Airborne Laser Swath Mapping (ALSM) or LIDAR for earth science applications beyond topographic mapping are rapidly expanding. The USDA-ARS Southwest Watershed Research Center, in collaboration with the Geosensing Systems Engineering Group at the Univ. of Florida and a wide range of other investigators, designed and conducted a multi-purpose ALSM mission over southeastern Arizona. Research goals include: 1) differentiate young and old riparian cottonwood trees to improve riparian water use estimates; 2) assess the ability of LIDAR to define channel bank steepness and thus cross-channel trafficability; 3) assess the ability of LIDAR to define relatively small, isolated depressions where higher soil moisture may persist; and, 4) quantify changes in channel morphology and sediment movement between pre- and post-monsoon flights. The first flight mission was successfully completed in early June and a post-monsoon mission is scheduled for October. Research goals, mission planning, and initial results will be further developed in this presentation. Acknowledgements: The Upper San Pedro Partnership, DOD-Legacy Program, EPA-Landscape Ecology Branch, U.S. Army-TEC, and the Bureau of Land Management are gratefully acknowledged for supporting this effort. The second author is supported by SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas) under the STC Program of the National Science Foundation, Agreement No. EAR-9876800.

  1. Recent Data Campaigns and Results from the Laser Vegetation Imaging Sensor (LVIS): An Airborne, Medium-Footprint, Full-Waveform, Swath Mapping Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Hofton, M. A.; Rabine, D. L.; Luthcke, S. B.; Greim, H.

    2005-12-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, medium-sized footprint laser altimeter system. By digitally recording the shape of the returning laser pulse (waveform), LVIS provides a precise and accurate view of the vertical structure within each footprint/pixel including both the sub-canopy and canopy-top topography. Applications of LVIS data include biomass estimation for a wide variety of forest types, ground surface change detection for tectonic studies, mapping sea surface topography to assist in coastal hazard assessment, and hydrology studies utilizing sub-canopy topography in densely forested regions. Since 1998, LVIS data have been collected in various areas of New Hampshire, Maine, Massachusetts, California, Maryland, Panama and Costa Rica. The data calibration and geolocation processing system utilizes a formal Bayesian least-squares-estimation of pointing, ranging and timing parameters based on a batch reduction of altimeter range residuals. Data are released publicly on the LVIS website at http://lvis.gsfc.nasa.gov. Results show data precisions of <50 cm are routinely achieved in all forest types and <5 cm in bare ground conditions. Because of its unique capability to simultaneously map vegetation and sub-canopy ground topography, LVIS data can be used to assess the accuracy of other remote sensing systems. For example, ground and canopy top elevations generated by LVIS were used to assess the accuracy of Shuttle Radar Topography Mission (SRTM) elevations at study sites with different levels of relief and land cover type. Results showed that the mean vertical offset between the SRTM elevations and LVIS ground elevations varied with landcover type and study site location. Comparisons between LVIS and ICESat will also be presented.

  2. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments.

    PubMed

    Hoge, F E; Swift, R N

    1981-09-15

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions. PMID:20333121

  3. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    SciTech Connect

    Hoge, F.E.; Swift, R.N.

    1981-09-15

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occuring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  4. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  5. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  6. Mapping tree health using airborne laser scans and hyperspectral imagery: a case study for a floodplain eucalypt forest

    NASA Astrophysics Data System (ADS)

    Shendryk, Iurii; Tulbure, Mirela; Broich, Mark; McGrath, Andrew; Alexandrov, Sergey; Keith, David

    2016-04-01

    Airborne laser scanning (ALS) and hyperspectral imaging (HSI) are two complementary remote sensing technologies that provide comprehensive structural and spectral characteristics of forests over large areas. In this study we developed two algorithms: one for individual tree delineation utilizing ALS and the other utilizing ALS and HSI to characterize health of delineated trees in a structurally complex floodplain eucalypt forest. We conducted experiments in the largest eucalypt, river red gum forest in the world, located in the south-east of Australia that experienced severe dieback over the past six decades. For detection of individual trees from ALS we developed a novel bottom-up approach based on Euclidean distance clustering to detect tree trunks and random walks segmentation to further delineate tree crowns. Overall, our algorithm was able to detect 67% of tree trunks with diameter larger than 13 cm. We assessed the accuracy of tree delineations in terms of crown height and width, with correct delineation of 68% of tree crowns. The increase in ALS point density from ~12 to ~24 points/m2 resulted in tree trunk detection and crown delineation increase of 11% and 13%, respectively. Trees with incorrectly delineated crowns were generally attributed to areas with high tree density along water courses. The accurate delineation of trees allowed us to classify the health of this forest using machine learning and field-measured tree crown dieback and transparency ratios, which were good predictors of tree health in this forest. ALS and HSI derived indices were used as predictor variables to train and test object-oriented random forest classifier. Returned pulse width, intensity and density related ALS indices were the most important predictors in the tree health classifications. At the forest level in terms of tree crown dieback, 77% of trees were classified as healthy, 14% as declining and 9% as dying or dead with 81% mapping accuracy. Similarly, in terms of tree

  7. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  8. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  9. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence.

    PubMed

    Spuler, Scott M; Richter, Dirk; Spowart, Michael P; Rieken, Kathrin

    2011-02-20

    We discuss an optical fiber-based continuous-wave coherent laser system for measuring the wind speed in undisturbed air ahead of an aircraft. The operational principles of the instrument are described, and estimates of performance are presented. The instrument is demonstrated as a single line of sight, and data from the inaugural test flight of August 2010 is presented. The system was successfully operated under various atmospheric conditions, including cloud and clear air up to 12 km (40,300 ft). PMID:21343963

  10. An airborne infrared laser spectrometer for in-situ trace gas measurements: application to tropical convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.; Jacquet, P.; Guimbaud, C.; Hamer, P. D.; Marécal, V.

    2015-09-01

    A three-channel laser absorption spectrometer called SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere and lower stratosphere. More than three different species can be measured simultaneously with high time resolution (each 1.6 s) using three individual CW-DFB-QCLs (Continuous Wave Distributed FeedBack Quantum Cascade Lasers) coupled to a single Robert multipass optical cell. The lasers are operated in a time-multiplexed mode. Absorption of the mid-infrared radiations occur in the cell (2.8 L with effective path lengths of 134 to 151 m) at reduced pressure, with detection achieved using a HgCdTe detector cooled by Stirling cycle. The performances of the instrument are described, in particular precisions of 1, 1 and 3 %, and volume mixing ratio (vmr) sensitivities of 0.4, 6 and 2.4 ppbv are determined at 1.6 s for CO, CH4 and N2O, respectively (at 1σ confidence level). Estimated accuracies without calibration are about 6 %. Dynamic measuring ranges of about four decades are established. The first deployment of SPIRIT was realized aboard the Falcon-20 research aircraft operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt) within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) European project in November-December 2011 over Malaysia. The convective outflows from two large convective systems near Borneo Island (6.0° N-115.5° E and 5.5° N-118.5° E) were sampled above 11 km in altitude on 19 November and 9 December, respectively. Correlated enhancements in CO and CH4 vmr were detected when the aircraft crossed the outflow anvil of both systems. These enhancements were interpreted as the fingerprint of transport from the boundary layer up through the convective system and then horizontal advection in the outflow. Using these observations, the fraction of boundary layer air contained in fresh convective outflow was calculated to range

  11. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  12. Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy.

    PubMed

    De Gouw, J A; te Lintel Hekkert, S; Mellqvist, J; Warneke, C; Atlas, E L; Fehsenfeld, F C; Fried, A; Frost, G J; Harren, F J M; Holloway, J S; Lefer, B; Lueb, R; Meagher, J F; Parrish, D D; Patel, M; Pope, L; Richter, D; Rivera, C; Ryerson, T B; Samuelsson, J; Walega, J; Washenfelder, R A; Weibring, P; Zhu, X

    2009-04-01

    A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers. PMID:19452898

  13. Imaging the San Andreas Fault between Parkfield and the Salton Sea Using Wavelet Analysis of Airborne Laser Swath Mapping Data

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Hilley, G. E.; Moon, S.; Saltzman, J.; Sanquini, A.

    2011-12-01

    The distribution of fault related landforms may be used to divulge the spatial and temporal evolution of fault ruptures within a fault zone. In this study, wavelet analysis was performed on high-resolution Airborne Laser Swath Mapping (ALSM) topographic data to image the morphologic structure of the San Andreas Fault Zone (SAFZ) between Parkfield, CA and the US-Mexico border. ASLM data were collected by the National Center for Airborne Laser Mapping as part of the B4 project and were processed these data to produce a 2-m-resolution Digital Elevation Model (DEM). The DEM tiles were imported to ArcMap, which was used to mosaic, rotate, and crop them. Matlab was used to perform a progressive filling of NODATA values within each of the tiles using an iterative nearest-neighbor averaging scheme on these data. Next, scarp-like features roughly paralleling the average trend of the SAFZ were identified using a previously developed wavelet analysis method. This method convolves the second derivative of an elongated template of a scarp-like topography with the directional curvature of the ALSM DEM that is represented by each of the tiles. In this way, the analysis recovers, in a least-squares best-fitting sense, the amplitude of a particular scarp geometry and orientation. The Signal-to-Noise Ratio (SNR) is then computed at each point in the ALSM DEM for a given template scarp geometry and orientation-- this process is repeated for all scarp geometries and orientations to determine those that have the highest SNR. Such scarp forms are automatically identified as the best-fitting scarp geometry, amplitude, and orientation at each point in the DEM. The geometry gives a quantitative measure of the "roundness" of the profile of the scarp form, and supposing that sharper scarps have been created more recently than those whose forms have been rounded by prolonged erosion, a relative chronology of activity of various fault strands within the fault zone can be reconstructed. With

  14. Airborne Laser CO2 Column Measurements: Evaluation of Precision and Accuracy Under a Wide Range of Surface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S. A.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.

    2011-12-01

    This paper discusses the latest flight test results of a multi-frequency intensity-modulated (IM) continuous-wave (CW) laser absorption spectrometer (LAS) that operates near 1.57 μm for remote CO2 column measurements. This IM-LAS system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of the ASCENDS system, called the Multi-frequency Fiber Laser Lidar (MFLL), has been flight tested in eleven airborne campaigns since May 2005. This paper compares the most recent results obtained during the 2010 and 2011 UC-12 and DC-8 flight tests, where MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. The major change to the MFLL system in 2011 was the implementation of several different IM modes, which could be quickly changed in flight, to directly compare the precision and accuracy of MFLL CO2 measurements in each mode. The different IM modes that were evaluated included "fixed" IM frequencies near 50, 200, and 500 kHz; frequencies changed in short time steps (Stepped); continuously swept frequencies (Swept); and a pseudo noise (PN) code. The Stepped, Swept, and PN modes were generated to evaluate the ability of these IM modes to desensitize MFLL CO2 column measurements to intervening optically thin aerosols/clouds. MFLL was flown on the NASA Langley UC-12 aircraft in May 2011 to evaluate the newly implemented IM modes and their impact on CO2 measurement precision and accuracy, and to determine which IM mode provided the greatest thin cloud rejection (TCR) for the CO2 column measurements. Within the current hardware limitations of the MFLL system, the "fixed" 50 kHz results produced similar SNR values to those found previously. The SNR decreased as expected

  15. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  16. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  17. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    SciTech Connect

    Livingston, J. M.; Schmid, Beat; Russell, P. B.; Podolske, James R.; Redemann, Jens; Diskin, G. S.

    2008-10-29

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.

  18. Black-backed woodpecker habitat suitability mapping using conifer snag basal area estimated from airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Casas Planes, Á.; Garcia, M.; Siegel, R.; Koltunov, A.; Ramirez, C.; Ustin, S.

    2015-12-01

    Occupancy and habitat suitability models for snag-dependent wildlife species are commonly defined as a function of snag basal area. Although critical for predicting or assessing habitat suitability, spatially distributed estimates of snag basal area are not generally available across landscapes at spatial scales relevant for conservation planning. This study evaluates the use of airborne laser scanning (ALS) to 1) identify individual conifer snags and map their basal area across a recently burned forest, and 2) map habitat suitability for a wildlife species known to be dependent on snag basal area, specifically the black-backed woodpecker (Picoides arcticus). This study focuses on the Rim Fire, a megafire that took place in 2013 in the Sierra Nevada Mountains of California, creating large patches of medium- and high-severity burned forest. We use forest inventory plots, single-tree ALS-derived metrics and Gaussian processes classification and regression to identify conifer snags and estimate their stem diameter and basal area. Then, we use the results to map habitat suitability for the black-backed woodpecker using thresholds for conifer basal area from a previously published habitat suitability model. Local maxima detection and watershed segmentation algorithms resulted in 75% detection of trees with stem diameter larger than 30 cm. Snags are identified with an overall accuracy of 91.8 % and conifer snags are identified with an overall accuracy of 84.8 %. Finally, Gaussian process regression reliably estimated stem diameter (R2 = 0.8) using height and crown area. This work provides a fast and efficient methodology to characterize the extent of a burned forest at the tree level and a critical tool for early wildlife assessment in post-fire forest management and biodiversity conservation.

  19. Reconstruction, Quantification, and Visualization of Forest Canopy Based on 3d Triangulations of Airborne Laser Scanning Point Data

    NASA Astrophysics Data System (ADS)

    Vauhkonen, J.

    2015-03-01

    Reconstruction of three-dimensional (3D) forest canopy is described and quantified using airborne laser scanning (ALS) data with densities of 0.6-0.8 points m-2 and field measurements aggregated at resolutions of 400-900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty) space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i) to optimize the degree of filtration with respect to the field measurements, and (ii) to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2) with the stem volume considered, both alone (R2=0.65) and together with other predictors (R2=0.78). When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  20. Airborne and Terrestrial Laser Scanning Activities at UNAVCO: From GeoEarthScope to INTERFACE and Beyond

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Jackson, M. E.; Meertens, C. M.; Miller, M. M.

    2009-05-01

    UNAVCO leads and supports airborne and terrestrial laser scanning (ALS and TLS) activities in support of a wide range of earth science applications. UNAVCO acquired nearly 6,000 km2 of high resolution ALS data as part of GeoEarthScope, a component of the EarthScope Facility construction project funded by the National Science Foundation. GeoEarthScope ALS targets in most cases were 1- to 2-km wide corridors centered along active faults including the San Andreas, Hayward, Calaveras, Maacama, Green Valley, Little Salmon, Elsinore, San Cayetano, Garlock, Calico, Lenwood, Blackwater, Helendale, Panamint Valley, Ash Hill, Owens Valley, Death Valley-Fish Lake Valley, Wasatch, Teton, Denali and Totschunda faults. Acquisitions were planned and conducted based on community recommendations with respect to target identification and data collection practices. Particular care was taken to ensure the highest data quality possible within scope and budget, with special considerations given to effective ground point density and geodetic control. Data products are freely available from http://opentopography.org. TLS projects include numerous investigations in polar regions, such as the first TLS survey of the lava lake at Mount Erebus, Antarctica, in January 2009, and activities related to INTERFACE (INTERdisciplinary alliance for digital Field data ACquisition and Exploration), a Collaborative project currently funded by NSF and managed at UNAVCO which includes specialized TLS data processing and visualization software tools developed specifically for geoscience applications. We will present an overview of ALS and TLS project highlights; resources for data collection, accessibility and analysis; and potential use of these data for scientific research and as a framework for future endeavors.

  1. Mapping Land Cover in the Taita Hills, se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion

    NASA Astrophysics Data System (ADS)

    Piiroinen, R.; Heiskanen, J.; Maeda, E.; Hurskainen, P.; Hietanen, J.; Pellikka, P.

    2015-04-01

    The Taita Hills, located in south-eastern Kenya, is one of the world's biodiversity hotspots. Despite the recognized ecological importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape. Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes. Simultaneous ALS and IS data were acquired over a 10 km x 10 km area in February 2013 of which 1 km x 8 km test site was selected. The ALS data had mean pulse density of 9.6 pulses/m2, while the IS data had spatial resolution of 1 m and spectral resolution of 4.5-5 nm in the 400-1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be difficult to map using pixel-based methods.

  2. Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya

    NASA Astrophysics Data System (ADS)

    Heiskanen, J.; Korhonen, L.; Hietanen, J.; Heikinheimo, V.; Schafer, E.; Pellikka, P. K. E.

    2015-04-01

    Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can cause overestimation of CC.

  3. Airborne Laser Scanning (ALS) point cloud ground filtering for area of an active landslide (Doren, Western Austria)

    NASA Astrophysics Data System (ADS)

    Brodić, Nenad; Cvijetinović, Željko; Milenković, Milutin; Dorninger, Peter; Mitrović, Momir

    2014-05-01

    Ground filtering of point cloud is the primary step required for Digital Terrain Model (DTM) generation. The procedure is especially interesting for forested areas, since LiDAR systems can measure terrain elevation under vegetation cover with a high level of penetration. This work analyzes the potential of ALS data ground filtering for area of an active landslide. The results of ALS filtering, for example, may improve geomorphological and motion-detection studies. ALS data was collected during flight campaign 2011 under leaf-off conditions for Doren region, Vorarlberg, Western Austria. In this area, non-ground objects are mostly low vegetation such as shrubs, small trees etc. The vegetation is more dense in lower part of the landslide where erosion is smaller. Vegetation points can be removed based on the hypothesis that these are significantly higher than their neighboring points. However, in case of steep terrain, ground points may have the same heights as vegetation points, and thus, local slope should be considered. Also, if terrain roughness increases, the classification may become even more complex. Software system OPALS (Orientation and Processing of Airborne Laser Scanning data, Vienna University of Technology) was used for processing the ALS data. Labeling ground points has been made using physical and geometrical attributes (parameters) of ALS points. Also additional attributes were calculated in order to improve extraction. Since bare ground surface is usually smooth and continuous unlike vegetation, standard deviation of local elevations was used as roughness measure to differentiate these surfaces. EchoRatio (ER) was adopted as a measure of surface penetrability, while number of echoes and differentiation between echoes (EchoNumber) were also deployed in filtering. Since the ground points are measurements from bare-earth that are usually the lowest surface features in a local area, normalized height was defined as a rank of neighboring points

  4. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    PubMed Central

    Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert

    2008-01-01

    Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements

  5. Airborne measurements of tropospheric formaldehyde by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wert, Bryan P.; Fried, Alan; Henry, Bruce E.; Drummond, James R.

    1996-10-01

    A ground based tunable diode laser absorption spectrometer (TDLAS) developed at NCAR for the measurement of formaldehyde (HCHO) has been modified for use aboard tropospheric aircraft. Measurements of HCHO are essential to comprehensive investigations of atmospheric oxidation processes, and aircraft platforms provide the advantage of vertically and spatially resolved measured. Initial deployment of the aircraft system occurred during the spring and summer of 1996 as part of the NARE and STERAO campaigns. Data coverage exceeded 95 percent out of a sum total of 175 flight hours. Sensitivities achieved during STERAO were approximately 40-60 pptv for 4.5 min of measurement and 80- 120 pptv for 55s; NARE sensitivities were slightly worse. For both campaigns, post-flight fitting of background spectra indicated periodic outgassing and contamination of the background matrix air. Analysis of data collected during the May 1995 SOS intercomparison suggests that background subtraction largely nullifies any outgassing effect. Background matrix gas HCHO concentrations were determined by fitting background spectra and were then used to correct the associated ambient data sets. Finally, fits of the difference of successive backgrounds appear to approximate measurement replicate precisions and are more informative than calculated fit precisions.

  6. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Wert, B. P.; Fried, A.; Rauenbuehler, S.; Walega, J.; Henry, B.

    2003-06-01

    A tunable diode laser absorption spectrometer (TDLAS) was modified for high-precision and high-time-resolution formaldehyde (CH2O) measurements. This enhanced system was deployed in both the clean and polluted troposphere, as part of aircraft missions (TOPSE 2000, TexAQS 2000, and TRACE-P 2001) and ground-based missions (SOS 1999). Measurements of very constant ambient CH2O concentrations were used to determine instrument precisions, which were stable under normal operating conditions, with the exception of brief aircraft cabin pressure changes. Precisions of 15-50 pptv (1σ) were typically achieved for 1 min of averaging, corresponding to absorptions of 0.5-1.7 × 10-6, 3-5 times better than the previous version of the instrument (1998). Responsible modifications included improved temperature and pressure control of instrument components and the use of more stable optical mounts. During the TexAQS 2000 aircraft mission (polluted continental troposphere), measurements of 1 s time resolution were reported. Instrument accuracy was validated by calibration cross checks, interference tests, sample transmission tests, and field comparisons with a DOAS system.

  7. Airborne tunable diode laser measurements of formaldehyde during the 1997 North Atlantic Regional Experiment

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce E.; Drummond, James R.; Frost, Gregory J.; Lee, Yin-Nan

    1999-10-01

    Accurate measurements of formaldehyde (CH2O), a trace gas found throughout the atmosphere, are important for furthering our understanding of hydrocarbon oxidation processes in the atmosphere. During the 1997 North Atlantic Regional Experiment numerous trace gases, including CH2O, were measured onboard a WP3 aircraft operated by the National Oceanic and Atmospheric Administration to study continental transport and photochemistry over remote regions of the North Atlantic Ocean. A highly sensitive tunable diode laser absorption spectrometer was employed in acquiring ambient CH2O measurements on 10 different flights during this campaign. A second instrument, based on chemical derivatization of ambient CH2O with DNPH, was also operated on the WP3 aircraft. This paper will briefly summarize the aircraft TDLAS system employed and discuss the level of agreement obtained between both instruments. This will be followed by a brief discussion of the results, and concludes with a preliminary comparison of the measurements with a 0-dimensional box model constrained by the measurements of other species during the campaign.

  8. Airborne measurements of tropospheric formaldehyde by tunable diode laser absorption spectroscopy

    SciTech Connect

    Wert, B.P. |; Fried, A.; Henry, B.; Drummond, J.R.

    1996-12-31

    A ground based tunable diode laser absorption spectrometer (TDLAS) developed at NCAR for the measurement of formaldehyde (HCHO) has been modified for use aboard tropospheric aircraft. Measurements of HCHO are essential to comprehensive investigations of atmospheric oxidation processes, and aircraft platforms provide the advantage of vertically and spatially resolved measurements. Initial deployment of the aircraft system occurred during the spring and summer of 1996 as part of the NARE and STERAO campaigns. Data coverage exceeded 95% out of a sum total of 175 flight hours. Sensitivities achieved during STERAO were approximately 40--60 pptv for 4.5 min of measurement and 80--120 pptv for 55 s; NARE sensitivities were slightly worse. For both campaigns, post-flight fitting of background spectra indicated periodic outgassing and contamination of the background matrix air. Analysis of data collected during the May, 1995 SOS intercomparison suggests that background subtraction largely nullifies any outgassing effect. Background matrix gas HCHO concentrations were determined by fitting background spectra and were then used to correct the associated ambient data sets. Finally, fits of the difference of successive backgrounds appear to approximate measurement replicate precisions and are more informative than calculated fit precisions.

  9. Airborne Laser Altimetric Monitoring of the Rapid Evolution of Topography in the Long Valley, CA, Caldera

    NASA Technical Reports Server (NTRS)

    Rundle, John

    1998-01-01

    A consortium of investigators from several universities and Government agencies have conducted a series of aircraft topographic surveys over the Long Valley caldera, California. The region has a geologic history of extensive volcanism, and its central dome has recently been undergoing resurgent uplift episodes of up to 4 cm per year, a deformation rate that is still continuing. These surveys were conducted from the NASA WFF T39 jet aircraft, outfitted with a nadir-profiling altimetric laser (ATLAS), a GPS guidance system for in-flight precision navigation, two P-code GPS receivers, a Litton LTN92 inertial unit for attitude determination, and both video and still-frame aerial cameras. In addition, two base-station GPS receivers were deployed for post-flight differential navigation, complementing the permanent GPS station operated on the resurgent dome by JPL, and a kinematic automobile survey of roads crossing the area was conducted, thereby complementing the JPL kinematic GPS surveys of some of the same roads. Precision flying yielded multiple profiles along nearly identical paths, including crossing profiles over selected locations within the caidera and calibration flights over Mono Lake, and Lake Crowley. Data from the most recent survey in 1995 are at this time still being reduced, but the standard error of the mean is very low (< 3 mm), due to the high number of crossover points. We thus intend to evaluate the technique for measuring systematic changes in the dome height over time.

  10. Verification and Improving Planimetric Accuracy of Airborne Laser Scanning Data with Using Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Dominik, W.; Ostrowski, W.

    2014-03-01

    In this study results of planimetric accuracy of LIDAR data were verified with application of intensity of laser beam reflection and point cloud modelling results. Presented research was the basis for improving the accuracy of the products from the processing of LIDAR data, what is particularly important in issues related to surveying measurements. In the experiment, the true-ortho from the large-format aerial images with known exterior orientation were used to check the planimetric accuracy of LIDAR data in two proposed approaches. First analysis was carried out by comparison the position of the selected points identifiable on true-ortho from aerial images with corresponding points in the raster of reflection intensity reflection. Second method to verify planimetric accuracy used roof ridges from 3D building models automatically created from LIDAR data being intersections of surfaces from point cloud. Both analyses were carried out for 3 fragments of LIDAR strips. Detected systematic planimetric error in size of few centimetres enabled an implementation of appropriate correction for analyzed data locally. The presented problem and proposed solutions provide an opportunity to improve the accuracy of the LiDAR data. Such methods allowed for efficient use by specialists in other fields not directly related to the issues of orientation and accuracy of photogrammetric data during their acquisition and pre-processing

  11. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  12. Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Holloway, John S.; Jakoubek, Roger O.; Parrish, David D.; Gerbig, Christoph; Volz-Thomas, Andreas; Schmitgen, Sandra; Fried, Alan; Wert, Brian; Henry, Bruce; Drummond, James R.

    2000-01-01

    During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP-3 and the U.K. Meteorological Office C-130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [Novelli et al., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C-130 and the WP-3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely

  13. Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry-Finnish Experiences of the 3d Techniques

    NASA Astrophysics Data System (ADS)

    Holopainen, M.; Vastaranta, M.; Karjalainen, M.; Karila, K.; Kaasalainen, S.; Honkavaara, E.; Hyyppä, J.

    2015-03-01

    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences.

  14. Comparing the above-ground component biomass estimates of western junipers using airborne and full-waveform terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Spaete, L.; Hardegree, S. P.

    2012-12-01

    With the rapid expansion into shrub steppe and grassland ecosystems over the last century, western juniper (Juniperus occidentalis var. occidentalis Hook) is becoming a major component of the regional carbon pool in the Intermountain West. Understanding how biomass is allocated across individual tree components is necessary to understand the uncertainties in biomass estimates and more accurately quantify biomass and carbon dynamics in these ecosystems. Estimates of component biomass are also important for canopy fuel load assessment and predicting rangeland fire behavior. Airborne LiDAR can capture vegetation structure over larger scales, but the high crown penetration and sampling density of terrestrial laser scanner (TLS) instruments can better capture tree components. In this study, we assessed the ability of airborne LiDAR to estimate biomass of tree components of western juniper with validation data from field measured tees and a full-waveform TLS. Sixteen juniper trees (height range 1.5-10 m) were randomly selected using a double sampling strategy from different height classes in the Reynolds Creek Experimental Watershed in the Owyhee Mountains, southwestern Idaho, USA. Each tree was scanned with a full-waveform TLS, and the dry biomass of each component (foliage, branches and main stem) were measured by destructive harvesting of the trees. We compare the allometric relationships of biomass estimates of the tree components obtained from field-measured trees and TLS-based estimates with the estimates from discrete-return airborne-LiDAR based estimates.

  15. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data

    NASA Astrophysics Data System (ADS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-08-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics (r2 and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices (r2 ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated

  16. Development and Application of a new DACOM Airborne Trace Gas Instrument based on Room-Temperature Laser and Detector Technology and all-Digital Control and Data Processin

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; Sachse, G. W.; DiGangi, J. P.; Pusede, S. E.; Slate, T. A.; Rana, M.

    2014-12-01

    The DACOM (Differential Absorption Carbon monOxide Measurements) instrument has been used for airborne measurements of carbon monoxide, methane, and nitrous oxide for nearly four decades. Over the years, the instrument has undergone a nearly continuous series of modifications, taking advantage of improvements in available technology and the benefits of experience, but always utilizing cryogenically cooled lasers and detectors. More recently, though, the availability of room-temperature, higher-power single-mode lasers at the mid-infrared wavelengths used by DACOM has made it possible to replace both the cryogenic lasers and detectors with thermoelectrically cooled versions. And the relative stability of these lasers has allowed us to incorporate an all-digital wavelength stabilization technique developed previously for the Diode Laser Hygrometer (DLH) instrument. The new DACOM flew first in the summer 2013 SEAC4RS campaign, measuring CO from the DC-8 aircraft, and more recently measuring all three gases from the NASA P-3B aircraft in support of the summer 2014 DISCOVER-AQ campaign. We will present relevant aspects of the new instrument design and operation as well as selected data from recent campaigns illustrating instrument performance and some preliminary science.

  17. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  18. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  19. Airborne Formaldehyde Measurements Onboard the NASA DC-8 Aircraft During the 2006 INTEX-B Campaign by Tunable Diode Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fried, A.; Walega, J. G.; Weibring, P.; Richter, D.

    2007-12-01

    The 2006 Intercontinental Chemical Transport Experiment Phase B (INTEX-B) Campaign was designed in part to quantify the outflow and evolution of gases and aerosols from aging plumes downwind of major tropical megacities such as Mexico City. Formaldehyde (CH2O), an important reactive gas phase intermediate, is photochemically produced as such plumes age and is involved in a number of important atmospheric processes, such as: hydrocarbon oxidation, ozone production, reactive hydrogen radical formation, and generation of carbon monoxide. This talk will present CH2O results acquired by a tunable diode laser absorption spectrometer operated onboard the NASA DC-8 aircraft during this campaign. Airborne CH2O distributions and measurement- model comparisons over a wide geographic region of this study, including Mexico, the Gulf of Mexico, and vast regions over the Pacific Ocean during the second campaign phase, will be presented. Comparisons and contrasts with results from other major metropolitan areas will also be discussed.

  20. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  1. Two-dimensional Hydraulic Flood Modelling Using Floodplain Topographic and Vegetation Features Derived From Airborne Scanning Laser Al Timetry

    NASA Astrophysics Data System (ADS)

    Mason, D. C.; Cobby, D. M.; Horritt, M. S.; Bates, P. D.

    Two dimensional hydraulic models are currently at the forefront of research into river flood inundation prediction. Airborne scanning laser altimetry (LiDAR) is an important new data source that can provide such models with spatially distributed floodplain topography together with vegetation heights for parameterisation of model friction. The paper discusses how LiDAR data can be used to decompose the model's finite element mesh to reflect floodplain vegetation features such as hedges and trees having different frictional properties to their surroundings, and significant floodplain topographic features having high curvatures. It also investigates how vegetation height data can be used to realisethe currently unexploited potential of 2- D flood models to specify a friction factor at each node of the finite element model mesh. This is shown to obviate the need for a model calibration exercise in which free parameters specifying friction in the channel and floodplain are adjusted to achieve best fit between modelled and observed flood extents. A LiDAR range image segmentation system has been developed to separate ground hits from surface object hits on vegetation or buildings. Ground hits can be used to construct a digital elevation model (DEM) of the underlying ground surface, while surface object hits taken in conjunction with nearby ground hits allow object heights to be determined. The system converts the input height image into two output raster images of surface topography and vegetation height at each point. The river channel and model flood domain extent are also determined, as an aid to constructing the model's finite element mesh. The system segments the image on the basis of local height texture into connected regions of short (grasses and crops <1.34m high), intermediate (hedges and shrubs) and tall vegetation (trees >5m high). For each mesh node, an instantaneous friction factor is calculated at each model timestep, given the frictional material in the

  2. Molecular recognition of the antiretroviral drug abacavir: towards the development of a novel carbazole-based fluorosensor.

    PubMed

    Idzik, Krzysztof Ryszard; Cywinski, Piotr J; Cranfield, Charles G; Mohr, Gerhard J; Beckert, Rainer

    2011-05-01

    Due to their optical and electro-conductive attributes, carbazole derivatives are interesting materials for a large range of biosensor applications. In this study, we present the synthesis routes and fluorescence evaluation of newly designed carbazole fluorosensors that, by modification with uracil, have a special affinity for antiretroviral drugs via either Watson-Crick or Hoogsteen base pairing. To an N-octylcarbazole-uracil compound, four different groups were attached, namely thiophene, furane, ethylenedioxythiophene, and another uracil; yielding four different derivatives. Photophysical properties of these newly obtained derivatives are described, as are their interactions with the reverse transcriptase inhibitors such as abacavir, zidovudine, lamivudine and didanosine. The influence of each analyte on biosensor fluorescence was assessed on the basis of the Stern-Volmer equation and represented by Stern-Volmer constants. Consequently we have demonstrated that these structures based on carbazole, with a uracil group, may be successfully incorporated into alternative carbazole derivatives to form biosensors for the molecular recognition of antiretroviral drugs. PMID:21222147

  3. An automatic approach to derive vegetation height using airborne photon-counting laser altimetry data, simulating NASA's future ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Abdalati, W.; Scambos, T. A.

    2011-12-01

    As the ICESat-2 mission is expected to enable large-scale assessment of terrestrial biomass, there is some concern as to whether the current instrument design will meet its ecosystem science objectives. This concern originates from the use of a low energy laser and photon-counting detector in the proposed instrument configuration that over densely vegetated areas, receives a low return (very few photons) from the ground surface. Canopy height retrievals (canopy elevation minus ground elevation) may be challenging in such areas. Here, we investigate a means of deriving canopy height using low-return-level photon-counting laser altimetry data, simulating the expected return from the planned ICESat-2 ATLAS sensor. To this end, an automatic methodology is developed, based on increasing the signal-to-noise ratio using the statistics of frames of multiple shots in the along-track direction that are comparable to the ICESat-2 footprints. We present the preliminary results of the proposed algorithm that are validated against the full-rate airborne photon counting lidar data and Digital Surface Models of the study areas. With canopy height residuals ranging from 1.34 - 1.86 m, initial results indicate promising performance over forested ecosystems of canopy closure up to 75%. These results will aid in developing data processing and analysis methods for future ICESat-2 measurements in order to maximize its application to this important science objective.

  4. Airborne laser scan measurements of winter snow accumulation in high alpine catchments - hydrological implications and verification by ground penetrating radar at glacier surface

    NASA Astrophysics Data System (ADS)

    Helfricht, K.; Keuschnig, M.; Heilig, A.; Mayer, C.; Kuhn, M.

    2012-04-01

    The snow cover as storage of winter precipitation is a substantial source for runoff generation in high mountain catchments. Redistribution of solid precipitation, caused by wind and gravity, leads to a characteristic spatial distribution of snow accumulation which differs from simple model assumption of a homogenous snowpack increasing with altitude. Both, the distinct distribution of snow accumulation and the total amount of SWE stored in the snow cover, affect the magnitude and seasonality of melt water runoff. Complex relations exist between the spatial pattern of snow accumulation and the presence of glaciers and vice versa. For proper hydrological modeling in high mountain catchments, knowledge about snow cover distribution is an important requirement. To date, to evaluate modeling results, spatially insufficient point data on snow depths and SWE are usually available. On catchment scale, optical space-borne remote sensing techniques deliver areal extent of snow cover, but no snow depths and hence no volume of snow cover. Multi-temporal airborne laser scanning (ALS) is an active remote sensing method to obtain elevation changes extensively even in inaccessible alpine terrain. Before the start and at the end of accumulation season of winter 2010/2011, two airborne laser scan acquisitions were performed in the Ötztal Alps (Tirol, Austria). Differences of the respective digital elevation models were interpreted as snow depths and converted into SWE using a simple regression method between snow depths and snow density. Preferred snow accumulation areas were determined, e.g. wind sheltered depressions, the base of steep mountain walls and flat glacier surfaces. At catchment scale, solid precipitation is obviously redistributed from wind exposed mountain ridges to lower elevations, inducing characteristic elevations of maximum snow accumulation. Overall, catchment precipitation derived from snow accumulation is a valuable reference for precipitation approaches in

  5. Imaging the Structure of the Pacific-North American Plate Boundary using Airborne Laser Swath Mapping (ALSM) Data and Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Sanquini, A.; Cheung, K.; Gudmundsdottir, M. H.; Moon, S.; Lin, N.; Shelef, E.; Hilley, G. E.; Prentice, C. S.

    2011-12-01

    Since the 1906 San Francisco earthquake, geologists have noted that the topography of active fault zones is significantly modified by repeated fault ruptures over geologic time. Here, we present an analysis of fault zone topography generated by high-resolution Airborne Laser Swath Mapping (ALSM) data collected by the National Center for Airborne Laser Mapping (NCALM). The digital elevation models (DEMs) generated from the ALSM data reveal the location, orientation, and curvature of scarps associated with active, plate-boundary faults. In particular, we have examined topographic data from the B4 and Northern California data sets, as well as data from faults within the Eastern California Shear Zone. We used a wavelet-based convolution scheme, based on topographic forms modified from the profile scarp-diffusion model of Hanks et al. (1984), extended to encompass along-strike features. We applied this filtering methodology to digital topography along fault zones to estimate the best-fitting height, orientation, morphologic age, and associated Signal-to-Noise Ratio (SNR) of scarps found within these datasets. These results will be available to the community via a GIS web portal so that other workers can mine these data to understand patterns of fault-zone structure observed along the plate-bounding fault zones. To evaluate the utility of this methodology for identifying and characterizing fault scarps within the topographic swaths, we present sample results from the Calaveras fault, part of the San Andreas fault system in northern California. We found that along this fault, the filtering algorithm correctly identifies scarps characterized by ground surveys, previous analysis of aerial photography, and/or field mapping. However, some mapped fault traces with low SNR values because of their subtle morphologic expression are not identified by the algorithm. Similarly, some fluvial scarps that trend in a similar orientation to the overall fault zone are erroneously

  6. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  7. Determination of the spatial structure of vegetation on the repository of the mine "Fryderyk" in Tarnowskie Góry, based on airborne laser scanning from the ISOK project and digital orthophotomaps

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wężyk, Piotr; Pająk, Marek; Haryło, Paweł; Lisańczuk, Marek

    2015-06-01

    The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine "Fryderyk" in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat - Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap "Fryderyk" was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.

  8. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  9. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  10. Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Lloyd, Christopher D.; McKinley, Jennifer; Barry, Lorraine

    2013-02-01

    This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16 m) and flat terrain (RMSE 0.02 m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52 m) although it was the second highest on the flat unobscured terrain (RMSE 0.07 m). ALS data represented the sloped terrain more realistically (RMSE 0.23 m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29 m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation.

  11. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M. R.; Allen, G.; Percival, C.; Gallagher, M. W.; Bauguitte, S.; O'Shea, S.; Muller, J.; Zahniser, M. S.; Pyle, J. A.; Palmer, P. I.

    2015-12-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  12. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Le Breton, Michael; Allen, Grant; Percival, Carl; Gallagher, Martin; Bauguitte, Stephane; O'Shea, Sebastian; Muller, Jennifer; Zahniser, Mark; Pyle, John; Palmer, Paul

    2016-04-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  13. Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies

    NASA Astrophysics Data System (ADS)

    Fried, A.; Henry, B.; Wert, B.; Sewell, S.; Drummond, J. R.

    1998-09-01

    Tunable diode laser absorption spectroscopy has been employed by our group at the National Center for Atmospheric Research to study a number of important trace atmospheric gases and processes over the past 10 years. This paper presents an overview of these studies along with details on instrument hardware and software features implemented for high sensitivity. The merits of four different approaches in assessing instrument performance are presented with formaldehyde (CH2O) used as the target gas. One method utilizes the Allan variance. When our present aircraft system is operated in the laboratory, the Allan variance indicates a CH2O detection limit of 0.031 ppbv for integration times of 25 s. This sensitivity corresponds to a minimum detectable absorbance of 1.0᎒-6, and this is within a factor of two of that reported by Werle et al. who used high-frequency modulation spectroscopy. The present instrument utilizes conventional low-frequency (2f=100 kHz) wavelength modulation. Instrument performance, obtained from replicate measurements of CH2O standards acquired over time periods as long as 1.5 hours, on average resulted in a factor of two poorer precision than indicated by the Allan variance. Since replicate measurements precisely simulate the acquisition procedures employed, including the acquisition of sample and background spectra, they present a more meaningful measure of instrument performance. Preliminary evidence suggests that slow drifts in the laser wavelength control during acquisition of replicate measurements may play an important role in the above disparity. The resultant laser wavelength correction voltage, which is applied to counter such drifts, may also be a factor in this disparity. A limited number of replicate measurements with minimal drift in the laser wavelength yield much closer agreement between replicate and Allan variance precisions.

  14. Airborne Laser Scanning Quantification of Disturbances from Hurricanes and Lightning Strikes to Mangrove Forests in Everglades National Park, USA

    PubMed Central

    Zhang, Keqi; Simard, Marc; Ross, Michael; Rivera-Monroy, Victor H.; Houle, Patricia; Ruiz, Pablo; Twilley, Robert R.; Whelan, Kevin R. T.

    2008-01-01

    Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements covering 61 and 68 ha areas of mangrove forest at the Shark River and Broad River sites showed that the proportion of high tree canopy detected by the LIDAR after the 2005 hurricane season decreased significantly due to defoliation and breakage of branches and trunks, while the proportion of low canopy and the ground increased drastically. Tall mangrove forests distant from tidal creeks suffered more damage than lower mangrove forests adjacent to the tidal creeks. The hurricanes created numerous canopy gaps, and the number of gaps per square kilometer increased from about 400∼500 to 4000 after Katrina and Wilma. The total area of gaps in the forest increased from about 1∼2% of the total forest area to 12%. The relative contribution of hurricanes to mangrove forest disturbance in ENP is at least 2 times more than that from lightning strikes. However, hurricanes and lightning strikes disturb the mangrove forest in a related way. Most seedlings in lightning gaps survived the hurricane impact due to the protection of trees surrounding the gaps, and therefore provide an important resource for forest recovery after the hurricane. This research demonstrated that LIDAR is an effective remote sensing tool to quantify the effects of disturbances such as hurricanes and lightning strikes in the mangrove forest.

  15. Quantification of Barchan Dune Evolution over Monthly to Interannual Time Scales Using Airborne LIDAR and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hoose, M.; Pelletier, J. D.

    2013-12-01

    Barchan dunes are among the most rapidly evolving landforms on Earth, with migration rates of up to 100 m/yr. Despite the central importance of barchan dunes in aeolian geomorphology and the relative ease of quantifying changes in their shape and position, basic questions remain about barchan dune evolution. For example, how does the position of a dune relative to its neighbors affect the evolution of a dune? The presence of a dune influences the air flow around the dune, potentially modifying the evolution of neighboring dunes. Also, a dune may grow in size more rapidly if neighboring dunes are located immediately upwind of the dune, thus providing additional sources of sand for the dune relative to the case of an isolated dune. To address these questions, we quantified the change in the position of 14 dunes, and the sand flux among them, in the Salton Sea dune field over two time scales: 1 month and 3 years. The 1-month change map was created using two TLS surveys completed in the summer of 2013, and the 3-year change map was created using the results of a TLS survey in 2013 and an airborne LIDAR survey from 2010. The PHOENICS Computational Fluid Dynamics solver was used to predict the change in the positions of the dunes and the flux of sand among them. PHOENICS was used to model the shear stress over the dune field using DEM data from the beginning of each interval of study, together with data on the wind profile collected at the study site using a wind tower. The output of PHOENICS was used as input to a shear-stress-dependent aeolian transport formula with the effect of slope on the threshold of entrainment included. Preliminary analyses of the ALSM- and TLS-derived change maps indicate that clustered dunes interact via boundary layer effects to alter the migration and growth rates of their downwind neighbors. Additionally, the effects of subdominant, southeasterly winds were observed in the 1-month change map in the form of sand wedges deposited along the

  16. Airborne Tunable Diode Laser Measurements of Formaldehyde During TRACE-P: Distributions and Measurement Box-Model Comparisons

    NASA Astrophysics Data System (ADS)

    Fried, A.; Crawford, J.; Olson, J. R.; Walega, J.; Wert, B.; Potter, W.

    2002-12-01

    Measurements of the important reactive intermediate formaldehyde (CH2O) were acquired by tunable diode laser absorption spectroscopy onboard NASA's DC-8 aircraft during the Transport and Chemical Evolution over the Pacific Study (TRACE-P). One-minute measurements (N = 6917) were acquired on every research flight, and this rather extensive database has allowed us to map out the distributions of CH2O, produced by photochemical processing of hydrocarbon precursors from Asia, over the Pacific Ocean. This dataset has also provided an additional opportunity to test our current understanding of photochemical box models through extensive measurement-model comparisons (N = 4472) under a variety of conditions. The present talk will present both aspects. In addition to a comparison for the full dataset, the present talk will also examine regions where the box-model fails to capture the observed CH2O structure. A brief discussion of measurement and model variance will also be presented.

  17. Airborne Tunable Diode Laser Measurements of Formaldehyde During INTEX: Mixing Ratio Distributions Over North America and Comparisons with Models

    NASA Astrophysics Data System (ADS)

    Fried, A.; Walega, J.; Crawford, J.; Olson, J. R.; Chen, G.

    2005-12-01

    Formaldehyde (HCHO) is a key reactive trace gas present throughout the atmosphere and is involved in a number of important atmospheric processes, including hydrocarbon oxidation, ozone production, reactive hydrogen radical formation, and generation of carbon monoxide. Because of this importance and its integral role in helping to test photochemical reaction pathways, extensive measurements of HCHO and comparisons with box models have been carried out over wide geographic regions of the globe with varying levels of agreement. Despite this importance, very little is known about the vertical transport of HCHO from source regions in the boundary layer over North America to the upper troposphere from convective outflow. This talk will present HCHO mixing ratios, acquired by tunable diode laser absorption spectroscopy operated onboard NASA's DC-8 aircraft during the 2004 INTEX-A study, over wide geographic source regions of North America. This presentation will specifically highlight elevated HCHO mixing ratios in the upper troposphere from convective outflow and from an Alaskan fire plume.

  18. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data

    NASA Astrophysics Data System (ADS)

    Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu

    2012-01-01

    The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.

  19. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  20. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland)

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wezyk, Piotr; Tompalski, Piotr

    2013-04-01

    The paper presents the results from the study concerning the application of airborne laser scanning (ALS) data and derived raster products like the digital surface model (DSM) and the digital terrain model (DTM) for the assessment of the degree of change of the land use based on the forest succession example. Simultaneously, an automated method of ALS data processing was developed based on the normalized (nDSM) and cadastral GIS information. Besides delivering precise information on forest succession, ALS technology is an excellent tool for time-changes spatial analyses. Usage of the ALS data can support the image interpretation process decreasing the subjectivity of the operator. In parallel, a manual vectorization and object classification (object-based image analysis—OBIA) were performed; both based on aerial orthophoto and ALS data. By using integrated ALS point clouds and digital aerial images, one can obtain fast OBIA processing and the determination of areas where the land cover has changed. The Milicz District (central west part of Poland) was chosen as the test site where ALS was to be performed in 2007, together with the digital aerial photos (Vexcel camera; pixel 0.15 m; CIR). The aerial photos were then processed to a CIR orthophoto. The area of study consisted of 68 private parcels (some of them were abandoned; 68.57 ha; scanned cadastral maps from the local survey office; land use information) in the direct neighbourhood of the State Forest, on which a forest succession could often be observed. The operator vectorized forest (trees and shrubs) succession areas on the 2D CIR orthophoto. They were then compared with the results from the OBIA and GIS analysis, based on the normalized digital surface model. The results showed that areas with high vegetation cover were three times larger than the official land cover database (cadastral maps).

  1. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland)

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wezyk, Piotr; Tompalski, Piotr

    2014-06-01

    The paper presents the results from the study concerning the application of airborne laser scanning (ALS) data and derived raster products like the digital surface model (DSM) and the digital terrain model (DTM) for the assessment of the degree of change of the land use based on the forest succession example. Simultaneously, an automated method of ALS data processing was developed based on the normalized (nDSM) and cadastral GIS information. Besides delivering precise information on forest succession, ALS technology is an excellent tool for time-changes spatial analyses. Usage of the ALS data can support the image interpretation process decreasing the subjectivity of the operator. In parallel, a manual vectorization and object classification (object-based image analysis—OBIA) were performed; both based on aerial orthophoto and ALS data. By using integrated ALS point clouds and digital aerial images, one can obtain fast OBIA processing and the determination of areas where the land cover has changed. The Milicz District (central west part of Poland) was chosen as the test site where ALS was to be performed in 2007, together with the digital aerial photos (Vexcel camera; pixel 0.15 m; CIR). The aerial photos were then processed to a CIR orthophoto. The area of study consisted of 68 private parcels (some of them were abandoned; 68.57 ha; scanned cadastral maps from the local survey office; land use information) in the direct neighbourhood of the State Forest, on which a forest succession could often be observed. The operator vectorized forest (trees and shrubs) succession areas on the 2D CIR orthophoto. They were then compared with the results from the OBIA and GIS analysis, based on the normalized digital surface model. The results showed that areas with high vegetation cover were three times larger than the official land cover database (cadastral maps).

  2. A hybrid framework for single tree detection from airborne laser scanning data: A case study in temperate mature coniferous forests in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Sohn, Gunho; Brédif, Mathieu

    2014-12-01

    This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data by integrating low-level image processing techniques into a high-level probabilistic framework. The proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took advantage of low-level image processing techniques to generate candidate configurations from the canopy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using corresponding treetops as markers. The configuration containing the best possible set of detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data, and a prior term that prevents severe overlapping between tree crowns on the configuration space. The energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering, thus increasing the overall detection accuracy by approximately 10% on all of the datasets.

  3. Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis.

    PubMed

    Bengtsson, M; Wallström, S; Sjöholm, M; Grönlund, R; Anderson, B; Larsson, A; Karlsson, S; Kröll, S; Svanberg, S

    2005-08-01

    A method combining laser-induced fluorescence and principal component analysis to detect and discriminate between algal and fungal growth on insulator materials has been studied. Eight fungal cultures and four insulator materials have been analyzed. Multivariate classifications were utilized to characterize the insulator material, and fungal growth could readily be distinguished from a clean surface. The results of the principal component analyses make it possible to distinguish between algae infected, fungi infected, and clean silicone rubber materials. The experiments were performed in the laboratory using a fiber-optic fluorosensor that consisted of a nitrogen laser and an optical multi-channel analyzer system. PMID:16105213

  4. Use of high resolution Airborne Laser Scanning data for landslide interpretation under mixed forest and tropical rainforest: case study in Barcelonnette, France and Cameron Highlands, Malaysia

    NASA Astrophysics Data System (ADS)

    Azahari Razak, Khamarrul; Straatsma, Menno; van Westen, Cees; Malet, Jean-Philippe; de Jong, Steven M.

    2010-05-01

    Airborne Laser Scanning (ALS) is the state of the art technology for topographic mapping over a wide variety of spatial and temporal scales. It is also a promising technique for identification and mapping of landslides in a forested mountainous landscape. This technology demonstrates the ability to pass through the gaps between forest foliage and record the terrain height under vegetation cover. To date, most of the images either derived from satellite imagery, aerial-photograph or synthetic aperture radar are not appropriate for visual interpretation of landslide features that are covered by dense vegetation. However, it is a necessity to carefully map the landslides in order to understand its processes. This is essential for landslide hazard and risk assessment. This research demonstrates the capabilities of high resolution ALS data to recognize and identify different types of landslides in mixed forest in Barcelonnette, France and tropical rainforest in Cameron Highlands, Malaysia. ALS measurements over the 100-years old forest in Bois Noir catchment were carried out in 2007 and 2009. Both ALS dataset were captured using a Riegl laser scanner. First and last pulse with density of one point per meter square was derived from 2007 ALS dataset, whereas multiple return (of up to five returns) pulse was derived from July 2009 ALS dataset, which consists of 60 points per meter square over forested terrain. Generally, this catchment is highly affected by shallow landslides which mostly occur beneath dense vegetation. It is located in the dry intra-Alpine zone and represented by the climatic of the South French Alps. In the Cameron Highlands, first and last pulse data was captured in 2004 which covers an area of up to 300 kilometres square. Here, the Optech laser scanner was used under the Malaysian national pilot study which has slightly low point density. With precipitation intensity of up to 3000 mm per year over rugged topography and elevations up to 2800 m a

  5. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  6. Semi-automated building extraction from airborne laser scanning data. (Polish Title: Półautomatyczne modelowanie brył budynków na podstawie danych z lotniczego skaningu laserowego)

    NASA Astrophysics Data System (ADS)

    Marjasiewicz, M.; Malej, T.

    2014-12-01

    The main idea of this project is to introduce a conception of semi - automated method for building model extraction from Airborne Laser Scanning data. The presented method is based on the RANSAC algorithm, which provides automatic collection planes for roofs model creation. In the case of Airborne Laser Scanning, the algorithm can process point clouds influenced with noise and erroneous measurement (gross errors). The RANSAC algorithm is based on the iterative processing of a set of points in order to estimate the geometric model. Research of u sing algorithm for ALS data was performed in available Cloud Compare and SketchUP software. An important aspect in this research was algorithm parameters selection, which was made on the basis of characteristics of point cloud and scanned objects. Analysis showed that the accuracy of plane extraction with RANSAC algorithm does not exceed 20 centimeters for point clouds of density 4 pts . /m 2 . RANSAC can be successfully used in buildings modelling based on ALS data. Roofs created by the presented method could be used in visualizations on a much better level than Level of Detail 2 by CityGML standard. If model is textured it can represent LoD3 standard.

  7. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  8. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  9. Mapping Ice with Airborne Lasers

    NASA Video Gallery

    Determining whether polar ice quantities are growing or shrinking requires accurate and detailed measurements, year over year. To help make those measurements, IceBridge mission aircraft fire 3,000...

  10. On the integration of Airborne full-waveform laser scanning and optical imagery for Site Detection and Mapping: Monteserico study case

    NASA Astrophysics Data System (ADS)

    Coluzzi, R.; Guariglia, A.; Lacovara, B.; Lasaponara, R.; Masini, N.

    2009-04-01

    This paper analyses the capability of airborne LiDAR derived data in the recognition of archaeological marks. It also evaluates the benefits to integrate them with aerial photos and very high resolution satellite imagery. The selected test site is Monteserico, a medieval village located on a pastureland hill in the North East of Basilicata (Southern Italy). The site, attested by documentary sources beginning from the 12th century, was discovered by aerial survey in 1996 [1] and investigated in 2005 by using QuickBird imagery [2]. The only architectural evidence is a castle, built on the western top of the hill; whereas on the southern side, earthenware, pottery and crumbling building materials, related to the medieval settlement, could be observed. From a geological point of view, the stratigraphic sequence is composed of Subappennine Clays, Monte Marano sands and Irsina conglomerates. Sporadic herbaceous plants grow over the investigated area. For the purpose of this study, a full-waveform laser scanning with a 240.000 Hz frequency was used. The average point density value of dataset is about 30 points/m2. The final product is a 0.30 m Digital Surface Models (DSMs) accurately modelled. To derive the DSM the point cloud of the ALS was filtered and then classified by applying appropriate algorithms. In this way surface relief and archaeological features were surveyed with great detail. The DSM was compared with other remote sensing data source such as oblique and nadiral aerial photos and QuickBird imagery, acquired in different time. In this way it was possible to evaluate, compare each other and overlay the archaeological features recorded from each data source (aerial, satellite and lidar). Lidar data showed some interesting results. In particular, they allowed for identifying and recording differences in height on the ground produced by surface and shallow archaeological remains (the so-called shadow marks). Most of these features are visible also by the optical

  11. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  12. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments. PMID:26974792

  13. Effects of habitat light conditions on the excitation quenching pathways in desiccating Haberlea rhodopensis leaves: an Intelligent FluoroSensor study.

    PubMed

    Solti, Ádám; Lenk, Sándor; Mihailova, Gergana; Mayer, Péter; Barócsi, Attila; Georgieva, Katya

    2014-01-01

    Resurrection plants can survive dehydration to air-dry state, thus they are excellent models of understanding drought and dehydration tolerance mechanisms. Haberlea rhodopensis, a chlorophyll-retaining resurrection plant, can survive desiccation to relative water content below 10%. Leaves, detached from plants of sun and shade habitats, were moderately (∼50%) dehydrated in darkness. During desiccation, chlorophyll a fluorescence was detected by the recently innovated wireless Intelligent FluoroSensor (IFS) chlorophyll fluorometer, working with three different detectors: a pulse-amplitude-modulated (PAM) broadband channel and two channels to measure non-modulated red and far-red fluorescence. No change in area-based chlorophyll content of leaves was observed. The maximal quantum efficiency of photosystem II decreased gradually in both shade and sun leaves. Shade leaves could not increase antennae-based quenching, thus inactivated photosystem II took part in quenching of excess irradiation. Sun leaves seemed to be pre-adapted to quench excess light as they established an intensive increase in antennae-based non-photochemical quenching parallel to desiccation. The higher far-red to red antennae-based quenching may sign light-harvesting complex reorganization. Thus, compared to PAM, IFS chlorophyll fluorometer has additional benefits including (i) parallel estimation of changes in the Chl content and (ii) prediction of underlying processes of excitation energy quenching. PMID:24345600

  14. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  15. Advances and perspectives in bathymetry by airborne lidar

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  16. Simulating imaging spectrometer data of a mixed old-growth forest: A parameterization of a 3D radiative transfer model based on airborne and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.; Lauret, N.; Pfeifer, N.; Schaepman, M. E.

    2013-12-01

    Remote sensing offers unique potential to study forest ecosystems by providing spatially and temporally distributed information that can be linked with key biophysical and biochemical variables. The estimation of biochemical constituents of leaves from remotely sensed data is of high interest revealing insight on photosynthetic processes, plant health, plant functional types, and speciation. However, the scaling of observations at the canopy level to the leaf level or vice versa is not trivial due to the structural complexity of forests. Thus, a common solution for scaling spectral information is the use of physically-based radiative transfer models. The discrete anisotropic radiative transfer model (DART), being one of the most complete coupled canopy-atmosphere 3D radiative transfer models, was parameterized based on airborne and in-situ measurements. At-sensor radiances were simulated and compared with measurements from an airborne imaging spectrometer. The study was performed on the Laegern site, a temperate mixed forest characterized by steep slopes, a heterogeneous spectral background, and deciduous and coniferous trees at different development stages (dominated by beech trees; 47°28'42.0' N, 8°21'51.8' E, 682 m asl, Switzerland). It is one of the few studies conducted on an old-growth forest. Particularly the 3D modeling of the complex canopy architecture is crucial to model the interaction of photons with the vegetation canopy and its background. Thus, we developed two forest reconstruction approaches: 1) based on a voxel grid, and 2) based on individual tree detection. Both methods are transferable to various forest ecosystems and applicable at scales between plot and landscape. Our results show that the newly developed voxel grid approach is favorable over a parameterization based on individual trees. In comparison to the actual imaging spectrometer data, the simulated images exhibit very similar spatial patterns, whereas absolute radiance values are

  17. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  18. SLICER Airborne Laser Altimeter Characterization of Canopy Structure and Sub-canopy Topography for the BOREAS Northern and Southern Study Regions: Instrument and Data Product Description

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Harding, D. J.; Blair, J. B.; Rabine, D. L.; Still, K. L.

    2000-01-01

    SLICER data were acquired in support of BOREAS at all of the TF sites in the SSA and NSA, and along transects between the study areas. Data were acquired on 5 days between 18-Jul and 30-Jul-1996. Each coverage of a tower site is typically 40 km in length, with a minimum of 3 and a maximum of 10 lines across each tower oriented in a variety of azimuths. The SLICER data were acquired simultaneously with ASAS hyperspectral, multiview angle images. The SLICER Level 3 products consist of binary files for each flight line with a data record for each laser shot composed of 13 parameters and a 600-byte waveform that is the raw record of the backscatter laser energy reflected from Earth's surface. The SLICER data are stored in a combination of ASCII and binary data files.

  19. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  20. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  1. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  2. Monitoring the Competence of a New Keto-tetrahydrocarbazole Based Fluorosensor Under Homogeneous, Micro-Heterogeneous and Serum Albumin Environments.

    PubMed

    Mitra, Amrit Krishna; Sau, Abhishek; Bera, Subhas Chandra; Chakraborty, Suchandra; Saha, Chandan; Basu, Samita

    2015-11-01

    We present here a detailed photophysical study of a recently synthesised fluorophore 8-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one. This is a synthetic precursor of bio-active carbazole skeleton Clausenalene. Spectroscopic investigation of the fluorophore has been carried out in different protic and aprotic solvents, as well as in binary solvent mixtures, using absorption, steady-state and time-resolved fluorescence techniques. This fluorophore is particularly responsive to the hydrogen bonding nature as well as polarity of the solvent molecules. When considered in micelles and β-cyclodextrin, this behaves as a reporter of its immediate microenvironment. Steady state and time resolved fluorometric and circular dichroism techniques have been used to explore the binding interaction of the fluorophore with transport proteins, bovine serum albumin and human serum albumin. The probable binding sites of the fluorophore in the proteinous environments have been evaluated from fluorescence resonance energy transfer study. Laser flash photolysis experiments also have been performed to observe the triplet excited state interaction between the fluorophore and albumin proteins. PMID:26489935

  3. An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NO(x), and NO2

    NASA Technical Reports Server (NTRS)

    Sandholm, S. T.; Bradshaw, J. D.; Dorris, K. S.; Rodgers, M. O.; Davis, D. D.

    1990-01-01

    The operating principle, design, and performance of a two-photon LIF (TP-LIF) sensor for simultaneous measurements of NO, NO(x) (NO + NO2), and NO2 are described. In this instrument, NO is first measured by direct spectroscopic TP-LIF detection; NO2 is converted to NO by photofragmentation using an XeF excimer laser operating at 353 nm; and the resulting NO is then detected quantitatively by TP-LIF. The detection limits of the instrument are found to be 3.5 parts per trillion by volume (pptv) of NO and 10 pptv for NO2, with integration times of 2 and 6 min, respectively. The in-flight performance of the instrument was evaluated during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 program in summer 1986, as reported by Gregory et al. (1990).

  4. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, P T

    2004-07-20

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  5. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    NASA Technical Reports Server (NTRS)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  6. Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar.

    PubMed

    Dobler, Jeremy T; Harrison, F Wallace; Browell, Edward V; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-04-20

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO(2) Emissions over Nights, Days, and Seasons (ASCENDS) as a midterm, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype laser absorption spectrometer for making high-precision, column CO(2) mixing ratio measurements needed for the ASCENDS mission. This instrument, called the multifunctional fiber laser lidar (MFLL), operates in an intensity-modulated, continuous wave mode in the 1.57 μm CO(2) absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO(2) column measurements resulting from high signal-to-noise ratio (>1300) column optical depth (OD) measurements for a 10 s (~1 km) averaging interval have been achieved. In situ measurements of atmospheric CO(2) profiles were used to derive the expected CO(2) column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO(2) columns to within an average of 0.17% or ~0.65 ppmv with a standard deviation of 0.44% or ~1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented. PMID:23669700

  7. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests - an analysis based on airborne laser scanning of the canopy structure at moose locations.

    PubMed

    Melin, Markus; Matala, Juho; Mehtätalo, Lauri; Tiilikainen, Raisa; Tikkanen, Olli-Pekka; Maltamo, Matti; Pusenius, Jyrki; Packalen, Petteri

    2014-04-01

    The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. PMID:24115403

  8. Environmental effects on laser-induced fluorescence spectra of natural waters

    NASA Technical Reports Server (NTRS)

    Vodacek, Anthony; Philpot, William D.

    1987-01-01

    Laser fluorosensing can be used to monitor dissolved organic carbon (DOC), but analysis of the data can be hindered by several environmental phenomena. These phenomena include attenuation of the laser beam and differential attenuation of the fluorescence by the water column, variability in the molecular weight composition of the DOC, and temperature, pH, and metal ion effects on DOC fluorescence. These factors are discussed in terms of their effect on laboratory and remote field data analysis. Experimental results are provided. Analysis of fluorosensor data of DOC may be improved by compensating for the environmental factors. An improved methodology is discussed, and a suggestion is made for indirect monitoring of pH and metal ion concentration.

  9. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  10. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    USGS Publications Warehouse

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  11. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    SciTech Connect

    Richter, Dirk; Weibring, P.; Walega, J.; Fried, Alan; Spuler, Scott M.; Taubman, Matthew S.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  12. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  14. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  15. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  16. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  17. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  18. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  19. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  20. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  1. Characterising Vegetation Structural and Functional Differences Across Australian Ecosystems From a Network of Terrestrial Laser Scanning Survey Sites and Airborne and Satellite Image Archives

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.

    2015-12-01

    Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative

  2. Neotectonic implications by geophysical surveys of topographic features identified by Airborne Laser Scanning in the Neusiedlersee/Ferto area (Austria/Hungary)

    NASA Astrophysics Data System (ADS)

    Timár, G.; Székely, B.; Zámolyi, A.; Houseman, G.; Stuart, G.; Grasemann, B.; Dombrádi, E.; Galsa, A.; Spahic, D.; Draganits, E.

    2009-04-01

    The area around the Lake Neudsiedlersee (Lake Fertő in Hungarian) was analysed to understand its neotectonic activity and gather possible explanations of the features of the topography and microtopography. The area consists of two, considerably different parts in terms of topography and geomorphology. The western and north-western shores of the lake are connected to the Leitha Mts., a low ridge (its relative height is about 300 meters) that connects the Alpine orogen in the SW with the Carpathians to NE bounded by active strike-slip faulting. In this part of the area, several outcrops were investigated, of which the one at St. Margarethen was systematically measured by multielectric sounding and GPR, and an other one at St. Georgen, north of Eisenstadt, was used for auxiliary data gathering. The eastern and southern shores, belonging to the Pannonian Basin, are mostly flatlands, parts of the Little Hungarian Plain with extremely low relief and no real natural drainage. The small variations of the surface altitude (less than ten meters), referred to as microtopography here, are due to elongated ridges and extremely shallow perennial or temporal playa lakes. In order to understand better the subsurface structure, a multimethod approach has been applied. Geophysical survey methods (vertical electric sounding, land seismics, gravity measurements) were carried out to describe the layer structure of this area, especially a zone, north of Illmitz, connected to interesting elements of microtopography. The identification of microtopographic features were carried out using high resolution digital elevation datasets, derived from Aerial Laser Scannings (ALS). Seismic measurements were carried out also in the lake itself to understand the structural geological settings of the lake bottom to the depth of ca. 50 meters. All of these measurements were made in the framework of a common student fieldwork of the Eötvös University, the University of Leeds and the University of

  3. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  4. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  5. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  6. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  7. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  8. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  9. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  10. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  11. Advanced Airborne CO2 LAS System

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M. G.; McGregor, D. P.; Erxleben, W. H.; Browell, E. V.; Harrison, F. W.

    2009-12-01

    A unique airborne Laser Absorption Spectroscopy (LAS) system has been developed by ITT Space Systems, LLC to address the needs of the National Research Council Decadal Survey Tier 2 mission for Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS). This instrument has undergone multiple airborne field tests in cooperation with our partners at NASA Langley Research Center (LaRC). The instrument was built largely with off-the-shelf components and uses high reliability telecom components, including lasers, modulators and fiber amplifiers as the transmitter. Multiple wavelengths are transmitted simultaneously from a single collimator and the return signal is collected by a simple 8” telescope that is fiber coupled to a HgCdTe APD. The analog signal is sampled with a high resolution scope card housed in a National Instruments PXI chassis and the digitized signal is then passed through our custom-built software-based lock-in processing system which allows separation of the signals from the individual wavelengths. The separated signals are then used in the standard Differential Absorption Lidar (DIAL) relations to determine the integrated column differential optical depth. This presentation will give a detailed overview of this multi-frequency, single-beam, synchronous lock-in LAS instrument including the basic methodology of the measurement. Recent improvements in the lock-in methodology designed to eliminate the effects of multi- path fading and frequency dependence of the electronic components will also be discussed.

  12. Airborne lidar detection of subsurface oceanic scattering layers

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Krabill, William B.; Buntzen, Rodney R.; Gilbert, Gary D.

    1988-01-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the air-water interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf.

  13. Airborne lidar detection of subsurface oceanic scattering layers.

    PubMed

    Hoge, F E; Wright, C W; Krabill, W B; Buntzen, R R; Gilbert, G D; Swift, R N; Yungel, J K; Berry, R E

    1988-10-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the airwater interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf. PMID:20539503

  14. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  15. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  16. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  17. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  18. Airborne lidar experiments at the Savannah River Plant, June 1985

    SciTech Connect

    Krabill, W.B.; Swift, R.N.

    1987-09-01

    Results are presented from a series of studies conducted at the Department of Energy (DOE) Savannah River Plant (SRP) with the NASA Airborne Oceanographic Lidar (AOL). These studies included a topographic survey of a {approximately}1000 acre lake basin (presently designated L Lake) which had been excavated for use as a cooling pond for L Reactor; a study of the movement of discharged cooling water in Pond C and the warm arm of Par Pond using Rhodamine WT dye as a tag; initial baseline studies of the vegetation cover of the Steel Creek corridor (through which the outflow of L Lake is carried to the Savannah River); and a demonstration of potential forestry applications of the AOL. These investigations were conducted over a 3-day period in June 1985. The AOL is an advanced airborne laser system capable of making temporal or time history measurements of laser backscatter (bathymetry mode) or spectral measurements of laser induced fluorescence from waterborne constituents (fluorosensing mode). The AOL is flown together with auxiliary instruments and camera systems on board a four engine P-3A aircraft. Recent modifications to the AOL allow in-flight changes between the two basic operational modes of the instrument which permitted the topographic study to be conducted on the same flights as the fluorescent dye study. The L Lake topographic survey represents a state-of-the-art demonstration of airborne laser surveying capability.

  19. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  20. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  1. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  2. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  3. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  4. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  5. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  6. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  7. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  8. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  9. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  10. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  11. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  12. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  13. Terrestrial Method for Airborne Lidar Quality Control and Assessment

    NASA Astrophysics Data System (ADS)

    Alsubaie, N. M.; Badawy, H. M.; Elhabiby, M. M.; El-Sheimy, N.

    2014-11-01

    Most of LiDAR systems do not provide the end user with the calibration and acquisition procedures that can use to validate the quality of the data acquired by the airborne system. Therefore, this system needs data Quality Control (QC) and assessment procedures to verify the accuracy of the laser footprints and mainly at building edges. This research paper introduces an efficient method for validating the quality of the airborne LiDAR point clouds data using terrestrial laser scanning data integrated with edge detection techniques. This method will be based on detecting the edge of buildings from these two independent systems. Hence, the building edges are extracted from the airborne data using an algorithm that is based on the standard deviation of neighbour point's height from certain threshold with respect to centre points using radius threshold. The algorithm is adaptive to different point densities. The approach is combined with another innovative edge detection technique from terrestrial laser scanning point clouds that is based on the height and point density constraints. Finally, statistical analysis and assessment will be applied to compare these two systems in term of edge detection extraction precision, which will be a priori step for 3D city modelling generated from heterogeneous LiDAR systems

  14. Windshear detection and avoidance - Airborne systems survey

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.

    1990-01-01

    Functional requirements for airborne windshear detection and warning systems are discussed in terms of the threat posed to civil aircraft operations. A preliminary set of performance criteria for predictive windshear detection and warning systems is defined. Candidate airborne remote sensor technologies based on microwave Doppler radar, Doppler laser radar (lidar), and infrared radiometric techniques are discussed in the context of overall system requirements, and the performance of each sensor is assessed for representative microburst environments and ground clutter conditions. Preliminary simulation results demonstrate that all three sensors show potential for detecting windshear, and provide adequate warning time to allow flight crews to avoid the affected area or escape from the encounter. Radar simulation and analysis show that by using bin-to-bin automatic gain control, clutter filtering, limited detection range, and suitable antenna tilt management, windshear from wet microbursts can be accurately detected. Although a performance improvement can be obtained at higher radar frequency, the baseline X-band system also detected the presence of windshear hazard for a dry microburst. Simulation results of end-to-end performance for competing coherent lidar systems are presented.

  15. Software Development for an Airborne Wind LIDAR

    NASA Astrophysics Data System (ADS)

    Zhu, Jishan; Li, Zhigang; Chen, Zhen; Liu, Zhishen

    2014-11-01

    Currently, Wind lidar offers an important way to obtain clear air wind field [1]. The principle of the wind lidar is based on the Doppler frequency shift in the air of the laser. The received signal of the lidar is scattered by the air molecular and particles [2]. They are Rayleigh scattering and Mie scattering. Coherent detection technique is an effective method to get the Doppler shift from the scattering in the air. From the Doppler shift we can get the radial wind speed. Generally, the horizontal wind field is that people concerned about. Based on the radial wind speed of more than 3 directions, we can use the VAD technique to retrieve the horizontal wind field. For an airborne lidar, some corrections such as the air plane posture, the air plane velocity must be performed. We developed a set of software for an airborne wind lidar using the MFC visual C++ Programming technology. Functions of the software are raw data decoding, radial wind speed inversion, horizontal wind field retrieve by VAD technique, air plane posture correction, air plane velocity correction, and so on. It also has functions for data display and saves. The results can be saved as picture or numerical values.

  16. First demonstration of a high performance difference frequency spectrometer on airborne platforms.

    PubMed

    Weibring, Petter; Richter, Dirk; Walega, James G; Fried, Alan

    2007-10-17

    We discuss the first airborne deployment and performance tests of a mid-IR difference frequency spectrometer system for highly sensitive measurements of formaldehyde. The laser system is based upon difference-frequency generation (DFG) at ~3.5 mum by mixing a DFB diode laser at 1562 nm and a distributed feedback (DFB) fiber laser at 1083 nm in a periodically poled LiNbO(3) (PPLN) crystal. Advanced LabVIEW software for lock-in, dual-beam optical noise subtraction, thermal control and active wavelength stabilization, renders a sensitivity of ~20 pptv (Absorbance ~7*10(-7)) for 30s of averaging. The instrument's performance characteristics spanning more than 300 flight hours during three consecutive airborne field missions MIRAGE, IMPEX and TexAQS operating on two airborne platforms, NCAR's C-130 and NOAA's P-3 aircraft are demonstrated. PMID:19550617

  17. Laser-induced fluorescence in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Andersson-Engels, Stefan; Johansson, Jonas; Svanberg, Katarina; Svanberg, Sune

    1990-07-01

    We have performed extensive investigations using laser-induced fluorescence in animal as well as human tissue in order to localize diseased tissue and thus discriminate such tissue from normal surrounding areas. In characterizing different tissue types the endogenous fluorescence (autofluorescence) as well as specific fluorescence from different photosensitising substances was utilized. We have investigated different experimental and human malignant tumors in vivo and in vitro as well as atherosclerotic lesions in vitro. A fiber-optic fluorosensor was constructed and used in the experiments and in the clinical examination of patients. Dimensionless spectroscopic functions were formed to ensure that the signals were independent of clinically uncontrollable variables such as distance variations, tissue topography, light source fluctuations and variations in detection efficiency. A multi-color two-dimensional imaging system was constructed for real-time imaging. The system was tested peroperatively and during standard examination patient procedures. Besides utilizing the time-integrated fluorescence signal we have also investigated the possibility of incorporating time-resolved fluorescence characterization.

  18. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement. PMID:12899892

  19. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  20. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  1. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  2. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  3. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  4. Topography and Vegetation Characterization using Dual-Wavelength Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.; Bradford, B.; Magruder, L. A.

    2014-12-01

    Monitoring Earth surface dynamics at an ever increasing resolution has helped to support the characterization of local topography, including vegetated and urban environments. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to characterize vegetation and landscapes as it provides detailed three-dimensional spatial data with multiple elevation recordings for each laser pulse. The full waveform LIDAR receiver is unique in this aspect as it can capture and record the complete temporal history of the reflected signal, which contains detailed information about the structure of the objects and ground surfaces illuminated by the beam. This study examines the utility of co-collected, dual-wavelength, full waveform LIDAR data to characterize vegetation and landscapes through the extraction of waveform features, including total waveform energy, canopy energy distribution, and foliage penetration metrics. Assessments are performed using data collected in May 2014 over Monterey, CA, including the Naval Postgraduate School campus area as well as the Point Lobos State Natural Reserve situated on the Monterey coast. The surveys were performed with the Chiroptera dual-laser LIDAR mapping system from Airborne Hydrography AB (AHAB), which can collect both green (515nm) and near infrared (1064nm) waveforms simultaneously. Making use of the dual waveforms allows for detailed characterization of the vegetation and landscape not previously possible with airborne LIDAR.

  5. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-01-01

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  6. Airborne polarized lidar detection of scattering layers in the ocean.

    PubMed

    Vasilkov, A P; Goldin, Y A; Gureev, B A; Hoge, F E; Swift, R N; Wright, C W

    2001-08-20

    A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the time-depth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the time-depth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the time-depth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 20-25 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications. PMID:18360476

  7. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  8. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  9. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  10. Airborne GPS kinematic positioning and its application to oceanographic mapping

    NASA Astrophysics Data System (ADS)

    Han, Shaowei; Rizos, Chris

    2000-10-01

    Precise, long-range, airborne GPS kinematic positioning requires the use of carrier phase measurements, the data processing of which suffers from the technical challenges of "on-the-fly" ambiguity resolution and cycle slip repair. In this paper the authors describe how the combination of an `ambiguity recovery' technique and a `linear bias correction' method has been used to support oceanographic mapping in Australian waters, together with the augmentation from the Laser Airborne Depth Sounder (LADS) system. Two experiments, carried out on the 4th December 1997 in the Torres Strait between Papua New Guinea and Australia, and on the 20 May 1998 at Lake Argyle in Australia, were analysed. The results indicate that the topography of the water surface can be obtained with sub-decimetre accuracy, with a spatial resolution of a few metres. The main errors are attributable to multipath interference of the GPS signals at the antennas from the aircraft surface.

  11. Geoscience Applications of Airborne and Spaceborne Lidar Altimetry

    NASA Technical Reports Server (NTRS)

    Harding David J.

    1999-01-01

    Recent advances in lidar altimetry technology have enabled new methods to describe the vertical structure of the Earth's surface with great accuracy. Application of these methods in several geoscience disciplines will be described. Airborne characterization of vegetation canopy structure will be illustrated, including a validation of lidar-derived Canopy Height Profiles for closed-canopy, broadleaf forests. Airborne detection of tectonic landforms beneath dense canopy will also be illustrated, with an application mapping active fault traces in the Puget Lowland of Washington state for earthquake hazard assessment purposes. Application of data from the first and second flights of the Shuttle Laser Altimeter will also be discussed in an assessment of global digital elevation model accuracy and error characteristics. Two upcoming space flight missions will be described, the Vegetation Canopy Lidar (VCL) and the Ice, Cloud and Land Elevation Mission (ICESat), which will provide comprehensive lidar altimeter observations of the Earth's topography and vegetation cover.

  12. Airborne bio-optics survey of the Galapagos Islands margins

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wayne Wright, C.; Swift, Robert N.; Yungel, James K.; Berry, Richard E.; Mitchell, Richard

    Aircraft and ship surveys of the Galapagos Islands were conducted to address the hypothesized influence of "island-leached" iron upon phytoplankton production. This paper describes the airborne survey of the Galapagos Islands that composed the second phase of a two-part study of the influence of iron on phytoplankton production in high-nutrient/low-chlorophyll (HNLC) regions. A single bio-optics airborne survey transect along 92°W from 1°N to 2°S was executed on 25 October 1993 in order to provide initial reconnaissance spatial and temporal sampling of the oceanic region west of the Galapagos Islands. A more extensive airborne bio-optics survey of the entire Galapagos Islands region was conducted on 3 November 1993. This expanded flight survey was made along all the ship cruise tracks of the R.V. Columbus Iselin originally planned for 15-27 November 1993. Analysis of the surface-layer airborne laser-induced and water-Raman normalized chlorophyll, phycoerythrin, and chromophoric dissolved organic matter (CDOM) fluorescence, SST, and AXBT (airborne expendable bathythermograph) data suggest that: (1) the regional distribution of phytoplankton and dissolved organic matter is dominated by the strong east-west thermal boundary located both east and west of the Galapagos Islands; (2) the source for the elevated phytoplankton patches west of the Galapagos Islands is from upwelling rather than aeolian sources or from the westward drift of iron and nutrients leached from the islands themselves or offshore shallow bottom sources; (3) the introduction of subsurface water to the surface may occur in episodic events rather than as a steady-state process; and (4) the chronic high chlorophyll west of the Galapagos Islands noted in processed Coastal Zone Color Scanner (CZCS) images may be due, at least in part, to the presence of elevated levels of chromophoric dissolved organic matter (CDOM) absorption.

  13. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  14. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  15. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Astrophysics Data System (ADS)

    Hoge, F. E.

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  16. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  17. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented.

  18. ESA Cryovex 2011 Airborne Campaign for CRYOSAT-2 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Skourup, H.; Einarsson, I.; Sandberg, L.; Forsberg, R.; Stenseng, L.; Hendricks, S.; Helm, V.; Davidson, M.

    2011-12-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. DTU Space has been involved in ESA's CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. We present an overview of the 2011 airborne campaign together with first results of the CryoSat-2 underflights.

  19. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  20. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  1. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  2. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  3. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  4. Laser diode arrays for expanded mine detection capability

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.; Holloway, John H., Jr.; Petee, Danny A.; Stetson, Suzanne P.; Suiter, Harold R.; Tinsley, Ken R.

    2002-08-01

    A tactical unmanned aerial vehicle-size illumination system for enhanced mine detection capabilities has been designed, developed, integrated, and tested at the Coastal Systems Station. Airborne test flights were performed from June 12, 2001 to February 1, 2002. The Airborne Laser Diode Array Illuminator uses a single-wavelength compact laser diode array stack to provide illumination and is coupled with a pair of intensified CCD video cameras. The cameras were outfitted with various lenses and polarization filters to determine the benefits of each of the configurations. The first airborne demonstration of a laser diode illumination system is described and its effectiveness to perform nighttime mine detection operations is shown.

  5. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  6. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  7. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  8. Subsurface Characterization of Shallow Water Regions using Airborne Bathymetric Lidar

    NASA Astrophysics Data System (ADS)

    Bradford, B.; Neuenschwander, A. L.; Magruder, L. A.

    2013-12-01

    Understanding the complex interactions between air, land, and water in shallow water regions is becoming increasingly critical in the age of climate change. To effectively monitor and manage these zones, scientific data focused on changing water levels, quality, and subsurface topography are needed. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to address this need as it can simultaneously provide detailed three-dimensional spatial data for both topographic and bathymetric applications in an efficient and effective manner. The key to useful data, however, is the correct interpretation of the incoming laser returns to distinguish between land, water, and objects. The full waveform lidar receiver captures the complete returning signal reflected from the Earth, which contains detailed information about the structure of the objects and surfaces illuminated by the beam. This study examines the characterization of this full waveform with respect to water surface depth penetration and subsurface classification, including sand, rock, and vegetation. Three assessments are performed to help characterize the laser interaction within the shallow water zone: evaluation of water surface backscatter as a function of depth and location, effects from water bottom surface roughness and reflectivity, and detection and classification of subsurface structure. Using the Chiroptera dual-laser lidar mapping system from Airborne Hydrography AB (AHAB), both bathymetric and topographic mapping are possible. The Chiroptera system combines a 1064nm near infrared topographic laser with a 515nm green bathymetric laser to seamlessly map the land/water interface in coastal areas. Two survey sites are examined: Lake Travis in Austin, Texas, USA, and Lake Vättern in Jönköping, Sweden. Water quality conditions were found to impact depth penetration of the lidar, as a maximum depth of 5.5m was recorded at Lake Travis and 11m at Lake Vättern.

  9. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  10. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  11. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  12. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  13. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  14. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  15. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  16. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  17. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  18. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  19. Multiple model adaptive tracking of airborne targets

    NASA Astrophysics Data System (ADS)

    Norton, John E.

    1988-12-01

    Over the past ten years considerable work has been accomplished at the Air Force Institute of Technology (AFIT) towards improving the ability of tracking airborne targets. Motivated by the performance advantages in using established models of tracking environment variables within a Kalman filter, an advanced tracking algorithm has been developed based on adaptive estimation filter structures. A multiple model bank of filters that have been designed for various target dynamics, which each accounting for atmospheric disturbance of the Forward Looking Infrared (FLIR) sensor data and mechanical vibrations of the sensor platform, outperforms a correlator tracker. The bank of filters provides the estimation capability to guide the pointing mechanisms of a shared aperture laser/sensor system. The data is provided to the tracking algorithm via an (8 x 8)-pixel tracking Field of View (FOV) from the FLIR image plane. Data at each sample period is compared by an enhanced correlator to a target template. These offsets are measurements to a bank of linear Kalman filters which provide estimates of the target's location in azimuth and elevation coordinates based on a Gauss-Markov acceleration model, and a reduced form of the atmospheric jitter model for the disturbance in the IR wavefront carrying future measurements.

  20. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  1. The NCAR Airborne Infrared Lidar System (NAILS)

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Lightsey, P. A.

    1986-01-01

    A planned airborne lidar system is presented which is intended to provide a remote sensing facility for a variety of applications. The eventual goal of the system development is a Doppler wind measurement capability for boundary layer dynamics and cloud physics applications. The first stage of development is focused initially on a direct detection lidar to measure aerosol profiles and depolarization from cloud backscatter. Because of the Doppler goal, interest in larger particles to define the top of the mixed layer, and eye safety, the first stage of the system is based on a pulsed CO2 laser. A compact, relatively simple and inexpensive system that achieves flexibility to meet the data requirements of a variety of investigators by being easily modified rather than having many different capabilities built in is the goal. Although the direct detection sensitivity is less than that for heterodyne detection, the simpler system allows the achievement of useful scientific results and operating experience towards more complex lidars while staying within budget and time constraints.

  2. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Astrophysics Data System (ADS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; McCaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  3. A decade of sea ice thickness mapping by airborne lidar between Greenland and the North Pole

    NASA Astrophysics Data System (ADS)

    Hvidegaard, S. M.; Forsberg, R.; Skourup, H.; Stenseng, L.; Hanson, S.

    2007-12-01

    Airborne laser altimetry provides a direct measurement of sea ice freeboard, when combined with a precise geoid model and a lowest-level filtering algorithm to take into account residual errors in GPS-positioning, ocean dynamic topography, tides etc. Using swath laser scanning, the method additionally gives detailed information on the geometry of leads, ridges and the distribution of thin ice and open water. The conversion of sea ice freeboard heights to thickness is based on the assumption of equilibrium, with major errors sources relating to snow depth and density of sea ice. In the paper we describe results of measurements with airborne laser north of Greenland, Ellesmere Island and in the Fram Strait region, carried out on a yearly basis since 1998, in the first years using a single beam laser, and since 2001 using swath laser scanning giving a resolution of approximately 1 m in the ice features. The campaigns have mostly been done in the spring period, typically in connection with airborne gravity surveys or CryoSat calibration and validation activities. Observed secular changes in the sea ice freeboard heights are masked by limited spatial and temporal extent of campaigns, as well as interannual variability in the sea ice regime of the region. To address the error sources in the lidar thickness determination, a number of in-situ and helicopter EM comparisons have been carried out, e.g latest in April 2007 around the Tara drifting station beyond the North Pole, as part of the Damocles project. In cooperation with ESA and APL, coincident Ku-band radar and laser systems have also been flown, giving a unique opportunity for airborne measurement of snow depth as well.

  4. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  5. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar.

    PubMed

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B

    2012-12-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection integrated-path differential-absorption lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier pumped by a Nd:YAG laser, and the receiver used a photomultiplier detector and photon-counting electronics. The results follow the expected changes with aircraft altitude, and the measured line shapes and optical depths show good agreement with theoretical calculations. PMID:23207402

  6. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  7. Investigation of airborne lidar for avoidance of windshear hazards

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1988-01-01

    The present generalized windshear hazard index is formulated in terms of wind conditions at the given aircraft position and of remotely-sensed information obtained along the extended flight path. Overall system functional requirements are addressed by comparing microwave Doppler radar, Doppler lidar, and IR radiometry candidate techniques, giving attention to airborne CO2 and Ho:YAG lidar windshear-detection systems; these furnish pilots with data on the line-of-sight component of windshear threats over as much as 1-3 km, for a warning time of 15-45 sec. While the technology for a 10.6-micron, CO2 laser-based lidar is available, additional development is required for 2-micron, Ho:YAG laser-based systems.

  8. Rapid topographic and bathymetric reconnaissance using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Axelsson, Andreas

    2010-10-01

    Today airborne LiDAR (Light Detection And Ranging) systems has gained acceptance as a powerful tool to rapidly collect invaluable information to assess the impact from either natural disasters, such as hurricanes, earthquakes and flooding, or human inflicted disasters such as terrorist/enemy activities. Where satellite based imagery provides an excellent tool to remotely detect changes in the environment, the LiDAR systems, being active remote sensors, provide an unsurpassed method to quantify these changes. The strength of the active laser based systems is especially evident in areas covered by occluding vegetation or in the shallow coastal zone as the laser can penetrate the vegetation or water body to unveil what is below. The purpose of this paper is to address the task to survey complex areas with help of the state-of-the-art airborne LiDAR systems and also discuss scenarios where the method is used today and where it may be used tomorrow. Regardless if it is a post-hurricane survey or a preparation stage for a landing operation in unchartered waters, it is today possible to collect, process and present a dense 3D model of the area of interest within just a few hours from deployment. By utilizing the advancement in processing power and wireless network capabilities real-time presentation would be feasible.

  9. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  10. An intercomparison of airborne nitric acid measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. L.; Hoell, J. M.; Huebert, B. J.; van Bramer, S. E.; Lebel, P. J.; Vay, S. A.; Marinaro, R. M.; Schiff, H. I.; Hastie, D. R.; Mackay, G. I.; Karecki, D. R.

    1990-06-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric acid are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during the summer of 1986. Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a niylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. Intercomparison of investigators' calibration standards were also performed as part of the test protocol. While results were somewhat "soft" and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominately in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. The TDLAS participated in an intercomparison of NO2 instruments (major focus) that was also conducted during the same flights. As a result the TDLAS data set is limited. Further, a significant fraction of the nitric acid measurements were below the TDLAS detection limit (75 pptv as configured for these tests). While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO3 techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO3 at levels often encountered in the

  11. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  12. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  13. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  14. Real-time detection of airborne asbestos by light scattering from magnetically re-aligned fibers.

    PubMed

    Stopford, Christopher; Kaye, Paul H; Greenaway, Richard S; Hirst, Edwin; Ulanowski, Zbigniew; Stanley, Warren R

    2013-05-01

    Inadvertent inhalation of asbestos fibers and the subsequent development of incurable cancers is a leading cause of work-related deaths worldwide. Currently, there is no real-time in situ method for detecting airborne asbestos. We describe an optical method that seeks to address this deficiency. It is based on the use of laser light scattering patterns to determine the change in angular alignment of individual airborne fibers under the influence of an applied magnetic field. Detection sensitivity estimates are given for both crocidolite (blue) and chrysotile (white) asbestos. The method has been developed with the aim of providing a low-cost warning device to trades people and others at risk from inadvertent exposure to airborne asbestos. PMID:23669992

  15. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  16. High sensitive airborne radioiodine monitor.

    PubMed

    Ogata, Yoshimune; Yamasaki, Tadashi; Hanafusa, Ryuji

    2013-11-01

    Airborne radioiodine monitoring includes a problem in that commercial radioactive gas monitors have inadequate sensitivity. To solve this problem, we designed a highly sensitive monitoring system. The higher counting efficiency and lower background made it possible to perform the low-level monitoring. The characteristics of the system were investigated using gaseous (125)I. The minimum detectable activity concentration was 1 × 10(-4)Bq cm(-3) for 1 min counting, which is one tenth of the legal limit for the radiation controlled areas in Japan. PMID:23602709

  17. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  18. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  19. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  20. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  1. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  2. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  3. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  4. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  5. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  6. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  7. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  8. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  9. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  10. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  11. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  12. Multiwavelength LIDAR for remote sensing of chlorophyll A in algae and phytoplankton

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1975-01-01

    A theoretical and experimental analysis of laser induced fluorescence for remote detection of chlorophyll A in living algae and phytoplankton is presented. The fluorescent properties of various species of algae representative of the different color groups are described. Laboratory measurements of fluorescent scattering cross sections is discussed and quantitive data presented. A scattering matrix model is developed to demonstrate the essential requirement of multiwavelength laser excitation in order to make accurate quantitative measurements of chlorophyll A concentration when more than one color group of algae is present in the water. A practical airborne laser fluorosensor design is considered and analysis of field data discussed. Successful operation of the Langley ALOPE (airborne LIDAR oceanographic probing experiment) system is described and field measurements presented. Accurate knowledge of alpha, the optical attenuation coefficient of the water, is shown to be essential for quantitative analysis of chlorophyll A concentration. The feasibility of remotely measuring alpha by laser radar is discussed.

  13. Contaminant Monitor Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research contract from Langley Research Center, OPOTEK, Inc. developed a laser transmitter for remote sensing of water vapor in the upper atmosphere. As a leader in developing and using Differential Absorption Lidar, a remote sensing technique to monitor ozone and water vapor in the atmosphere, NASA was interested in upgrading the capabilities of its airborn laser systems. The laser transmitter developed for NASA was used for measuring water vapor in the infrared region. By broadening this concept to other wavelengths, OPOTEK believes a range of industrial applications can be met. In addition, the tunable laser system can be used by the Drug Enforcement Administration to discern the by-products from illegal drug manufacturing. A host of other government, university, and industrial laboratory uses for the technology are also being examined as follow-up by the company.

  14. Laser-induced bioluminescence

    SciTech Connect

    Hickman, G.D.; Lynch, R.V. III

    1981-01-01

    A project has been initiated to determine the feasibility of developing a complete airborne remote sensing system for rapidly mapping high concentration patches of bioluminescent organisms in the world's oceans. Conceptually, this system would be composed of a laser illuminator to induce bioluminescence and a low light level image intensifier for detection of light. Initial laboratory measurements consisted of using a 2-J flash lamp pulsed optical dye laser to excite bioluminescence in the marine dinoflagellate Pyrocustis lunula at ambient temperature using Rhodamine 6G as the lasing dye (585 nm) and a laser pulse width of 1 microsec. After a latency period of 15-20 msec, the bioluminescence maximum occurred in the blue (480 nm is the wavelength maximum for most dinoflagellate bioluminescence) with the peaking occurring approximately 65 msec after the laser pulse. Planned experiments will investigate the effect of different excitation wavelengths and energies at various temperatures and salinities of the cultures.

  15. An intercomparison of airborne nitric acid measurements

    SciTech Connect

    Gregory, G.L.; Hoell, J.M. Jr.; LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Van Bramer, S.E. ); Marinaro, R.M. ); Schiff, H.I.; Hastie, D.R. ); Mackay, G.I.; Karecki, D.R. )

    1990-06-20

    Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a nylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. While results were somewhat soft and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominantly in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1,000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO{sub 3} techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO{sub 3} at levels often encountered in the free troposphere (e.g., 100 pptv). However, at the more elevated levels of HNO{sub 3} (e.g., >150 pptv), both the FILTER and DENUDER techniques reported the same levels of nitric acid, while as suggested by the results from the standards intercomparison, the TDLAS reported higher nitric acid values than the other two techniques.

  16. Airborne Lidar Point Cloud Density Indices

    NASA Astrophysics Data System (ADS)

    Shih, P. T.; Huang, C.-M.

    2006-12-01

    Airborne lidar is useful for collecting a large volume and high density of points with three dimensional coordinates. Among these points are terrain points, as well as those points located aboveground. For DEM production, the density of the terrain points is an important quality index. While the penetration rate of laser points is dependent on the surface type characteristics, there are also different ways to present the point density. Namely, the point density could be measured by subdividing the surveyed area into cells, then computing the ratio of the number of points in each respective cell to its area. In this case, there will be one density value for each cell. The other method is to construct the TIN, and count the number of triangles in the cell, divided by the area of the cell. Aside from counting the number of triangles, the area of the largest, or the 95% ranking, triangle, could be used as an index as well. The TIN could also be replaced by Voronoi diagrams (Thiessen Polygon), and a polygon with even density could be derived from human interpretation. The nature of these indices is discussed later in this research paper. Examples of different land cover types: bare earth, built-up, low vegetation, low density forest, and high density forest; are extracted from point clouds collected in 2005 by ITRI under a contract from the Ministry of the Interior. It is found that all these indices are capable of reflecting the differences of the land cover type. However, further investigation is necessary to determine which the most descriptive one is.

  17. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  18. Application of the NASA airborne oceanographic lidar to the mapping of chlorophyll and other organic pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    Laser fluorosensing techniques used for the airborne measurement of chlorophyll a and other naturally occurring waterborne pigments are reviewed. Previous experiments demonstrating the utility of the airborne oceanographic lidar (AOL) for assessment of various marine parameters are briefly discussed. The configuration of the AOL during the NOAA/NASA Superflux experiments is described. The participation of the AOL in these experiments is presented and the preliminary results are discussed. The importance of multispectral receiving capability in a laser fluorosensing system for providing reproducible measurements over wide areas having spatial variations in water column transmittance properties is addressed. This capability minimizes the number of truthing points required and is usable even in shallow estuarine areas where resuspension of bottom sediment is common. Finally, problems encountered on the Superflux missions and the resulting limitations on the AOL data sets are addressed and feasible solutions to these problems are provided.

  19. Signal to Noise Ratio Analysis of the Data from the Pulsed Airborne CO2 Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2009-12-01

    We are developing a differential absorption lidar (DIAL) for measuring the CO2 column concentrations from space for the ASCENDS mission. Our technique uses two pulsed laser transmitters to simultaneously measure the total column absorption by CO2 in 1570 nm band and O2 extinction in the Oxygen A-band by periodically stepping the laser wavelength at predetermined wavelengths across the absorption lines. The reflected laser signals from the surface and clouds are collected by the receiver telescope and detected by a set of single photon counting detectors. We used pulsed lasers and time resolved photon detection to distinguish the surface echoes from cloud and aerosol backscattering and to measure the column height. . The total column absorption at a given wavelength is determined from the ratio of the received laser pulse energy to the transmitted energy. The column gas concentrations and the spectral line shape are determined from curve fitting of the column absorptions as a function of the wavelength. We have built an airborne lidar to demonstrate the CO2 column measurement technique from the NASA Lear-25 aircraft. The airborne lidar scans the laser wavelength across the CO2 absorption line in 20 steps. The line scan rate is 450 Hz, the laser pulse energy is 25 uJ, and laser pulse widths are 1 usec. The backscatter photons are collected by a 20 cm telescope and detected by a near infrared photomultiplier tube. The detected photons are binned according to their arrival times with the use of a multichannel scaler. Several airborne measurements were conducted during October and December 2008, and August 2009 with many hours of CO2 column measurement data at the 1571.4, 1572.02 and 1572.33 nm CO2 absorption lines. The measurements were made over a variety of land and water surfaces and some through thin clouds. We also made several improvements to the instrument for the later flights. Measurements from early flights showed the receiver signal and noise levels were

  20. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  1. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  2. Research on MLS airborne antenna

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1976-01-01

    Numerical solutions for the radiation patterns of antennas mounted on aircraft are developed. The airborne antenna problems associated with the Microwave Landing System (MLS) are emphasized. Based on the requirements of the MLS, volumetric pattern solutions are essential. Previous attempts at solving for the volumetric patterns were found to be far too complex and very inefficient. However as a result of previous efforts, it is possible to combine the elevation and roll plane pattern solutions to give the complete volumetric pattern. This combination is described as well as the aircraft simulation models used in the analysis. A numerical technique is presented to aid in the simulation of the aircraft studied. Finally, a description of the input data used in the computer code is given.

  3. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. PMID:23962732

  4. Alexandrite laser source for atmospheric lidar measurements

    NASA Technical Reports Server (NTRS)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  5. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  6. Airborne surveillance of water basins with hyperspectral FLS-LiDAR

    NASA Astrophysics Data System (ADS)

    Babichenko, S.; Alekseyev, V.; Lapimaa, J.; Lisin, A.; Poryvkina, L.; Shchemelyov, S.; Sobolev, I.; Vint, L.

    2010-10-01

    The airborne FLS-Lidars are based on the method of Laser Induced Fluorescence (LIF) and aimed at the analytical remote sensing of water objects. Scanning the laser beam across the flight trajectory and recording the comprehensive LIF spectrum with hyperspectral detector per every laser pulse provide detail maps of spectral properties of the water basins. A multi-tier model for integrated environmental assessment is applied for further analysis of this information to combine the benefits of "big-picture" capability of remote sensing techniques and GIS solutions with localized on-theground environmental data gathering. In this concept far looking satellite and airborne systems provide the highest tier information. The airborne data acquisition with FLS-Lidar is considered as the middle tier characterized by vast amount of LIF data with high spatial (less than 10 m) and spectral (less than 5 nm in UV/VIS spectral ranges) resolution. The lower tier is anchored with the geographical locations of important findings detected at the middle tier. Taken water samples are analyzed with fastscreening technology of Spectral Fluorescence Signatures (SFS) giving more analytical qualitative and quantitative results. And the base tier includes detail laboratory analysis of characteristic samples selected at the lower tier. Precisely geo-referenced LIF data of hyperspectral FLS-Lidar anchored to and calibrated by the ground SFS data allows detection of pollution incidents and mapping of environmental trends over vast water systems like coastal zone, lakes and rivers.r

  7. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  8. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  9. Mapping Slumgullion Landslide in Colorado, USA Using Airborne Repeat-Pass InSAR

    NASA Astrophysics Data System (ADS)

    Lee, H.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Fernandez-Diaz, J. C.; Cao, N.; Zaugg, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) uses two or more SAR images over the same area to determine landscape topography or ground deformation. An interferogram, generated by the phase components of two coherent SAR images, depicts range changes between the radar and the ground resolution elements, and can be used to derive both landscape topography and subtle changes in surface elevation. However, spaceborne repeat-pass interferometry has two main drawbacks: effects due to differences in atmospheric temperature, pressure, and water vapour at two observation times, and loss of coherence due to long spatial and temporal baselines between observations. Airborne repeat-pass interferometry does not suffer from these drawbacks. The atmospheric effect in case of airborne DInSAR becomes negligible due to smaller swath coverage, and the coherence can be maintained by using smaller spatial and temporal baselines. However, the main technical limitation concerning airborne DInSAR is the need of precise motion compensation with an accurate navigation system to correct for the significant phase errors due to typical flight instability from air turbulence. Here, we present results from a pilot study conducted on July 2015 using both X-band and L-band SlimSAR airborne system over the Slumgullion landslide in Colorado in order to (1) acquire the differential interferograms from the airborne platform, (2) understand their source of errors, and (3) pave a way to improve the precision of the derived surface deformation. The landslide movement estimated from airborne DInSAR is also compared with coincident GPS, terrestrial laser scanning (TLS), airborne LiDAR, and spaceborne DInSAR measurements using COSMO-SkyMed images. The airborne DInSAR system has a potential to provide time-transient variability in land surface topography with high-precision and high-resolution, and provide researchers with greater flexibility in selecting the temporal and spatial baselines of the data

  10. Airborne multisensor system for the autonomous detection of land mines

    NASA Astrophysics Data System (ADS)

    Scheerer, Klaus

    1997-07-01

    A concept of a modular multisensor system for use on an airborne platform is presented. THe sensor system comprises two high resolution IR sensors working in the mid and far IR spectral regions, a RGB video camera with its sensitivity extended to the near IR in connection with a laser illuminator, and a radar with a spatial resolution adapted to the expected mine sizes. The sensor concept emerged from the evaluation of comprehensive static and airborne measurements on numerous buried and unburied mines. The measurements were performed on single mines and on minefields, layed down according to military requirements. The system has an on-board realtime image processing capability and is intended to operate autonomously with a data link to a mobile groundstation. Data from a navigation unit serve to transform the location of identified mines into a geodetic coordinate system. The system will be integrated into a cylindrical structure of about 40 cm diameter. This may be a drone or simply a tube which can be mounted on any carrier whatever. The realization of a simplified demonstrator for captive flight tests is planned by 1998.

  11. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  12. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  13. Investigation of airborne lidar for avoidance of windshear hazards

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1990-01-01

    A generalized windshear hazard index is defined, which is derived from considerations of wind conditions at the present position of an aircraft and from remotely sensed information along the extended flight path. Candidate airborne sensor technologies based on microwave Doppler radar, Doppler lidar, and infrared radiometric techniques are discussed in the context of overall system functional requirements. Initial results of a performance and technology assessment study for competing lidars are presented. Based on a systems approach to the windshear threat, lidar appears to be a viable technology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The proposed airborne CO2 and Ho:YAG lidar windshear-detection systems analyzed here can give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 seconds. The technology necessary to design, build, and test such a brassboard 10.6 micron CO2 lidar is now available. However, for 2-micron systems, additional analytical and laboratory investigations are needed to arrive at optimum 2-micron rare-earth-based laser crystals.

  14. Classification of Water Surfaces Using Airborne Topographic LIDAR Data

    NASA Astrophysics Data System (ADS)

    Smeeckaert, J.; Mallet, C.; David, N.

    2013-05-01

    Accurate Digital Terrain Models (DTM) are inevitable inputs for mapping areas subject to natural hazards. Topographic airborne laser scanning has become an established technique to characterize the Earth surface: lidar provides 3D point clouds allowing a fine reconstruction of the topography. For flood hazard modeling, the key step before terrain modeling is the discrimination of land and water surfaces within the delivered point clouds. Therefore, instantaneous shoreline, river borders, inland waters can be extracted as a basis for more reliable DTM generation. This paper presents an automatic, efficient, and versatile workflow for land/water classification of airborne topographic lidar data. For that purpose, a classification framework based on Support Vector Machines (SVM) is designed. First, a restricted set of features, based only 3D lidar point coordinates and flightline information, is defined. Then, the SVM learning step is performed on small but well-targeted areas thanks to an automatic region growing strategy. Finally, label probabilities given by the SVM are merged during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that survey of millions of points are labelled with high accuracy (>95% in most cases for coastal areas, and >89% for rivers) and that small natural and anthropic features of interest are still well classified though we work at low point densities (0.5-4 pts/m2). Our approach is valid for coasts and rivers, and provides a strong basis for further discrimination of land-cover classes and coastal habitats.

  15. Photophoretic trapping of airborne particles using ultraviolet illumination.

    PubMed

    Redding, Brandon; Hill, Steven C; Alexson, Dimitri; Wang, Chuji; Pan, Yong-Le

    2015-02-01

    We demonstrate photophoretic trapping of micron-sized absorbing particles in air using pulsed and continuous-wave (CW) ultraviolet laser illumination at wavelengths of 351 nm and 244 nm. We compared the particle trapping dynamics in two trapping geometries consisting of a hollow optical cone formed by light propagating either with or against gravity. This comparison allowed us to isolate the influence of the photophoretic force from the radiative pressure and the convective forces. We found that the absorbing spherical particles tested experienced a positive photophoretic force, whereas the spatially irregular, non-spherical particles tested experienced a negative photophoretic force. By using two trapping geometries, both spherical and non-spherical absorbing particles could be trapped and held securely in place. The position of the trapped particles exhibited a standard deviation of less than 1 µm over 20 seconds. Moreover, by operating in the UV and deep-UV where the majority of airborne materials are absorptive, the system was able to trap a wide range of particle types. Such a general purpose optical trap could enable on-line characterization of airborne particles when coupled with interrogation techniques such as Raman spectroscopy. PMID:25836215

  16. Compact airborne lidar for tropospheric ozone: description and field measurements.

    PubMed

    Ancellet, G; Ravetta, F O

    1998-08-20

    An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5-4-km) and upper tropospheric (4-12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10-15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone. PMID:18286036

  17. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  18. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  19. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  20. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.